
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022 3437

Blockchain-Based Data Sharing With Key
Update for Future Networks

Liang Xue , Member, IEEE, Dongxiao Liu , Member, IEEE, Cheng Huang , Member, IEEE,

Xuemin Shen , Fellow, IEEE, Weihua Zhuang , Fellow, IEEE, Rob Sun, Member, IEEE,
and Bidi Ying, Member, IEEE

Abstract— Future networks incorporate artificial intelligence
to enable smart resource management and adaptive service
provisioning. With a heterogeneous architecture and a large
number of users in future networks, transparent and decentral-
ized data sharing is required to promote data circulation and
break data silos, for which blockchain is a potential solution to
allow intelligent access permission control. However, it remains
a challenging task to achieve flexible authorization management
for blockchain-based data sharing and efficient key update for
multi-users in case of key exposure. In this paper, we propose an
intelligent blockchain-based data-sharing scheme with key update
for future networks. First, we design a new encryption scheme,
where keywords of data are extracted using machine learning
algorithms that are published on the blockchain. Then, keywords
of data and time validity are used to encrypt different types of
data for flexible data authorization. Second, using hierarchical
identity-based encryption, we construct an efficient key update
mechanism, where update tokens are generated by invoking
a smart contract deployed on the blockchain to facilitate key
and ciphertext updates. We formally prove that the proposed
scheme can guarantee three essential security properties: forward
security, post-compromise security, and collusion attack resis-
tance. On-chain and off-chain experiment results are provided to
demonstrate that the proposed scheme can achieve computational
and communication efficiency for key and ciphertext updates.

Index Terms— Blockchain, data sharing, key update, access
control.

I. INTRODUCTION

THE continuous advancement of communication networks
and the Internet of Things (IoT) has promoted the devel-

opment of new application fields such as smart factories and
autonomous driving, which put forward higher requirements
for the real-time, reliable, and massive data processing in the

Manuscript received 14 March 2022; revised 15 June 2022; accepted
30 June 2022. Date of publication 10 October 2022; date of current version
22 November 2022. This work was supported by the Research Grants from
Huawei Technologies Canada and from the Natural Sciences and Engineering
Research Council (NSERC) of Canada. An earlier version of this paper was
presented in part at the 2022 IEEE International Conference on Communica-
tions (ICC 2022) [DOI: 10.1109/ICC45855.2022.9838811]. (Corresponding
author: Dongxiao Liu.)

Liang Xue, Dongxiao Liu, Cheng Huang, Xuemin Shen, and
Weihua Zhuang are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(e-mail: liang.xue@uwaterloo.ca; dongxiao.liu@uwaterloo.ca; c225huan@
uwaterloo.ca; sshen@uwaterloo.ca; wzhuang@uwaterloo.ca).

Rob Sun and Bidi Ying are with Huawei Technologies Canada, Ottawa,
ON K2P 0J9, Canada (e-mail: rob.sun@huawei.com; bidi.ying@huawei.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2022.3213312.

Digital Object Identifier 10.1109/JSAC.2022.3213312

future networks. Traffic in future networks will be generated
not only by humans but also by connected intelligent machines
and bots. With the increased scale, complexity, and dynamics
of networks, innovations in telecommunications and access
networking are needed to cope with the stringent Quality
of Service (QoS) requirements and to respond to various
abnormalities timely. Artificial Intelligence (AI) provides a
data-driven approach that can analyze a mass of data, train
machine learning models, and facilitate informed decision-
making. AI has the potential to proactively predict and
effectively manage the network traffic flows based on the
large volume of historical traffic data. Innovative AI-based
solutions can be explored for resource management [2], net-
work protocol design [3], network security [4], and so on.
AI will play an important role in future intelligent networks
to provide services and support applications far beyond the
current communication systems.

To achieve intelligent network management, different net-
work managers can train AI models based on the data from
their owned network infrastructures [5]. However, due to the
data barriers from different network managers, AI models can
learn knowledge only from a part of network data and cannot
exploit the full potential of AI [6]. To break the data barriers
from various data owners, trusted, secure and fine-grained data
sharing is required. Blockchain, as a distributed database that
is shared among nodes in a blockchain network, can be utilized
as a reliable and transparent controller of data sharing [7], [8].
By integrating blockchain and AI, intelligent blockchain has a
potential to streamline data management functions and enable
flexible data access control. Data owners and data requesters
can join a blockchain network and publish the description of
their data and the data requirements. To ease data management,
data owners can associate their data with different keywords
or attributes, such as vehicle kinetics (velocity, acceleration,
etc), location, and wireless network information. The attributes
can be obtained by machine learning algorithms in Natural
Language Processing (NLP), which extract keywords from
data [9], [10]. The algorithms are published on blockchain
for data owners to use. For different types of data, there are
different ML algorithms. By using a specific NLP algorithm
on the blockchain, data owners with the same type of data
can obtain the same attributes. It is convenient for data users
to search for all data providers who have certain types of
data. After obtaining the attributes, the data owner can encrypt
the data with AND/OR combinations over the corresponding

0733-8716 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8069-3182
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0003-3769-7211
https://orcid.org/0000-0003-0488-511X
https://orcid.org/0000-0002-4140-287X

3438 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

attributes. Considering that the size of data may be large and
the storage of a blockchain transaction is limited, a data owner
can encrypt the data and store the resulting ciphertext at a
storage platform, such as a cloud server. A data owner can
authorize a data requester to access the data and provide him
with the decryption key if the requester pays for it, which can
be achieved by using the cryptocurrency on the blockchain.
When a user is authorized to access the data, the data owner
sends only the corresponding attribute keys to the user.

Considering that secret keys of a data owner may be exposed
due to side-channel attacks [11], [12] or system vulnerabilities,
which poses a threat to data security, it is desired that the data
owner can update its secret key periodically to improve data
security, i.e., achieving forward security and post-compromise
security. Forward security guarantees that, if a current private
key is obtained by an attacker, the attack cannot exploit the key
to decrypt the ciphertexts that are encrypted with the previous
keys. Post-compromise ensures that the leakage of historical
keys will not affect the security of ciphertexts correlated to the
current time period. When a data owner updates its private key,
the outsourced ciphertext should also be updated such that the
old secret key cannot decrypt it. To achieve ciphertext update,
a simple way is to download the ciphertext and encrypt it using
a new secret key. However, this can bring large computation
and communication overhead for the data owner to decrypt
the original ciphertext, re-encrypt the data, and send the new
ciphertext to the storage platform. Another issue is that, when
the key and ciphertexts of a data owner are updated, how to
efficiently distribute new keys to the authorized users so that
they can continue accessing the data.

Updatable encryption (UE) can be used to achieve key and
ciphertext updates. A data owner can send an update token
to the data storage platform, which can rotate the ciphertext
from the old secret key to the new secret key by using the
update token. Most UE schemes employ symmetric encryption
primitives to achieve the functionality. For example, Dan et al.
propose two UE schemes, one is based on authenticated
encryption, and the other one is based on a key-homomorphic
pseudorandom function [13]. In the existing UE schemes,
fine-grained data access control is not supported, and both
symmetric and asymmetric systems are involved. Fugkeaw
presents a secure data sharing scheme with key update, where
attribute certificates are utilized to support the authorization
and a third party is introduced to carry out key update [14].
The main focus of the scheme is to achieve attribute revocation
with low cost for key update, instead of achieving forward
security and post-compromise security.

In this paper, we propose a blockchain-based data access
control scheme with key update, which enables a data owner
to specify access policies for its data and update its key
periodically. In our scheme, to achieve flexible data access
control, different types of data are encrypted with different
access policies over attributes. A data owner can authorize
users to access its data by sending corresponding attribute
keys. To enable efficient key and ciphertext update, there
are time validity components in keys and ciphertexts. Only
the time period of a key matches the time period of a
ciphertext, and the access policy of the ciphertext is satisfied

by the attributes correlated with the key, the ciphertext can be
decrypted by the key. Based on the hierarchical identity-based
encryption (HIBE), our scheme not only can derive the keys
in a hierarchical way, but also can facilitate a new ciphertext
being derived from an original ciphertext. Furthermore, user
revocation can be supported. For the key and ciphertext update,
the cloud server can deploy a smart contract, and committee
members of the consortium blockchain can cooperatively
generate the update tokens. Data owners are not involved in the
update token generation process, which reduces the burden on
the data owners. The contributions of this paper are as follows:

• We propose a scheme that achieves flexible data access
control and efficient key and ciphertext update. Data
owners can predefine access policies for their data based
on a set of attributes, such that only authorized users
can decrypt the data. By associating keys and ciphertexts
with time periods, the time validity of a key is required
for decrypting data. Data owners and authorized users
can update their keys periodically to defend against key
exposure risks;

• Using blockchain-based data sharing, data owners can
broadcast data supply information, and data demanders
can publish data requests on the blockchain. Key and
ciphertext update tokens are generated by invoking a
smart contract deployed on the consortium blockchain,
which reduces the communication cost and computation
cost of data owners for key updating and distribution.
By utilizing the hierarchical tree-based structure, our
scheme can support a large number of key and ciphertext
updates at low cost;

• Under the decisional bilinear Diffie-Hellman exponent
(DBDHE) assumption, we formally prove that the
proposed scheme can achieve forward security, post-
compromise security, and that key components of dif-
ferent users cannot be combined to decrypt a ciphertext.
We evaluate the performance of the proposed scheme.
The on-chain and off-chain simulation results demon-
strate that the computation and communication costs of
the scheme are low.

We organize the remainder of this paper as follows.
In Section II, we describe the system model, design goals,
and the security model. We introduce the building blocks in
Section III and present the detailed construction of our scheme
in Section IV. In Section V, we formally prove the security
of the proposed scheme. The simulation results are shown in
Section VI. We recap the related works in Section VII and
summarize this study in Section VIII.

II. SYSTEM MODEL AND SECURITY MODEL

In this section, we first describe our system model
and design goals. Then, we present a security model for
fine-grained data sharing with key and ciphertext update.

A. System Model

There are four parties involved in our system, i.e., a data
owner (DO), data users, a storage platform (SP), and a
blockchain, as shown in Fig. 1, and detailed in the following:

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3439

Fig. 1. System model.

• DO collects data from its smart devices. To reduce the
data storage and management cost, DO outsources its data
to a storage platform, such as a cloud server. To make
better use of its data and gain profit, DO can share
its data to data requesters if they pay for the data.
To guarantee the confidentiality and flexible access of the
data, different types of data are associated with different
attributes, and DO encrypts data with an access policy
built on various attributes. DO can generate keys for itself
and authorized users. The users will obtain corresponding
attribute keys for the data they need. By taking advantage
of the blockchain and a smart contract, key and ciphertext
update tokens are generated by committee members of the
consortium blockchain. DO is not involved in the update
token generation.

• Data users can obtain data supply information from the
blockchain. Once a data user is authorized to access the
data of DO, DO sends the corresponding attribute keys
to the data user. A data user who own the attribute keys
that satisfy with the policy of a ciphertext can decrypt the
ciphertext. When the key and the ciphertext are updated,
the authorized data users can obtain the key update token
from the blockchain and update their keys based on the
token;

• SP, which can be a cloud server, provides data storage
services for DO. Data users and DO can retrieve data
from SP. For ciphertext update, SP deploys a smart con-
tract on the consortium blockchain. A set of committee
members can invoke the smart contract to generate the
ciphertext update token. Based on the token, SP can
finish the ciphertext update by itself without learning any
information of data. We assume that SP is honest but
curious;

• Blockchain is a distributed ledger that can record data,
such as Hyperledger Fabric, which is a consortium
blockchain [15], [16]. All the nodes connected to the
blockchain can read the data on the blockchain. Commit-
tee members of the consortium blockchain are responsible

for maintaining the blockchain and validating transactions
via consensus protocols.

B. Design Goals

Our design goals are as follows:
• Efficient key and ciphertext update – Considering the key

exposure attacks, DO should be able to update its keys
multiple times. Meanwhile, ciphertexts should also be
updated synchronously. There should be minimal costs
for DO to update the key and outsourced ciphertexts;

• Flexible access control – DO can share data with others
and control who can access its data. Fine-grained access
policies on data can be enforced. DO can also revoke the
access right of users;

• Data security – Unauthorized users cannot obtain the
plaintext data. Moreover, if an attacker obtains the current
key of DO, it cannot decrypt the old ciphertexts, i.e., the
ciphertexts correspond to a previous time period. Further-
more, the attacker cannot use the current key to decrypt
the ciphertexts that correspond to a future time period.

C. Components of the Proposed Scheme

Our proposed flexible data access control scheme with key
and ciphertext update consists of nine algorithms, which are
listed as follows:

• Setup – In the Setup algorithm, DO defines the overall
attribute set (SS) and generates the public parameters
(params) for various attributes and different time peri-
ods. Based on the public parameters, DO generates its
public key (PK) and master secret key (MSK);

• Key Generation – In this algorithm, DO creates private
keys for authorized data users. A hierarchical time tree
with depth d is built by DO. A data user first submits a
key generation request to DO, which includes an attribute
set (S) that specifies the required data, and the time
identity of the first time period �τd = {τ1, . . . , τd}, where
{τi}i∈[d] are integers. Based on the attributes and the time
identity, DO generates a private key (SK) for the user;

• Key Derivation – Given time identity �τd+1 =
{τ1, . . . , τd+1} and a private key of an entity for time
identity �τd = {τ1, . . . , τd}, the entity can generate a
private key for time identity �τd+1;

• Encrypt – DO defines an access policy for its data and
encrypts the data with the access policy and the time
identity of the first time period. Then, DO uploads the
resulting ciphertext to SP;

• Decrypt – An entity (DO or a data user) can decrypt a
ciphertext only if its attributes satisfy the defined access
policy and the time validity of the private key matches
the time period related to the ciphertext;

• Ciphertext Update Token Generation – Based on the
params generated by data owners, committee members
of the blockchain can generate a ciphertext update token
(Λj) by invoking a smart contract deployed on the
blockchain. SP can update the ciphertext based on Λj ;

• Ciphertext Update – Given a ciphertext with the decrypt-
able time period j and Λj , SP can generate a new

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

3440 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

ciphertext corresponding to time period j + 1 without
learning the plaintext;

• Key Update Token Generation – Key update tokens are
also generated by committee members of the blockchain,
but they are in a ciphertext form, and only unrevoked
users can obtain the key update token Υj;

• Key Update – Based on Υj and a private key for time
period j, an authorized user can generate a private key
for time period j + 1.

D. Security Model

We use a security game to describe our security model.
In the security game, a challenger (C) and an adversary (A)
are involved. At the beginning of the game, A needs to submit
a challenge time period (T∗) and a challenge access structure
(A∗), which are embedded in the challenge ciphertext. Then,
C sets system parameters and sends public parameters to A.
To depict the ability of A, A is allowed to make queries
for private keys that cannot be utilized directly to decode the
ciphertext given by the challenger. Adversary A can also make
ciphertext update queries by submitting a ciphertext and the
corresponding time period to C. The formal security game is
given as follows:

Init – A sends A
∗ and T

∗ to C;
Setup – C runs the Setup algorithm and sends PK of the

scheme to A;
Phase 1 Queries – A can submit the following queries to

C:

• A sends a private key query to C, where the key query
corresponds to an attribute set (S) and a time period (T),
which should not satisfy S ∈ A

∗ ∧ T = T
∗;

• A sends a ciphertext update query, which includes a
ciphertext corresponding to time period T. C computes
and returns a ciphertext corresponding to time period
T + 1;

Challenge – A sends two messages (m0,m1) that have the
same length to C. C randomly selects b ∈ {0, 1}, and encrypts
mb under A

∗ and the first time period, then updates the
ciphertext to time period T

∗. The resulting ciphertext (CT ∗)
is sent to A;

Phase 2 Queries – A makes private key queries and
ciphertext update queries to C as in Phase 1;

Guess – A returns a guess (b�) of b.
For the above game, the advantage of A is calculated as

AdvA = Pr[b� = b] − 1/2.
Definition 1: A flexible data sharing scheme with key and

ciphertext update is secure if, for any adversary, it can only
have the advantage that is negligible for winning the above
game.

III. BUILDING BLOCKS

A. Linear Secret Sharing Scheme (LSSS)

An LSSS scheme (Π) over Zp satisfies that: 1) the generated
shares for a secret are vectors over Zp; and 2) For Π, there is
a share generating matrix (M) [17] that specifies and enforces
the access policy of the secret, and there exists a function (ρ)

that maps each row to an associated party, i.e., {ρ(i)}i∈[l] is the
party corresponding to row i [18]. Assuming z is the secret to
be shared, one first generates vector �μ = (z, t2, · · · , tn), where
t2, · · · , tn are selected randomly from Zp. Then, it computes
M�μ as the shares of z, and element (M�μ)i in the vector is
the share of party ρi.

LSSS has the linear reconstruction property, which means
if a set of parties satisfy the policy corresponding to M , they
can reconstruct the secret (z).

B. HIBE

HIBE [19] is proposed to reduce the overhead of the key
generation center (KGC) in an IBE system, where KGC needs
to verify users’ identity, and generate and transmit the private
keys securely. In HIBE, identities are constructed according to
a tree structure, and users with high-level identities can gen-
erate keys for lower-level identities. There are four algorithms
in a HIBE system: (1) The Setup algorithm creates system
parameters and a master key for users according to a security
parameter and the depth of a tree; (2) Given a private key for
IDk−1 of the depth k − 1, the KeyGen algorithm can create
a private key (dIDk

) for a user (IDk) of depth k; (3) The
Encrypt algorithm can return a ciphertext (C) based on an
identity (IDk) and a message (M); (4) With dIDk

and C, the
Decrypt algorithm can output the plaintext of C.

C. DBDHE Assumption

DBDHE Assumption [17] is described below:
For a group (G) of prime order p, choose a ∈ Zp, h ∈

G randomly, and denote gβ
i

as gi, where g is a generator
of G. Given �y = (g, h = gs, g1, · · · , gq, gq+2, · · · , g2q, B),
an adversary needs to distinguish whether B is e(g, g)β

q+1s

or a random group element (R) in GT .
The advantage (�) of an adversary (B) in solving the above

problem with an output (out ∈ {0, 1}) is defined as

|Pr[B(�y,B= e(g, g)β
q+1s)= 0] − Pr[B(�y,B= R) = 0]| ≥ �.

Definition 2: The DBDHE assumption holds if no adversary
can have an advantage that is non-negligible for solving the
above DBDHE problem.

D. Zero-Knowledge Proof (ZKP)

ZKP allows a prover (P) to generate a proof π for a
statement R(Y,w) = 1, where w is a witness for Y such
that the statement holds [20]. By verifying π, a verifier (V) is
convinced that P knows w without learning any information
about w. For example, the statement can be Y = gw,
where g is a generator for a multiplicative cyclic group (G).
Σ-protocols are 3-move ZKP protocols for proving statements
related to discrete logarithms in prime-order groups.

A Σ-protocol consists of the following three
algorithms [21]:

• Σ.Setup: Given a security parameter λ, the algorithm
outputs a common reference string crs;

• Σ.ProofGen: This algorithm is run by a prover. Given a
statement R(Y,w) = 1 and crs, the algorithm generates
a proof π;

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3441

• Σ.Verify: This algorithm is run by a verifier. Given Y, crs,
and π, the algorithm outputs 1 if π is a valid proof for
the statement.

IV. OUR CONSTRUCTION

A. Overview

To achieve flexible access control to DO’s data, the data
are encrypted with an access policy, which is built based on
attributes related to the data. The attributes can be extracted
by using a machine learning algorithm in NLP [9], [22].
The committee members of blockchain can choose an NLP
algorithm and publish it on the blockchain, so that different
data owners can use the same NLP algorithm to extract
the attributes and encrypt the data with the policy over the
attributes, and others can find data that matches their interests
based on the attributes. Moreover, DO can also determine the
attributes by itself. For data access, an authorized user’s private
key is associated with a set of attributes. Only the entities
whose attributes satisfy the policy can decrypt the ciphertext.
Meanwhile, to achieve time period-based key update, we add
time validity into an entity’s private key, and correlate a
ciphertext with a decryptable time period. When an entity
has attributes that satisfy the defined policy, and a private key
that corresponds to the decryptable time period, the entity can
decrypt the ciphertext. To defend against collusion attacks, i.e.,
two private keys that cannot decrypt a ciphertext separately
could be combined to decrypt the ciphertext, we attach the
time validity and the attributes tightly in an entity’s private
key.

For key updates, we construct a hierarchical time tree
(T) [23], [24] and use its leaf nodes to represent different
time periods. The leaf nodes are numbered from left to right
to denote sequential time periods. Let the depth of T be d.
For each node in T , there is a label that can be represented
as {0, 1}≤d. The label of the root node (Root) is 1. If the
label of a node (n) is l, the left child of node n is under
label l0, and the right child is labeled with l1. An example
of T is shown in Fig. 2, where d is 4, and the labels of leaf
nodes are {1000, . . . , 1111}. The identity of a node in T is a
vector, in which the elements are the labels of nodes from the
root to that node. For example, the identity of a node under
label 1000 is (1, 10, 100, 1000). For a node in T , it can have
a corresponding private key component. By using HIBE, with
a private key component of a node and an identity of its child
node, we can derive a private key component for the child
node. In the tree, the sibling of a node is the other child of
the node’s parent. We denote the siblings of the nodes that are
on the path from lfi to Root and are not ancestors of lfj as set
SNi, where i, j ∈ [1, 2d−1], and j < i. For example, in Fig. 2,
SN1 includes nodes (1001, 101, 11), and SN3 includes nodes
(1011, 11).

To achieve key updates, in the first time period, an entity
preserves a private key component corresponding to the first
leaf node (lf1) and private key components corresponding to
the nodes in SN1. The latter is used to derive the private
key components for future time periods. When it comes to the
next time period, an authorized user can update the private key,

Fig. 2. Hierarchical tree.

i.e., deleting the private key components corresponding to the
current time period, and generating private key components
for the next time period.

To release the burden of DO for generating the key and
ciphertext update tokens, in our design, a set of committee
members of the blockchain cooperatively generate the update
tokens by invoking the token generation smart contract. SP and
authorized users can obtain the ciphertext and key update
tokens from the blockchain.

B. Detailed Construction

1) Setup: DO defines an overall attribute set (SS) for its
data, and the number of attributes in SS is denoted by U .
DO builds a hierarchical time tree (T) with depth d. The
identity of a node (n) at level k in T is denoted as �τk =
(τ1, τ2, . . . , τk), where the elements are labels of the nodes
from the Root to n. DO chooses two multiplicative cyclic
groups G and GT of prime order p, and e : G × G → GT
is a bilinear map. Denote g to be a generator of G. ĝ is a
generator of the subgroup Ĝ of prime order Q of Z∗

p , where
Q = (p − 1)/γ, and γ is a small integer [25]. To generate
system parameters for attributes in system and different time
periods, DO randomly chooses α, β ∈ Zp, and computes gβ

and e(g, g)α. Then, DO randomly selects h1, . . . , hU ∈ G,
F0, F1, . . . , Fd, η1, . . . , ηd, F

�
2, . . . , F

�
d ∈ G, and defines two

hash functions H : GT → Z∗
Q and H1 : {0, 1}∗ → Z∗

p .
A consortium blockchain is utilized to finish the ciphertext

and key update token generation, where a number of com-
mittee members are involved. DO chooses an integer N as
the number of committee members required. The public para-
meters are param = (g, ĝ, gβ, e(g, g)α, F0, . . . , Fd,h1, . . . ,
hd, η1, . . . , ηd, F

�
2, . . . , F

�
d, H,H1). The master secret key

(MSK) is gα. Some parameters and their definitions are listed
in Table I.

2) Key Generation: In this algorithm, DO creates private
keys for the authorized data users. For key generation, an entity
first generates a key generation request, Resq, which includes
its attribute set S, and the time identity of the first time period
�τd = (τ1, τ2, . . . , τd). DO first checks the validity of S. If it
is invalid, DO refuses the request. Otherwise, DO generates
a private key for the entity, which is the user’s first time
period key. The private key includes two components, one for
attributes of the entity, the other for time validity. The first time
period corresponds to the first leaf node (lf1). DO generates
a private key component for lf1. Moreover, DO generates the

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

3442 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

TABLE I

SUMMARY OF SYMBOLS

private key components for the nodes that are in set SN1,
i.e., the siblings of the nodes on the path from lf1 to Root.
For key generation, DO first randomly selects t, vτ ∈ Zp, and
computes a private key for the user as follows:

1) DO calculates

L = gt, ∀x ∈ S Kx = htx

D0 = gvτ {Qj = (F �
jFj)

vτ }j=2,...,d;

2) DO computes the private key component for the first leaf
node (lf1). Let the identity of lf1 be �τd = (τ1, τ2, . . . , τd).
DO calculates

D1,lf = gαgβt(F0

d�
i=1

F τi

i)vτ ;

3) DO computes private key components for the nodes in
SN1. For a node in SN1 with identity �τk = (τ �1, τ

�
2, . . . , τ

�
k),

where k ≤ d, DO computes

D1,�τk
= gαgβt(F0

k�
i=1

F
τ �

i

i)vτ .

The private key of the user for the first time period is SK1 =
{L, {Kx}x∈S, D0, {Qj}j=2,...,d, D1,lf , {D1,�τk

}�τk∈SN1}.
3) Key Derivation: Given an entity’s private key component

of a node (N) with identity �τk−1 = (τ1, τ2, . . . , τk−1), and a
child node of N with identity �τk = (τ1, τ2, . . . , τk), the entity
can derive a private key component for the child node. To be
specific, the entity chooses a random ψ ∈ Zp, and calculates

D1,�τk
= D1,�τk−1Q

τk

k g
ψ.

Other components of the entity’s private key remain the
same.

4) Encrypt: When DO outsources a file to SP, it first
generates a user identifier uid ∈ Zp and a file identifier
fid = H1(fname), where fname is the file name. Then,
it encrypts the file using a symmetric encryption algorithm,
such as AES, with a secret key (K ∈ GT). After that,
DO encrypts K with an access policy and the identity of lf1.

We represent the access policy as an LSSS access structure
(M,ρ), in which M is an access matrix with size l ∗ n,
and ρ is a mapping function that maps a row of M to an
attribute. We assume there are no two rows that map to the
same attribute. To generate an encryption of K , DO randomly
chooses �v = (s, y2, . . . , yn) ∈ Znp , and for i = 1 to l,
it computes λi = �v · Mi, where Mi is the i-th row of M .
Then, DO computes a ciphertext as follows:

1) DO calculates

C = K · e(g, g)αs, C� = gs

for i = 1, . . . , l, Ci = gβλih−sρi
,

{Q�
j = (F �

jFj)
s}j=2,...,d,

E� = ηs1, {Ej = ηsj}j=2,...,d;

2) For the identity �τd = (τ1, τ2, . . . , τd) of lf1, DO com-
putes

C��
lf1 = (F0

d�
j=1

F
τj

j)s;

3) DO computes a ciphertext component for each node in
the sibling node set (SN1) of lf1. To be specific, for a node
in SN1 with identity �τk = (τ �1, τ

�
2, . . . , τ

�
k), where k ≤ d,

DO computes

C��
1,lk

= (F0

k�
j=1

F
τ �

j

j)s.

The ciphertext for the first time period is CT1 = {C,C�,
C1, . . . , Cl, {Q�

j}j=2,...,d, E�, {Ej}j=2,...,d, C��
lf1
,

{C��
lk
}k∈SN1} along with the description of AS. Here,

CT1 denotes that the decryptable time period for the
ciphertext is the first time period. After data encryption,
DO randomly chooses kf from GT , and encrypts kf by using
the Encrypt algorithm such that only the authorized users can
obtain kf from the ciphertext (Enc(kf)). Then, DO generates
pkf = ĝH(kf). Note that (skf = H(kf), pkf = ĝH(kf)) is a
private-public key pair. DO uploads uid, fid, Enc(kf), pkf ,
the ciphertext of K , and the ciphertext of its data to SP, and
sends the file storage information to the authorized users.

In the ciphertext, {Q�
j}j=2,...,d and {Ej}j=2,...,d are intro-

duced to allow ciphertext update, so that an updated ciphertext
can be matched with an updated key.

5) Decrypt: An entity can decrypt a ciphertext (CT) only
if its attribute set (S) satisfies the defined access policy,
which is denoted as AS = (M,ρ), and it has a private
key corresponding to the decryptable time period of CT .
Let c denote the decryptable time period of CT . To decrypt
CT , the entity first defines set I = {i : ρ(i) ∈ S}, and
I ⊂ {1, 2, . . . , l}. Then, the entity computes {ωi ∈ Zp}i∈I ,
which are constants that satisfy

�
i∈I ωiλi = s, where λi are

shares of s. After that, the entity calculates

μ =
�
i∈I

(e(L,Ci)e(C�,Kρ(i)))ωi

=
�
i∈I

e(g, g)tβλiωi

= e(g, g)βst.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3443

Then, the entity uses the private key component of leaf
node lfc, whose identity is �τd = {τ1, . . . , τd}, to decrypt the
ciphertext corresponding to lfc. That is, the entity computes

K = C · μ · e(D0, C
��
lfc

)/e(C�, Dc,lf)

where Dc,lf denotes the private key component correspond-
ing to lfc, and C��

lfc
is the ciphertext component associated

with lfc.
When c = 1, the correctness can be validated by:

C · μ · e(D0, C
��
lf1)/e(C

�, D1,lf)

=
Ke(g, g)αs · e(g, g)βst · e(gvτ , F0

�d
j=1 F

τj

j)s

e(gs, gαgβt(F0

�d
j=1 F

τj

j)vτ)
= K.

After obtaining K , the entity can decrypt the ciphertext
using K .

6) Ciphertext Update Token Generation: In this algorithm,
SP deploys an update token generation (UTG) smart contract
on the consortium blockchain, by which a set of commit-
tee members can cooperate to generate a ciphertext update
token [26]. We assume that the majority of the committee
members are honest and do not collude with the users and
SP. The SP can use the resulting token to update the stored
ciphertext. In this way, DO is not involved in ciphertext update
and token generation. If for a time period t, where t ∈ [2d−1],
there are users that are revoked, i.e., the access policy is
changed, DO randomly chooses a k�f ∈ GT , and encrypts
it with the new policy such that only the unrevoked users can
obtain k�f . The resulting ciphertext is denoted as Enc(k�f).
DO sends Enc(k�f) and pk�f = ĝH(k�f) to the SP, which will
be used to generate the update token for the next time period.
As shown in Figure 3, there are five functions in smart contract
UTG, which are described as follows:

• Create: This function is invoked when smart contract
UTG is deployed on the blockchain. The SP publishes
public parameters pp = {uid, g, η1, . . . , ηd, N, dr, dm},
where uid is the identifier of DO, and g, η1, . . . , ηd, N
are included in param of DO. dr denotes the reward for
committee members, and dm represents the deposit for
each committee member.

• Setup: The SP uploads uid, fid, the current time period t,
and {Ck�

f
= (Enc(k�f), pkf = ĝH(k�f)}. It also deposits

reward dr for token generation.
• Register: In this function, N committee members register

themselves on the smart contract by submitting their
public keys ({PKi}i∈[N]) and account IDs ({acci}i∈[N]).
Moreover, each committee member deposits funds dm on
the smart contract.

• Upload: In this function, each committee member
uploads its token share {TKi,1, TKi,2, Ci,1, Ci,2, πi} to
the smart contract, where TKi,1 and TKi,2 are used for
token generation, {Ci,1, Ci,2} is an ElGamal ciphertext
and used to recover the key update token by authorized
users, and πi is a zero-knowledge proof that demonstrates
the form of {TKi,1, TKi,2, Ci,1, Ci,2} is correct. The
details of generating token share by committee member

Fig. 3. Pseudocode of smart contract UTG.

Memi, where i ∈ [N], are given in Algorithm 1. After
receiving a share from Memi, this function first checks
whether πi is valid. If so, {TKi,1, TKi,2, Ci,1, Ci,2}
are recorded. After N committee members upload their
parameters, the function computes the final ciphertext
update token by calculating TKt

1 =
�N
j=1 TKi,1, and

TKt
2 =

�N
j=1 TKi,2.

• Timeout: If a committee member (Mi) registers its pub-
lic key on smart contract UTG but does not upload
{TKi,1, TKi,2, Ci,1, Ci,2, πi} within a specified amount
of time, its deposit is transferred to the SP.

When a ciphertext is updated from time period t to time
period t + 1, the ciphertext update token generated by com-
mittee members is Λt = (TKt

1, TK
t
2), which is recorded on

the blockchain.
7) Ciphertext Update: Given the update token Λt, which is

(TKt
1 = gs

�
, TKt

2 = gψt ·�t
i=1 η

s�
i), and the ciphertext stored

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

3444 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

Algorithm 1 Token Share Generation(Memi, η1, . . . , ηt)

1: Randomly choose s�i, ψti ∈ Z∗
p , and compute TKi,1 = gs

�
i ,

TKi,2 = gψti · �t
i=1 η

s�i
i .

2: Encrypt gψti with pkf in contract UTG, which is actually
pkf , using ElGamal encryption, i.e., randomly select ki ∈
Zp, and compute Ci,1 = gki , Ci,2 = gψti · pkki

f .
3: Generate a zero-knowledge proof πi with the witness

(s�i, ψti) for statement st = {TKi,1 = gs
�
i ∧ TKi,2 =

gψti ·�t
i=1 η

s�i
i ∧Ci,1 = gki , Ci,2 = gψti ·pkki

f }. The proof
can be generated by using the Σ.P roofGen algorithm.

on SP corresponding to time period t, SP first computes

e(C�, gψt · �t
i=1 η

s�
i)

e(gs� , E�)
=
e(gs, gψt · �t

i=1 η
s�
i)

e(gs� ,
�t
i=1 η

s
i)

= e(gs, gψt).

Then, SP updates the ciphertext (CTt) as follows:
1) Calculate C = C · e(gs, gψt);
2) Calculate E

�
= E� ·Et+1 and delete Et+1;

3) If lft is a left child node of its parent, SP deletes
C��
lft

, and set C��
t,ld

in CTt as C��
lft+1

; Otherwise, the process
is as follows: SP first deletes C��

lft
. Letting the identity of

lft+1 be (τ1, τ2, . . . , τdt+1) and the identity of lft+2 be
(τ1, τ2, . . . , τdt+2), SP generates the new ciphertext for nodes
lft+1 and lft+2 as C

��
lft+1

= C��
t,ld−1

· (Q�
d)
τdt+1 and C

��
lft+2

=
C��
t,ld−1

·(Q�
d)
τdt+2 , which is also C

��
t+1,ld

. After that, SP deletes

C��
t,ld−1

. If there is no C��
t,ld−1

stored, SP generates C
��
lft+1

and

C
��
lft+2

based on its ancestor node in SN . Given the ancestor
node Nk at level k of the tree, SP derives the ciphertext
components for lft+1 and the nodes in SNt+1. For nodes in
SNt+1 with identity �τj = (τ1, τ2, . . . , τj), j ≤ d, SP calculates
C��
t+1,lj

as C��
t,lk

�j
i=k+1(Q

�
i)
τi . For node lft+1 with identity

(τ1, τ2, . . . , τdt+1), SP computes

C��
lft+1

= C��
t,lk

d�
i=k+1

(Q�
i)
τi .

Then, it deletes the ciphertext components related to the
ancestors of lft+1.

8) Key Update Token Generation: DO and authorized users
can obtain the key update token from the blockchain. The
process is as follows: 1) For time period t, it downloads the
corresponding {Ci,1, Ci,2}i∈[N] and Enc(k�f), pk

�
f} from the

blockchain; 2) It decrypts Enc(k�f) and obtains k�f . Then,
it generates sk�f = H(k�f) and decrypts {Ci,1, Ci,2}i∈[N] with

sk�f ; 3) After obtaining gψti , it calculates gψt =
�N
i=1 g

ψti ,
which is the key update token and can be used to update the
current private key.

9) Key Update: Given private key SKt for time period t
and a key update token (gψt), DO or an authorized user can
generate private key SKt+1 for time period t+1. The process
is as follows:

If leaf node lft is a left child node of its parent, it deletes
Dt,lf . Then, it updates the private key components of the nodes

(Dt,�τd
) in SNt. That is, for Dt,�τk

, where k ≤ d, it computes
Dt+1,�τk

= Dt,�τk
· gψt . After that, it sets Dt+1,�τd

as Dt+1,lf ,
which is the private key component corresponding to leaf node
lft+1;

Otherwise, i.e., leaf node lft is a right child node of its
parent, it deletes Dt,lf . Then, for Dt,�τk

, where k ≤ d,
it calculates Dt+1,�τk

= Dt,�τk
· gψt . After that, based on the

identities of lft+1 and lft+2, it derives Dt+1,lf and Dt+2,lf

from Dt+1,�τd−1 using Key Derivation algorithm. Note that
Dt+2,lf is also Dt+1,�τd

. After that, it deletes Dt+1,�τd−1 . If the
parent node (PN) of lft+1 is not in SKt, it first derives
the private key component for PN using the private key
component of a PN ’s ancestor that is in SKt. Then, it derives
the private key components for lft+1 and lft+2 using PN ’s
private key component. After that, it deletes the private key
components of lft+1’s ancestors.

V. SECURITY PROOF

In this section, we prove that the proposed scheme achieves
the desired security properties.

Theorem 1: The proposed scheme is selective-identity
secure under the chosen plaintext attacks (IND-sID-CPA) if
the decisional BDHE assumption holds.

Suppose an adversary, A, has the advantage, �, in attacking
the proposed scheme, then we can construct a Challenger,
C, which has a non-negligible probability in solving the
decisional BDHE problem.

Based on our security model, two parties, the challenger (C)
and the adversary (A) are involved in the security game. C has
a decisional BDHE challenge

�y = (g, gs, gβ, . . . , gβ
q

, , gβ
q+2
, . . . , gβ

2q

, B ∈ GT).

C needs to identify whether B is e(g, g)β
q+1s or a randomly

chosen number from GT . If {�y,B} is a BDHE tuple, i.e.,
B = e(g, g)β

q+1s, C returns 1; Otherwise, C returns 0.
Following the conventions of security proof for public-key

encryption schemes [19], [27], as shown in Fig. 4, there
are six phases in our security proof: Init, Setup, Phase 1
Queries, Challenge, Phase 2 Queries, Guess, which are briefly
described as follows:

• Init – A sends a challenge access structure and a chal-
lenge time period to C;

• Setup – C generates system parameters and sends public
parameters to A;

• Phase 1 Queries – A can send private key queries and
ciphertext update queries to C, which returns correspond-
ing responses to A;

• Challenge – A submits two messages (K0,K1) to C,
which randomly selects one message ({Kb}b∈{0,1}) and
generates an encryption (Cb) of the chosen message.
Then, C sends Cb to A;

• Phase 2 Queries – A sends the same types of queries as
Phase 1. C returns the responses;

• Guess – Given Cb, A sends a guess of b to C.

The detailed security proof is as follows:
Init – Let the depth of the hierarchical tree be d. A generates

a challenge access structure (AS = (M∗, ρ∗)), in which M∗

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3445

Fig. 4. Phases of the security proof.

is of size l∗×n∗, and l∗, n∗ ≤ q. A also generates a challenge
time period T

∗ under identity (�τ∗ = {τ∗1 , . . . , τ∗d }). A sends
(M∗, ρ∗) and �τ∗ to C.

Setup – In this algorithm, C generates the public parameters.
C first sets gβ to the same element in �y. Then, C randomly
selects α� ∈ Zp, and generates e(g, g)α = e(gβ , gβ

q

)e(g, g)α
�
,

which implicitly sets

α = α� + βq+1.

For F0, C generates a random number, ξ, and sets F0 =
gξ

�q
i=1 g

aq−i+1τ∗
i . For j ∈ [1, d], C chooses a random num-

ber, γj , and generates Fj = gγj/gβ
q−j+1

. Then, C generates
F �
j as

F �
j = gθj · gβq−j+1

.

For hx, where x ∈ [1, U], C first randomly selects zx ∈
Zp. If x does not appear in the challenge access set, C sets
hx = gzx ; Otherwise, there exists an i, i ∈ {1, . . . , l}, which
satisfies ρ∗(i) = x. C generates hx as

hx = gzx · gβM∗
i,1 · gβ2M∗

i,2 . . . gβ
n∗
M∗
i,n∗ .

Finally, for i ∈ [1, d], C randomly picks ζi ∈ Zp, and
generates ηi = gζi . Then, C sends param = (g, gβ , e(g, g)α,
F0, . . . , Fd, h1, . . . , hU , F

�
2, . . . , F

�
d, η1, . . . , ηd) to A.

Phase 1 – In this phase, C responds to private key queries
and ciphertext queries of A.

For the private key queries, consider that A sends a private
key query which corresponds to attribute set S and time period
T, and at least one of the following conditions must hold for
the query:

• S does not satisfy AS;
• T is not equal to T

∗.

Case 1: S does not match AS. C creates a private key as
follows.

For an unauthorized set (S), according to the properties of
LSSS, there exists a vector (�ω = (ω1, . . . , ωn∗)), where ωi ∈
Zp and ω1 = −1 [17]. Moreover, for each i that satisfies
ρ∗(i) ∈ S, ω ·M∗

i holds. C finds the vector (�ω) and randomly
chooses μ ∈ Zp. Then, C implicitly defines t as

t = μ+ ω1β
q + ω2β

q−1 + · · · + ωn∗βq−n
∗+1.

In the private key, L is set to be

L = gt = gμ
�

i=1,...,n∗
(gβ

q−i+1
)ωi .

For Kx, where x ∈ S, if x does not appear in the challenge
access set, C sets Kx = Lzx ; Otherwise, attribute x is
used in AS. To generate Kx, there must not exist the term,
gβ

q+1
, since C cannot simulate it. For hx = gzx · gβM∗

i,1 ·
gβ

2M∗
i,2 . . . gβ

n∗
M∗
i,n∗ , and

t = μ+ ω1β
q + ω2β

q−1 + · · · + ωn∗βq−n
∗+1

notice that, in htx, all terms in the form (gβ
q+1

) derive from
gβ

jM∗
i,j ·ωja

q−j+1
for some j. Since we have M∗

i · �ω = 0, the
terms that include gβ

q+1
cancels. Thus, the resulting Kx for

x such that ρ∗(i) ∈ S has the following form

Kx

= Lzx

�
j=1,...,n∗

⎛
⎝gr·βj·M∗

i,j

�
k=1,...,n∗,k �=j

gβ
j+q+1−k·ωk·M∗

i,j

⎞
⎠.

For private key components for time period T, C randomly
chooses vτ ∈ Zp, and sets D0 = gvτ . Then, C computes
private key components as follows:

(1) C computes the private key component for the first leaf
node (lf1)

D1,lf = gαgβt(F0

d�
j=1

F
τj

j)vτk

= gα
�
gβμ

�
i=2,...,n∗

(gq−i+2)ωi(F0

d�
j=1

F
τj

j)vτk ;

(2) DO computes private key components for the nodes in
SN1. For a node in SN1 with identity �τk = (τ �1, τ

�
2, . . . , τ

�
k),

where k ≤ d, DO computes

D1,�τk
= gαgβt(F0

k�
j=1

F
τ �

i

i)vτ

= gα
�
gβμ

�
i=2,...,n∗

(gq−i+2)ωi(F0

k�
j=1

F
τ �

j

j)vτ ;

(3) C randomly chooses ψi, where i ∈ {2, . . . ,T − 1}, and
updates the private key based on Key Update algorithm until
C obtains the private key for time period T.

Note that, in gα, there exits a term, ga
q+1

, which cannot be
simulated by C. However, since ω1 = −1, we have g−a

q+1
in

gβt , making the terms of ga
q+1

cancel out.
Then, C computes Qj = (FjF �

j)
vτ , for j = 2, . . . , d.

Case 2: T is not equal to T
∗. C computes the private key

as follows:
(1) C randomly picks t ∈ Zp, and calculates L = gt, and

Kx = htx for ∀x ∈ S.
(2) For the private key component for lfT, C first gen-

erates private key components for lf1. Then, C derives the
key components for lfT using Key Update algorithm. If the
challenge time period is not the first time period, the identities
of lf1 and the nodes in SN1 are different from identity

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

3446 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

�τ∗ = {τ∗1 , . . . , τ∗c } of the challenge time period. For the
identity of lf1 or the identity of a node in SN1, there exists
a value of u such that τu
= τ∗u . Thus, C can create a private
key for identity �τu = (τ1, . . . , τu), and then utilize it to obtain
the key for �τ , which is �τ = (τ1, . . . , τu, . . . , τk). To create the
private key for (τ1, . . . , τu), C randomly picks ū ∈ Zp, and
sets vτ as βu/(τu − τ∗u) + ū. Then,

D0 = gvτ = g
βu

τu−τ∗
u gū.

For D1,�τu
, let yi be gβ

i

. We have

D1,�τu

= gαgβt(F0F
τ1
1 . . . F τu

u)vτ

= gα
� · yq+1 · (gξ+

�u
i=1 τiγi

u�
i=1

y
τ∗

i −τi

q−i+1

q�
i=u+1

y
τ∗

i
q−i+1)

vτ

= gα
� · yq+1 · (yτ

∗
u−τu

q−u+1)
vτ · (gξ+

�u
i=1 τiγi

u−1�
i=1

y
τ∗

i −τi

q−i+1

×
q�

i=u+1

y
τ∗

i

q−i+1)
vτ

= gα
�
y
ū(τ∗

u−τu)
q−u+1 · (gξ+

�u
i=1 τiγi

u−1�
i=1

y
τ∗

i −τi

q−i+1

q�
i=u+1

y
τ∗

i

q−i+1)
vτ .

After obtaining D1, �τu
, C can obtain the private key for node

lf1 with identity �τd = (τ1, . . . , τd) by calculating D1,lf =
D1,�τu

· �d
i=u+1(F

vτ

i)τi , where F vτ

i can be calculated by C.
Similarly, for a node in SN1 with identity �τk = (τ �1, . . . , τ

�
k),

where k ≤ d, C calculates D1,lf = D1,�τu

�k
i=u+1(F

vτ

i)τ
�
i .

Then, C can obtain the private key components for lfT and
the nodes in SNT by using Key Update algorithm with the
chosen gψi , where i ∈ {2, . . . ,T − 1}.

If the challenge time period is the first time period, C
generates the private key components only for the nodes in
SN1, and generates the private key components for lfT and
the nodes in SNT by using the preceding method.

For Qj , where j = 2, . . . , d, C can compute Qj =
(F �
jFj)

vτ .
For a ciphertext update query, given a ciphertext correspond-

ing to time period T−1, C generates a ciphertext corresponding
to time period T as follows.

Based on the gψ
T

value used in the Key Update algorithm,
C updates the ciphertext based on the Ciphertext Update
algorithm. Then, C returns the resulting ciphertext.

Challenge – When A finishes Phase 1, it submits two
messages, K0,K1 ∈ G, to C. C picks a random number,
b ∈ {0, 1}, and creates a ciphertext for Kb as follows:

(1) Note that there are gs and B in the decisional BDHE
challenge �y. C sets C = Kb · B · e(gs, gα�

), and C� = gs.
For i = 1, . . . , l,

Ci = gβλih−sρi

= gβλi(gzρi · gβM∗
i,1 · gβ2M∗

i,2 . . . gβ
n∗
M∗
i,n∗)−s.

Since C does not know the terms associated with gβ
is,

it cannot directly compute Ci values. To simulate them, C can
carefully craft λi such that gβ

is can be canceled out. Since

λi = �v ·M∗
i , C can randomly choose �2, . . . , �n∗ ∈ Zp, and

set �v as

�v = (s, sβ + �2, sβ
2 + �3, . . . , sβ

n∗−1 + �n∗).

Thus,

gβλi = gβ·�v·M
∗
i

= g(sβ)M∗
i,1+(sβ2+�2β)M∗

i,2+···+(sβn∗
+�n∗β)M∗

i,n∗ .

The resulting Ci is given by Ci =
(
�
j=2,...,n∗(gβ)�jM

∗
i,j)(gs)−zρ∗(i) .

(2) For C��
lfT∗ and C��

T∗,lk in the ciphertext, C first generates
ciphertext components C��

lf1
and C��

1,lk
. Then, C uses Ciphertext

Update algorithm to obtain C��
lfT∗ and C��

T∗,lk .
For lf1 with identity �τd = (τ1, τ2, . . . , τd), C first pads �τd =

(τ1, τ2, . . . , τd) as �τd = (τ1, τ2, . . . , τq), and computes

C��
lf1 = (F0

q�
j=1

F
τj

j)s

=

⎛
⎝

q�
j=1

(gγi/yq−i+1)τj · (gξ
q�
j=1

y
τj

q−i+1)

⎞
⎠
s

= (gs)ξ+
�q

i=1 γiτj .

For a node in SN1 with identity �τk = (τ �1, τ �2, . . . , τ �k), C
first pads �τk = (τ �1, τ

�
2, . . . , τ

�
k) as �τk = (τ1, τ2, . . . , τ �q), and

computes

C��
1,lk = (F0

q�
j=1

F
τ �

j

j)s = (gs)ξ+
�q

i=1 γiτ
�
j .

After that, based on the chosen gψi value, i ∈ {2,T∗−1}, C
generates the ciphertext components C��

lfT∗ and C��
T∗,lk , where

k ≤ d.
(3) For Q�

j , where j = 2, . . . , d, C calculates Q�
j as

Q�
j = (F �

jFj)
s = g(γj+θj)s = (gs)(γj+θj).

Further, C computes E� =
�c
i=1(g

s)ζi . Then, C calculates
Ej = (gs)ζi for j = c + 1, . . . , d. Finally, C returns the
ciphertext components to A as the challenge ciphertext.

We can see that, if B = e(g, g)β
q+1s, C generated by C is

C = Kb ·B · e(gs, gα�
)

= Kb · e(g, g)βq+1s · e(gs, gα�
)

= Kb · e(g, g)αs.
Thus, the returned ciphertext is valid for Kb. Or else, when
B is randomly chosen from GT , C is independent of Kb.

Phase 2 – A submits the same types of queries to C. C
responds based on the queries.

Guess – For the challenge ciphertext, A outputs a guess,
b�. If b� = b, C sends 1 to the challenger C, which
means B is equal to e(g, g)β

q+1s. Otherwise, C sends
0 to C, which represents that B is a random number
in GT .

We can observe that, when B = e(g, g)β
q+1s, what A

receives is indistinguishable from a real attack. Hence, we have

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3447

|Pr[b = b�] − 1/2| ≤ �. However, when B is a randomly
chosen number in GT , |Pr[b = b�] = 1/2|. Therefore,

|Pr[C(�y,B = e(g, g)β
q+1s) = 0] − Pr[C(�y,B = R) = 0]|

≥ |(1/2 + �) − 1/2| = �

VI. PERFORMANCE EVALUATION

In this section, we first analyze the complexity of the
proposed scheme. Then, we present simulation results using
the algorithms in our scheme.

A. Scheme Complexity Analysis

The proposed scheme includes 9 algorithms. For the com-
putational complexity, Setup algorithm and Key Generation
algorithm are run by DO. In Setup algorithm, DO needs only
one exponentiation operations in group G and one bilinear
pairing operation. For Key Generation algorithm, DO gener-
ates a first time period private key for an entity with attribute
set S. With b attributes in S and depth d of time tree,
DO needs to computes d2/2 + 9d/2 + b exponentiations in
G and d2/2 + 9d/2− 2 multiplications G. For the encryption
algorithm, to encrypt symmetric key K , DO needs to perform
one exponentiation and one multiplication in GT , and d2/2+
5d/2+l−2 multiplications and d2/2+9d/2+2l−1 exponen-
tiations in G, for l rows in matrix M . For decryption, given
the number (v) of attributes owned by an entity that satisfy
the access structure, the entity needs to perform 2v+2 pairing
operations, and v+3 multiplications and v exponentiations in
GT . For key update from time period t to t + 1, if lft is a
left child node, DO or an authorized user needs to perform
d − 1 multiplications and exponentiations in G; otherwise,
it needs d+ 2 multiplications and d exponentiations in G.

For key and ciphertext update token generation, each com-
mittee member needs to perform 2t + 2 multiplications and
12 exponentiations in G. For ciphertext update algorithm,
when the ciphertext for time period t needs to update to
the next period, and lft is a left child node, SP needs to
accomplish t + 2 multiplications in G, t exponentiations in
G, and 2 bilinear pairing operations. If lft is a right child
node, t+d+1 multiplications in G, t+d−1 exponentiations
in G, and 2 bilinear pairing operations are needed. The com-
putational complexity of algorithms is shown in TABLE II,
where expG and expGT denote exponentiation operation in
group G and group GT respectively. mulG and mulGT

denote multiplication operation in group G and group GT
respectively.

For the communication cost of DO, when an entity requests
a private key, DO needs to send 2d+ b+ l elements in G. For
the communication cost of the ciphertext of K , DO needs to
transmit 3d+ l elements in G and 1 elements in GT .

For the storage cost, DO and users need to store their private
keys. For a private key, an entity with b attributes in S needs
to store 2d + b + 1 elements in G. For the storage overhead
of SP, it needs to store the outsourced data and the ciphertext
of K , which includes l + 3d elements in G and one element
in GT .

TABLE II

COMPUTATIONAL COMPLEXITY

B. Experiment Results

1) Off-Chain Overheads: To evaluate the off-chain over-
heads of proposed scheme, we conduct simulations on a
computer equipped with Intel Core 2.9 GHz i7-7500U
CPU and 8 GB RAM. Miracl library [28] is employed to
achieve bilinear mapping. In the experiments, we choose
BN elliptic curves and set the security parameter as 128;
D0, L, C

� in the proposed scheme are elements in G1,
{Ci}i∈[l], {Kx}x∈S, Dc,lf , {Qj}j∈2,...,d are elements in G2,
and C in a ciphertext is an element in GT .

We compare the performance of our scheme with [29],
which is called RCPABE. RCPABE enables revocable
ciphertext-policy attribute-based encryption with short revo-
cation list by combining key update and revocation list. For
the proposed scheme and RCPABE, in the key generation
algorithms, a user first needs to apply for a private key
from DO, which generates a key for the user based on the
attributes of the required data. We test the computational cost
for key generation when the number of the attributes varies
from 10 to 20. We set the depth of the tree (d) to 6, as this
allows 25 key updates for a file of DO, which is sufficient for
real-world applications. If d is too large, there would be more
storage cost and computation cost for SP and authorized data
users, since SP needs to store more ciphertext components
for internal nodes, and data users need more computations to
derive a new key. In the evaluation, private keys for the same
number of nodes in the tree are generated. Fig. 5(a) shows
that, for a given depth of the tree, computational cost for
key generation increases linearly with the number of attributes
of an entity. Compared with RCPABE, our scheme has less
computational cost, since RCPABE embeds a revocation list
in ciphertexts and needs to generate private key components
for future revocation.

In the encryption algorithm, DO needs to encrypt symmetric
key K with access matrix M . We test the computational
overhead of encryption algorithms for the proposed scheme
and RCPABE. Fig. 5(b) shows that, when the depth of tree is
fixed, the computational cost for encryption increases with the
number of rows in M . Moreover, in our scheme, DO needs to

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

3448 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

Fig. 5. Computational cost for key generation, encryption, and decryption.

generate ciphertext components for the nodes in SN1, which
is used for subsequent ciphertext update. Thus, the time cost
of encryption for the proposed scheme is slightly larger than
that of RCPABE.

We measure the computational cost of the decryption algo-
rithms of the proposed scheme and RCPABE. Fig. 5(c) shows
that the decryption overhead increases linearly as the number
of attributes used in decryption grows from 10 to 20. The
computational cost for decryption is independent of the depth
of the time tree because, to verify the time validity, only the
ciphertext component corresponding to the decryptable time
period is included. From Fig. 5(c), the proposed scheme has
less computational overhead for decryption, as RCPABE needs
to further check where a user is in the revocation set for a
ciphertext.

2) On-Chain Overheads: We deploy a consortium
blockchain based on Hyperledger Fabric that consists of
two peer nodes and one order node [30]. The blockchain
relies on the Raft-ordering service and is configured with
10 transactions per block and a fixed block confirmation delay
of 2 seconds. The blockchain is run in a testbed equipped with
an Apple M1-chip (8 cores) and 16 GB RAM. We develop
the smart contract UTG and the client application using
Java [31], and the simulation results are shown in Table III.
To measure the three core functions of the contract, we use
the end-to-end transaction confirmation delay as the on-chain
performance index. It is observed that SP and committee
members can receive the confirmation of transactions (that
successfully trigger these functions) in around 2 seconds if
the blockchain network is not blocked. In addition, as the
number of committee members is another parameter that may
affect Upload function, we evaluate the total running time
of two sub-functions, verification and aggregation, of Upload
with the different number of committee members, as shown
in Table IV. It is observed that, with the increase in the
committee members, the total running time increases as well.
With the participation of 90 committee members, the total
running time can be less than 290 ms, which is efficient.
Moreover, committee members’ off-chain computation costs
are low. It takes less than 45 ms for each committee member
to construct a transaction that can be utilized to trigger
Upload function.

TABLE III

TRANSACTION CONFIRMATION DELAY OF THREE CORE

FUNCTIONS DEFINED IN THE CONTRACT UTG

TABLE IV

TOTAL RUNNING TIME OF VERIFICATION AND

AGGREGATION IN Upload FUNCTION

VII. RELATED WORK

A. Attribute-Based Encryption (ABE)

The concept of ABE is first presented by Goyal et al. [32].
ABE is a type of public-key encryption, where the private key
of a user and ciphertexts are related to attributes. There are
two categories for ABE. One is key-policy ABE, in which a
user’s private key is generated according to a policy, which
is built on attributes and defines the access right of a user,
and a ciphertext is encrypted with several attributes. When
the attributes of a ciphertext satisfy the policy corresponding
to a user’s private key, the user can decrypt the ciphertext.
The other is ciphertext-policy ABE, in which a user’s pri-
vate key is created based on its attributes, and a ciphertext
is encrypted with an access policy [33], [34]. Only if a
user owns the necessary attributes that satisfy the access
policy embedded in a ciphertext, the user can decrypt the
ciphertext.

Since in an ABE system, each attribute is shared by multiple
users, revoking a user will influence others who own the same
attributes with the user [29], [35]. Yu et al. address the attribute
revocation problem by integrating CP-ABE and proxy re-
encryption [36]. Users’ private keys are updated except for the
users who are revoked. Xiong et al. propose a partially policy-
hidden attribute-based broadcast encryption scheme, which
achieves direct revocation of users [37]. The revocation list
is embedded in the ciphertext such that only users who are

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3449

TABLE V

COMPARISON WITH RELATED WORKS

not in the list and satisfy the predefined access policy can
decrypt the ciphertext.

The existing ABE schemes with user revocation can achieve
data sharing and key update. However, there is no time
validity for the data sharing. Our proposed scheme supports
fine-grained data access control and embeds the time validity
in the shared data. Moreover, by utilizing the blockchain, the
communication costs of key updates for authorized users are
reduced, since DO does not need to distribute key update
tokens to each user. The comparison with the related works is
summarized in Table V.

B. Updatable Encryption

Updatable encryption enables the updates of a secret key
and a ciphertext encrypted with the key [40]. To be specific,
a user creates a secret key and uses the key to encrypt a
ciphertext. At the beginning of the next time period, the
user creates a new secret key and generates a conversion
key, which is used to convert the original ciphertext to a
new ciphertext that can be decrypted by the new secret key.
Updatable encryption can be ciphertext-dependent, i.e., the
ciphertext update token is generated with the involvement of
partial ciphertext, or ciphertext-independent, i.e., the update
token can be generated without a ciphertext and can be used
to update any ciphertext.

For the direction of key updates, Lehman and Tackmann
define bi-directional key updates and uni-directional key
updates [40]. The former allows an adversary to upgrate
and downgrade keys, i.e., an adversary can derive a secret
key for the next time period (ku+1) from an update token
(δu+1) and the current time period key (ku), and recover ku
from δu+1 and ku+1. The uni-directional key updates mean
that we can generate ku+1 from ku and δu+1. While uni-
directional updatable encryption is preferable, Jiang et al. [41]
prove that bi-directional key update schemes are equivalent to
the schemes that support uni-directional key updates under
the most advanced updatable encryption model presented by
Boyed et al. [42]. Shen et al. propose a data privacy preserva-
tion scheme with key rotation and ciphertext update, in which a
symmetric encryption-based updatable encryption is adopted
to achieve key rotation, and an identity-based encryption is
used to assign access right for users [43]. Slamanig et al.
propose an updatable encryption scheme with no-directional
key updates, where the update tokens cannot be used to
upgrade or downgrade secret keys [38].

Most UE schemes employ symmetric encryption primitives
to achieve key update and ciphertext update. Thus, they

cannot achieve fine-grained data sharing. By using a tree-based
structure, our scheme not only can support flexible data access
authorization, but also can enable multiple key updates.

Based on the conference version [1], first, we improve the
blockchain-based data sharing scheme by utilizing a tree-based
structure to generate private keys for authorized users and
ciphertexts. As a result, for the same public parameters
(params), our scheme enables 2d−1 key updates instead
of d updates, where d denotes the depth of the time tree.
Second, we utilize the committee members of the consortium
blockchain to cooperatively generate the key and ciphertext
update token by invoking smart contract UTG, and DO is not
involved in the update token generation. Third, we formulate a
security model and formally prove the security of the proposed
scheme. Finally, we evaluate the on-chain and off-chain perfor-
mance of the proposed scheme and compare its performance
with an existing scheme. The experiment results show that our
scheme can achieve high computational efficiency.

VIII. CONCLUSION

In this paper, we have proposed a blockchain-based flexible
data sharing scheme that supports key and ciphertext updates.
Data can be shared with authorized users based on data
attributes and time validity. By using a tree-based structure, the
proposed scheme can support an exponential number of key
updates. The storage platform is utilized to facilitate ciphertext
update, and no re-encryption of data is needed for the data
owner. Security proof and simulation results have shown
that our scheme is both secure and practical. The design of
authorization and key update mechanisms can motivate further
research on efficient key management. The proposed scheme
has one limitation that the access policies are stored on the
blockchain to achieve transparent data sharing management,
which may leak the information of the outsourced data. In the
future, we aim to design a blockchain-based policy hidden and
auditable data sharing scheme.

REFERENCES

[1] L. Xue et al., “Secure and flexible data sharing for distributed storage
with efficient key management,” in Proc. IEEE Int. Conf. Commun.
(ICC), May 2022, pp. 4408–4413.

[2] W. Wu et al., “Dynamic ran slicing for service-oriented vehicular
networks via constrained learning,” IEEE J. Sel. Areas Commun., vol. 39,
no. 7, pp. 2076–2089, Jul. 2020.

[3] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.

[4] P. Podder, S. Bharati, M. R. H. Mondal, P. K. Paul, and U. Kose,
“Artificial neural network for cybersecurity: A comprehensive review,”
2021, arXiv:2107.01185.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

3450 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

[5] G. Zhang, T. Li, Y. Li, P. Hui, and D. Jin, “Blockchain-based data
sharing system for AI-powered network operations,” J. Commun. Inf.
Netw., vol. 3, no. 3, pp. 1–8, 2018.

[6] Y. Roh, G. Heo, and S. E. Whang, “A survey on data collec-
tion for machine learning: A big data-AI integration perspective,”
IEEE Trans. Knowl. Data Eng., vol. 33, no. 4, pp. 1328–1347,
Apr. 2021.

[7] D. Liu, C. Huang, J. Ni, X. Lin, and X. Shen, “Blockchain-
cloud transparent data marketing: Consortium management and fair-
ness,” IEEE Trans. Comput., early access, Feb. 14, 2022, doi:
10.1109/TC.2022.3150724.

[8] Y. Liu, X. Guan, Y. Peng, H. Chen, T. Ohtsuki, and Z. Han, “Blockchain-
based task offloading for edge computing on low-quality data via
distributed learning in the Internet of energy,” IEEE J. Sel. Areas
Commun., vol. 40, no. 2, pp. 657–676, Feb. 2022.

[9] N. Firoozeh, A. Nazarenko, F. Alizon, and B. Daille, “Keyword
extraction: Issues and methods,” Natural Lang. Eng., vol. 26, no. 3,
pp. 259–291, 2020.

[10] S. Beliga, “Keyword extraction: A review of methods and approaches,”
Univ. Rijeka, Dept. Inform. Radmile, vol. 1, no. 9, pp. 1–9, 2014.

[11] M. Lipp et al., “PLATYPUS: Software-based power side-channel attacks
on X86,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 355–371.

[12] H. Wang, H. Sayadi, S. Rafatirad, A. Sasan, and H. Homayoun,
“SCARF: Detecting side-channel attacks at real-time using low-level
hardware features,” in Proc. IEEE 26th Int. Symp. On-Line Test. Robust
Syst. Design (IOLTS), Jul. 2020, pp. 1–6.

[13] D. Boneh, S. Eskandarian, S. Kim, and M. Shih, “Improving speed and
security in updatable encryption schemes,” in Proc. Int. Conf. Theory
Appl. Cryptol. Inf. Secur., 2020, pp. 559–589.

[14] S. Fugkeaw, “Secure data sharing with efficient key update for industrial
cloud-based access control,” IEEE Trans. Services Comput., early access,
Sep. 8, 2021, doi: 10.1109/TSC.2021.3110828.

[15] X. Shen et al., “Blockchain for transparent data management toward
6G,” Engineering, vol. 8, pp. 74–85, Jan. 2021.

[16] G. S. Aujla and A. Jindal, “A decoupled blockchain approach for
edge-envisioned IoT-based healthcare monitoring,” IEEE J. Sel. Areas
Commun., vol. 39, no. 2, pp. 491–499, Feb. 2021.

[17] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proc. Int. Workshop Public
Key Cryptography, 2011, pp. 53–70.

[18] Z. Liu, Z. Cao, and D. S. Wong, “Efficient generation of linear secret
sharing scheme matrices from threshold access trees,” IACR Cryptol.
ePrint Arch., vol. 2010, p. 374, 2010.

[19] D. Boneh, X. Boyen, and E. J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in Proc. Int. Conf. Theory
Appl. Cryptograph. Techn., 2005, pp. 440–456.

[20] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge
proof systems,” J. Cryptol., vol. 7, no. 1, pp. 1–32, Dec. 1994.

[21] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi,
and T. Schneider, “A certifying compiler for zero-knowledge proofs of
knowledge based on σ-protocols,” in Proc. Eur. Symp. Res. Comput.
Secur., 2010, pp. 151–167.

[22] A. Onan, S. Korukoğlu, and H. Bulut, “Ensemble of keyword extraction
methods and classifiers in text classification,” Exp. Syst. Appl., vol. 57,
pp. 232–247, Sep. 2016.

[23] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryp-
tion scheme,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.,
2003, pp. 255–271.

[24] F. Günther, B. Hale, T. Jager, and S. Lauer, “0-RTT key exchange with
full forward secrecy,” in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn., 2017, pp. 519–548.

[25] Y. Tsiounis and M. Yung, “On the security of ElGamal based
encryption,” in Proc. Int. Workshop Public Key Cryptogr., 1998,
pp. 117–134.

[26] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” J. Cryptol., vol. 20,
no. 1, pp. 51–83, 2007.

[27] Y. Zhang, D. He, M. S. Obaidat, P. Vijayakumar, and K.-F. Hsiao,
“Efficient identity-based distributed decryption scheme for electronic
personal health record sharing system,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 2, pp. 384–395, Feb. 2021.

[28] Miracl Library. Accessed: Jan. 2022. [Online]. Available: https://
github.com/miracl/MIRACL

[29] J. K. Liu, T. H. Yuen, P. Zhang, and K. Liang, “Time-based direct revo-
cable ciphertext-policy attribute-based encryption with short revocation
list,” in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur., 2018, pp. 516–534.

[30] E. Androulaki et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys Conf., 2018,
pp. 1–15.

[31] Miracl Java. Accessed: Jan. 2022. [Online]. Available: https://
github.com/miracl/core

[32] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conf. Comput. Commun. Secur. (CCS), 2006, pp. 89–98.

[33] S. Wang et al., “A fast CP-ABE system for cyber-physical security and
privacy in mobile healthcare network,” IEEE Trans. Ind. Appl., vol. 56,
no. 4, pp. 4467–4477, Jul./Aug. 2020.

[34] Q. Li, B. Xia, H. Huang, Y. Zhang, and T. Zhang, “TRAC: Traceable
and revocable access control scheme for mHealth in 5G-enabled IIoT,”
IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 3437–3448, May 2022.

[35] Z. Liu, Q. Huang, and D. S. Wong, “On enabling attribute-based
encryption to be traceable against traitors,” Comput. J., vol. 64, no. 4,
pp. 575–598, Apr. 2021.

[36] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing with
attribute revocation,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Secur. (ASIACCS), 2010, pp. 261–270.

[37] H. Xiong, Y. Zhao, L. Peng, H. Zhang, and K.-H. Yeh, “Partially policy-
hidden attribute-based broadcast encryption with secure delegation in
edge computing,” Future Gener. Comput. Syst., vol. 97, pp. 453–461,
Aug. 2019.

[38] D. Slamanig and C. Striecks, “Puncture ’EM all: Updatable encryption
with no-directional key updates and expiring ciphertexts,” IACR Cryptol.
ePrint Arch., vol. 2021, p. 268, 2021.

[39] V.-H. Hoang, E. Lehtihet, and Y. Ghamri-Doudane, “Privacy-preserving
blockchain-based data sharing platform for decentralized storage sys-
tems,” in Proc. IFIP Netw. Conf. (Networking), 2020, pp. 280–288.

[40] A. Lehmann and B. Tackmann, “Updatable encryption with post-
compromise security,” in Proc. Annu. Int. Conf. Theory Appl. Cryp-
tograph. Techn., 2018, pp. 685–716.

[41] Y. Jiang, “The direction of updatable encryption does not matter much,”
in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn., 2020,
pp. 529–558.

[42] C. Boyd, G. T. Davies, K. Gjøsteen, and Y. Jiang, “Fast and secure
updatable encryption,” in Proc. Int. Cryptol. Conf., 2020, pp. 464–493.

[43] S. Shen, Y. Yang, and X. Liu, “Toward data privacy preservation with
ciphertext update and key rotation for IoT,” Concurrency Comput., Pract.
Exper., p. e6729, 2021.

Liang Xue (Member, IEEE) received the B.S. and
M.S. degrees from the School of Computer Sci-
ence and Engineering, University of Electronic Sci-
ence and Technology of China (UESTC), China,
in 2015 and 2018, respectively. She is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, Univer-
sity of Waterloo, Canada. Her research interests
include applied cryptography, cloud computing, and
blockchain.

Dongxiao Liu (Member, IEEE) received the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada,
in 2020. He is currently a Post-Doctoral Research
Fellow with the Department of Electrical and Com-
puter Engineering, University of Waterloo. His
research interests include security and privacy in
intelligent transportation systems, blockchain, and
mobile networks.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2022.3150724
http://dx.doi.org/10.1109/TSC.2021.3110828

XUE et al.: BLOCKCHAIN-BASED DATA SHARING WITH KEY UPDATE FOR FUTURE NETWORKS 3451

Cheng Huang (Member, IEEE) received the B.Eng.
and M.Eng. degrees in information security from
Xidian University, China, in 2013 and 2016,
respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Waterloo, ON, Canada, in 2020. He is currently a
Post-Doctoral Research Fellow with the Department
of Electrical and Computer Engineering, University
of Waterloo. His research interests are in the areas
of applied cryptography, cyber security, and privacy
in the mobile networks.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from Rut-
gers University, New Brunswick, NJ, USA, in 1990.

He is currently a University Professor with the
Department of Electrical and Computer Engineering,
University of Waterloo, ON, Canada. His research
focuses on network resource management, wireless
network security, the Internet of Things, 5G and
beyond, and vehicular ad-hoc and sensor networks.

Dr. Shen is a registered Professional Engineer of
Ontario, an Engineering Institute of Canada Fellow,

a Canadian Academy of Engineering Fellow, a Royal Society of Canada Fel-
low, a Chinese Academy of Engineering Foreign Member, and a Distinguished
Lecturer of the IEEE Vehicular Technology Society and Communications
Society. He received the Canadian Award for Telecommunications Research
from the Canadian Society of Information Theory (CSIT) in 2021, the R.
A. Fessenden Award in 2019 from IEEE, Canada, and the Award of Merit
from the Federation of Chinese Canadian Professionals (Ontario) in 2019, the
James Evans Avant Garde Award in 2018 from the IEEE Vehicular Technology
Society, the Joseph LoCicero Award in 2015 and the Education Award in
2017 from the IEEE Communications Society, and the Technical Recognition
Award from Wireless Communications Technical Committee in 2019 and
AHSN Technical Committee in 2013. He has also received the Excellent
Graduate Supervision Award in 2006 from the University of Waterloo and
the Premier’s Research Excellence Award (PREA) in 2003 from the Province
of Ontario. He served as the Technical Program Committee Chair/Co-Chair
for IEEE GLOBECOM’16, IEEE Infocom’14, IEEE VTC’10 Fall, IEEE
GLOBECOM’07, and the Chair for the IEEE Communications Society
Technical Committee on Wireless Communications. He is the President of
the IEEE Communications Society. He was the Vice President for Technical
and Educational Activities, the Vice President for Publications, the Member-
at-Large on the Board of Governors, the Chair of the Distinguished Lecturer
Selection Committee, a member of IEEE Fellow Selection Committee of the
ComSoc. He served as the Editor-in-Chief of the IEEE INTERNET OF THINGS

JOURNAL, IEEE Network, and IET Communications.

Weihua Zhuang (Fellow, IEEE) received the B.Sc.
and M.Sc. degrees from Dalian Marine University,
China, and the Ph.D. degree from the University
of New Brunswick, Canada, all in electrical engi-
neering. She is a University Professor and a Tier I
Canada Research Chair in wireless communication
networks at the University of Waterloo, Canada. Her
research focuses on network architecture, algorithms
and protocols, and service provisioning in future
communication systems. She is an Elected Member
of the Board of Governors and the Executive Vice

President of the IEEE Vehicular Technology Society. She is a fellow of
the Royal Society of Canada, the Canadian Academy of Engineering, and
the Engineering Institute of Canada. She was a recipient of 2021 Women’s
Distinguished Career Award from the IEEE Vehicular Technology Soci-
ety, the 2021 Technical Contribution Award in Cognitive Networks from
IEEE Communications Society, the 2021 R. A. Fessenden Award from
IEEE Canada, and the 2021 Award of Merit from the Federation of Chi-
nese Canadian Professionals in Ontario. She was the General Co-Chair
of 2021 IEEE/CIC International Conference on Communications in China
(ICCC), the Technical Program Chair/Co-Chair of 2017/2016 IEEE VTC Fall,
the Technical Program Symposia Chair of 2011 IEEE GLOBECOM, an IEEE
Communications Society Distinguished Lecturer from 2008 to 2011, and the
Editor-in-Chief of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
from 2007 to 2013.

Rob Sun (Member, IEEE) is currently a Prin-
cipal Engineer with Huawei Technologies Canada
Company Ltd. He also coauthored a few books on
wireless security technologies. His work primarily
focuses on the advancement of the NG wireless,
including 5G/6G and WiFi/IoT security architecture
and standardization. He was the Vice Chair of IEEE
Privacy Management Protection (PMP) Task Group
which was to set out the best practices for pro-
tecting personal privacy information, and support
efficient, adaptable, and innovative approaches for

privacy governance. He was regarded as one of the core contributors to the
standardizations of a series of NG Wi-Fi security protocols and certifications,
including the most recent Wi-Fi WPA3 protocol suites.

Bidi Ying (Member, IEEE) received the Ph.D.
degree. She is currently working at Huawei Tech-
nologies Canada Company Ltd., as a Senior Net-
work Architecture Engineer. Before that, she was
working at the University of Ottawa. For the past
15 years, she has published more than 200 papers
in top conferences and reputable journals. Her main
research interests include security and privacy in
wireless networks.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 14,2023 at 20:47:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

