
2440 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

Blockchain-Based Fair and Fine-Grained Data
Trading With Privacy Preservation

Liang Xue , Member, IEEE, Jianbing Ni , Senior Member, IEEE, Dongxiao Liu , Member, IEEE,
Xiaodong Lin , Fellow, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract—In this article, we propose a blockchain-based fair and
privacy-preserving data trading scheme that supports fine-grained
data selling. First, to achieve fairness for trading participants, by
incorporating attribute-based credentials, encryption, and zero-
knowledge proof, we design a data trading scheme where a buyer
first publishes the required data attributes on the blockchain, and
a data seller can demonstrate data availability in ciphertext by only
disclosing the required attributes to a data buyer and proving the
authenticity of data. A data buyer transfers funds only if the correct
key material is uploaded to the blockchain. Second, to guarantee
fine-grained data trading and preserve identity privacy, we build a
Merkle hash tree on the ciphertexts of data with a signature on its
root node, which allows a data seller to split data into blocks and
remove the sensitive information from the data without affecting
data availability verification. The public key of the data seller is not
leaked to the data buyer during the trading. Moreover, different
trading transactions from the same data seller cannot be linked.
We formally prove that our scheme achieves the desired security
properties: fairness and privacy preservation. Simulation results
demonstrate the feasibility and efficiency of the proposed scheme.

Index Terms—Blockchain, fair data trading, fine-grained data
selling, privacy preservation.

I. INTRODUCTION

W ITH the world going through the digital revolution,
data have been one of the most valuable assets in our

economy [1]. Data trading enables data buyers to purchase data
from data sellers. Fair data trading requires that a data buyer
can obtain the required data if it pays the corresponding funds,
and a data seller can receive the funds if it sends the data to
the data buyer and the latter obtains the data. However, in data
trading, there is mistrust between a data seller and a data buyer,
which would lead to a deadlock point where a data seller is
reluctant to pay first until a data seller sends the data to it, and

Manuscript received 26 August 2022; revised 21 December 2022; accepted
9 February 2023. Date of publication 2 March 2023; date of current version
9 August 2023. Recommended for acceptance by M. Correia. (Corresponding
author: Dongxiao Liu.)

Liang Xue, Dongxiao Liu, and Xuemin Shen are with the Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON
N2L 3G1, Canada (e-mail: l34xue@uwaterloo.ca; dongxiao.liu@uwaterloo.ca;
sshen@uwaterloo.ca).

Jianbing Ni is with the Department of Electrical and Computer Engi-
neering, Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: jian-
bing.ni@queensu.ca).

Xiaodong Lin is with the School of Computer Science, University of Guelph,
Guelph, ON N1G 2W1, Canada (e-mail: xlin08@uoguelph.ca).

Digital Object Identifier 10.1109/TC.2023.3251846

the data seller would not provide its data until it receives the
reward. The party who acts first would be at a disadvantage since
the other party may be dishonest and disappear. In traditional
data trading, there are trusted third parties, such as Dawex [2],
Datacoup [3], and Xignite [4], which establish trust between the
trading participants. Nevertheless, the trading platform may be
dishonest and try to steal and resell data sellers’ data. In addition,
it can be a target of attackers and be vulnerable to the single point
of failure attack.

The decentralized nature of blockchain makes it have the po-
tential to achieve distributed data trading without a trusted third
party [5]. Blockchain suits the role because of its transparency,
programmability, and the embedded cryptocurrencies [6], [7].
Smart contracts on the blockchain can achieve automated pay-
ment when predefined conditions are satisfied. The process of
blockchain-based data trading can be described as follows: A
data buyer publishes the data requirements and deposits the re-
ward of data on a smart contract. Then, a data seller demonstrates
the availability of data to the data buyer. Considering that the
size of data may be large and the storage of a smart contract is
limited, a data seller can first encrypt the data with a key and
store the ciphertexts at an off-chain storage platform, such as the
InterPlanetary File System (IPFS) or a cloud server [8]. Once the
data availability is verified, the data seller only needs to upload
the corresponding key to the smart contract. If the key is correct,
the reward is transferred to the data seller.

For blockchain-based fair data trading, there are two major
challenging issues: 1) How to verify the data availability, i.e.,
data satisfy the requirements of a data buyer, without viewing
the plaintext data. If the check is based on the plaintext, the data
buyer can refuse to pay for the data even if the data are indeed
what it needs as it has already owned the data; and 2) How to
guarantee the data retrievability, i.e., the decryption key should
be correct, and the data buyer can use the key to decrypt the
ciphertext and obtain the data. Public predicate functions such
as hash functions can be utilized to validate the availability of
data [9], [10], [11], where encryption and complicated zero-
knowledge proof are used to demonstrate that the data satisfy a
predicate function. The method is not suitable for data that have
no public verifiable predicate function, such as Internet of Things
(IoT) data and email data. The authenticate-based method can
also be used to verify the data availability by checking whether
the data are signed by a trusted authority [12], and data retriev-
ability is achieved by utilizing a re-encryption scheme. For this
method, fine-grained data trading is not considered.

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8069-3182
https://orcid.org/0000-0002-5639-0883
https://orcid.org/0000-0003-2595-6757
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0002-4140-287X
mailto:l34xue@uwaterloo.ca
mailto:dongxiao.liu@uwaterloo.ca
mailto:sshen@uwaterloo.ca
mailto:jianbing.ni@queensu.ca
mailto:jianbing.ni@queensu.ca
mailto:xlin08@uoguelph.ca

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2441

State-of-the-art blockchain-based fair data trading schemes
mainly address the fairness issue in data trading, and few of
them consider the privacy issues it might cause. For example,
in healthcare data trading, an electronic medical record (EMR)
contains much personal information, such as the name, age, and
address of a patient. It is important to accomplish data trading
without compromising the privacy of data sellers. For fair data
trading, the data availability of an EMR can be verified by a
signature signed by a hospital. With the original encrypted EMR
and its signature, data authenticity is verified. However, it is a
challenging task to prove data availability without sending the
whole file to a data buyer, i.e., trading only part of a file while data
availability can be verified. Moreover, the identity of a hospital
can be used to infer the home address information of a patient.
Thus, the identities of hospitals should be hidden in verifying
data availability.

In this work, to address the above issues, we propose a
blockchain-based fair and fine-grained data trading scheme with
privacy preservation. We take healthcare data as an example.
A data buyer wants to collect healthcare data from EMRs for
further analysis. It can publish the data requirements for the
data it needs, which include the acceptable hospitals that EMRs
are issued from and data fields in EMRs that are required. For
example, a data buyer needs data related to Diabetes, and data
fields for Blood Pressure, Insulin, Glucose are required. For a
data seller who has an EMR that satisfies the data requirements,
it is desired that only the required data items are sent to the
data buyer at the end. Other sensitive information, including the
identities of the data seller and the hospital, is concealed from
the data buyer. In our proposed scheme, for the demonstration of
data availability, EMRs are signed by hospitals to guarantee the
authenticity of data. By utilizing the attribute-based anonymous
credential [13], [14], an authenticated data structure, and zero-
knowledge proof, a data seller can prove that its EMR is signed
by one of the acceptable hospitals and contains the data fields
required by a data buyer, while other information is not exposed
to the data buyer even after data trading. A data buyer cannot
resell the data as the private key of the data seller is involved in
proving the data availability. For data retrievability, an EMR is
first encrypted with a symmetric key, which is then encrypted
with the public key of a data seller. To enable a data buyer to
decrypt the ciphertext of trading data, the data seller encrypts
the symmetric key with the buyer’s public key and uploads the
ciphertext and a correctness proof of the ciphertext to the smart
contract. With the public key of the data buyer and other auxiliary
information, the proof can be verified and funds are transferred
to the data seller by the smart contract. The contributions of the
paper can be summarized as follows:
� We define the desired functionalities of fine-grained

and fair data trading, which include fairness, privacy
preservation, and fine-grained trading. We propose the
first blockchain-based fair and fine-grained data trading
scheme, where a data seller can sell data in part without
affecting data availability verification. Privacy preservation
for data sellers is achieved;

� To demonstrate the data availability, the data fields or
attributes in an EMR are signed by the hospital that issues
the EMR. The corresponding attribute values are encrypted

separately, and the order of the attributes and their val-
ues are ensured by an authenticated data structure. Zero-
knowledge proof is used to preserve the privacy of data
sellers and achieve fair data trading. Only the required data
can be recovered by the data buyer, and other information
in the EMR is concealed;

� We formulate a security model for blockchain-based fair
and fine-grained data trading and formally prove that our
scheme can achieve the desired properties. We simulate
the proposed scheme, and simulation results show the
practicability of our scheme. Also, the gas cost for the
trading smart contract is low.

The remaining paper is organized as follows: In Section II, we
review the related works. In Section III, we describe the system
model, threat model, design goals, and security definitions. In
Section IV, we introduce the building blocks for constructing our
scheme. In Section V, we present the overview and the details
of the constructed scheme. In Section VI, we show the security
proof for the proposed scheme, followed by the performance
evaluation in Section VII. Finally, we conclude the paper in
Section VIII.

II. RELATED WORKS

The problem of fair data trading has been studied for decades.
With the emergence of blockchain-based cryptocurrencies, fair
data trading can be achieved in a completely trustless manner,
where blockchain replaces the role of the trusted party. As data
availability and retrievability are challenging issues in the design
of fair data trading scheme, in the following, we review the
related works in terms of data availability and retrievability.

The first blockchain-based fair data trading scheme named
ZKCP was proposed by Gregory Maxwell [15]. In the scheme,
data availability can be verified by a public predicate function,
such as a hash function. A data seller encrypts digital goods with
a symmetric key, generates a zero-knowledge proof that proves
the data encrypted satisfy a public predicate function. In ZKCP,
data retrievability is achieved by revealing the encryption key of
the data. ZKCP scheme incurs setup issues since the setup of the
zero-knowledge proof system [16], which is a Zero-Knowledge
Succinct Non-Interactive Argument of Knowledge (zkSNARK)
system, is done by the data buyer. To address the issues in ZKCP,
Li et al. proposed a fair-exchange scheme supporting practical
data exchange that is called ZKPlus [11], in which a new
commit-and-prove non-interactive zero-knowledge (CP-NIZK)
argument of knowledge scheme is introduced to replace the
zkSNARK in ZKCP. ZKPlus has a public setup as commitment
schemes and can handle complicated data validation.

For the verification of data availability, besides the predicate
function, a few research works use sampling techniques [17],
[18], [19]. Delgado-Segura et al. presented a fair data trading
scheme [17], where cut and choose method is used to prove data
availability [17]. The data buyer can randomly choose a subset
of data that are called samples and obtain the plaintext of the
sample data. By verifying the correctness of the sample data, the
buyer can validate the data availability. For data recoverability,
a vulnerability of the elliptic curve digital signature algorithm
(ECDSA) [20] is exploited to implicitly reveal the secret key that

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

2442 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

TABLE I
COMPARISON WITH RELATED WORKS

can decrypt all the ciphertexts. Moreover, Zhao et al. proposed
a machine learning-based fair data trading scheme [18], where
a sampling technique and a distance metric learning method are
used to prove the validity of data, and the double authentication
preventing signature is used to recover the decryption key.

Another approach to verify the data availability is an
authentication-based method. Liu et al. proposed a blockchain-
cloud transparent data marketing scheme [7], where a distributed
and trusted committee verifies the data availability and manages
anonymous credentials for data sellers. Anonymous credentials
allow a service provider to authenticate a user without leaking
the user’s identity. An attribute-based anonymous credential
(ABAC) contains several attributes of a user that are authen-
ticated by an authority, and it enables a user to hide certain at-
tributes during authentication and maintain strong privacy. There
has been much research on ABAC, for example, threshold-based
ABAC [21], delegatable ABAC [22], and traceable ABAC [23].

Moreover, Galteland et al. proposed a blockchain-based
privacy-preserving fair data trading scheme, where a data man-
ager is introduced as a trusted authority [12]. Data signed by the
manager are believed to be authentic. The manager encrypts data
with the public key of the data owner and signs the data. The data
buyer can verify the signature to attest to the data availability. The
data owner then generates a re-encryption key, and it sends the
key and a correctness proof of the key to a smart contract to prove
data retrievability. With the re-encryption key, the data buyer
can transform the original ciphertext into a ciphertext under its
public key and decrypt it with its private key.

Islam et al. designed a scheme to achieve privacy-preserving
news trading [24]. An authority called “block cop (BC)” is
introduced to guarantee trading fairness. If a seller does not send
the file after receiving the funds from a buyer, the buyer can
report it to BC, which will investigate the fraud. In comparison,
our scheme utilizes crypto techniques to ensure trading fairness
and privacy preservation. Moreover, in [24], a data seller needs
to generate multiple data ciphertexts for different buyers. In our
scheme, only the data encryption key is encrypted by a buyer’s
public key.

In our work, we employ an authentication-based mechanism
to prove the data availability. Instead of a public authority in the
system, our scheme can support multiple issuers. Data signed
by one of the issuers are acceptable and can be verified without
leaking the identity of the issuer. Moreover, the proposed scheme
can achieve fine-grained data selling by only exposing required
data to data buyers, and the on-chain computational overhead of

Fig. 1. System model.

our scheme is low. The comparison of related works is listed in
Table I.

III. SYSTEM MODEL

A. System Model

In our system model, there are five types of entities, a health
department (HD), hospitals, data sellers, data buyers, and smart
contracts, as shown in Fig. 1.
� HD – HD generates public system parameters for hospitals

so that they can sign EMRs with the same public parame-
ters. The hospitals are registered with HD. After that, HD
publishes the public keys of hospitals;

� Hospital – A hospital can generate EMRs for patients
and sign EMRs with its private key. Others can verify the
authenticity of data by checking the signature of an EMR.
For data trading, the identities of the hospitals are hidden
from data buyers;

� Data seller – A data seller is a patient that owns EMRs and
wants to monetize the data. During the trading, the seller is
reluctant to leak its personal information to the data buyer.

� Data buyer – A data buyer is a collector of healthcare data,
which can be government organizations, pharmaceutical
industries, and healthcare professionals. A data buyer pays
funds only if the data provided by a data seller satisfy its
requirements.

� Smart contract – A smart contract is a self-executing con-
tract deployed on a blockchain that runs if predetermined
conditions are verified [25], [26]. When the conditions are
met, the smart contract can automate the transfer of funds
to guarantee the atomicity of a transaction.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2443

There are two phases in our scheme: pre-trading and trading.
In the pre-trading phase, HD generates the public parameters for
the hospitals. Hospitals can issue and sign EMRs for patients.
In the data trading phase, hospitals are not involved, which can
reduce the burden of hospitals. A data buyer first creates a smart
contract in which data requirements are defined, which are called
policies in our scheme. The data buyer also deposits the rewards
of data on the smart contract. If a data seller has EMRs that
satisfy the defined policy, it can interact with the buyer and the
smart contract to complete the trading.

B. Threat Model

In our system, HD and hospitals are honest, and the smart
contract is executed according to the defined logic. Data sellers
and data buyers can be malicious, since they intend to obtain
more benefits from the other party. A data seller who wishes to
receive rewards may not have the required data. Thus, it would
try to forge an EMR that can pass the verification of the data
seller. A data buyer may refuse to pay the rewards when it obtains
the desired data. Moreover, a data buyer intends to learn the real
identity of a data seller. Other nodes in the blockchain network
try to link different transactions of the same data seller and want
to learn the identity information of the data seller.

C. Desired Goals

The design goals of blockchain-based fair and fine-grained
data trading are listed as follows:
� Fairness – For a data seller, fairness implies that after it

sends the data satisfying the requirements of a data buyer
and the latter obtains the data, it can receive the rewards.
A data buyer cannot resell the data seller’s data to other
honest data buyers. If a data buyer pays the funds, it can
obtain the data it needs;

� Privacy preservation – For a data seller, only the required
data are disclosed to the data buyer. Sensitive information
in an EMR is not obtained by the data buyer after data
trading. A data seller should be able to prove data avail-
ability without leaking the personal information of the data
seller and the hospital’s identity. The smart contract does
not reveal the identity of the data seller and transactions of
the same data seller cannot be linked;

� Fine-grained trading – Data should be able to be traded in a
fine-grained way. In data trading, a data seller can split data
into many chunks and only send the data blocks that are
required by a data buyer without affecting the verification
of data availability.

� Efficiency – The off-chain computation, communication,
and storage overhead for hospitals, data buyers, and data
sellers should be small. Moreover, the execution cost or the
gas fees consumed for the smart contract should be low.

D. System Components

In the pre-trading phase, there are four algorithms, which are
listed as follows:
� Setup(k): In this algorithm, HD takes as input a security

parameter k, and outputs public parameters for hospitals;

� Hospital Key Generation(pp): This algorithm is run by a
hospital. With inputs pp, the hospital generates a public-
private signing key pair (hpk, hsk) and registers itself with
HD;

� Issue(hsk): In this algorithm, a hospital interacts with
a patient to create an EMR for the patient. The patient
generates its public-private key pair (upk, usk), and the
hospital generates an EMR for the patient based on the
attributes and the patient’s attribute values in the EMR;

� Verify(hpk,EMR): This algorithm is run by a patient.
After receiving the EMR from the hospital, the patient
verifies the validity of the EMR using hpk.

In the data trading phase, a data buyer interacts with a data
seller, which is a patient in the pre-trading phase, and a smart
contract to complete data trading. There are five algorithms in
the data trading phase, which are listed below:
� Policy Definition({hpk}i∈[1,η]): This algorithm is run by

a data buyer. The data buyer first generates its public-
private key pair (bpk, bsk). Then, given the acceptable
hospitals whose public keys are {hpk}i∈[1,η], where η
denotes the number of accepted hospitals, the data buyer
signs {hpk}i∈[1,η] and obtains the signatures ({σi}i∈[1,η]).
It also defines the attribute requirements for the desired
data, which specify the attributes that need to be included
in an EMR, such as blood pressure and body mass index.
Moreover, it can require the attribute value of a specific
attribute. For example, the attribute value for diagnosis
should be diabetes. The output of this algorithm is the
defined policy (pol). The data buyer creates a data trading
smart contract SC and uploads pol to SC;

� Policy Verification(pol, bpk): This algorithm is run by a
data seller. Given pol and bpk, the data buyer verifies the
validity of pol;

� Present(EMR, pol, hpk): In this algorithm, a data seller
generates a zero-knowledge proof proving that it has an
EMR that satisfies pol. The output of the algorithm is a
token pt. The data seller sends pt and auxiliary informa-
tion, including the ciphertext of the trading data with a
symmetric key (k) being the secret encryption key, to the
data buyer;

� Present Verify(pol, pt): This algorithm is run by a data
seller. Given pol, pt, and the auxiliary information, the
data seller checks the data availability and data ownership
of the data seller. If the requirements are satisfied, the data
buyer uploads a confirmation message CM to SC;

� Ciphertext Generation(CM, bpk): Given CM and bpk,
the data seller generates a ciphertext (CB) of k that can be
decrypted by the data buyer’s private key bsk. It also creates
a zero-knowledge proof (πb) that proves the correctness of
CB. The data seller then uploads {CB, πb} to SC. After
{CB, πb} are verified by the validators of the blockchain,
SC transfers the reward to the data seller.

E. Security Definitions

Based on our design goal, a blockchain-based data trading
scheme should satisfy two security properties: fairness and
privacy preservation.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

2444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

To guarantee the fairness to a data seller, it should satisfy
that if a data seller sends the data to a data buyer and the buyer
obtains the data, the data seller can receive the rewards. Thus,
the atomicity of transactions should be satisfied. Moreover, a
data buyer should not be able to resell a data seller’s data,
which implies that the data ownership should be verified. For
the fairness to a data buyer, it should satisfy that if a data
buyer transfers the funds, it should obtain the data it required
instead of invalid data. Therefore, the data availability should be
validated. The atomicity of transactions can be guaranteed by
the automatic execution of smart contracts. For data ownership
and data availability verification, it should be guaranteed that a
data seller should be able to prove the ownership of an EMR, and
it cannot forge an EMR with an acceptable hospital’s signature,
which is described as unforgeability.

Unforgeability requires that a data seller cannot forge a valid
present token if it does not receive an EMR satisfying the require-
ments of a data buyer. The proposed scheme should be existential
unforgeability under chosen message attack (EU-CMA). The
secure game for unforgeability, where a challenger C and an
adversary A are involved, is defined as follows.

Definition 2.1 (GAME Unforgeability)
Setup. Given a security parameter k and the number of hos-

pitals nH in the system, where nH can be an arbitrary integer,
C runs Setup algorithm to obtain the public parameters pp. C
then runs Hospital Key Generation algorithm to generate the
public-private key pairs (hpki, hski) for i ∈ [1, nH]. C sets the
set Qissue and the set Qpresent to be ∅. After that, C sends pp
and {hpki}i∈[1,nH] to A.

Issue Query. A can submit issue queries to C. A j-th issue
query can be denoted as (ij , �attrij , �Dj), where ij represents a
hospital with public key hpkij , and { �attrij , �Dj} are attributes
and attribute values in an EMR. After receiving an issue query, C
acts as an hospital who has hskij and generates an EMR for A.

Then, C adds {ij , �attrij , �Dj} to Qissue and sends the resulting
EMR to A.

Present Query. A can also make present queries to C,
which can be denoted as (j, pol, EMR). With the inputs
(EMR,hpkij , pol), C runs Present algorithm, and sends the
resultingpt and auxiliary information toA. Then,C adds{j, pol}
to Qpresent.

Challenge Policy Definition.A generates an acceptable hospi-
tal setS∗ and sendsS∗ to C. IfS∗ are included in {hpki}i∈[1,nH],
C runsPolicy Definition algorithm to create pol∗ and then returns
pol∗ to A.

Output. A outputs a pt∗ and wins if
� The algorithm Present Verify (pt∗, pol∗) returns 1.
� (pol∗) /∈ Qpresent;
� �(ij , �attrij) ∈ Qissue such that pol∗ is satisfied.
We say that a blockchain-based data trading scheme is

existentially unforgeable under chosen message attack if no
polynomial-time adversary can win GAME Unforgeability with
a non-negligible probability.

For privacy preservation, it should be guaranteed that only
the required data can be obtained by a data buyer, i.e., personal
information is not leaked, which we describe as anonymity of

personal data. Morever, since the data on smart contracts are
public, the identity of a data seller should be protected, and
transactions of the same data seller should not be linked, which
we describe as unlinkability. The definitions of anonymity and
unlinkability are listed below.

Anonymity requires that a data buyer cannot obtain the iden-
tity information of a data seller. We describe this requirement
using Game Anonymity, where C and A are involved.

Definition 2.2 (GAME Anonymity)
Setup. Given a security parameter k and the number of hospi-

tals nH in the system. C runs Setup algorithm to generate public
parameters pp. Then, by invoking Hospital Key Generation al-
gorithm, C creates public-private key pairs (hpki, hski)i∈[1,nH]

for these hospitals. C sends pp and {hpki}i∈[1,nH] to A.
Issue Queries. A can submit Issue queries that are the same

as the issue queries in GAME Unforgeability. C responds to A
based on the queries.

Present Queries. A can submit present queries as in GAME
Unforgeability. C returns the results to A.

Challenge. A defines a data trading policy (pol), which in-
cludes the public keys of acceptable hospitals and data require-
ments. A then sends pol to C. C generates two public-private
key pairs (upki, uski)i∈{0,1}, and sends upk0 and upk1 to A. C
chooses b ∈ {0, 1}, and uses uskb creating a ptb that satisfies
pol. Then C returns ptb to A.

Guess. A outputs a guess of b for ptb.
A wins the game if b is correct. The advantage of A is

calculated by Pr[b′ = b]− 1
2 .

We say that a blockchain-based data trading scheme achieves
anonymity if no polynomial-time adversary can win GAME
Anonymity with non-negligible advantage.

Unlinkability requires that after a data seller uploads (CB, πb)
to the smart contract, no external adversary can link two data
sellers together based on (CB, πb). In the security game for
Unlinkability, we let A outputs a public key {bpk} for a data
buyer, a policy pol, and two sets of {EMRi, hpki}i∈{0,1} for
different data sellers and they both satisfy pol. Then, C generates
(CB, πb) from one of the two EMRs and sends (CB, πb) toA.A
needs to decide which EMR is used to derive (CB, πb). GAME
Unlinkability is defined as follows:

Definition 2.3 (GAME Unlinkability)
Setup. A runs Setup algorithm and outputs public parameters

pp.
Issue. A runs Issue algorithm and generates {EMRi,

hpki}i∈{0,1} for different patients whose private key is
{usk}i∈{0,1}. A also defines a public key {bpk} for a data buyer
and a policypol, where{hpki}i∈{0,1} are acceptable hospitals.A
sends the resulting EMRs and the corresponding hospital public
keys to C.

Ciphertext Generation. C runs Verify to check the validity
of {EMRi, hpki}i∈{0,1}. It also verifies that {EMRi}i∈{0,1}
satisfy pol. Then, it randomly chooses a bit ξ ∈ {0, 1} and
generates (CB, πb) based on EMRξ and bpk. C then sends
(CB, πb) to A.

Output.A decides which EMR is used to derive (CB, πb) and
outputs ξ∗. A wins if ξ∗ = ξ.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2445

We say that a blockchain-based data trading scheme satisfies
unlinkability if no polynomial-time adversary can win GAME
Unlinkability with a non-negligible probability.

IV. BUILDING BLOCKS

A. Structure-Preserving Signature

In a structure-preserving signature scheme [27], messages,
the verification key, and signatures are all group elements from
G1 and G2. We recall a structure-preserving signature scheme
proposed by Groth [28]. Moreover, as [29], we consider two
variants of the scheme, Groth1 and Groth2. Groth1 is described
as below, and Groth2 can be attained by swapping the roles of
G1 and G2.
� Groth1.Setup(λ): Given a security parameter (λ), the al-

gorithm outputs public parameters (pp), which consist of
(G1, G2, GT , p, e, g, ĝ), where p is the order of G1 and
G2. g and ĝ are generators of G1 and G2, respectively.
e : G1 ×G2 → GT is a computable bilinear map. The
algorithm also outputs a random number (Y ∈ G1);

� Groth1.KeyGen(pp): This algorithm randomly chooses an
element u ∈ Z∗

p as the private key sk and computes the
corresponding public key as pk = U = ĝu;

� Groth1.Sign(pp, sk,M): This algorithm signs a message
M ∈ G1 using sk. It randomly selects a number r ∈ Z∗

p,

and computes R̂ = ĝr S = (Y · gu) 1
r T = (Y u ·M)

1
r

The signature of M is σ = (R̂, S, T);
� Groth1.verify(pp, pk, σ,M): Given message M and its

signature σ, the algorithm checks the correctness of the
signature. It outputs 1 if e(S, R̂) = e(Y, ĝ) · e(g, Û) and
e(T, R̂) = e(Y, Û) · e(M, ĝ);

� Groth1.Rand(pp, σ): This algorithm randomizes signa-
ture σ. It first picks r′ ∈ Z∗

p and computes R̂′ =
R̂r′ S ′ = S

1
r′ T ′ = T

1
r′ . The randomized signature is

σ′ = (R̂′, S ′, T ′).

B. Zero-Knowledge Proof (ZKP)

ZKP allows a prover to convince a verifier that it knows a
secret without leaking the secret itself [30]. For statements re-
lated to discrete logarithms and relations in prime-order groups,
Σ-protocols are widely utilized because of the simplicity and
versatility.
Σ-Protocols. Let R be a binary relation and (x, Y) ∈ R. A

prover which hasx and wants to prove to the verifier that it knows
x such that (x, Y) ∈ R can interact with the verifier utilizing the
following 3-move Σ-protocol, where P1, P2, and V are three
algorithms.

1) With the input (x, Y), the prover randomly chooses a
random number a and computes a number T by using
P1(x, Y, a). Then, the prover sends T to the verifier while
keeping a private;

2) The verifier randomly selects a challenge c from a chal-
lenge set C, and sends c to the prover;

3) The prover computes an element s usingP2(x, Y, a, c) and
returns s to the verifier. The verifier runsV (Y, T, c, s), and
if the output is true, the verifier accepts the proof.

TABLE II
AN EXAMPLE OF AN EMR

V. BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA

TRADING

In this section, we first describe the overview of the proposed
scheme, then present the detailed construction.

A. Overview

There are two phases in our proposed fair and fine-grained
data trading scheme: the pre-trading phase and the data trading
phase. In the pre-trading phase, a hospital generates an EMR
for a patient, which includes attributes of the record, the cor-
responding attribute values, and the signature of the hospital.
The attributes of EMR can be the name, age, gender, and other
attributes related to the diagnosed disease. A toy example is
shown in Table II. In the data trading phase, the hospital is
not involved. A data buyer creates a smart contract, which
defines the attribute requirements, deposits the data rewards,
and transfers the rewards to the data seller if the seller proves
that the requirements are satisfied and the buyer can obtain the
desired data. Zero-knowledge proof techniques are utilized such
that only the required attributes and attribute values are leaked to
the data buyer, and other information is hidden, which achieves
privacy preservation. On the other hand, the data buyer can verify
whether the predefined requirements are met, and automatic
execution of the smart contract can guarantee that the eligible
data sellers can receive the rewards and the data buyer can obtain
the data, which achieves fairness of the data trading.

In the data trading phase, a data buyer first generates a
one-time encryption public-private key pair (bpk, bsk). Then,
the data buyer deploys a smart contract (SC) on the blockchain
and deposits the reward in the SC. Moreover, the information
on SC includes bpk and data requirements, which can specify
the attribute set required and the attribute values of certain at-
tributes. For example, a data buyer wants to gather data related to
diabetes. As a result, the attribute value for the attribute Disease
is diabetes, and attribute values for attributes Disease, Glucose,
Diastolic Blood Pressure, Serum Insulin, Age are required [31].
If a data seller has the data that satisfy the requirements of the
data buyer, the data seller and the data buyer act as follows: 1)
The data seller proves to the data buyer that it has the required

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

2446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

TABLE III
A SUMMARY OF SYMBOLS

data. To be specific, it sends the attributes in the required attribute
set (S), the signature on the attributes, the ciphertexts of attribute
values, and auxiliary information to the data buyer; 2) If the
data buyer is convinced that the data seller has the required
data, it sends a confirmation message to the smart contract; 3)
The data seller encrypts k with public key bpk, and generates
a zero-knowledge proof (πb) that demonstrates the ciphertext
(CB) of k under upk and the ciphertext of k under bpk are
encryptions of the same message. The data seller uploads CB
and πb to the smart contract; 4) The smart contract checks
whether CB is valid by verifying πb. If CB is valid, the smart
contract records CB and sends the reward to the data seller; 5)
The data buyer can decrypt CB by using its private key bsk and
obtain k. Then, it uses k to decrypt the ciphertexts of the attribute
values.

B. Detailed Scheme

In the pre-trading phase, HD generates public parameters for
the hospitals, and a hospital and a patient interact to generate an
EMR. There are four algorithms in the pre-trading phase. Some
parameters and their definitions are listed in Table III.

Setup. In this algorithm, HD generates the pubic param-
eters. On input a security parameter (k) and the maximum
number of attributes (n) that can be signed in an EMR, HD
generates group G1, G2 and GT of order p with {g, Y } being
two generators of G1 and {ĝ, Ŷ } being two generators of G2.
HD also randomly chooses n+ 4 generators, Z0, . . . , Zn+3 of
G1. Then, HD defines three hash functions: H : Zn

p → G1,

where H(�a) =
∏n+3

i=0 ZAi
i and �a = {A0, . . . , An+3} ∈ Zn+4

p ;
H : {0, 1}∗ → Z∗

p; and H : {0, 1}∗ → G2.
The public parameters pp is pp = {e,G1, G2, GT , p, g,

ĝ, Y, Ŷ , (Zi)
n+3
i=0 , H,H,H}.

Hospital Key Generation. This algorithm is run by a hospital.
The hospital generates a public-private signing key pair (hpk,
hsk) by randomly selecting u ∈ Zp, assigning it to hsk, and
computing hpk = Û = ĝu. Then, it registers the public key with
HD, which publishes the public keys of all hospitals.

Issue. In this algorithm, a hospital interacts with a patient
to generate an EMR for the patient. Let the number of at-
tributes in the EMR be l. For attributes {Attrii}i∈[1,l], the

Fig. 2. Sequence-based Merkle Hash Tree.

corresponding attribute values are denoted as {Di}i∈[1,l]. The
interaction between the patient and the hospital is as follows:
� The patient generates its public-private key pair (upk, usk)

by randomly selecting usk ∈ Z∗
p and calculating upk =

Z0
usk;

� The patient generates a zero-knowledge proof (πu) for usk
and sends {πu, upk} to the hospital;

� The hospital verifiesπu. Ifπu is valid, the hospital encrypts
the attribute values in the EMR. To be specific, 1) the
hospital chooses a symmetric key (k ∈ Z∗

p), and encrypts
k with upk using the ElGamal encryption algorithm. The
ciphertext of k is CK = {CK1, CK2}, where CK1 =
gv, CK2 = k · upkv, and v is randomly chosen from Z∗

p;
2) The hospital then encrypts {Di}i∈[1,l] using the AES
encryption algorithm with k being the encryption key. The
ciphertext ofDi is denoted asCDi; 3) It builds a Sequence-
based Merkle Hash Tree (SMHT) based on {CDi}i∈[1,n],
where CDi are the leaf nodes, and {CDi}i∈[l+1,n] are
randomly chosen from {0, 1}∗. SMHT is slightly different
from Merkle Hash Tree (MHT) [32], where each nodes is
represented as three elements: (level, serial number, hash
value), which denote the level of the node in the tree, the
serial number of the node in that level, and the hash value
of the node. In the tree, the hash value of an internal node is
generated from its two child nodes. An example is shown in
Fig. 2, where we denoteH(CDi) ashi and they are ordered
in level 0. ha = H(h1||h2), and the node a is denoted as
(1, 1, ha). The hash value of the root node of SMHT is
hR; 4) The hospital also generates an SMHT based on
{Di}i∈[1,n]. The resulting hash value of the root node ishR̂;

� The hospital signs {upk, {Attrii}i∈[1,n], hR, hR̂ CK}
as follows: The hospital first computes Ai = H(Attrii)
for i ∈ [1, l]. Let Ai be 0 for i ∈ [l + 1, n], An+1 =
hR, An+2 = hR̂, and An+3 = H(CK1||CK2). Then,
the hospital randomly chooses r ∈ Z∗

p, and computes

H(�a) = upk ·∏n+3
i=1 ZAi

i , R̂ = ĝr, S = (Y · gu)1/r, and
T = (Y u ·H(�a))1/r. The resulting signature is σ =
(R̂, S, T). The hospital sends EMR, which includes
{CK, {Attrii, CDi}i∈[1,n], hR, hR̂, σ}, to the patient.

Verify. In this algorithm, the patient verifies the validity of
the received EMR. The patient first verifies the correctness
of hR by re-generating a SMHT based on {CDi}i∈[1,n] and
checks whether the hash value of the root is hR. If hR is

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2447

valid, the patient checks the correctness of σ. To be specific,
the patient calculates Ai = H(Attrii) for i ∈ [1, l]. Let Ai =
0 for i ∈ [l + 1, n], An+1 = hR, An+2 = hR̂, and An+3 =

H(CK1||CK2). Then, the patient checks whether e(S, R̂) =
e(Y, ĝ) · e(G, Û) and e(T, R̂) = e(Y, Û) · e(H(�a), ĝ) hold. If
σ is valid, the patient can decrypt CK using usk and ob-
tain k. Then, it decrypts CDi by utilizing k. Based on Di,
the patient builds an SMHT and checks whether An+2 = hR̂.
If it is correct, the patient keeps the EMR locally, which is
{CK, {Attrii, CDi}i∈[1,n], h(R), h(R̂), σ}.

In the data trading phase, a data seller, which is a patient in the
pre-trading phase, a data buyer, and a smart contract interact to
complete data trading. A data buyer first creates a smart contract,
which defines the data requirements, its public key, and the
reward of data. For data requirements, the data buyer can specify
which attributes and attribute values need to be disclosed and the
hospitals it accepts. If a data seller has the data that satisfy the
requirements, it can trade data with the data buyer in the data
trading phase. This phase includes five algorithms, which are
listed as follows:

Policy Definition. In this algorithm, the data buyer generates
its public key and private key. Then, it defines the hospitals it
accepts and the attribute requirements for the desired data. The
data buyer first randomly selects w ∈ Z∗

p, and calculates W =
gw. The public-private key pair of the data buyer is (bpk, bsk) =
(W,w).

Then, let the set of the public keys of the acceptable hospitals
be S = {hpk1, . . . , hpkη}. For i ∈ [1, η], the buyer signs the
public keys hpki by choosing a random ξi and computing

Ri = gξi , Ŝi = (Ŷ · ĝw) 1
ξi , T̂i = (Ŷ w · hpki)

1
ξi . The signa-

tures {σi}i∈[1,η] for {hpki} are {Ri, Ŝi, T̂i}.
The data buyer then defines the set I to be the attributes that

need to be disclosed and J to be the attributes whose attribute
values need to be leaked to the data buyer before the payment.
Let JV be a set that specifies the attribute values corresponding
to attributes in J . For example, if the data buyer wants to
collect data related to diabetes and data should include values
for the attributes {Disease,Age, Diastolic Blood Pressure,
Serum Insulin}, it specifies I = {Disease,Age,Diastolic Blood
Pressure, Serum Insulin}, J = {Disease}, and JV =
{Diabetes}. By disclosure of the attributes in I and attribute
values (JV) of attributes in J , the data buyer learns that the data
seller has the data it needs. The data buyer then computes the
hashes of I and {J, JV } by using hashing function H and signs
them.

Considering that the size of S may be large, the data buyer
can store S and {σi}i∈[1,η] at an off-chain storage platform and

uploads the storage position, p, g, Y, ĝ, Ŷ , bpk, I, J, JV , and
their signatures to the smart contract. The defined policy pol
is pol = (S, I, J, JV). The data buyer also deposits the data
reward to the smart contract.

Policy Verification. In this algorithm, a data seller verifies
the validity of the policy uploaded by the data buyer and
the correctness of the signatures for pubic keys in S . Let
hpkj = hpk, which is the hospital that issues an EMR to
the data seller. Given hpkj and {Rj , Ŝj , T̂j}, the data seller

verifies whether e(Rj , Ŝj) = e(g, Ŷ) · e(W, ĝ) and e(Rj , T̂j) =

e(W, Ŷ) · e(g, hpkj). If the equations hold, the signatures for
public keys in S are valid. The data seller also verifies the
signatures of I and {J, JV }. If they are valid, the policy defined
by the data buyer is verified.

Present. In this algorithm, the data seller generates a zero-
knowledge proof that proves it has an EMR that satisfies the
defined policy. Denote Π as the set of indexes of the attributes
in I and Ω as the set of indexes of the attributes in J .

Given the policy pol = (S, I, J, JV), the data seller generates
a zero-knowledge proof as follows:
� To hide the identity of the hospital, it randomizes the

signature (σj = (Rj , Ŝj , T̂j)) on the hospital. That is, it
randomly selects r′′ ∈ Z∗

p, and computes R′
j = Rr′′

j , Ŝ ′
j =

Ŝ
1
r′′
j , T̂ ′

j = T̂
1
r′′
j ;

� It generates a new ciphertext for k by choosing a ran-
dom δ ∈ Z∗

p and computing CK ′
1 = CKδ

1 and CK ′
2 =

CK2 · upkδ. DenoteCK ′ = {CK ′
1, CK ′

2}. The data seller
also generates a commitment of usk by choosing ε and
calculating B = guskY ε;

� It chooses random values α, β, γ, φ ∈ Z∗
p and computes

the blinded signature (σattri) on H(�a) under hpk as
(R̂′, S ′, T ′) = (R̂, S

1
α , T

1
β). Then, it computes the blinded

public key of the hospital (hpk′j) as hpk
1
γ

j . After that, it cal-
culates the blinded signature (σhpk) on hpkj under the data

buyer’s public key bpk as (R′
j, Ŝj

′
, T̂ ′′

j) = (R′
j, Ŝj

′
, T̂

′ 1φ
j);

� The data seller generates a zero-knowledge proof πd with
the witness (α, β, γ, φ, usk, {Ai}i/∈Π, ε). The statement for
πd is listed as follows:

e(S ′, R̂′)α = e(Y, ĝ) · e(g, hpk′j)γ (1)

∧ e(T ′, R̂′)β = e(Y, hpk′j)
γ · e

(
Zusk
0

n+3∏
i=1

Zi
Ai , ĝ

)

(2)

∧ e(R′
j, Ŝ

′
j) = e(g, Ŷ) · e(bpk, ĝ) (3)

∧ e(R′
j, T̂j

′′
)φ = e(bpk, Ŷ) · e(G, hpk′j)

γ (4)

∧ CK ′
2/CK2 = (CK ′

1/CK1)
usk (5)

∧ B = guskY ε (6)

In the statement, (1) and (2) check the validity of the
signature on H(�a), and (3) and (4) verify the validity of the
signature on hpk. Equation (5) guarantees the consistency
of the ciphertexts of k. Equations (6) demonstrates that B
is a Peterson commitment [33] for usk.

The data seller then generates the auxiliary authentication
information (AAI) for {CDi}i∈Π. The AAI for leaf node i
contains the sibling nodes from i to the root node. For exam-
ple, the AAI for leaf node 1 includes the nodes {2, b, f}, i.e.,
{(0, 2, h2), (1, 2, hb), (2, 2, hf)}. To construct the AAI for leaf
nodes {i}i∈Π, the data seller first generates AAI for the nodes
whose indexed are in Π, and the resulting set is called AAIΠ.
Then, the data seller deletes the ancestor nodes of leaf nodes

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

2448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

{i}i∈Π from AAIΠ. Note that from {CDi}i∈Π and AAIΠ, we
can recover hR. Similarly, the data seller generates AAIΩ for
{Di}i∈Ω.

The data seller also generates a one-time public-
private address for blockchain transaction and registers
its public address (PA) on the smart contract. Denote
pt as pt = (σattri, hpk

′
j, σhpk, πd). The data seller sends

(pt, {CDi, (i, Attrii)}i∈Π, AAIΠ, AAIΩ, hR, hR̂, CK, CK ′,
{Dj}j∈J , PA) to the data buyer.

Present Verify. In this algorithm, the data buyer verifies
whether the data of the data seller satisfy the requirements.
Given pt, and (i, Attrii)}i∈Π, the data buyer sets An+1 = hR,
An+2 = hR̂, and An+3 = H(CK1||CK2). Then, it verifies πd.
If πd is valid, the data buyer ensures that σattri is valid, and it is
derived from a signature generated from an acceptable hospital.

Then, the data seller verifies whether {CDi} matches with
the {Attrii}, i.e., they have the same order in EMR. The data
seller recomputes the hash value of the root (hR′) of SMHT with
{CDi} and AAIΠ. If hR = hR′ , The positions of {CDi} are
ensured. The serial numbers of{Attrii} are verified by checking
the validity of πd. The data seller then verifies the validity of Di

by recomputing the hR̂′ based on Di and AAIΩ. If hR̂ = hR̂′ ,
{Di}i∈Ω are valid.

Then, given the ciphertext CK ′, the commitment B, the data
buyer uploads a confirmation message CM = {CK ′, B} to the
smart contract.

Ciphertext Generation. In this algorithm, the data seller en-
crypts k under the data buyer’s public key bpk and generates a
zero-knowledge proof that proves the ciphertext is created cor-
rectly. To be specific, the data seller randomly chooses t ∈ Z∗

p,
and computes CB1 = gt and CB2 = k · bpkt. Denote CB =
{CB1, CB2}. Notice that if (CB1, CB2) and (CK ′

1, CK ′
2)

are two encryptions of k, CB2/CK ′
2 = CK ′

1
−uskbpkt. Thus,

the data seller generates a zero-knowledge proof πb, which
proves that PK : {(usk, t, ε) : CB2/CK ′

2 = CK ′
1
−uskbpkt ∧

CB1 = gt ∧B = guskY ε}. The details of generating πb are as
follows:
� The data seller randomly chooses ρ1, ρ2, ρ3 ∈ Z∗

p, and
computes T1 = CK ′

1
−ρ1 · bpkρ2 , T2 = gρ2 , and T3 =

gρ1Y ρ3 ;
� The data seller computes c1 = H(T1||T2||T3) as a chal-

lenge;
� The data seller computes z1 = ρ1 − c1 · usk, z2 = ρ2 −
c1 · t, and z3 = ρ3 − c1 · ε.

The resulting πb includes {T1, T2, T3, cb, z1, z2, z3}. The data
seller then uploads πb and CB to the smart contract. Given
{CB,CK ′, B, g, Y, bpk}, the validators of the blockchain verify
whether the equation

cb=H(CK ′
1
−z1bpkz2 ·(CB2/CK ′

2)
c1 ||gz2CBc1

1 ||gz1Y z3Bc1)

holds. If πb is valid, the smart contract transfers the data reward
to the data seller.

Note that the storage scalability is out of the scope of
this article. For the storage scalability issue, one may adopt
multiple-node cooperative storage [34], data reduction [35], or
sharding [36] methods to reduce the storage pressure on storage

nodes. For the block structure, we follow the conventional block
structure, which contains a block header and a block body.
The former includes the whole information of a block, such
as hash values of the previous block and the current block,
tree root, timestamp, nonce, and information of the consensus
protocol. The block body includes all transaction records, which
are organized in a tree structure [37].

VI. SECURITY PROOF

In this section, we prove that the proposed scheme achieves
fairness and privacy preservation.

A. Fairness

As mentioned in Section III, a blockchain-based data trading
scheme achieves fairness if atomicity, data ownership, and data
availability are satisfied. The atomicity of transactions can be
guaranteed by the smart contract. We use unforgeability to
formally describe the data ownership and data availability. In the
following, we prove that our scheme achieves unforgeability.

Theorem 1. If Groth1 and Groth2 are existential unforge-
able, hash function H is collision-resistant, and the NIZK is
simulation-sound extractable and zero-knowledge, our proposed
scheme satisfies unforgeability.

In our scheme, an adversary can break the unforgeability by
either forging a signature on a hospital hpkj that is not included
in the accepted hospital set defined in pol; Or the adversary can
forge a signature on an EMR that is supposed to be signed by
an honest hospital in pol, and the signature can be verified by
Verify algorithm. In the following, we will prove that Theorem
1 holds.

Proof. We prove the unforgeability property by a series of
games, which are listed as follows.
� Game0 : Game0 is the same as GAME Unforgeability,

where a challenger C and an adversary A are involved;
� Game1 : In Game1, we modify the way to answer

present queries, where πd is generated by invoking a
zero-knowledge and extractable NIZK simulator. Because
the NIZK is zero-knowledge, Game1 and Game0 are
indistinguishable.

In Game1, A wins if Present Verify(pt∗, pol∗) = 1. Given
pt∗, we can utilize the NIZK extractor to extact the witness
(α, β, γ, φ, usk, {Ai}i/∈Π, ε). Note that usk is the private key
of the data seller, which denotes the data ownership. Then, with
the witness, we can obtain signature σ, signature σj , usk, hpk,
and {Attri}i∈[1,n]. Let F be the event that the extractor fails to
extract a witness. Let NF1 be the event that A wins the game
and the extractor extracts a valid witness, but the obtained hpk
is not included in pol∗. Let NF2 be the event that A wins the
game, the extractor extracts a witness, and the recovered hpk is
indeed in pol∗.

Note that Pr[A wins] = Pr[A wins ∧ F] + Pr[NF1] +
Pr[NF2] ≤ Pr[F] + Pr[NF1] + Pr[NF2]. Since that the Σ
NIZK protocol is extractable, Pr[F] is negligible. Next, we
show that Pr[NF1] and Pr[NF2] are also negligible.

Case1: In this case, A wins and the NIZK extractor extracts
a witness, but hpk is not included in pol∗. In the following

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2449

Gamea, we demonstrate that if case 1 happens, we can construct
another adversary Λ that can break the existential unforgeability
of Groth2.
� Given a security parameter k,Λ generates pp, which is sent

to A. Λ can access a signing oracle Osign of Groth2. When
receiving a message, Osign can return a signature of the
message;

� Λ acts as C in the GAME Unforgeability, except that Λ
obtains the signatures of the acceptable hospitals by asking
Osign. That is, Λ runs Hospital Key Generation algorithm
to generate the public-private key pairs (hpki, hski) for
i ∈ [1, nH]. Then, it answers the issue queries and present
queries honestly by using (hski) for i ∈ [1, nH];

� After receiving S∗ from A, Λ submits the singing queries
of {(hski)}i∈S∗ for i ∈ [1, nH] to Osign. When obtaining
the signatures {σi}i∈S∗ , Λ includes them in pol∗. Then, Λ
returns pol∗ toA, and continues to answer issue and present
queries from A;

� Λ aborts the game if A outputs a valid pt∗ and wins. Since
one of conditions that A wins is that pol∗ /∈ Qpresent;

� From pt∗, Λ extracts a witness (α, β, γ, φ, usk,
{Ai}i/∈Π, ε). If the obtained hpkj is not included in pol∗,
Λ outputs hpkj and its signature σj as a valid forgery of
Groth2 signature, and wins Gamea.

In the above game, Pr[Λ wins Gamea] = Pr[NF1]. Since
Groth2 is existentially unforgeable under the discrete logarithm
assumption [28] and the hash function H is collision-resistent,
Pr[NF1] is negligible.
Case2: In this case, A wins the game, the extractor extracts

a witness and the extracted hpk is included in pol∗.
In the following Gameb, we demonstrate that if case 2

happens, we can construct an adversary Γ that can break the
existential unforgeability of Groth1.
� Γ takes as input a security parameter k and generates public

parameters pp. Then, Γ sends pp to A. Γ can access a
Groth1 signing oracle O′

sign, which will returns a Groth1
signature when receiving a message to be signed;

� Γ randomly chooses τ from [1, nH], and sets hpkτ as
hpk. Then, Γ runs Hospital Key Generation algorithm
to generate the public-private key pairs (hpki, hski) for
i ∈ [1, nH]\τ ;

� Γ answers the issue queries and present queries from A
as follows: For issues queries, if ij = k, Γ generates a
signature of hpkτ by using O′

sign. For issue queries in
which ij 	= k, Γ runs Issue algorithm with hskij being an
input and obtains an EMR. Then, Γ sends the resulting
EMR to A. For Present queries, Γ creates a valid pt by
using the NIZK simulator;

� A generates an acceptable hospital set S∗ and submits it to
Γ. After receiving the S∗, Γ creates pol∗ by running Policy
Definition algorithm and returns pol∗ to A. Γ continues to
answer issue and present queries as above;

� If A outputs a pt∗ and the wining conditions in GAME
Unforgeability are satisfied, Γ aborts. Γ extracts a witness
from pt∗. If the obtaining hpk = hpkτ ,ΓwinsGameb and
outputs a Groth1 forgery, which is �attriτ and the extracted
signature on it.

Note that if NF2 happens and hpk = hpkτ , according to
the soundness of the NIZK extractor, the signature of �attriτ
is a valid Groth1 signature. The winning conditions of A
guarantee that the signature is created by A and is a valid
forgery. From Gameb, Pr[Γ wins] ≤ Pr[NF2 ∧ hpk = hpkτ]
= 1

nH
· Pr[NF2]. Since Groth2 is existentially unforgeable un-

der the discrete logarithm assumption, Pr[NF2] is negligible.

B. Privacy Preservation

As discussed in Section III, for privacy preservation,
anonymity and unlinkability should be satisfied. In the fol-
lowing, we prove that our scheme achieves anonymity and
unlinkability, respectively.

Theorem 2. If ElGamal encryption is indistinguishable under
the chosen plaintext attacks (IND-CPA), the Peterson commit-
ment scheme is hiding, and the NIZK is zero-knowledge, our
proposed scheme satisfies anonymity.

Proof. We prove the anonymity property by a series of games,
which are listed below.
� Game 0: This game is the same as GAME Anonymity

defined in Section III;
� Game 1: As Game 0, but we modify the Setup algorithm

by using a simulator S1 to generate the common refer-
ence string crs and a trapdoor τ for the zero-knowledge
proof scheme. Furthermore, we use a simulator S2 of
the zero-knowledge proof scheme to generate πd. We can
observe that Game 1 and Game 0 are indistinguishable if
the zero-knowledge proof scheme for the DDH tuple has
zero-knowledge property;

� Game 2: As Game 1, but we modify CK1, CK2, CK ′
1,

CK ′
2, which are results of ElGamal encryption, by choos-

ing four random numbers in Group G. Since the ElGamal
encryption is IND-CPA secure, Game 2 and Game 1 are
indistinguishable;

� Game 3: As Game 2, but we modify the commitment B
by randomly choosing a number in Group G. Since the
Peterson commitment satisfies hiding property, the proba-
bility of distinguishing Game 3 and Game 2 is a negligible
number.

In the Game 3, A can guess b correctly with probability 1
2 ,

i.e., the advantage of A in Game 3 is 0. To sum up, A has a
negligible advantage in GAME Anonymity.

Theorem 3. If ElGamal encryption is IND-CPA and the NIZK
is zero-knowledge, our proposed scheme satisfies unlinkability.

Proof. We prove the unlinkability property by a series of
games, which are listed as follows. In the games, we define the
successful event in game Gi as SEi.
� Game 0: This game is the same as GAME Unlinkability

defined in Section III;
� Game 1: Game 1 is almost identical to Game 0, except that

in the Ciphertext Generation algorithm, C replaces CB,
which is the result of ElGamal encryption, with two random
values in Group G. Since the ElGamal encryption is IND-
CPA secure, the probability of distinguishing Game 1 and
Game 0 is restricted by a negligible probability ε1, i.e.,
|Pr[SE1]− Pr[SE0]| ≤ ε1;

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

2450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

� Game 2: Game 2 is almost identical to Game 1. The differ-
ence between the two games is that for the Setup algorithm,
we use a simulator S1 to generate the common reference
string crs for the zero-knowledge proof scheme as well
as a trapdoor (τ). Moreover, in the Ciphertext Generation
algorithm, we use a simulatorS2 to generate proof πb using
crs and τ . If the zero-knowledge proof for the DDH tuple is
zero-knowledge, Game 2 and Game 1 are indistinguishable
with a negligible probability ε2.

Since in Game 2, the view of A is independent of b, the
advantage for A in Game 2 is 0. Taking all games together,
the advantage for the A in Game 0 is that Pr[SE0] ≤ ε1 + ε2,
which is an negligible number. Thus, our scheme achieves
unlinkability.

VII. PERFORMANCE EVALUATION

In this section, we first analyze the computation, communica-
tion, and storage complexity of the proposed scheme. We also
compare the computational complexity of our scheme with [12].
Then, we conduct simulations to measure the performance of the
proposed scheme.

A. Complexity Analysis

In our scheme, five entities are involved, which include the
health department (HD), a hospital, a patient (the data seller), a
data seller, and a smart contract. In the pre-trading phase, HD
generates the public parameters that can be used by other entities,
and the patient and the hospital interact to create an EMR for the
patient. HD and the hospital do not participate in the data trading
phase. In the following, we analyze the overheads of different
entities in terms of computation, communication, and storage.
For simplicity, we denote the exponentiation operation in G1,
G2, andGT asE1,E2,ET . Note that when the operation is on the
elliptic curve, E1 and E2 mean scalar multiplication operation.
MT denotes a multiplication in GT , and P represents a pairing
operation. We omit the computational cost of hash functions and
symmetric encryption. The sizes of an element in Zp, G1, G2,
and GT are represented as |Zp|, |G1|, |G2|, |GT |.

Computation Overhead. In the pre-trading phase, HD gen-
erates the public parameters in the setup algorithm. Let n be
the maximum number of attributes that can be signed in an
EMR. The hospital creates its public-private key pair and is
involved in the issuing process. The computational overhead for
the hospital is at most (l + 11)E1 + 2E2, where l is the number
of attributes that are included in the EMR. For the patient, it needs
to generate its public-private key pair and a zero-knowledge
proof (πu) for its private key. Also, after receiving the EMR, the
patient verifies the signature in EMR and decrypts the ciphertext
CK. The computational overhead for the patient is 3E1 + 2MT

+ 6P .
In the trading phase, the data buyer needs to define a policy

for the data trading and verify whether a data seller has data that
satisfy the policy. Let the number of acceptable hospitals for the
data buyer is η, the computational overhead for the data buyer is
(n+ η + 12)E1 + (4η + 8)E2 + 9ET + 8MT + 13P . For the
data seller, it first verifies the policy published by the data buyer,

TABLE IV
COMPUTATIONAL OVERHEAD IN DATA TRADING PHASE

which includes checking the signatures on the hospital and the
roots of MHTs. Moreover, the data seller needs to prove to the
data seller the availability of its data and generates a ciphertext
for symmetric key k and zero-knowledge proof πb. Let v be the
number of elements in set I . In this phase, the computational
overhead for the data seller is (n− v + 23)E1 + 5E2 + 6ET +
6MT + 13P . For the smart contract, the computation involved
on-chain is the verification of proof πb, which causes 8E1

computational overhead. Table IV shows the comparison of
computational overhead in the data trading phase for this work
and [12] in terms of the data seller, data buyer, and the smart
contract. In the table, SV denotes the computational cost of the
signature verification for each attribute and its attribute value.
From the table, we can see that our scheme has slightly larger
off-chain computational overheads for the data seller and data
buyer than [12]. However, in our scheme, a hospital only needs
to sign an EMR once, instead of generating signatures for each
attribute based on the requirements of a data buyer. Moreover,
our scheme can achieve fine-grained data selling with lower
storage overhead for data sellers, since they do not need to store
all the signatures. In addition, the proposed scheme has a lower
on-chain computational cost.

Communication Overhead. In the pre-trading phase, the
patient needs to send its public key and πu to the hospi-
tal, which results in 2|Zp|+ 2|G1| communication overhead.
For the hospital, besides the original EMR, which contains
{Attrii, CDi}i∈[1,n], it also sends the ciphertext of k, two roots
of MHTs, and signature σ to the patient. Thus, the communica-
tion overhead of the hospital is 4|G1|+ 1|G2|+ 2|Zp| as well
as the size of the original EMR (EMRO).

In the data trading phase, after the data buyer defines the
trading policy, it transmits the public keys of acceptable hospitals
and the signatures on the public keys, set I , and {J, JV } to an
off-chain storage platform. The public key of the data buyer
and signatures on set I and set J are uploaded on the smart
contract. In addition, after the data buyer validates the data
availability of a data seller, it needs to send a confirmation
message to the smart contract. Let |I| and |J | be the size
of data in set I and J . The communication overhead for the
data buyer in this phase is (η + 8)|G1|+ (3η + 4)|G2|+ 1|Zp|,
where η is the number of acceptable hospitals. For the data
seller, after the policy verification, the data seller sends pt
and the auxiliary data to the data buyer off-chain. When a
confirmation message is uploaded to the smart contract, the
data seller uploads ciphertext CB and zero-knowledge proof
πb to the smart contract. In sum, besides {CDi, (i, Attrii)}i∈Π
and {Dj}j∈J , the communication overhead for the data seller is
17|G1|+ 4|G2|+ 2|GT |+ (2logn+ 13)|Zp|.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2451

Fig. 3. Computational costs for a hospital, a data buyer, and a data seller.

TABLE V
SIMULATION PARAMETERS

Storage Overhead. In the pre-trading phase, HD needs to store
the public parameters that include n+ 6 elements in G1 and 2
elements in G2, which results in a storage cost of (n+ 6)|G1|
and 2|G2|. For the hospital, the storage overhead includes the
public-private key pair, the original EMR, signature σ, and the
key k. The storage overhead for the hospital is 3|Zp|+ 2|G1|+
3|G2|+ |EMRO|. The patient needs to store its public-private
key pair and the EMR, which causes 2|Zp|+ 6|G1|+ 1|G2|+
|EMRO|.

In the data trading phase, the data seller stores the public
key of the data buyer and the signature on the hospital. The
storage overhead for the data seller is 2|G1|+ 2|G2|. For the
data buyer, it saves its public-private key pair, the ciphertext of
key k and required data, which is about 4|G1|+ |CD|, where
|CD| is the size of the ciphertexts {CDi}i∈Π. For the smart
contract, it maintains zero-knowledge proof πb and elements
that are useful for verifying the proof. The storage overhead for
the smart contract is 5|Zp|+ 13|G1|+ 4|G2|.

B. Simulation Results

We conduct simulations for our proposed scheme and eval-
uate its performance on a notebook with Intel(R) Core(TM)
i5-1135G7 @ 2.40 GHz. The RAM is 16 GB. We employ the
Miracl library [38] to measure the time costs of pairing-based
cryptographic operations. We instantiate the asymmetric prime-
order groups with the Barreto-Naehrig (BN) elliptic curve [39].
The security parameter is set as 128. The exponentiations for
generators inG1 andG2 are precomputed in our simulations. We
omit the computational cost for hash functions. The simulation
parameters are listed in Table V.

In the simulations, we test the computational cost for the
hospital, the patient, and the data buyer by measuring their cryp-
tographic operations. In the pretrading phase, the patient needs to
generate its public-private key pair, generate a zero-knowledge
proof for its private key, and verify the validity received from
the hospital. The computational overhead for the patient is about
15.63 ms. Fig. 3(a) shows the overhead of the issue algorithm
on the hospital side. We can see that the computational overhead
for the hospital increases when the number of attributes included
in the EMR grows. In particular, when an EMR contains 20
attributes, the issuing cost for the hospital is 2.55 ms.

In the trading phase, the data buyer first defines data trading
policies in Policy Definition algorithm, where signatures for the
acceptable hospitals’ public keys are required. The data buyer
also needs to verify the data availability of a data seller. The
computational overhead of the data buyer is shown in Fig. 3(b),
where the number of acceptable hospitals (η) changes from 10
to 40 and the number of attributes (n) in an EMR is 10, 20, and
30, respectively. We can see that the time cost for the data buyer
rises when η and n increase. From the figure, we can observe
that when there are 40 acceptable hospitals and 30 attributes in
an EMR, the computational cost for the data buyer is 82.37 ms.
For the data seller, the computational overhead is mainly from
the generation of zero-knowledge proof πd, which is used to
demonstrate that the data seller has the corresponding data that
satisfy the requirements of the data buyer. The proof generation
cost depends on the number of attributes (v) in set I , which is
disclosed for verifying the data availability, and the number of
attributes (n) in an EMR. Fig. 3(c) shows the computational cost
for the data seller in the data trading phase. When v increases,
the time cost decreases as there are fewer hidden values in the
proof statement. If v is fixed, the computational cost for the data
seller increases when n grows. From Fig. 3(c), we can see that
when v = 15 and n = 40, the time cost for the data seller is
44.67 ms.

We estimate the gas cost of storing data and performing
cryptographic operations in the contract. Every opcode in the
Ethereum Virtual Machine (EVM) specification has an asso-
ciated gas fee [40]. For example, storing one word of data (32
bytes) costs 5000 gas for a zero value and 20000 gas for a nonzero

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

2452 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

Fig. 4. Interaction between the trading participants and the smart contract.

TABLE VI
COMPUTATIONAL AND STORAGE OVERHEAD FOR THE SMART CONTRACT

value. For the precompiled contract that implements ate pairing
check on the elliptic curve alt-bn128, the gas cost for the scalar
multiplication on the elliptic curve is 6000, and point addition
on the curve is 150.

As shown in Fig. 4, in the trading phase, the data buyer first
uploads the defined policy on the smart contract, which includes
the data requirements. Then, the data seller registers itself on
the contract. If the off-chain verification of the data availability
passes, the data buyer uploads a confirmation message (CM =
(CK ′, B)). After that, the data buyer generates ciphertext CB
and zero-knowledge proof πb and sends (CB, πb) to the smart
contract, which will verify whether πb is valid. If πb is verified,
the data buyer can retrieve CB from the blockchain and obtain
the symmetric encryption key of the trading data. In Table VI,
we summarize the storage, computation, and gas cost for policy
definition, data buyer confirmation, and ciphertext verification.
For the bn128 curve, Zp is 32 bytes, G1 is 64 bytes, and G2 is
128 bytes. We regard the size of an attribute in set I and set J
as 8 bytes. From the table, we can see that after the data buyer
uploads the defined policy, the gas cost for the data buyer to send
confirmation message is about 120000, and it consumes about
328900 gas for validators to verify the zero-knowledge proof πb.

VIII. CONCLUSION

In this article, we have proposed a blockchain-based fair and
fine-grained data trading scheme. In our scheme, data buyers can
publish the data requirements, and a data seller can send only
the required data to a data buyer without leaking other informa-
tion. The security proof demonstrates that our scheme achieves
fairness and privacy preservation. Beyond fair healthcare data

trading, the privacy-preservation and fine-grained trading strat-
egy of our scheme can also be utilized to achieve flexible and
practical data trading in other areas where data privacy is critical.
For future work, considering that buyers may only require the
data analysis results instead of obtaining the raw data, we aim to
design a blockchain-based fair data trading scheme that allows
a data buyer to attain the correct computation results without
accessing the data of data sellers.

REFERENCES

[1] D. Zabelin, T. Yuyama, and T. Nakanishi, “The world is drowning in
data. Why don’t we trade it like on a stock exchange,” 2022. [On-
line]. Available: https://www.weforum.org/agenda/2022/01/data-trading-
stock-exchange/

[2] Dawex, 2015. [Online]. Available: https://www.dawex.com/en/
[3] F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, “A survey on

Big Data market: Pricing, trading and protection,” IEEE Access, vol. 6,
pp. 15132–15154, 2018.

[4] Xignite market data cloud platform on AWS, 2011. [Online].
Available: https://aws.amazon.com/financial-services/partner-solutions/
xignite-market-data-cloud-platform/

[5] X. Shen et al., “Data management for future wireless networks: Archi-
tecture, privacy preservation, and regulation,” IEEE Netw., vol. 35, no. 1,
pp. 8–15, Jan./Feb. 2021.

[6] L. Xue, D. Liu, J. Ni, X. Lin, and X. Shen, “Enabling regula-
tory compliance and enforcement in decentralized anonymous pay-
ment,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2022.3144991.

[7] Y. Liu et al., “A blockchain-based decentralized, fair and authenticated
information sharing scheme in zero trust Internet-of-Things,” IEEE Trans.
Comput., vol. 72, no. 2, pp. 501–512, Feb. 2023.

[8] D. Liu, C. Huang, J. Ni, X. Lin, and X. Shen, “Blockchain-cloud transpar-
ent data marketing: Consortium management and fairness,” IEEE Trans.
Comput., vol. 71, no. 12, pp. 3322–3335, Dec. 2022.

[9] S. Dziembowski, L. Eckey, and S. Faust, “FairSwap: How to fairly ex-
change digital goods,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 967–984.

[10] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-
knowledge contingent payments revisited: Attacks and payments for
services,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017,
pp. 229–243.

[11] Y. Li et al., “ZKCPlus: Optimized fair-exchange protocol supporting prac-
tical and flexible data exchange,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2021, pp. 3002–3021.

[12] Y. J. Galteland and S. Wu, “Blockchain-based privacy-preserving fair data
trading protocol,” Cryptol. ePrint Arch., 2021. [Online]. Available: https:
//eprint.iacr.org/2021/1321

[13] J. Bobolz, F. Eidens, S. Krenn, S. Ramacher, and K. Samelin, “Issuer-
hiding attribute-based credentials,” in Proc. Int. Conf. Cryptol. Netw.
Secur., 2021, pp. 158–178.

[14] O. Sanders, “Efficient redactable signature and application to anonymous
credentials,” in Proc. IACR Int. Conf. Public-Key Cryptogr., 2020, pp. 628–
656.

[15] G. Maxwell, “The first successful zero-knowledge contingent payment,”
2016. [Online]. Available: https://bitcoincore.org/en/2016/02/26/zero-
knowledge-contingent-payments-announcement/

[16] M. Petkus, “Why and how zk-SNARK works,” 2019, arXiv:1906.07221.
[17] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-

Joancomart í, “A fair protocol for data trading based on bitcoin transac-
tions,” Future Gener. Comput. Syst., vol. 107, pp. 832–840, 2020.

[18] Y. Zhao, Y. Yu, Y. Li, G. Han, and X. Du, “Machine learning based privacy-
preserving fair data trading in Big Data market,” Inf. Sci., vol. 478, pp. 449–
460, 2019.

[19] Y. Li, L. Li, Y. Zhao, N. Guizani, Y. Yu, and X. Du, “Toward decentralized
fair data trading based on blockchain,” IEEE Netw., vol. 35, no. 1, pp. 304–
310, Jan./Feb. 2021.

[20] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ECDSA),” Int. J. Inf. Secur., vol. 1, no. 1, pp. 36–63,
2001.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

https://www.weforum.org/agenda/2022/01/data-trading-stock-exchange/
https://www.weforum.org/agenda/2022/01/data-trading-stock-exchange/
https://www.dawex.com/en/
https://aws.amazon.com/financial-services/partner-solutions/xignite-market-data-cloud-platform/
https://aws.amazon.com/financial-services/partner-solutions/xignite-market-data-cloud-platform/
https://dx.doi.org/10.1109/TDSC.2022.3144991
https://eprint.iacr.org/2021/1321
https://eprint.iacr.org/2021/1321
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

XUE et al.: BLOCKCHAIN-BASED FAIR AND FINE-GRAINED DATA TRADING WITH PRIVACY PRESERVATION 2453

[21] S. F. Shahandashti and R. Safavi-Naini, “Threshold attribute-based signa-
tures and their application to anonymous credential systems,” in Proc. Int.
Conf. Cryptol. Afr., 2009, pp. 198–216.

[22] J. Blömer and J. Bobolz, “Delegatable attribute-based anonymous cre-
dentials from dynamically malleable signatures,” in Proc. Int. Conf. Appl.
Cryptogr. Netw. Secur., 2018, pp. 221–239.

[23] P. Li, J. Lai, and Y. Wu, “Publicly traceable attribute-based anonymous
authentication and its application to voting,” Secur. Commun. Netw.,
vol. 2021, 2021, pp. 1–17.

[24] A. Islam et al., “NEWSTRADCOIN: A blockchain based privacy preserv-
ing secure news trading network,” in Proc. Int. Conf. Blockchain Technol.,
2020, pp. 21–32.

[25] W. Zou et al., “Smart contract development: Challenges and opportunities,”
IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021.

[26] J. Liu and K. Ren, “Improving blockchains with client-assistance,” IEEE
Trans. Comput., vol. 71, no. 5, pp. 1230–1236, May 2022.

[27] R. Gay, D. Hofheinz, L. Kohl, and J. Pan, “More efficient (almost) tightly
secure structure-preserving signatures,” in Proc. Int. Conf. Theory Appl.
Cryptographic Techn., 2018, pp. 230–258.

[28] J. Groth, “Efficient fully structure-preserving signatures for large mes-
sages,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2015, pp. 239–
259.

[29] J. Camenisch, M. Drijvers, and M. Dubovitskaya, “Practical UC-secure
delegatable credentials with attributes and their application to blockchain,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 683–699.

[30] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey on zero-
knowledge proof in blockchain,” IEEE Netw., vol. 35, no. 4, pp. 198–205,
Jul./Aug. 2021.

[31] Diabetes data set, 2019. [Online]. Available: https://archive.ics.uci.edu/
ml/datasets/diabetes

[32] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen, “MuR-DPA:
Top-down levelled multi-replica Merkle hash tree based secure public
auditing for dynamic Big Data storage on cloud,” IEEE Trans. Comput.,
vol. 64, no. 9, pp. 2609–2622, Sep. 2015.

[33] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in Proc. Int. Cryptol. Conf., 1991, pp. 129–140.

[34] Y. Zhao, B. Niu, P. Li, and X. Fan, “A novel enhanced lightweight node
for blockchain,” in Proc. Int. Conf. Blockchain Trustworthy Syst., 2020,
pp. 137–149.

[35] E. Palm, O. Schelén, and U. Bodin, “Selective blockchain transaction
pruning and state derivability,” in Proc. Crypto Valley Conf. Blockchain
Technol., 2018, pp. 31–40.

[36] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
“OmniLedger: A secure, scale-out, decentralized ledger via sharding,”
in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 583–598.

[37] X. Fan, B. Niu, and Z. Liu, “Scalable blockchain storage systems: Research
progress and models,” Computing, vol. 104, no. 6, pp. 1497–1524, 2022.

[38] Miracl Library, 2006. [Online]. Available: https://github.com/miracl/
MIRACL

[39] G. C. Pereira, M. A. Simplício Jr, M. Naehrig, and P. S. Barreto, “A family
of implementation-friendly BN elliptic curves,” J. Syst. Softw., vol. 84,
no. 8, pp. 1319–1326, 2011.

[40] K. Iyer and C. Dannen, Building Games With Ethereum Smart Contracts.
New York, NY, USA: Apress, 2018.

Liang Xue (Member, IEEE) received the PhD degree
from the Department of Electrical and Computer En-
gineering, University of Waterloo, Canada, in 2022.
She is a postdoctoral research fellow with the School
of Computer Science, University of Guelph. Her re-
search interests include applied cryptography, cloud
computing, and security and privacy on blockchain.

Jianbing Ni (Senior Member, IEEE) received the
BE and MS degrees from the University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2011 and 2014, respectively, and the PhD
degree in electrical and computer engineering from
the University of Waterloo, Waterloo, Canada, in
2018. He is currently an assistant professor with the
Department of Electrical and Computer Engineering,
Queen’s University. His research interests include
applied cryptography and network security, with cur-
rent focus on cloud computing, smart grid, mobile

crowdsensing, and Internet of Things.

Dongxiao Liu (Member, IEEE) received the PhD
degree from the Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada,
in 2020. He is a postdoctoral research fellow with the
Department of Electrical and Computer Engineering,
University of Waterloo. His research interests include
security and privacy in intelligent transportation sys-
tems, blockchain, and mobile networks.

Xiaodong Lin (Fellow, IEEE) received the PhD de-
gree in information engineering from the Beijing
University of Posts and Telecommunications, China,
and the PhD degree (with Outstanding Achievement
in Graduate Studies Award) in electrical and com-
puter engineering from the University of Waterloo,
Canada. He is currently a professor with the School
of Computer Science, University of Guelph, Canada.
His research interests include computer and network
security, privacy protection, applied cryptography,
computer forensics, and software security.

Xuemin Shen (Fellow, IEEE) is a University profes-
sor with the Department of Electrical and Computer
Engineering, University of Waterloo. His research
focuses on network resource management, wireless
network security, AI for networks, and vehicular ad
hoc networks. He is a Canadian Academy of engi-
neering fellow, a Royal Society of Canada fellow, and
a Chinese Academy of engineering foreign fellow.
He received the R.A. Fessenden Award in 2019 from
IEEE, Canada, James Evans Avant Garde Award in
2018 from the IEEE Vehicular Technology Society,

and Joseph LoCicero Award in 2015 from the IEEE Communications Society.
He is the president of IEEE Communications Society, and was the editor-in-chief
of the IEEE Internet of Things Journal, and IEEE Network.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:20:47 UTC from IEEE Xplore. Restrictions apply.

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes
https://github.com/miracl/MIRACL
https://github.com/miracl/MIRACL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

