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Abstract—Federated learning (FL) is an emerging technology
for empowering various applications that generate large amounts
of data in intelligent cyber-physical systems (ICPS). Though FL
can address users’ concerns about data privacy, its maintenance
still depends on efficient incentive mechanisms. For long-term
incentivization to participants in data federation under dynamic
environments, deep reinforcement learning as a promising tech-
nology has been extensively studied. However, the non-stationary
problem caused by the heterogeneity of ICPS devices results in
a serious effect on the convergence rate of existing single-agent
reinforcement learning. In this paper, we propose a multi-agent
learning-based incentive mechanism to capture the stationarity
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approximation in FL with heterogeneous ICPS. First, we formulate
the secure communication and data resource allocation problem
as a Stackelberg game in FL with multiple participants. Then,
to tackle the heterogeneous problem, we model this multi-agent
game as a partially observable Markov decision process. Particu-
larly, a multi-agent federated reinforcement learning algorithm is
proposed to learn the allocation policies efficiently by dwindling
variances in policy evaluation caused by interaction among mul-
tiple devices without sharing privacy information. Moreover, the
proposed algorithm is proved to attain convergence at an expected
rate. Lastly, extensive experimental results demonstrate that our
proposed algorithm significantly outperforms baselines.

Index Terms—Federated edge learning, quantum key distri-
bution (QKD), resource allocation, deep reinforcement learning.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) enables a wide range of
computing and networking applications in edge networks,

e.g., smart cities [1], [2], [3], Internet of Vehicles [4], [5], and
Metaverses [6], [7], [8]. As one of the critical technologies
in AI, federated edge learning (FEL) is a novel paradigm of
privacy-preserving machine learning (ML) for intelligent edge
networks [9]. In FEL, multiple data owners (a.k.a., FEL workers)
can train a global model collaboratively for a model owner
without exposing their sensitive raw data. To ensure the security
of data and models in FEL systems, many modern cryptographic
schemes are applied [10], such as secure multi-party computa-
tion (MPC), trusted execution environment (TEE), and safe key
distribution. For instance, a secure and trusted collaborative edge
learning framework is proposed in [11], where homomorphic
encryption (HE) and blockchain are leveraged to track and choke
malicious behaviors. With the rapidly increasing computation
power of quantum computers [12], novel techniques will be
brought to empower FEL systems, including large-scale search-
ing, optimization, and semantic communication. However, the
FEL systems based on existing schemes are under serious se-
curity threats. For example, traditional key distribution schemes
based on the hardness in computing certain mathematical prob-
lems are no longer considered to be safe in the post-quantum
era [10]. Fortunately, based on quantum no-cloning theorem [13]
and Heisenberg’s uncertainty principle [14], quantum key
distribution (QKD) [15] is promising for providing proven se-
cure key distribution schemes for collaborative training between
FEL workers and model owners by facilitating public key and
model encryption against eavesdropping attacks.
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Originated from classical QKD schemes such as Bennett-
Brassard-1984 (BB84) [16] and Grosshans-Grangier-2002
(GG02) [17], some modern QKD schemes have paved the way
for the Quantum Internet [18] in recent years. For example, the
measurement device-independent QKD (MDI-QKD) [19] pro-
vides one of the practical QKD solutions by increasing the range
of secure communications and filling the detection gaps with an
untrusted relay by avoiding any eavesdropping attacks on the
Quantum Internet. Although several existing works focus on the
theoretical and experimental aspects of the deployments of MDI-
QKD, the problems of QKD resource allocation in the Quantum
Internet have been largely overlooked [20]. For example, in [21],
a deterministic programming model and a heuristic approach
based on the shortest path algorithm are proposed to optimize
the deployment cost of QKD resources. However, the problem of
optimal allocation of QKD resources for quantum-secured FEL
systems with heterogeneous data and model owners remains
open. In particular, the number of participating FEL workers at
different locations and times is uncertain due to unpredictable
node and device failures [22]. Therefore, different security levels
might be required by cluster heads to encrypt local models during
global aggregation. Specifically, the secret-key rate for reaching
the information-theoretic security (ITS) requirement is dynamic
to support the encryption of intermediate models and related
information according to uncertainties in quantum-secured FEL
systems.

To address these uncertainty issues, we propose a stochastic
QKD resource (i.e., wavelength) allocation model to optimize
the QKD deployment cost of the Quantum Internet. To protect
FEL models and public keys from eavesdropping attacks, we
propose a hierarchical architecture for quantum-secured FEL
systems that includes the FEL layer, the control and management
layer, and the QKD infrastructure layer. To handle the dynamics
of security demands from the FEL layer, we model the QKD
resource allocation of QKD managers and QKD controllers in
the control and management layer as a stochastic programming
model that allocates QKD resources from the QKD infras-
tructure layer to cluster heads in the FEL layer. However, the
proposed stochastic model can hardly be applied in practice
because it requires complete state information from FEL nodes
and QKD nodes, which is infeasible for QKD managers and
controllers to collect due to privacy concerns [23]. Fortunately,
the independent QKD resource allocation problems can be ad-
dressed by the promising deep reinforcement learning (DRL)
algorithms [24]. Nevertheless, the efficiency and stability of
learning-based approaches still face the issues of “data islands”
during their training and inference [23]:
� Initially, QKD managers and controllers configure QKD

nodes to provide QKD resources based only on practical
observation of the state of the FEL layer. However, the
experiences, including observations, actions, and rewards,
are kept in the local replay buffers due to privacy con-
cerns. Therefore, the lack of collaboration between QKD
managers and controllers makes QKD resource allocation
problems more challenging to satisfy changing security
demands in quantum-secured FEL systems.

� Furthermore, QKD managers are reluctant to share their re-
wards from the FEL layers directly with QKD controllers.
Therefore, QKD controllers can only collect incomplete
experiences, including states and actions, during their inter-
action with the FEL systems, which are insufficient for their
local policy improvement. Therefore, QKD controllers can
only use policies shared by QKD managers to instruct QKD
resource allocation decisions independently to QKD nodes
for the FEL layers.

These issues could lead to inadequate training efficiency and
unstable inference performance for learning-based algorithms
in privacy-preserving environments.

To overcome the aforementioned issues, in this paper, we
propose a learning-based QKD resource allocation scheme for
quantum-secured FEL systems, which is strengthened by feder-
ated reinforcement learning. In particular, we use the model-free
off-policy soft actor-critic (SAC) [25] structure to learn the opti-
mal QKD resource allocation strategy. For each QKD manager
and each controller, a policy network is adopted to configure
the QKD nodes by learning the allocation strategy during the
interaction with quantum-secured FEL systems. Moreover, a
Q-network is adopted as a critic of each QKD manager and
controller to evaluate the state-action values of its local policy,
i.e., the performance of the local policy. To avoid direct reward
sharing, QKD managers encrypt the Q-networks and then share
them with QKD controllers for their local policy evaluation and
improvement. In this way, the incomplete experience issues of
QKD controllers can be addressed, thus improving the training
efficiency of agents in the control and management layer. In
addition, to further improve convergence efficiency, the local
policy of QKD controllers is aggregated as the global QKD
resource allocation policy for QKD managers after improving
the local policies of QKD controllers. Our contributions can be
summarized as follows.
� We propose a new hierarchical architecture for quantum-

secured FEL systems to resolve uncertain factors in global
model aggregation while providing ITS transmission of
public keys and models. This architecture is capable of
protecting the transmission of FEL models from external
and participant attacks.

� In the proposed architecture, unlike deterministic linear
programming, we formulate the optimization problem as
stochastic programming to resolve the uncertainty of the
security demand in quantum-secured FEL systems, i.e., the
required secret-key rates. Considering the dynamic factors
in the global aggregation of FEL, such as the number of
FEL workers, the proposed model aims to minimize the
deployment cost of the systems.

� To solve the proposed stochastic model without complete
information, we proposed a federated DRL scheme that
allows QKD managers and controllers to make the optimal
decision independently based only on their local partial
observation. Specifically, the proposed scheme enables
QKD managers and controllers to learn a global policy
collaboratively while maintaining their experiences in local
replay buffers. Therefore, the proposed scheme can learn a
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TABLE I
ABBREVIATIONS AND DEFINITIONS

synthetic QKD resource allocation policy efficiently with-
out prior knowledge while preserving the privacy of the
learning agents.

� Extensive experiments demonstrate the effectiveness of
stochastic and learning-based resource allocation schemes
for quantum-secured FEL systems. The performance eval-
uation results illustrate that existing baselines in the Quan-
tum Internet with average or random demand do not lead
to acceptable solutions that are significantly inferior to the
proposed schemes.

We organize the rest of this paper as follows. In Section II,
we provide a review of the related works. In Section III, we
discuss the system model. In Section IV, we discuss the proposed
optimization solution approach. In Section V, we propose the
federated deep learning-based algorithm. Finally, we conduct
the simulation experiments in Section VI and conclude in Sec-
tion VII. The abbreviations and definitions used in this paper are
summarized in Table I.

II. RELATED WORKS

A. Federated Edge Learning

Due to the enormous volume of data generated at the net-
work edge [26], [27], [28], FEL has emerged as a promising
paradigm of distributed privacy-preserving learning to improve
the efficiency and security of communication and sensing for
edge networks [29], [30], [31]. To illustrate the effectiveness
and efficiency of FEL, Xu et al. in [32] provided a systematic

overview of the convergence of edge networks and learning.
They highlight the potential benefits of learning-based commu-
nication systems, such as semantic communications, and the
necessity of sustainable resource allocation for edge learning
systems. For instance, Hardy et al. [33] proposed a two-stage fed-
erated end-to-end learning system with performance comparable
to centralized learning systems, including privacy-preserving
local dataset adaptation and federated logistic regression over
intermediate results encrypted with additive homomorphic en-
cryption (HE) schemes. To address the problems of multi-
view sensing observations in distributed wireless sensing, Liu
et al. [34] proposed a vertical FEL system for cooperative detec-
tion while preserving the data privacy of sensors. By considering
the non-cooperative nature of FEL participants at the edge, Lim
et al. [35] proposed a hierarchical framework, including the
evolutionary game and the Stackelberg game, for edge asso-
ciation and resource allocation problems in FEL systems. In
addition, to motivate data owners to participate in FL, Zhan
et al. in [36] provided a comprehensive survey on how to design
proper incentive mechanisms for different federated learning
algorithms in heterogeneous edge networks. Considering that
conventional key distribution schemes in secure FEL systems
are no longer secure, Huang et al. [10] proposed a new archi-
tecture for federated learning systems in the Quantum Internet
called StarFL, which uses satellite and quantum key distribution
schemes to distribute public keys for FEL workers with provable
security.

B. The Quantum Internet

The Quantum Internet [18] connects quantum devices through
quantum channels to provide long-term protection and future-
proof security for the transmission of confidential information.
It is expected that the Quantum Internet can provide new net-
working technologies for numerous critical applications by fus-
ing quantum signal transmission with classical communication
channels. Aiming to provide secure connectivity for mission-
critical applications in the real world, Toudeh-Fallah et al. [37]
established the first 800-Gbps quantum-secured optical channel
up to 100 km, which is able to secure 258 data channels under
AES-256-GCM with the quantum key update rate of one per
second. By combining 700 fiber-based QKD links and two
high-speed satellite-based QKD links, Chen et al. [38] developed
an integrated space-to-ground quantum communication network
with total coverage of 4,600 km. However, the costly quantum
devices and the non-scalable routing schemes are obstacles to the
large-scale deployment of the Quantum Internet. To address the
scalability issues, Mehic et al. [39] proposed a routing protocol
for the Quantum Internet that considers geographic distance and
connection state to achieve high scalability by minimizing cryp-
tographic key consumption. Meanwhile, For quantum-secured
communications over backbone networks, Cao et al. [40] de-
veloped a programming-based resource allocation model and
a heuristic algorithm to solve the deployment cost-minimized
problem.
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Fig. 1. An overview of quantum-secured federated edge learning in the Quan-
tum Internet.

C. Learning-Based QKD Resource Allocation Schemes

Quantum key distribution is one of the mature applications of
the Quantum Internet that has already been applied in some
commercial scenarios [37]. However, QKD resources in the
Quantum Internet still require efficient allocation schemes to
bridge the gap between the low key generation rate of the
Quantum Internet and the uncertain key demands of quantum-
secured communication services. To fill this gap, Zuo et al. [41]
proposed a reinforcement learning-based algorithm to learn the
optimal QKD resource allocation strategy for the management
of the quantum key pool in a cost-effective way. To address the
dynamic arrival problem in multi-tenant QKD deployment, Cao
et al. [42] proposed a reinforcement learning-based algorithm
to reduce the deployment cost of QKD resources. However,
these learning-based approaches consider QKD managers and
controllers can share their observations and experiences without
privacy concerns, which is infeasible in privacy-preserving sys-
tems. Therefore, in this paper, we propose a privacy-preserving
learning-based resource allocation to minimize the deployment
cost under uncertain security requirements of FEL workers and
model owners in quantum-secured FEL systems.

III. SYSTEM MODEL

In this section, we first describe the proposed hierarchical
architecture for quantum-secured FEL systems. We also describe
the workflow in detail and give the complexity and security
analysis. Based on the proposed architecture, we illustrate the
network model, cost model, and uncertainty in quantum-secured
FEL systems. As shown in Fig. 1, we consider a hierarchical
architecture for quantum-secured FEL systems. In the FL layer,
the cluster heads organize FL workers to join federated learning
for model owners. The FL model encryption and transmission
among cluster heads are secured by quantum cryptography. In
the control and management layer, cluster heads initiate requests
for quantum secret keys to the centralized QKD manager. Upon
receiving these secret-key requests, each QKD manager first
queries the secret-key status and then sends configurations to
QKD controllers via the simple network management protocol

(SNMP). According to the received instructions, QKD con-
trollers handshake with QKD nodes for detailed configurations.
In the QKD infrastructure layer, there are three types of nodes
(i.e., QKD nodes, trusted relays, and untrusted relays) and two
types of links (i.e., key management (KM) and QKD links).
We consider that the FEL nodes are co-located with the QKD
nodes and that different types of links can be multiplexed within
a single fiber [21]. Therefore, the topology of the QKD layer
follows that of the FEL layer, which can be denoted by G(V, E).
Here, V represents the set of FEL/QKD nodes, and E denotes
the collection of fiber connections. Within a QKD node, there is
a global key server (GKS), a local key manager (LKM), and one
or more quantum transmitters (QTs). Between multiple QKD
nodes, a QKD chain based on mixed relays can be used for global
secret-key generation, where the trusted relays contain two or
twice as many QTs [21], an LKM, and security infrastructures
(SIs), while the untrusted relays consist of one or more quantum
receivers (QRs). For links in the QKD layer, σ denotes the
available wavelengths on QKD links and κ those on KM links.

A. Quantum-Secured Federated Edge Learning

As illustrated in Fig. 1, the proposed hierarchical architecture
for quantum-secured FEL systems includes three layers [20],
i.e., the FEL layer, the control and management layer, and the
QKD infrastructure layer. In the FEL layer, a set of FEL workers
denoted by K = {1, . . . , k, . . . ,K} at the edge networks, i.e.,
end devices owning training datasets, participate in FEL tasks
initialized by the set of model owners O = {1, . . . , o, . . . , O}
with the aid of the set of cluster heads J = {1, . . . , j, . . . , J}
(e.g., base stations) [22]. Suppose there is a subset of FEL
workers, i.e., Kj FEL workers [23], training a global model
collaboratively with So data samples {xi, yi}So

i=1 for the model
owner o. Moreover, the feature space xi ∈ R1×d is distributed
exclusively among FEL workers. The data samples in the local
dataset of the FEL worker k within the cluster j can be denoted
by {xk

i ∈ R1×dk}Kj

k=1, where dk is the dimension of its feature
space. Without loss of generality, the number of FEL workers
with labeled data is set to one in this paper, which is the FEL
worker Kj . Therefore, the dataset with only features of FEL
worker k can be denoted asDk

i � {xk
i } for k = 1, . . . ,Kj − 1.

Meanwhile, let DKj

i � {xKj

i , y
Kj

i } denote the dataset of FEL
worker Kj with features and labels. Let θk ∈ Rdk denote the
model parameters of the FEL worker k and Θj = [θ1, . . . , θKj

]
be the union of model parameters of all the FEL workers. The
goal of FEL is to minimize inference loss through collaborative
training of the optimal global model Θ∗ for model owners that
minimizes the loss function

∑J
j=1 fj(

∑Kj

k=1 θkx
k, yKj ; Θj). As

illustrated in Fig. 2, the training process of quantum-secured
FEL systems in the proposed hierarchical architecture consists
of five main steps [23], [43], [44]:
� Step 1: Secure Communication Setup: In quantum-secured

FEL systems, the model owner o initializes its FEL task
to the FEL worker k and distributes the initialized model
parameters to the FEL workers via the cluster head j. First,
the cluster head j needs to establish secure communication
channels with the model owner o and the FEL worker k.
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Fig. 2. The workflow of quantum-secured FEL. The black lines denote the
classical communication links, the red lines denote the quantum links, and the
blue lines denote the quantum-secured communication links.

To this end, the cluster head j sends QKD requests to QKD
managers to establish quantum-secured communication
channels with the model owner o and the FEL worker
k, respectively. In detail, there are three main steps to
distribute the quantum key kQ(j,k) and kQ(j,o) between the
corresponding QKD nodes of the FEL worker k and model
owner o via quantum channels, including transmitting the
quantum bits, sifting the received bits, and estimating the
error rate [16]. In this way, the cluster heads can estab-
lish quantum-secured communication channels using the
quantum keys with model owners and FEL workers;

� Step 2: Private Set Intersection: In FEL systems, FEL
workers have different data features and samples in their
local datasets. Therefore, the model owner o must find a
common set of data samples Sm for all participating FEL
workers. The model owner can apply the cross-database
intersection [45] to match the data samples among FEL
workers while preserving their privacy. Specifically, the
cluster head j applies the AES03 intersection protocol
and blind signatures by generating a pair of RSA public
and private keys (eRSA

j , dRSA
j , nRSA) and using the en-

crypted public key yj,k(e
RSA
j ) = EkQ

j,k
(eRSA

j ) to the FEL

workerk and yj,o(eRSA
j ) = EkQ

j,o
(eRSA

j ) to the model owner

o over quantum-secured communication channels. Then
FEL workers and the model owner decrypt the public RSA
key using their quantum keys for the intersection of the
private set. By using the intersection of the private sets,
the common data samples So are discovered by the model
owner o without revealing the private information of FEL
workers;

� Step 3: Local Model Forward Propagation: After deter-
mining the common data samples among FEL workers
of the cluster head j, the FEL workers use their com-
mon local datasets DKj = ∪Kj

k=1Dk to train their local

models. The FEL workersk = 1, . . . ,Kj − 1with features
in their training samples can only obtain intermediate re-
sults uk = θkx

k from forwarding propagation and cannot
compute the loss for backward propagation. Meanwhile,
the FEL worker Kj with labels can obtain intermediate
inference results uKj

= θKj
xKj and compute the local

loss fj(θKj
xKj , yKj );

� Step 4: Global Model Aggregation: Once forward prop-
agation is completed, the cluster head j creates an HE
key pair (eHE

j , dHE
j ) and distributes the public key eHE

j

to FEL workers and model owners via quantum-secured
channels. Let [[·]] denote the operation of additive HE [23],
the FEL workers first encrypt the intermediate results as
[[uk]] and/or the encrypted loss [[fj(θKj

xKj , yKj )]] using
the HE public key eHE

j . Then, they transmit the encrypted
intermediate inference results to model owners via the
cluster headers. In this way, the FEL workers can share
the intermediate inference results for global gradient and
loss calculation without privacy leakage;

� Step 5: Local Model Back Propagation: The cluster head j
decrypts the received intermediate results with the private
key dHE

j . Then, the cluster head sends the results to the
model owners and FEL workers in the quantum-secured
channels. Finally, the model owner o and the FEL workers
decrypt and unmask the intermediate results and update
their local model parameters accordingly.

During the training phase and the inference phase of FEL,
there are four pillars of privacy for model owners and FEL work-
ers. First, data privacy is the biggest concern of FEL workers.
Next, model privacy, including model architecture privacy and
model weight privacy, is essential for model owners that must
not be stolen by any malicious participants. The compromise of
model privacy makes the model owner have little motivation to
improve the edge learning model performance, as their trained
model can be easily sniffed or stolen by other participants. On
the one hand, privacy in the input stage means that only the
permitted FEL workers can input data to the model. On the
other hand, privacy in the output stage means that the output of
the model is only visible to the model owners. Following the
literature definition in [10], we can have the following remarks.

Remark 1 (Privacy-preserving Distributed Machine Learn-
ing): The quantum-secured FEL systems are privacy-preserving
distributed ML systems with no data and model privacy leakage
during the input and output stages of the training phase and the
inference phase.

During the input stage, FEL workers train their local models
to fit their local datasets. They keep their training data local and
then use the HE public key eHE received from quantum-secured
communication channels to encrypt the intermediate inference
results. The local gradient encrypted with the public key can
only be decrypted by the model owner who holds the private
key. Therefore, in the input stage, the privacy of the data and
models is well-protected.

During the output stage, the cluster heads decrypt the re-
ceived intermediate results by using its private key of HE dHE.
On the one hand, the privacy of the data is preserved by the
private set overlap in step 2 since no one can interfere with
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the labels of FEL workers. On the other hand, the privacy of
the models is enhanced since the public keys are distributed
through quantum-secured communication channels so that no
eavesdropper can intercept the local model updates and obtain
the model architecture and model parameters from the encrypted
models after encryption.

Complexity Analysis: Let |kQ|be the length of symmetric keys
distributed via quantum channels. The complexity of generating
symmetric keys for K FEL workers is O(K|kQ|). During the
private set intersection, the complexity to generate RSA key
pairs for FEL workers is O(log2(nRSA)) [46]. Moreover, the
complexity of the encryption and the decryption operations is
O(K log(|eRSA|) log2(nRSA) + log3(nRSA)) for K FEL work-
ers. In FEL, the Paillier HE scheme [47] is usually adopted
for additive HE. Therefore, the algorithmic complexity of HE
encryption and decryption are both O(S log(nHE)).

Security Analysis: Here, we can give external and participant
attack examples, i.e., eavesdropping attacks and Sybil attacks, to
show that the quantum-secured FEL systems can defend against
common attacks in FEL. The first one is that the eavesdropping
attacks during quantum-secured FEL training cannot pose any
threat to the data and models in the system [48]. In other words,
even if there is an eavesdropper in the system, the only infor-
mation obtained during the eavesdropping attacks is encrypted
with the unconditional secure scheme, i.e., one-time pad [49].
Moreover, the eavesdroppers have no way to decrypt or obtain
valuable information from the ciphertext, i.e., the encrypted
messages. Second, quantum-secured FEL systems can resist
Sybil attacks [50] during the training process. Each FEL worker
can only participate in FEL through one single quantum-secured
channel. Therefore, FEL workers cannot forge their identities
and submit multiple local models.

B. Networking Model for Quantum-Secured FEL Systems

Let ι denote the distance from a QT to its connected QR. Due
to the symmetrical locations of two connected QTs, the distance
between them can be approximated as L ≈ 2 · ι. At length L
between two connected QTs, the maximum attainable secret-key
rate is denoted by KL, which is in inverse proportion to the
length L, i.e., an increment in L leads to a reduction in KL [20].
In the proposed quantum-secured FEL model, R represents
the set of quantum-secured FEL model transmission requests
and r(sr, dr, ρr) ∈ R denotes one quantum-secured FEL model
transmission request of FEL nodes, in which sr and dr represent
the source node and the destination node of quantum-secured
FEL model transmission request r, respectively. Let ρr be the
amount of concurrent quantum-secured FEL links for satisfying
the security demands (i.e., secret-key rates) of the FEL training

between sr and dr [21], which can be calculated as ρr =
⌈

kr

KL

⌉
,

where kr denotes the required security demand between source
node sr and destination node dr.

C. Cost Model and Provisioning Plans

Let l(n,m) denote the length of the physical link of the model
transmission request between node n and node m.

1) Qts and Qrs: Since each MDI-QKD requires two QTs
and one QR, the amount of QTs arT and QRs arR for the model
transmission request r of quantum-secured FEL systems can be
calculated as

arT =
∑

(n,m)∈Er

2 · ρr ·
⌈
l(n,m)

L

⌉
, (1)

and

arR =
∑

(n,m)∈Er

ρr ·
⌈
l(n,m)

L

⌉
, (2)

where Er denotes the set of physical fibers along the transmis-
sion path of request r.

2) Lkms: The requested amount of LKMs arKM for a
quantum-secured FEL model transmission request r is

arKM =
∑

(n,m)∈Er

⌈
l(n,m)

L
+ 1

⌉
. (3)

3) Security Infrastructures: The requested amount of SI arSI

for a quantum-secured FEL model transmission request r is

arSI =
∑

(n,m)∈Er

⌈
l(n,m)

L
− 1

⌉
. (4)

4) MUX/DEMUX Components: Finally, let arM denote the
number of MUX/DEMUX component pairs for a quantum-
secured FEL model transmission request r is

arM =
∑

(n,m)∈Er

⌈
l(n,m)

L

⌉
+

∑
(n,m)∈Er

⌈
l(n,m)

L
− 1

⌉
, (5)

where the number of MUX/DEMUX component pairs re-
quired by QTs and QRs are represented by the first term∑

(n,m)∈Er

⌈
l(n,m)

L

⌉
and the second term

∑
(n,m)∈Er

⌈
l(n,m)

L −1
⌉
,

respectively.
5) QKD and KM Links: In the case of this study, three

wavelengths are occupied by one QKD link and three wave-
lengths by one KM link [51]. For a quantum-secured FEL model
transmission request r, the link cost can be calculated as

arCh =
∑

(n,m)∈Er

(3ρrl(n,m) + l(n,m)), (6)

where the required length of QKD and KM links and FEL links
can be represented by 3ρrl(n,m) and l(n,m), respectively.

6) Provisioning Plans and Deployment Cost: When allocat-
ing resources for quantum-secured FEL applications in the pro-
posed system model, the QKD manager needs to consider either
a reservation plan or an on-demand plan, which is similar to the
cloud and other online services [52], [53]. The reservation plan is
for long-term allocation/subscription of QKD resources (specify
what those are), while the on-demand plan is for short-term de-
mand. If the QKD manager knows the demand of each FEL node
in the FEL layer, it can provide the optimal reservation plan in the
QKD layer. However, the demand of each FEL node is random
as the number of workers in the FEL layers is uncertain. For
example, some FEL nodes may require different secret-key rates
in model transmission requests to protect their workers’ models.
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According to the above two types of subscription plans, each
available QKD resource has two corresponding subscription
costs, namely reservation costs and on-demand costs. We define
the cost function as monetary units (e.g., dollars) per unit of QKD
resources. In the reservation phase, βb

T , β
b
R, β

b
KM , βb

SI , β
b
MD,

and βb
Ch, are the reservation costs for the QTs, QRs, LKMs,

SIs, MUX/DEMUX components, and QKD and KM links,
respectively. Also, βo

T , β
o
R, β

o
KM , βo

SI , β
o
MD, and βo

Ch, are the
on-demand cost for the QTs, QRs, LKMs, SIs, MUX /DEMUX
components, and QKD/KM links, respectively.

D. Uncertainty of Security Demands in Quantum-Secured
FEL Systems

With the uncertainty of requests, the amount of required
QKD resources by the FEL workers is not precisely known
when the resources are reserved. In quantum-secured FEL, the
encryption of public keys and intermediate inference results
consume a certain amount of key resources. However, cluster
heads choose different numbers of FEL workers to meet model
owners’ requirements for model accuracy and training error.
Unfortunately, the model accuracy and training error are affected
by various dimensional parameters such as data volume, algo-
rithm quality, and FEL tasks. Therefore, cluster heads cannot
accurately predict the model accuracy and thus require uncertain
secret-key rates in the training process of FEL models. Let
Kr = {0, 1, . . . ,K} represent the set of possible secret-key rates
requirements of request r ∈ R. The set of all possible secret-key
rates of QKD nodes K in the QKD layer can be represented by
the Cartesian product as

K =
∏
r∈R
Kr = K1 ×K2 × · · · × K|R|. (7)

The probability distributions for both secret-key rates in K of
all secure model transmission requests R are considered to be
known. Note that statistical processes can be used to analyze
historical data and that ML methods can predict the distribution
of these demands.

IV. THE PROPOSED OPTIMIZATION MODELS

In this section, we first formulate the QKD resource allocation
problem as a deterministic linear programming model. Further-
more, considering the uncertainty, i.e., the required secret-key
rates, in quantum-secured FEL systems, we develop a stochastic
programming model for QKD resource allocation. In the re-
source allocation model, the management signals are usually
brief and can be encoded as quantum information and transmit-
ted in QKD links, and thus the data transmission is secured by
quantum cryptography.

A. Deterministic Integer Programming

Initially, consider the case where the actual FEL security
requirements of FEL nodes are precisely known, and QKD
resources can be subscribed to in a reservation plan, where each
link has two decision variables.

1) X = {X(n,m)|(n,m) ∈ E} indicates the set of numbers
of wavelengths allocated in each KM link, e.g., X(n,m) =
1 means that the QKD manager reserves one wavelength
for the model transmission request.

2) F = {F(n,m)|(n,m) ∈ E} indicates the set of the num-
bers of wavelengths allocated in each QKD link.

Based on the cost model and demand, the deterministic integer
programming for the reservation plan can be formulated to
minimize the total cost of the QKD problem as follows:

min
Xb,F b

Cb
(
Xb, F b

)
=

∑
(n,m)∈E

[
F b
(n,m)

3

(
abTβ

b
T + abRβ

b
R

)

+Xb
(n,m)

(
abKMβb

KM + abSIβ
b
SI + abMDβb

MD

)

+ li,j

(
F b
(n,m) +Xb

(n,m)

)
βb
Ch

]
, (8)

subject to:∑
j∈V

∑
p∈κ

xr
(n,m),p −

∑
j∈V

∑
p∈κ

xr
(m,n),p

=

⎧⎪⎨
⎪⎩
1 if i = sr

−1 if i = dr

0 otherwise

, ∀r ∈ R,∀(n,m) ∈ E (9)

Xb
(n,m) =

∑
r∈R

∑
p∈κ

xr
(n,m),p, ∀(n,m) ∈ E (10)

F b
(n,m) =

∑
r∈R

∑
q∈σ

fr
(n,m),q, ∀(n,m) ∈ E (11)

∑
q∈σ

fr
(n,m),q = 3ρr

∑
p∈κ

xr
(n,m),p, ∀r ∈ R, (n,m) ∈ E (12)

∑
j∈V

fr
(n,m),q =

∑
j∈V

fr
(j,i),q, ∀r ∈ R, i ∈ V, q ∈ σ (13)

∑
j∈V

xr
(n,m),p =

∑
j∈V

xr
(j,i),p, ∀r ∈ R, i ∈ V, p ∈ κ (14)

∑
r∈R

∑
p∈κ

xr
(n,m),p ≤ |κ|, ∀(n,m) ∈ E (15)

∑
r∈R

∑
q∈σ

fr
(n,m),q ≤ |σ|, ∀(n,m) ∈ E (16)

∑
r∈R

xr
(n,m),p ≤ 1, ∀(n,m) ∈ E , p ∈ κ (17)

∑
r∈R

fr
(n,m),q ≤ 1, ∀(n,m) ∈ E , q ∈ σ (18)

The flow conservation constraint (9) guarantees that the
QKD path flows between two distant FEL nodes is one in
source/destination QKD nodes and zero in other QKD nodes.
That is due to specifying a QKD path for a quantum-secured
FEL request with a dedicated source and destination QKD
nodes. The constraints in (10) and (11) guarantee that the
demand is satisfied where

∑
p∈κ x

r
(n,m),p and

∑
q∈σ f(n,m),q

are the requested numbers of KM and QKD wavelengths in
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link (n,m), respectively. The constraint in (12) specifies the
number of wavelength channels requested by the QKD and the
KM links of each quantum-secured FEL model transmission
request, where the QKD/KM links and the FEL links are re-
quired to take up 3ρr and one wavelength channels, respectively.
The same wavelength channel constraints in (13) and (14) are
the constraints on wavelength continuity, which ensures that
the identical wavelength channel is allocated to the link on the
chosen path of each secure model transmission request. The
wavelength capacity constraints (15) and (16) guarantee that
the total wavelength channels of the QKD/KM links should
not exceed the available wavelength channels. The wavelength
uniqueness constraints (17) and (18) guarantee either zero or
one wavelength channel can be allocated for the secure model
transmission requests.

B. Stochastic Integer Programming

The deterministic integer programming developed in (8)–(18)
is no longer applicable if the demand for the resources is
unknown. Therefore, we describe stochastic integer program-
ming (SIP), which optimizes the overhead of the QKD resources
allocated to all quantum-secured FEL model transmission re-
quests. The first phase includes all reservations that must be
determined before the requirements can be implemented and
analyzed. It is critical for the QKD manager to reserve the

number of QKD resources to be utilized before the demand is
observed. In the second phase, allocations are made to accommo-
date real-time demand. After observing the real-time demand, if
the reserved QKD link resources are less than the demand, FEL
nodes have to pay for the cost of the additional QKD resources
required.

The variables Xo = {Xo
(n,m)|(n,m) ∈ E} and F o =

{F o
(n,m)|(n,m) ∈ E} denote the sets of the number of requests

served in KM links and QKD links in the second stage,
respectively. The expected overhead in the second stage is
formulated as a function EΩ[L(X

o, F o, ω)], where ω ∈ Ω = K
denotes the set of possible secret-key rates (called realizations,
in general) observed in the second stage.

Thus, the total objective of this SIP model under uncer-
tainty [52] is

min
Xb,F b,Xo,F o

C
(
Xb, F b

)
+ EΩ

[
L
(
Xb, F b, ω

)]
, (19)

where

L
(
Xb, F b, ω

)
= min

Y={Xo(ω),F o(ω)}
L(Y ) (20)

is the cost function in the second phase for the given realization
ω. The deterministic equivalent SIP of (8)–(18) for QKD re-
source allocation is expressed as (21)–(31) shown at the bottom
of this page. In the optimization objective (21), there are prob-
abilities p(k), each denoting the probability of demand k ∈ K

min
Xb,F b,Xo(k),F o(k)

Cb(Xb, F b) +
∑
k∈K

p(k) [Co (Xo(k), F o(k))] (21)

s.t.
∑
j∈V

∑
p∈κ

xr
(n,m),p(k)−

∑
j∈V

∑
p∈κ

xr
(j,i),p(k) =

⎧⎪⎨
⎪⎩
1 if i = sr

−1 if i = dr

0 otherwise

, ∀r ∈ R, k ∈ K (22)

Xb
(n,m) +Xo

(n,m)(k) ≥
∑
r∈R

∑
p∈κ

xr
(n,m),p(k), ∀(n,m) ∈ E , k ∈ K (23)

F b
(n,m) + F o

(n,m)(k) ≥
∑
r∈R

∑
q∈σ

fr
(n,m),q(k), ∀(n,m) ∈ E , k ∈ K (24)

∑
q∈σ

fr
(n,m),q(k) = 3ρr(k)

∑
p∈κ

xr
(n,m),p(k), ∀r ∈ R, (n,m) ∈ E , k ∈ K (25)

∑
j∈V

fr
(n,m),q(k) =

∑
j∈V

fr
(j,i),q(k), ∀r ∈ R, i ∈ V, q ∈ σ, k ∈ K (26)

∑
j∈V

xr
(n,m),m(k) =

∑
j∈V

xr
(j,i),p(k), ∀r ∈ R, i ∈ V, p ∈ κ, k ∈ K (27)

∑
r∈R

∑
p∈κ

xr
(n,m),p(k) ≤ |κ|, ∀(n,m) ∈ E , k ∈ K (28)

∑
r∈R

∑
q∈σ

fr
(n,m),q(k) ≤ |σ|, ∀(n,m) ∈ E , k ∈ K (29)

∑
r∈R

fr
(n,m),q(k) ≤ 1, ∀(n,m) ∈ E , q ∈ σ, k ∈ K (30)

∑
r∈R

xr
(n,m),p(k) ≤ 1, ∀(n,m) ∈ E , p ∈ κ, k ∈ K (31)
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being realized. Eq. (22) is the flow conservation constraint. Eqs.
(23) and (24) are demand satisfaction constraints. Eq. (25) is
the wavelength channel number constraint. (26) and (27) are the
constraints to ensure each secure model transmission requests
the same wavelength channel. Eqs. (28) and (29) are wavelength
capacity constraints, while (30) and (31) are wavelength unique-
ness constraints.

V. THE PROPOSED LEARNING-BASED SCHEME

In this section, we formulate the above QKD resource al-
location problem as a learning task. In particular, we model
the stochastic model as a partially observable Markov decision
process (POMDP) for QKD managers and controllers. Based on
the properties of the POMDP, we design a learning-based QKD
resource allocation scheme based on federated reinforcement
learning [54], [55] to explore the optimal solution without shar-
ing the private experiences. Moreover, we give the convergence
analysis and the complexity analysis of the proposed scheme.

A. POMDP for Quantum-Secured FEL Systems

1) State Space: The state space s(t) ∈ S of the QKD net-
works can be represented by the reservation strategy and the on-
demand deployment of the QKD manager and QKD controllers
at tth slot. Therefore, the state of QKD networks is defined as
s(t) := [Xb(t− l), F b(t− l), . . . , Xb(t− 1), F b(t− 1)]. This
indicates that the state of the QKD network is composed of
the past l reservation strategies and on-demand deployment.
Therefore, for each QKD controller, their observation is a part
of the global state, which can be denoted as sn(t) := [Xb

n(t−
l), F b

n(t− l), . . . , Xb
n(t− 1), F b

n(t− 1)], n = 1, . . . , N . With-
out loss of generality, we consider that one QKD manager
is co-located with one QKD controller, but only some of the
QKD controllers are QKD managers. Therefore, the observa-
tion of QKD manager m can be denoted as sm(t) := [Xb

m(t−
l), F b

m(t− l), . . . , Xb
m(t− 1), F b

m(t− 1)], for m = 1, . . . ,M .
2) Action Space: The action space a(t) =

[a1(t), . . . , aN (t)] ∈ A is the reservation strategy profile
of QKD resource allocation deployment at time slot t, i.e.,
an(t) = [Xb

n(t), F
b
n(t)], n = 1, . . . , N .

3) State Transition Probability Function: The state transi-
tion probability functionP : S ×A× S → [0, 1] represents the
changing rules of uncertain factors. The training environment
transitions to the next moment of state based on the current state
of the environment and the action input by the training agent,
calculated by the probability function for the state transition.
Therefore, we can assume s(t+ 1) = s′ and the probability
of transitioning to this state is P (s′|s, p), where s(t) = s and
p(t) = p. The agent’s policy can change the trajectory of the
state transition.

4) Reward: In the deployment cost minimization prob-
lem defined in (21), the reward in time slot t is the ra-
tio of near-minimal deployment cost to current deploy-
ment cost. However, the reward is only observable by the
QKD manager in the Quantum Internet. Therefore, the re-
ward function is always zero for all QKD controllers, i.e.,

Rn(s(t), a(t)) = 0, n = 1, . . . , N . Moreover, the reward func-
tion can be expressed as the normalized cost Rm(s(t), a(t)) =

Cb(Xb,F b)+
∑

k∈K p(k)[C
o(Xo(k),F o(k))]

Cb(Xb,∗,F b,∗)+
∑

k∈K p(k)[Co,∗(Xo,∗(k),F o,∗(k))] for the QKD man-
ager m.

5) Q-Function: Let γ be the discounting factor that deter-
mines how much QKD managers care about future cumulative
returns versus immediate rewards. Therefore, the Bellman equa-
tion for Qπ w.r.t the policy π is

Qπ(s(t), a(t)) = E
s(t+1),a(t+1)∼Pπ

[
R (s(t), a(t))

+ γ(Qπ(s(t+ 1), a(t+ 1))

+ τH (π(·|s(t+ 1)))

]
, (32)

where H(π(·|s(t+ 1))) = − log π(·|s(t+ 1)) is the expected
entropy for policy π in state s(t+ 1). To determine the relative
importance of the entropy term, τ is the additive temperature
parameter that help affects the optimal policy to determine
its stochasticity. Therefore, the Q-function in the SAC algo-
rithm [25] can be expressed as

Qπ(s(t), a(t)) = E
s(t+1),a(t+1)∼Pπ

[
R (s(t), a(t))

+ γ(Qπ(s(t+ 1), a(t+ 1))

− τ log (π(·|s(t+ 1)))

]
. (33)

B. Federated DRL-Based QKD Allocation Scheme

To help each QKD manager and controller evaluate its QKD
resource allocation function π(·) parameterized by ϕ, a Q-
function Q(·, ·;ϑ) parameterized by a neural network ϑ is de-
veloped. After fitting the Q-network to the allocation policy, the
policy network can be trained using the Q-network via the policy
gradient algorithm. The Q-network can specify the expected
returns for the actions performed by the policy network. In this
way, the probability of actions leading to lower expected QKD
deployment costs is increased. The probability of actions leading
to higher expected costs decreases until the policy converges to
the Q-network. The learning agent needs to repeat this process
until it converges to the optimal policy. At each local iteration of
the learning agents, training experiences are sampled randomly
from the replay buffers of QKD managers or QKD controllers
to update the network parameters of policy or Q-networks,
respectively.

1) Local Policy Iteration for QKD Managers: The parame-
ters ϑm,i, i = 1, 2 in double Q-networks of the QKD manager
m is updated by minimizing the difference between the output
of Q-networks and the target is performed via gradient descent
as follows:

εe+1
m,i = argmin

ϑm,i

1

|Bm|
∑

(s(t),a(t))∼Bm

[
Q(s(t), a(t);ϑm,i)

− ym(s(t), a(t))

]2
, (34)
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where the target ym(s(t), a(t)) is given by

ym(s(t), a(t)) = Rm (s(t), a(t))

+ γ

[
min
i=1,2

Q(s(t+ 1), ã(t+ 1);ϑm,i,targ)

− τ log π(ã(t+ 1)|s(t+ 1);ϕm)

]
, (35)

for i = 1, 2 and ã(t+ 1) ∼ π(·|s(t+ 1);ϑm).
Moreover, the policy of the learning agent in the proposed

scheme should, in each state, maximize the expected future
return plus expected future entropy. To this end, by utilizing the
min-double-Q trick [56] and the entropy loss term, the policy
network of QKD manager m is updated to maximize the trained
Q-network as follows:

ϕe+1
m = argmax

ϕm

1

|Bm|
∑
s∈Bm

[
min
i=1,2

Q(s, ã(s;ϕm);ϑm,i)

− τ log(π(ã(s;ϕm)|s;ϕm))

]
, (36)

where ã is reparameterized from a squashed Gaussian policy
w.r.t. the mean ε(s;ϕm) and variance σ(s;ϕm) output from the
policy network ϕm as follows:

ã(s, ξ;ϕm);ϕm) = tanh (ε(s;ϕm) + σ(s;ϕm)� ξ) , (37)

and ξ is an input noise vector sampled from some fixed distri-
bution.

Finally, the target Q-networks are updated with ϕe+1
m,i,targ ←

ζϑe
m,i,targ + (1− ζ)ϑe+1

m,i , for i = 1, 2.
2) Local Policy Iteration for QKD Controllers: Since there

is no replay buffer in the QKD controller that can be trained with
Q-network, QKD controllers cannot train their policy networks
independently. Fortunately, QKD controllers can borrow the
trained Q-network from QKD managers to facilitate the update
of its local policy, i.e. ϑe,fed

i ← ϑe
m,i, for i = 1, 2. We then

update the policy network of QKD controller n by maximizing
the objective via gradient ascent as follows:

ϕe+1
n = argmax

ϕn

1

|Bn|
∑
s∈Bn

[
min
i=1,2

Q(s, ã(s;ϕn);ϑ
e,fed
i )

− τ log(π(ã(s;ϕn)|s;ϕn))

]
, (38)

where ã(s;ϕn) is a sample from π(·|s;ϕe
n) which is differen-

tiable w.r.t. ϕe
n via the reparametrization trick [25].

3) Global Policy Aggregation: Without exposing the private
information, the global policy is aggregated from the local QKD
allocation policy while maintaining their private experiences in
their local replay buffers. The global aggregation process via
FedAvg [57] of local policy networks can be presented as:

ϕe+1 =

∑N
i=1 Bnϕ

e+1
n

B
, (39)

where B =
∑N

n=1 Bn is the number of total incomplete experi-
ences in the replay buffers of QKD controllers. And the updated
global policyϕe+1 is used for next-episode training. Algorithm 1

Algorithm 1: The Proposed Intelligent Resource Allocation
Scheme Based on Federated DRL.

summarizes the proposed intelligent resource allocation scheme
based on federated DRL for quantum-secured FEL systems.

C. Convergence Analysis and Complexity Analysis

Denote ϕ∗ as the corresponding critic under an optimal QKD
resource allocation policy. We have the following assump-
tions [58]:

Assumption 1: For all Cn(ϕn),
� Cn(ϕn) is convex;
� Cn(ϕn) is ε-smooth, i.e., Cn(ϕ

′
n) ≤ Cn(ϕn) +

∇Cn(ϕn) · (ϕ′n − ϕn) +
ε
2‖ϕn − ϕ′n‖2, for ∀ϕn and

ϕ′n.
Assumption 1 is used to provide the feasibility of solution

space and guarantee the update rule of the federated reinforce-
ment learning-based scheme. Then, we can have the lemma as
follows:

Lemma 1: C(ϕ) =
∑N

n=1 BnCn(ϕn)/B is ε-strongly con-
vex and ε-smooth.

Proof: According to Assumption 1, the global cost function
C(ϕ) is the weighted finite-sum of local cost function Cn(ϕn).
Furthermore, by applying the triangle inequality and the defini-
tion of convex, C(ϕ) is ε-strongly convex and ε-smooth.

Theorem 1: Considering that C(ϕ) is ε-smooth and ε-
strongly, let ν = 1/C and ϕ∗ = argminϕ C(ϕ), we have

‖ϕe − ϕ∗‖ ≤ (1− ε

ε
)e
∥∥ϕ1 − ϕ∗

∥∥ , (40)
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so the gradient dispersion can be derived as O(ϕ̄) =
ε
ε log(‖ϕ1 − ϕ∗‖/ϕ̄), which is used to illustrate how the pa-
rameters ϕt are distributed in each worker.

Proof: According to the ε-strongly convexity of C(ϕ), we
have

∇C(ϕ)(ϕ− ϕ∗) ≥ C(ϕ)− C(ϕ∗) +
ε

2
‖ϕ− ϕ∗‖2 . (41)

Thus, we can obtain the following:∥∥ϕe+1 − ϕ∗
∥∥2 = ‖ϕe − ν∇C(ϕe)− ϕ∗‖2

= ‖ϕe − ϕ∗‖ − 2ν∇C(ϕe)(ϕe − ϕ∗) + ν2 ‖∇C(ϕe)‖2

≤ ‖ϕe − ϕ∗‖ − 2ν(C(ϕ)− C(ϕ∗)

+
ε

2
‖ϕe − ϕ∗‖2) + ν2 ‖∇C(ϕe)‖ . (42)

By smoothing C(ϕ), the gradient bound can be obtained as

C(ϕ∗) ≤ C(ϕ− 1

ε
∇C(ϕ))

≤ C(ϕ)− ‖∇C(ϕ)‖2 + 1

2ε
‖∇C(ϕ)‖2

≤ C(ϕ)− 1

2ε
. (43)

Combining (42), (43) can be reformulated as∥∥ϕe+1 − ϕ∗
∥∥ = ‖ϕe − ν∇C(ϕe)− ϕ∗‖2

≤‖ϕe − ϕ∗‖ − νε
∥∥ϕe+1 − ϕ∗

∥∥+2ν(νε− 1)(C(ϕ− C(ϕ∗)))

≤
(
1− ε

ε

)
‖ϕe − ϕ∗‖ ≤

(
1− ε

ε

)
‖Δ∗(ϕ)‖ , (44)

where ν is set as the last iteration. �
The expected convergence bound can be estimated as

[C (ϕe)− C(ϕ∗)] ≤ ϕ̄e [Δe (C(ϕ∗))] , (45)

whereC(ϕ) is proven to be bounded asΔe(C(ϕ∗)) = C(ϕ1)−
C(ϕ∗). Our proposed learning-based scheme can find an opti-
mal QKD resource allocation strategy without sharing infor-
mation and experience. As for the complexity of the proposed
learning-based QKD allocation algorithm, each QKD manager
and controller maintains its local policy and make independent
decisions independently during the QKD resource allocation
phase. Moreover, the input and output dimensions are con-
stant and determined by the dimensions of the observation
and action spaces. Therefore, the computation complexity is
O((N +M)UL) in each decision slot, where L is the number
of hidden layers and U is the number of hidden neurons in each
hidden layer. The proposed learning-based resource allocation
scheme for the Quantum Internet in shown in Fig. 3 and the
overall workflow is summarized in Algorithm 1.

VI. EXPERIMENTAL EVALUATION

This section evaluates the effectiveness of the proposed SIP
scheme and the learning-based QKD resource allocation scheme
in different system settings and topologies. First, we describe the
setting of the experiments. Then, we analyze the cost structure of
the proposed SIP scheme. Moreover, we compare the proposed

Fig. 3. The proposed learning-based resource allocation scheme for the Quan-
tum Internet.

TABLE II
RESERVED AND ON-DEMAND COST VALUES IN EXPERIMENTAL

EVALUATION (UNITS) [21]

scheme with other baseline schemes to demonstrate its effec-
tiveness in resolving uncertainty in QKD resource allocation.
Finally, a convergence analysis is performed to illustrate the
performance of the proposed learning-based scheme.

A. Experiment Settings

Similar to [21], experiments are performed on two well-
known topologies (i.e., the 14-node NSFNET topology and the
24-node USNET topology). The distance L between two QT
is set to be 160 km. The required secret-key rate is considered
to be the same for all secure model transmission requests. To
streamline the evaluation, the uncertainty K is reformulated by
Ḱ as

Ḱ = {(k1, k2, . . . , k|R|)|0 ≤ k1, k2, . . . , kR < |Ω|,
k1 = k2 = · · · = k|R|}, (46)

where |Ω| denotes the total number of scenarios. For each sce-
nario, the probability distribution of secret-key rate requirements
obeys a Poisson process, in which the average secret-key rate
requirements are set to �|Ω|/3�. The default number of scenarios
is set to |Ω| = 10. The default numbers of quantum-secured
FEL model transmission requests |R| are set to 100 and 200 for
NSFNET and USNET, respectively. Finally, for the performance
evaluation and analysis, the cost values are given in Table II, with
a unit representing a normalized monetary unit. As for the pro-
posed learning-based approach, the learning rate is set to 0.003
for Q-networks and 0.0001 for policy networks. The temperature
coefficient τ is set at 0.01. The reward discounting factor is set
to 0.95, and the update coefficient of target Q-networks is set to

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:52:42 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: PRIVACY-PRESERVING INTELLIGENT RESOURCE ALLOCATION FOR FEDERATED EDGE LEARNING IN QUANTUM INTERNET 153

Fig. 4. Performance of the global model in quantum-secured FEL systems
with various secret-key rates.

0.01. The number of training epochs is set to 100. Finally, the
size of the replay buffer is set to 20000 for each learning agent.
The SIP model is formulated and solved by Gurobipy 9.5.2 and
the DRL algorithms are implemented via PyTorch 1.9.0.

B. Global Model Performance Under Different Secret-Key
Rates

We conduct our experiments on four datasets from scikit-
learn1, including breast cancer, digits, iris, and wine. As shown
in Fig. 4, the Taylor loss of the global model decreases as the
required secret-key rates increase. The model owner can hire
more FEL workers if the cluster head has higher secret-key
rates to maintain the quantum-secured channels with the FEL
workers. Thus, the performance of the global model can be
improved by including more knowledge from the datasets of
FEL workers. For the complex Digits dataset, the Taylor loss [59]
of the classification model decreases from about 0.55 to about
0.3 as the secret-key rates increase. However, the simple wine
dataset only requires lower secret-key rates to converge. The
reason is that the secret-key rates affect the number of con-
current quantum-secured channels that the cluster heads can
maintain, which affects the number of FEL workers in global
iterations.

C. Cost Structure Analysis

Initially, the cost structure of the SIP for quantum-secured
FEL applications is studied. To simplify the presentation of
the cost structure, equal resources are reserved for each QKD
request on each link. In Fig. 5, the costs in the first stage, the
second state, and overall are illustrated by varying the number
of reserved requests for each link. As expected, the cost of
the first-stage resource reserve increases with the increase in
secret-key rates. However, after the realized demand is known,
the costs of the second stage decrease because the reserved
QKD wavelengths increase as the requests require more minor
on-demand compensation. Here, the optimized plan can be de-
termined (e.g., when the reserved number of wavelengths equals
three, as shown in Fig. 5). The analysis of the cost structure

1[Online]. Available: https://scikit-learn.org/stable/datasets/toy_dataset.html

Fig. 5. The cost structure of SIP for quantum-secured FEL over the NSFNET
and the USNET topologies.

Fig. 6. Deployment costs of QKD resources versus numbers of quantum-
secured FEL model transmission requests.

shows that the optimal solution is not easy to obtain due to the
uncertainty of the system in terms of security. For instance, the
optimal QKD resource allocation plan is not at the point where
the cost of the second stage exceeds the cost of the first stage.
Thus, it is necessary to formulate the SIP of the QKD layer in
such a way that the deployment cost is optimized.

D. Performance Evaluation Under Various Parameters

In the performance evaluation, the proposed SIP scheme
is compared with two baseline schemes, i.e., the QKD back-
bone networking (QBN) scheme with expected value formula-
tion (QBN-EVF) allocation and the QBN with random (QBN-
Random) allocation, presented in [21]. In the case of QBN-EVF,
the secret-key rates in the first stage are determined by the
demanded average, which represents an approximate solution.
On the other hand, in the QBN-Random scheme, the values of
the decision variables are generated uniformly from zero to |Ω|,
indicating a random scheme.

The deployment costs of QBN-Random, QBN-EVF, and SIP
for different numbers of quantum-secured FEL model trans-
mission requests are shown first. In Fig. 6, we can observe
that as the number of secure model transmission requests in-
creases, the deployment cost of all three solutions increases
accordingly. Moreover, the difference in deployment cost be-
tween the three schemes also increases with the increase in the
number of quantum-secured FEL model transmission requests.
Specifically, the deployment cost of QBN-EVF is slightly higher
than that of SIP, while the deployment cost of QBN-Random
is 50% higher than that of SIP. A similar situation arises in
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Fig. 7. Deployment costs of QKD resources versus numbers of scenarios in
quantum-secured FEL.

Fig. 8. Deployment costs of QKD resources versus different on-demand cost
schemes.

the comparison of different numbers of scenarios, as shown in
Fig. 7, namely, the deployment cost of QBN-EVF is slightly
higher than that of SIP, while the deployment cost of QBN-
Random is twice as expensive as that of SIP. Fig. 8 shows the
impact of On-demand costs on the deployment costs of each
scenario. For the QBN-Random and QBN-EVF scenarios, the
deployment cost increases exponentially with the On-demand
cost. In detail, at 0.5×cost, QBN-Random’s deployment cost
is 50% more than SIP’s, while QBN-EVF’s deployment cost
is very close to SIP’s. However, when the On-demand cost
rises to 2×cost, the advantage of QBN-EVF decreases, and
the deployment cost rises to about 1.5 times that of SIP, while
the deployment cost of QBN-Random rises to about twice of
SIP.

E. Convergence Efficiency of the Proposed Schemes

In the convergence efficiency analysis of the proposed feder-
ated reinforcement learning (FedSAC), the decentralized prox-
imal policy optimization (DecPPO) [60], and the decentral-
ized SAC (DecSAC) schemes are used as the baselines. The
DecPPO scheme leverages policy gradient to train the local
policy of QKD managers to maximize long-term advantages.
The DecSAC scheme adopts soft-Q-learning to optimize the
performance of QKD managers while maximizing the entropy
of action probability. Both the DecPPO and DecSAC schemes
train the QKD managers in a decentralized manner while they
cannot utilize the incomplete experiences in QKD controllers’
replay buffers. As shown in Fig. 9, the proposed scheme and
the baseline scheme converge to the optimal QKD resource
allocation policy in both network topologies. However, there is

Fig. 9. Convergence analysis of the proposed scheme.

a difference in the efficiency of their convergence. For example,
the PPO scheme needs about 80 epochs to converge to the op-
timal QKD resource allocation in the NSFNET topology, while
SAC needs about 20 epochs. With the incomplete experience
of QKD controllers, FedSAC has a significant improvement
in convergence efficiency, requiring only about ten epochs to
converge. In the USNET topology, each scheme takes less time
to converge, e.g., 40 epochs for PPO, ten epochs for SAC, and
five epochs for FedSAC. The reason for this could be that the
deployment cost in the USNET topology is slightly higher than
in the NSFNET topology, which is a clearer signal for the DRL
agents to learn.

VII. CONCLUSION

In this paper, we have studied the QKD resource allocation
problem for secure federated edge learning. To protect the
transmission of FEL models from eavesdropping attacks, we
have proposed a hierarchical architecture to facilitate quantum-
secured FEL systems. Based on this, we have formulated the
optimization of the QKD resource allocation scheme as a SIP
model and obtained a cost-effective scheme under uncertainty.
To allocate resources in a decentralized and privacy-preserving
manner, we proposed a learning-based QKD allocation scheme
empowered by federated deep reinforcement learning. The pro-
posed model and scheme have achieved a lower deployment cost
of QKD resources compared to the baseline schemes as they can
accommodate probabilistic variations in FEL security demand
adequately. In the future, we plan to study the resource allocation
problem for quantum-secured semantic communication systems
in edge networks.
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