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Abstract—Generally, power utilities can utilize smart-meter
data to extract load patterns through load-profiling technolo-
gies, such as K-means clustering. To improve the efficiency of
load profiling, both K-means clustering and smart-meter data
can be outsourced to powerful clouds. However, clouds are
not completely trustworthy: private meter data may be used
for commercial interests; K-means clustering may also be per-
formed with fewer iterations to save computational costs, which
violates the integrity of outsourced clustering. In this article,
therefore, a secure K-means-clustering scheme is proposed, called
privacy-preserving and integrity-preserving clustering (PIPC),
which aims to protect the privacy and integrity of load profiling.
To this end, two techniques are designed: 1) encrypted distance
measurement, in which a public comparison matrix is constructed
by securely embedding a secret key matrix and 2) integrity
assurance, in which a specific Stackelberg game is designed to
create economic incentives. The former, as the core of K-means
clustering, can protect the privacy of meter data. The latter
ensures that clouds can obtain the maximum utility only when
clouds execute K-means clustering in an honest manner, thereby
preserving the integrity of outsourced computing. Experimental
results demonstrate that PIPC reaches high clustering accuracy
and computational efficiency for load profiling while retaining
smart-meter data privacy and outsourced-clustering integrity.
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I. INTRODUCTION

THE INDUSTRIAL cyber–physical system (ICPS) with
communication, computing, and industrial process con-

trol is regarded as the core technology of Industry 4.0. ICPS
supports extensive applications, such as smart manufacturing,
smart transportation, smart cities, etc. In particular, smart grids
(SGs) combine electrical network infrastructures with cyber
systems, exhibiting typical characteristics of an ICPS. The
penetration of smart meters has generated a large amount of
data that should be effectively processed to obtain actionable
insights for power utilities to take proactive actions after an
incident. Power utilities also leverage these data to extract load
patterns, which show typical consumer behavior by the load-
profiling technology. Specifically, load profiling can improve
SG reliability and increase operational efficiency and, thus,
there are a variety of SG applications, e.g., demand–response
tariffs [1], load forecasting [2], and event detection [3]. In load
profiling, K-means-clustering analysis is the most commonly
used method [4], but smart-meter Big Data also poses a major
challenge for efficient K-means-clustering tasks, especially if
only power utilities on-premises resources can be used.

Numerous enterprises tend to outsource large-scale com-
puting tasks to powerful clouds to save computational costs.
Clouds can provide enterprises with advanced Big Data analy-
sis services [5] and, thus, can be leveraged to perform K-means
clustering on smart-meter Big Data. Nevertheless, these data
may contain private information, e.g., enterprise electricity
consumption has a high correlation with production activ-
ities. Cloud providers may be interested in such sensitive
information for commercial interests, which causes significant
privacy issues when meter data are uploaded to clouds [6]–[9].
Encryption before outsourcing can protect the privacy of
meter data. Specifically, homomorphic encryption (HE) pro-
vides clouds with the capability of performing K-means
clustering on encrypted meter data. Some HE-based K-means
clustering schemes have been recently proposed [10], [11];
unfortunately, these schemes suffer security or computational
efficiency issues. The scheme in [10] is not secure due to
the insecurity of the underlying HE [12], and it is the public
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evaluation key that has been proven to leak private key
information [13]. The scheme in [11] has high computational
cost due to the usage of fully HE (FHE) [14]. Experiments
show that it takes more than 600 h to perform HE-based
K-means clustering on 400 data points of two dimensions.
Moreover, as the core operation of K-means clustering, the dis-
tance comparison is commonly achieved by order-preserving
encryption (OPE) [15], [16], whereas the other operations
(such as addition and multiplication) are still implemented
through HE. This leads to, in outsourced K-means clustering,
multiple conversions between HE and OPE (i.e., the client
converts HE-based/OPE-based ciphertexts to OPE-based/HE-
based ciphertexts and sends converted ciphertexts back to
untrusted clouds), which brings large communication over-
head. Consequently, a HE-based K-means clustering scheme
must be designed in which all K-means-clustering operations
can be completed by using HE; meanwhile, this scheme can
maintain its security and efficiency at the same time.

On the other hand, clouds do not always return the cor-
rect results in outsourced computing. For massive amounts
of encrypted data, K-means clustering must run many iter-
ations. Considering computational cost savings, clouds may
run only fewer iterations, which will lead to incorrect results
being returned. Therefore, cloud-based K-means clustering
should preserve the integrity of outsourced computing. The
integrity requires clouds to compute and return results in an
honest manner, which means clouds should faithfully follow
the designated K-means-clustering process and not reduce
iterations. Honest computing also ensures the correctness
of returned results [17]. Various integrity-assurance schemes
for outsourced computing have been proposed [17]–[21].
Unfortunately, most schemes are computationally expensive,
e.g., at least two replicas are required in [17], which means
that the total cost is at least doubled. To save computational
cost, power utilities naturally hope that K-means clustering is
outsourced to only one cloud, but such outsourced computing
schemes can still meet privacy and integrity requirements at
the same time.

In this article, a Privacy-Preserving and Integrity-Preserving
K-means Clustering (PIPC) scheme is proposed for load pro-
filing. Through cloud-based outsourced K-means clustering,
PIPC greatly improves the efficiency of load profiling on
smart-meter Big Data. Furthermore, PIPC protects the privacy
of smart-meter data by using vector HE (VHE), which supports
efficient encrypted distance measurement [22]. In addition, by
designing a specific Stackelberg game, an effective integrity-
assurance strategy is developed that can retain the integrity of
outsourced K-means clustering by incentivizing clouds to run
K-means clustering honestly. Specifically, the contributions of
this article are as follows.

1) PIPC is proposed to protect the privacy and integrity of
load profiling. In particular, a novel technique for effi-
cient encrypted distance measurement is designed that
can preserve the privacy of the critical comparison oper-
ation in K-means clustering. The analysis demonstrates
that PIPC guarantees the privacy of smart-meter data and
the convergence of K-means clustering. Performance
evaluation shows that compared with plaintext K-means

Fig. 1. System model under consideration.

clustering, PIPC maintains similar clustering accuracy
and computational efficiency.

2) An effective integrity-assurance strategy is developed
for honestly outsourced K-means clustering, which uses
Stackelberg games to limit cloud cheating through eco-
nomic incentives. Therefore, PIPC avoids heavy cryp-
tographic calculations and cross-checking of multiple
replicas. Moreover, PIPC supports K-means clustering
on smart-meter data encrypted with different keys, which
makes PIPC suitable for practical deployment.

The remainder of this article is organized as follows. In
Section II, we present the problem statement. In Section III,
we give the preliminaries. We then propose the PIPC scheme
in Section IV, followed by privacy and convergence analysis
in Section V and the performance evaluation in Section VI,
respectively. In Section VII, we review related works. Finally,
we conclude this article in Section VIII.

II. PROBLEM STATEMENT

A. System Model

Fig. 1 illustrates our system model involving three partic-
ipants: 1) Utility (U); 2) Cloud Server (CS); and 3) Smart
Meter (SM).

1) Utility: U sets up the system, then publicly releasing
the system parameter. It also takes responsibility for
SM’s registration, then privately distributing the secret
key to SM through a secure channel. Additionally, U
reencrypts meter readings by using the key-switching
operation [22], thereby guaranteeing the feasibility of
homomorphic computation. It further sends reencrypted
readings to CS, then obtaining returned clustering results
from CS.

2) Smart Meter: SM is installed in the consumer’s home
collecting power consumption data in real time. It
encrypts collected meter readings, then periodically
sending U encrypted readings.

3) Cloud Server: CS performs K-means clustering on reen-
crypted readings, then returning results to U.

We have security assumptions as follows. U is trusted since
it is actually acted as by the power company. SM is tamper-
proof and cannot be physically compromised. CS is not fully
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trusted: it may pry the privacy of smart meter data; it may
also violate the integrity of outsourced computing by running
fewer iterations.

Notably, a Stackelberg game [23] between U and CS is
created to motivate CS to run outsourced K-means clustering
honestly. In our system model, U and CS will take actions in
turn according to the opponent’s strategy. This process will
naturally form a two-party leader and follower game, just like
the Stackelberg game. By analyzing how to achieve equilib-
rium, we can ensure that CS maximizes its utility in the case
of no cheating.

The game requires a trusted third-party agent (TTA) to retain
funds, such as a deposit of CS. Due to its immutability and
traceability, the blockchain has the natural advantage of being
a TTA. In this article, we use an off-the-shelf commercial
blockchain component to play the role of TTA [24].

B. Design Objectives

PIPC needs to satisfy the following design objectives.
1) Privacy: Protect privacy for the entire clustering process.
2) Integrity: Guarantee integrity for outsourced clustering.
3) Convergence and Accuracy: Perform K-means clustering

on outsourced encrypted smart data for load profiling,
and maintain convergence and accuracy.

4) Efficiency: Manipulate massive encrypted meter data
with high efficiency.

III. PRELIMINARIES

A. VHE

The Distance Comparison is one of the core operations
of K-means clustering; unfortunately, it is a challenging
problem to achieve Distance Comparison in the ciphertext
domain through traditional HE. To solve this challenge, we
introduce a new HE method, i.e., VHE, which can sup-
port efficient encrypted distance comparison [25]. Although
Bogos et al. [26] have demonstrated the security issues of
the original VHE, an improved VHE (VHE), proposed by
Yang et al. [22], has fixed such security flaws, which is
proved to be semantically secure. The VHE includes four
probabilistic-polynomial-time algorithms as follows.

1) Setup(λ):
a) On the input of security parameter λ, choose ran-

domly two large distinct primes q1 and q2 and
calculate q = q1 · q2.

b) Choose randomly p, w, n, m ∈ Z with w(p−1) < q,
p� q and m < n.

c) Choose a discrete normal distribution χ on Z.
d) Publish publicly VHE parameter as Param =

(q, p, w, n, m, χ).
2) KG(Param):

a) Generate two matrices P1, P2 ∈ Z
n×n such that

P1P2 = I1, where I1 is an n× n identity matrix.
b) Generate two matrices St = [I2, T] ∈ Z

m×n

and Mt =
[

wI2 − TA
A

]
∈ Z

n×m, where I2 is

an m × m identity matrix, T ← χm×(n−m) and
A← χ(n−m)×m.

Algorithm 1 SKM
INPUT: β: Termination condition; K: Cluster number;

D = {xi|i = 1, 2, ..., N}: Plaintext dataset
OUTPUT: Clustering labels.
1: Set clusters Dj empty and choose initial cluster centroids vj, j = 1, 2, ..., K
2: repeat
3: for i = 1, · · · , N do
4: for j = 1, · · · , K do
5: Calculate dij ← ‖xi − vj‖
6: end for
7: if dij minimum then
8: Assign xi to Dj
9: end if

10: end for
11: Recalculate centroids:

vj ←
∑

xi∈Dj
xi

|Dj| , where j = 1, 2, ..., K

12: until β holds
13: return {(i, j)|xi ∈ Dj, i = 1, 2, ..., N; j = 1, 2, ..., K}

c) Calculate S = StP1 and M = P2Mt.
d) Keep the secret key S privately and publish the

public key M.
3) Enc(x, M): Output a ciphertext c ∈ Z

n
q by choosing a

small noise e← χn and calculating c = Mx+ e, where
x ∈ Z

m
p is a plaintext and M ∈ Z

n×m is the public key.
4) Dec(c, S): Output a plaintext x ∈ Z

m
p by calculating

x = �Sc/w�q, in which �·�q denotes the nearest inte-
ger modulo q, c ∈ Z

n
q is a ciphertext, and S ∈ Z

m×n is
the secret key. Furthermore, we have an invariant as

Sc = wx+ e. (1)

Then, we introduce key switching, which is a highly impor-
tant operation in VHE . The key switching converts an old
key/ciphertext pair (Sold, cold) to a new pair (Snew, cnew) with
the same plaintext x. Therefore, we have cnew = M1cold and
Snewcnew = Soldcold = wx + e, where M1 is a key-switching
matrix.

We build VHE security upon the learning with error (LWE)
problem. VHE achieves semantic security assuming LWE
intractability [22].

B. K-Means Clustering

Algorithm 1 demonstrates standard K-means clustering
(SKM). We divide Algorithm 1 into three stages: 1) Closest
Clustering Calculation (lines 1–10); 2) New Centroids
Generation (line 11); and 3) Iteration Termination (line 12).

C. Stackelberg Game

The Stackelberg game contains two players: 1) a leader
and 2) a follower, who choose strategies sequentially, that
is, the follower determines its strategy after observing the
leader’s strategy. Both are rational aiming to maximize their
own utilities [23]. Note that we consider the Stackelberg game
with imperfect information that is more realistic than perfect
information because it assumes that players may not know all
the actions adopted by other players. Thus, players have to
make decisions with uncertainty. Concretely, the Stackelberg
game is a quintuple of G = (P,A, p, I, u), where:
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Fig. 2. Example of the Stackelberg game.

1) P represents the players set;
2) A represents the actions set;
3) pi represents the player function of a player i ∈ P;
4) Ii represents the information set of a player i ∈ P;
5) ui represents the utility of a player i ∈ P .
G can be depicted as a game tree. Fig. 2 gives an example

of game tree. Each node in the game tree has a label vi. The
player set is P = {P1, P2}. The action set is A = {L, R, l, r}.
The function set p assigns actions to nonterminal nodes, where
the set {L, R} is assigned to v0, and the set {l, r} is assigned
to v1 and v2. P1 has {v0}, and P2 has {v1, v2}. The utility ui

is shown at the bottom. The information set is represented as
an elongated dotted circle containing certain nodes. P1 and
P2 have the information sets I1 = {v0} and I2 = {v1, v2},
respectively.

To analyze our game, we leverage a sequential equilibrium
to solve the optimization problem of players’ utilities [27].
The sequential equilibrium is composed of a strategy profile
and a belief system. Player i’s behavior strategy ai assigns
each information set a probability distribution over the actions.
Player i’s belief system βi assigns each information set a prob-
ability distribution over the nodes of tree. Specifically, the
belief system enables each player to develop the best strat-
egy at each node. The sequential equilibrium is more stringent
than the Nash equilibrium. It requires sequential rational strate-
gies to be optimal not only in the whole game but also in
each information set. Concretely, we give the definition of the
sequential equilibrium as follows.

Definition 1: In a game G, (ai, βi) is called a sequential
equilibrium if regarding ∀ai 
= a′i of Player i, we have

ui(ai, Ii, βi) ≥ ui
(
a′i, Ii, βi

)
.

We take the game in Fig. 2 as an example. The game
has a behavior strategy (a1, a2), where a1 = ([L(0), R(1)])
and a2 = ([l(0), r(1)]). Also, it has a belief system (β1, β2),
where β1 = ([v0(1)]) and β2 = ([v1(0), v2(1)]). We
have u1(a1, I1, β1) > u1(a′1, I1, β1) and u2(a2, I2, β2) >

u2(a′2, I2, β2). Consequently, there exists a unique sequential
equilibrium ((a1, a2), (β1, β2)) in the game.

IV. PROPOSED SCHEME

We first design a distance comparison technique in
encrypted domains. We then develop an integrity assurance
strategy using the game theory. On the basis, we propose our
PIPC scheme for secure load profiling.

A. Encrypted Distance Comparison

First, we design a novel encrypted distance comparison
technique, called EDC. We assume that there exist three
ciphertext vectors c′1, c′2, and c′3, respectively, corresponding
to plaintexts x1, x2, and x3 under the same key S. We solve
this challenge of measuring similarity on such ciphertexts, that
is, without decryption, we can learn which vector between x1
and x2 is closer to x3 according to the Euclidean distances.
To this end, we set a public comparison matrix as H← STS
and we have Theorem 1 as follows.

Theorem 1: There exist a comparison matrix H and two
ciphertexts c′1 and c′2, respectively, corresponding to plaintexts
x1 and x2. Let e′ denote a noise vector, and the following
equation holds:(

c′1 − c′2
)TH

(
c′1 − c′2

) = w2‖x1 − x2‖2 + e′.

Proof: First, according to (1), we have(
c′1 − c′2

)TH(c′1 − c′2)
= (

c′1 − c′2
)TSTS(c′1 − c′2)

= (
Sc′1 − Sc′2

)T
(Sc′1 − Sc′2)

= (wx1 + e1 − wx2 − e2)
T(wx1 + e1 − wx2 − e2)

= w2‖x1 − x2‖2 + w(x1 − x2)
T(e1 − e2)

+ w(e1 − e2)
T(x1 − x2)+ ‖e1 − e2‖2.

Let e′ = w(x1−x2)
T(e1−e2)+w(e1−e2)

T(x1−x2)+‖e1−
e2‖2. We then prove that |e′| is negligible, where | · | denotes
the maximum entry in a vector. Assuming that x ∈ Z

m with
|x| = X and e ∈ χm with |e| = E, we have⎧⎪⎪⎨

⎪⎪⎩

w2‖x1 − x2‖2 ≤ 4w2mX2

w(x1 − x2)
T(e1 − e2) ≤ 4wmXE

w(e1 − e2)
T(x1 − x2) ≤ 4wmXE

‖e1 − e2‖2 ≤ 4mE2.

Furthermore, we have

|e′| = 8wmXE + 4mE2.

Thus, we have

|e′|
w2‖x1 − x2‖2 =

8wmXE + 4mE2

4w2mX2
= 2E

wX
+ E2

w2X2
.

Since X, E � w, we have

2E

wX
+ E2

w2X2
→ 0.

Consequently, |e′| is negligible.
Obviously, the following proposition holds, which means

even without decryption, we can evaluate the similarity of
encrypted vectors.

Proposition 1: Given a comparison matrix H and three
ciphertext vectors c′1, c′2, and c′3, respectively, corresponding
to plaintexts x1, x2, and x3, the following condition holds: if
(c′1 − c′3)TH(c′1 − c′3) ≤ (c′2 − c3)

TH(c′2 − c′3), then

‖x1 − x3‖ ≤ ‖x2 − x3‖. (2)

Then, we simply analyze the intractability of extracting
secret matrix S from public comparison matrix H = STS.
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TABLE I
VARIABLES IN OUR GAME

Fig. 3. Our Stackelberg game.

Without loss of generality, we consider a simple case of S
containing only an entry, say s. Therefore, solving s2 = H
mod (q1 · q2) is required, in which q1 and q2 are two large
primes, and q1 
= q2. We can easily reduce the intractability
of extracting S to the security of Rabin encryption [28], which
has been proven to be secure.

It is worth noting that our EDC technique is not only feasi-
ble for K-means but also has the ability to extend some other
popular clustering methods, such as DBSCAN [29], density
peaks clustering [30], etc.

B. Integrity Assurance

We use the Stackelberg game to preserve the integrity
of outsourced K-means clustering, which utilizes economic
methods to encourage honest behaviors. Table I lists some
variables used in the game. First, we have the following two
assumptions.

1) 0 < c < w: For CS, it will not accept the task, if its
computation cost c is greater than reward w.

2) 0 < v < b− w: For U, it will not outsource the task, if
its verification cost v is greater than the profit, which is
the task value b minus the reward w.

Then, we propose our Stackelberg game model, in which
U is the leader and CS is the follower. Fig. 3 illustrates the
game in the tree structure.

As seen, the player set is P = {CS, U}; the action set
is A = {offer,¬offer} ∪ {reject, cheat(x),¬cheat(1 − x)} ∪
{verify(y),¬verify(1− y)}; the information set of CS is I1 =
{v1}; and the information set of U is I2 = {v0, v2, v3}. Note
that the possible result set is {z1, z2, z3, z4}, which includes the
terminal nodes in the tree. The utilities of players are shown

TABLE II
PAYOFF MATRIX OF OUR GAME

below each terminal node. Furthermore, we describe the game
process as follows.

1) U chooses offer or ¬offer to CS. For offer, U asks the
price w for the outsourced K-means clustering task. For
¬offer, the game terminates.

2) CS chooses reject or not. If reject, the game terminates.
Otherwise, CS pays a deposit d to get the task.

3) CS performs the task with or without cheating, that
is, in the probabilities of cheat(x) and ¬cheat(1 − x),
respectively. Then, U decides to verify returned results
or not, that is, in the probabilities of verify(y) and
¬verify(1 − y), respectively. As a consequence, there
are four cases.

Case 1: CS chooses cheat(x) and U chooses verify(y). In
this case, CS loses its deposit d; U obtains d but
needs to take its verification cost v. In addition, U
loses value b of the task itself.

Case 2: CS chooses cheat(x) and U chooses ¬verify(1−y).
In this case, CS obtains its reward w and withdraws
its deposit d. Despite saving the verification cost
v, U still loses the task value b and needs to pay
reward w to CS.

Case 3: CS chooses ¬cheat(1−x) and U chooses verify(y).
In this case, CS gains the reward w and withdraws
its deposit d, but needs to take its computation cost
c. U acquires the task value b, but needs to take
its verification cost v and pay reward w to CS.

Case 4: CS chooses ¬cheat(1 − x) and chooses
¬verify(1− y). In this case, CS gains reward
w and withdraws its deposit d, but needs to take
its computation cost c; U obtains the task value b,
but needs to pay reward w.

Accordingly, we get the payoffs (utilities) for the terminal
node of each player, as shown in Table II. Furthermore, we
define the payoff expectations of ECS and EU , respectively, as

ECS = −dxy+ wx(1− y)+ (w− c)(1− x)y

+ (w− c)(1− x)(1− y)

= (−d − w)xy+ cx+ w− c (3)

EU = (d − b− v)xy+ (−w− b)x(1− y)

+ (b− w− v)(1− x)y+ (b− w)(1− x)(1− y)

= (d + w)xy− 2bx− vy+ b− w. (4)
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Fig. 4. Payoff expectations. (a) ECS. (b) EU .

Fig. 5. Payoff expectations of fixing x or y. (a) ECS(y = 0.01).
(b) EU(x = 0.01).

In Fig. 3, bold edges indicate actions taken by players to
achieve a unique equilibrium. The gray z4 is the reachable
terminal node in the equilibrium. Therefore, if acquiring the
unique equilibrium, the game always ends with z4. We then
prove that by appropriately setting variables, ¬cheat of CS
and ¬verify of U can be achieved. To this end, ¬cheat of CS
and ¬verify of U always lead to their highest payoffs. This
means ECS drops with the increase of the cheating probabil-
ity x; EU drops with the increase of the verifying probability y.
Consequently, we have

∂ECS

∂x
= −dy− wy+ c < 0

and
∂EU

∂y
= (d + w)x− v < 0.

Furthermore, we have

y >
c

d + w
(5)

and

x <
v

d + w
. (6)

According to (5) and (6), we first set a reasonable deposit
d, and then calculate the cheating probability x to ensure that
x is also within a reasonable range.

Based on the above considerations, we appropriately set the
variables b = 100, c = 30, v = 40, w = 50, and d = 3450 to
find the unique sequential equilibrium in the game. According
to (5) and (6), we have the probabilities x < 0.01 and y > 0.01.
Then, the payoff expectations are illustrated in Fig. 4.

To better observe the changes with probabilities, for ECS,
we fix y = 0.01; for EU , we fix x = 0.01. As shown in
Fig. 5, for ∀0 ≤ x′ ≤ 1, we have ECS(x=0) ≥ ECS(x=x′), which
means cheating always leads to the lower payoff; for ∀0 ≤

y′ ≤ 1, we have EU(y=0) ≥ EU(y=y′), which means verifying
always leads to the lower payoff. Therefore, CS will choose
¬cheat and U will choose ¬verify in order to reach z4 and get
their respective best payoffs. That is, we have the sequential
equilibrium ((a1, a2), (β1, β2)) in our game, where⎧⎪⎪⎨

⎪⎪⎩

a1 = ([cheat(0),¬cheat(1)])
a2 =

([
verify(0),¬verify(1)

])
β1 = ([v1(1)])
β2 = ([v0(1)] ∪ [v2(0), v3(1)]).

It means that the utility u1 of CS satisfies u1(a1, I1, β1) >

u1(a′1, I1, β1) and the utility u2 of U satisfies u2(a2, I2, β2) >

u2(a′2, I2, β2).

C. PIPC

Based on the above techniques, we propose our PIPC
scheme that includes four stages as follows.

1) Initialization: U, in the stage, sets up the system and
takes the responsibility of smart-meter registration.

Step 1: By invoking VHE .Setup(λ), U gets Param =
(q, p, w, n, m, χ), the parameter of VHE. U also
sets t, the reading interval of SM. Finally, U
publicly releases (Param, t).

Step 2: Each SMi, i = 1, 2, . . . , N sends U its request
for registration. U then checks request validity; if
valid, U invokes (Mi, Si) ← VHE .KG(Param),
storing locally the secret key Si and transmitting the
encryption key Mi to SMi through a secure channel.

Step 3: U initializes a Stackelberg game between U and
CS, and publishes monetary variables b, c, v, and
w. CS then delivers a deposit d to get the clustering
task.

2) Preparation: SMi encrypts its smart-meter reading and
then U reencrypts it in the stage.

Step 1: SMi, every t minutes, extracts its meter reading xi

and invokes ci ← VHE .Enc(xi, Mi), then sending
ci to U.

Step 2: U performs key-switching operations [22] from
(ci, Si) to (c′i, S) with the same xi. In this case,
all c′i are with the same secret key S. This ensures
homomorphic computations of K-means clustering.

Step 3: U retrieves xi by invoking VHE .Dec(ci, Si) for the
purpose of real-time electricity surveillance.

Step 4: U calculates H, the comparison matrix, as H ←
STS, finally uploading H and c′i onto CS.

3) Computation: In the stage, CS runs privacy-preserving
K-means clustering (PPKM).

Step 1: Algorithm 2 demonstrates PPKM. We further
divide it into three substages: a) Closest Clustering
Calculation (lines 1–10); b) New Centroids
Generation (line 11); and c) Iteration Termination
(line 12).

Step 2: CS finally returns U clustering labels {(i, j)|ci ∈
D′j, i = 1, 2, . . . , N; 1, 2, . . . , K}.

4) Settlement: As discussed in Section IV-B, noncheating
can be achieved by appropriately setting the payment, penalty,
and verify probability. In this case, the rational CS will not
cheat.
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Algorithm 2 PPKM
INPUT: β ′: Termination condition; K: Cluster number; H: Comparison

matrix; D′ = {c′i|i = 1, 2, ..., N}: Ciphertext dataset
OUTPUT: Clustering labels
1: Set clusters D′j empty and choose initial cluster centroids v′j, j = 1, 2, ..., K
2: repeat
3: for i = 1, · · · , N do
4: for j = 1, · · · , K do
5: Calculate the distance d′ij ← (c′i − v′j)T H(c′i − v′j)
6: end for
7: if d′ij minimum then
8: Assign c′i to D′j
9: end if

10: end for
11: Recalculate centroids:

v′j ←
∑

c′i∈D′j
c′i

|D′j|
, where j = 1, 2, ..., K

12: until β ′ holds
13: return {(i, j)|c′i ∈ D′j, i = 1, 2, ..., N; j = 1, 2, ..., K}

V. ANALYSIS

In this section, we first analyze the privacy of PPKM. Then,
we prove that PPKM and SKM have the same convergence
region.

A. Privacy

We have analyzed the privacy of VHE and EDC. We have
also shown the integrity of outsourced K-means clustering.
We will demonstrate the privacy of the entire PPKM process
which includes the following three stages.

Privacy for Closest Clustering Calculation: From lines 1
to 10 in Algorithm 2, CS calculates and compares encrypted
distances between K candidate centroids and ciphertext data
set {c′i|i = 1, . . . , N} using EDC. CS further assigns data items
to their respective closest clusters. In this way, what CS can
obtain are only indices of items without leaking any contents
of items, thereby protecting the privacy of this substage.

Privacy for New Centroids Generation: According to line
11 in Algorithm 2, CS recalculates clustering centroids over
encrypted data items. The homomorphism of VHE preserves
the privacy of this substage.

Privacy for Iteration Termination: According to line 12 in
Algorithm 2, CS checks if indices in each cluster change.
Consequently, this substage leaks no information on the
contents of data items except the status of iteration termination.

B. Convergence

Since PPKM can simulate SKM, then if SKM converges,
PPKM will also converge. Concretely, PPKM perfectly sim-
ulates SKM in the sense: we first assume that both SKM
and PPKM are executed on the same data set and start with
the same initial centroids. According to Algorithm 2, in each
iteration, if a plaintext x ∈ Dj, then its corresponding cipher-
text c ∈ D′j. Furthermore, the homomorphism of VHE ensures
that both SKM and PPKM have the same clustering assign-
ments. Hence, the convergence of SKM guarantees that of
PPKM.

TABLE III
COMPARISON ON THE BREASTCANCERWISCONSIN DATA SET

VI. EVALUATION

In this section, we conduct extensive experiments to demon-
strate the PIPC performance from accuracy, computational
time, and communication overhead. To perform simulation,
we use a smartphone with a Kirin@1600-MHz ARM proces-
sor and 2-GB RAM, running Android 4.2.2, which acts as
SM. We also use a graphic workstation with NVIDIA V100
GPU and 32-GB RAM, running CUDA 10.1, which plays
the roles of U and CS. Besides, we take practical security
parameter λ = 128. To guarantee HE operation correctness,
ω = 230 is set, which has been verified through experiments.
Experimental data come from the UCI repository1 and our
experimental source codes are available.2

A. Accuracy

To exhibit PIPC feasibility in load profiling, we use the
“BreastCancerWisconsin” [31] data set, which contains 699
instances with ten attributes. We first perform preprocessing
by normalizing attributes and then scaling them to inte-
gers at intervals of [0, 100]. Table III then compares the
accuracy of K-means clustering between SKM and PIPC.
PIPC achieves similar accuracy and iterations as SKM while
providing privacy protection.

Furthermore, we run PIPC on 11 data sets to demonstrate
PIPC wide availability. Table IV illustrates clustering time
and accuracy with greatly varying values of N, M, and K,
which represent the number of data items, attributes, and clus-
ters, respectively. For all data sets, PIPC only increases time
by up to 15%, and sacrifices accuracy of no more than 5%,
compared with SKM. Therefore, PIPC achieves better cluster-
ing performance while preserving data privacy over multiple
data sets.

Particularly, we use the “ElectricityLoadDiagrams” [32]
data set including 370 customers with 140 256 attributes.
Each attribute represents customer power consumption every
15 min. We further perform dimensionality reduction by sum-
marizing 140 256 attributes into four values. We set K = 5
clustering 370 customers into five groups. Table V illustrates
PIPC and SKM have the same clustering performance, such
as the sum square error (SSE) and the number of iterations
(#Iterations) when K = 5. We also conduct the experiment
to explain why we set K = 5 on the ElectricityLoadDiagrams
data set. As illustrated in Table V, when K = 5, PIPC achieves

1https://archive.ics.uci.edu/ml
2https://github.com/polaris-liang/PIPC/tree/master
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TABLE IV
COMPARISON ON MULTIPLE DATA SETS

TABLE V
COMPARISON OVER THE ELECTRICITYLOADDIAGRAMS DATA SET

both a lower SSE and a fewer number of iterations, which
indicates that PIPC has a good clustering performance when
K = 5.

B. Computational and Communication Overheads

We evaluate computational and communication costs of
PIPC. For i = 1, 2, . . . , N, computational cost involves the
time of encrypting xi and generating H. Communication cost
mainly contains the consumed bandwidth of transmitting ci

from SM to U, and uploading H and c′i from U to CS. We
ignore the small communication cost of sending clustering
labels from CS to U. Concretely, we analyze these costs as
follows.

We first consider computational time. VHE encrypts xi con-
taining N items with M attributes. Owing to batch encryption,
the time complexity is O(N) not O(NM). This significantly
improves efficiency. On the one hand, U only generates H once
and, thus, the generation time is a constant. As illustrated in
Fig. 6(a), the time cost increases in linearity with N, and the
average time is about 42 ms for each item.

For communication costs, ci (or c′i) and H, respectively,
include N(M + 1) and (M + 1)2 integers; therefore, commu-
nication costs in total are (M+ 2N + 1)(M+ 1). As shown in
Fig. 6(b), the communication cost linearly increases with N.
Besides, the communication cost has more sensitivity to M
than N. This is because it grows linearly with N but quadrati-
cally with M. Nonetheless, the overall communication cost is
no more than 1.3 MB, even for 700 items with 100 attributes.

We use a smartphones to simulate SM and, thus, evaluate
SM encryption time based on the smartphone with an ARM
processor. First, we rebuild VHE encryption program using
Java 1.7.0 and NDK R9, and then install it in the smartphone.
Furthermore, we change processor frequencies by acquiring
root privileges of the android system. Fig. 7 shows SM encryp-
tion time considering the processor frequency and vector
dimension. With frequency drop or dimension increase, the
encryption time grows. Nevertheless, it only takes 136.09 ms
to encrypt a 10-D vector with the lowest frequency of
208 MHz. Hence, VHE encryption is much efficiently suitable
for the resource-constraint SM.
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Fig. 6. Costs for privacy preservation. (a) Time cost. (b) Communication
cost.

Fig. 7. SM encrypting time.

TABLE VI
COMPARISON ON HE-BASED CLUSTERING

To further illustrate the efficiency of PIPC, we perform
a clustering time comparison using the LSUN data set, as
shown in Table VI. In the clustering schemes of Jäschke and
Armknecht [11] and Cheon et al. [33], and PIPC, which are
based on the HE primitives of HEAAN [14], TFHE [34], and
VHE [25], respectively, the clustering time is 619 h, 83 min,
and 9 s, respectively. As a consequence, PIPC achieves higher
efficiency than the other two clustering schemes in terms of
clustering time.

VII. RELATED WORKS

HE can compute over ciphertexts, which provides a promis-
ing approach to protect the privacy of machine learning
(ML), which mainly includes classification and clustering.
Researchers have proposed various HE-based classification
schemes [35]–[38], but to the best of our knowledge only two
completely HE-based clustering schemes exist. They involve
mean-shift clustering [33] and K-means clustering [11] that
are based on HEAAN [34] and TFHE [14], respectively.

On the other hand, there have been numerous studies on
the integrity assurance of outsourced computing. They mainly
include cryptography-based methods [20], [21], [39]–[41] or
replication-based methods [17], [19], [42]. For the former, the
client outsources the computationally intensive task to a single

cloud server, which then returns cryptographically verifiable
results to the client. While cloud computing saves a large
amount of computing cost, it is not enough to sustain com-
plex cryptographic computations. This implies that the client
has to pay extra expenses incurred by cryptographic algo-
rithms that are 103–109 times more than that of the computing
task itself [40], thereby bringing an extremely great financial
cost to the client. For the latter, the client first assigns the
same task to multiple clouds, and then they independently
calculate the task. Next, the client cross-checks the returned
results. Unfortunately, these technologies are still too expen-
sive. In [19], at least three replicas are needed, which implies
that the total cost to the client has increased by at least three
times. Dong et al. [17] utilized the game theory and smart con-
tracts for verification, using only two clouds. Nevertheless, two
cloud providers might collude to maximize profits. To resist
collusion, Dong et al. designed three contracts, i.e., Prisoner,
Colluder, and Traitor. This would bring heavy financial pres-
sure to the client because of the cost of renting duplicate clouds
and the use cost of multiple contracts.

Apart from that, the existing works can only unilaterally
achieve privacy or integrity. Consequently, it is essential to
design PIPC schemes for load profiling.

VIII. CONCLUSION

We have proposed PIPC, a secure and efficient K-means
clustering for practical load profiling. In addition, PIPC can
support K-means clustering on smart-meter data that are
encrypted with different keys, which makes PIPC suitable
for multiuser scenarios. In the future work, more machine-
learning schemes with privacy and integrity preservation will
be investigated, such as HE-based ridge linear regression and
deep-learning models.
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