
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023 2809

Burst-Aware Time-Triggered Flow Scheduling With
Enhanced Multi-CQF in Time-Sensitive Networks
Dong Yang , Member, IEEE, Zongrong Cheng , Student Member, IEEE, Weiting Zhang , Member, IEEE,

Hongke Zhang , Fellow, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract— Deterministic transmission guarantee in time-
sensitive networks (TSN) relies on queue models (such as CQF,
TAS, ATS) and resource scheduling algorithms. Thanks to its ease
of use, the CQF queue model has been widely adopted. However,
the existing resource scheduling algorithms of CQF model only
focus on periodic time-triggered (TT) flows without consideration
of bursting flows. Considering that the bursting flows often
carry high-priority data in real systems, in this paper we
investigate the mixed-flow (i.e., TT and bursting flows) scheduling
problem in CQF-based TSN aiming to maximize the number of
schedulable flows and system load balance while satisfying the
deterministic demands of delay, jitter, and reliability for both TT
and bursting flows. Unfortunately, it is challenging to schedule
the mixed flows with the original CQF model because of the
huge difference between TT and bursting flows. To resolve this
problem, we firstly design an enhanced Multi-CQF model to
satisfy the basic demands of bursting flows sent at any time
without affecting the deterministic transmission of TT flows.
Given the complexity of mixed-flow scheduling and the proposed
queue model, it is difficult for traditional algorithms to fully
utilize network resources. Thus, we further propose a time-
correlated DRL resource scheduling (TimeDRS) algorithm to
optimize the resource allocation. TimeDRS can be extended to
other time-related resource scheduling scenarios, such as TDMA-
based scheduling. Experimental results demonstrate that our
proposed approaches can greatly reduce frame loss and end-
to-end latency for bursting flows, and well balance runtime and
schedulability compared with state-of-the-art benchmarks.

Index Terms— Time-sensitive networks, resource scheduling,
enhanced Multi-CQF, deep reinforcement learning.

I. INTRODUCTION

RECENTLY, there is a significant development of
technologies for time-sensitive networks (TSN), which

is proposed by IEEE 802.1 TSN task group. Evolving from
traditional Ethernets, TSN targets at providing the industrial

Manuscript received 5 June 2022; revised 27 February 2023;
accepted 26 March 2023; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor G. Iosifidis. Date of publication 13 April 2023;
date of current version 19 December 2023. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2022YFB2901302, in part by the National Natural Science Foundation
of China under Grant 62201029, and in part by the China Post-Doctoral
Science Foundation under Grant 2022M710007 and Grant BX20220029.
(Corresponding author: Weiting Zhang.)

Dong Yang, Zongrong Cheng, Weiting Zhang, and Hongke Zhang
are with the School of Electronic and Information Engineering, Beijing
Jiaotong University, Beijing 100044, China (e-mail: dyang@bjtu.edu.cn;
zrcheng@bjtu.edu.cn; wtzhang@bjtu.edu.cn; hkzhang@bjtu.edu.cn).

Xuemin Shen is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, N2L 0B5, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/TNET.2023.3264583

applications, such as vehicular, avionic, and automotive control
systems, with deterministic bounded end-to-end latency, jitter,
and high reliability [1], [2], [3].

The deterministic transmission guarantee of TSN is based
on network resource scheduling in the unit of data flow [4].
According to whether the data flow information can be known
in advance, the data flow can be classified into time-triggered
flows and bursting flows. Both types of flows are capable of
carrying high-priority data [5]. For example, based on standard
of International Society of Automation [6], the time-triggered
(TT) flows carry real-time periodic monitoring or controlling
data, and the bursting flows carry unexpected controlling or
safety data that has a higher requirement for low-latency [7].
Hence, an available and practicable TSN system must support
mixed-flow (i.e., TT and bursting flows) scheduling.

TSN standards define several queue models for network
resource scheduling, such as cyclic queuing and forwarding
(CQF) model, time-aware shaper (TAS), and asynchronous
traffic shaper (ATS). Among these queue models, the CQF
model has been widely adopted thanks to its ease of use [8].
To fully utilize the network resources, various TT flow
scheduling algorithms have been proposed for CQF system,
such as satisfiability modulo theories (SMT) [9], Greedy-3q
[10], and injection time planning (Tabu-ITP) [11]. However,
owing to the complexity of mixed-flow scheduling, none of
the related works have considered jointly scheduling both
the TT and bursting flows by CQF model. Inspired by this,
we investigate the mixed-flow (i.e., TT and bursting flows)
scheduling problem in CQF-based TSN aiming to maximize
the number of schedulable flows and load balance of the
whole system while satisfying the deterministic transmission
demands of end-to-end latency, jitter, and high reliability for
both TT and bursting flows.

In essence, the original CQF model is designed to support
deterministic transmission of TT flows by preserving enough
network resources. However, the bursting flows cannot be well
supported by the original CQF model. This is because the
sending time of bursting flows is uncertain, and they may
arrive later than the expected receiving duration, which causes
frame loss. One way to improve the reliability of bursting flows
is to extend the expected receiving duration of original CQF
model [12], but the end-to-end latency increases significantly
for both bursting and TT flows. Therefore, a major conflict
arises between the reliability and low-latency. To resolve this
conflict and support a collaborative transmission for the mixed

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3402-3668
https://orcid.org/0000-0001-9032-9237
https://orcid.org/0000-0003-2626-4883
https://orcid.org/0000-0001-8906-813X
https://orcid.org/0000-0002-4140-287X


2810 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

flows, we design an enhanced Multi-CQF model. By properly
selecting the queuing offset on each hop, the high reliability
and low latency demands of bursting flows can be satisfied
without affecting deterministic transmission of TT flows.

Due to the complexity of mixed-flow scheduling and our
proposed enhanced Multi-CQF model, traditional scheduling
algorithms, such as SMT and heuristics, often take too
much time and effort to compute the scheduling results.
To improve the efficacy of mixed-flow scheduling, we design
a time-correlated deep reinforcement learning (DRL) resource
scheduling (TimeDRS) algorithm. Different from traditional
DRL-based resource scheduling algorithms that separately
schedule time interval and queuing resources [13], [14],
TimeDRS embeds with a two-dimensional time-resource
matrix to efficiently learn the relationship between different
time intervals and queues, then jointly allocates time interval
and queuing resources for each flow. TimeDRS can also
be extended to more generic time-related network resource
scheduling scenarios, such as joint time-queue scheduling for
TSN using queue models other than CQF, joint time-frequency
domain scheduling in wireless networks, or other types of time
division multiple access (TDMA) based resource scheduling
in wired and wireless networks.

Compared with the original CQF, our enhanced Multi-
CQF model can reduce the frame loss rate from 13.45% to
0.97% under heavy loads of bursting flows. As a comparison,
if we want to achieve the same frame loss rate (i.e., 0.97%)
by extending the receiving duration of original CQF model,
the end-to-end latency of bursting flows will increase by
2.18x than our enhanced Multi-CQF model. Furthermore,
by introducing TimeDRS algorithm to our enhanced Multi-
CQF model, the number of schedulable TT flows can be
increased by 2x, 60%, 77.9%, and 35% than SMT [9],
DeepCQF [13], Greedy-3q [10], and Tabu-ITP [11] algorithms,
respectively. A good trade-off between the runtime and
schedulability can also be achieved. The contributions of this
paper are as follows:

• Enhanced Multi-CQF model. We design an enhanced
Multi-CQF model to support the deterministic trans-
mission for mixed flows. By assigning the queuing
offset for each flow, this model can guarantee the high
reliability and low end-to-end latency of bursting flows
without affecting TT flows. The deterministic guarantee
of enhanced Multi-CQF model is further validated on our
TSN testbed in real environment. As far as we know, this
is the first queue model in CQF-based system taking the
bursting flows into account.

• Time-correlated DRL resource scheduling algorithm.
We propose a time-correlated DRL resource scheduling
algorithm, namely TimeDRS, to allocate available
network resources. Embedded with a time-resource
matrix module, the relationship between time intervals
and network resources can be efficiently learned, and
the overall scheduling performance can be improved.
TimeDRS can be used in generic time-related resource
scheduling scenarios, such as TDMA-based resource
scheduling.

• Open-source simulator. We build up a publicly
accessible CQF-based TSN simulator as well as several
benchmark algorithms to flexibly support the scheduling
environment with different number of cyclic queues.1

Furthermore, we evaluate the performance of the
proposed queue model on the simulator.

The remainder of this paper is organized as follows.
In Section II, the backgrounds of original CQF model are
presented. Section III establishes an enhanced Multi-CQF
model for TSN to support the transmission for mixed flows.
Section IV and V further design a time-correlated DRL
resource scheduling algorithm, TimeDRS, to improve the
scheduling QoS of entire system. Section VI evaluates the
performance of our proposed mechanisms. The related works,
followed by the conclusions are presented in Section VII and
Section VIII.

II. BACKGROUND AND CHALLENGE

This section introduces the principles and challenges of
mixed-flow scheduling in the original CQF model.

A. Background of CQF Model

Generally, the physical topology of a TSN network can be
abstracted as an undirected graph G(V, E). As described by
Eq. (1), V is a set of vertices including end stations H and
switches S in the network, and E refers to all the connected
links between any two vertices vi and vj . Each link ei ∈ E
supports the full-duplex data transmission,

E = {[vi, vj ]|∀vi, vj ∈ V, vi ̸= vj},V = H ∪ S,
G(V, E) = {vi, [vk, vj ]|∀vi ∈ V,∀[vk, vj ] ∈ E},

i, j, k = 1, 2, . . . ,N . (1)

The periodic TT flows fi ∈ F in network G(V, E) are
featured by ID, period, source and destination hosts, frame
size, predefined path, frame number, requirements of delay
and jitter, and sending offset, described by

fi = {id, period , src, dst, size, path,℧i, rd, rj , offset},
∀fi ∈ F , i = 1, 2, · · · , |F|. (2)

On the other hand, the mismanaged TT flows are inevitable
in real environment because of the unexpected flow sending
time [14]. In addition, the safety-critical flows need higher
priority to prevent harmful behaviors in the system triggered
by events without periodicity. These two types of flows belong
to the bursting flows f−i in this paper. The features of bursting
flows f−i are described by

f−i = {id, src, dst, size, path,℧i, rd, rj , offset},
∀f−i ∈ F , i = 1, 2, · · · , |F|. (3)

Deterministic flow transmission by CQF relies on queue
operations. The original CQF model maintains two queues,
denoted as Q1 and Q2 respectively, cyclically performing the
en-queue and de-queue operations by controlling the gates

1The CQF-based TSN simulator is publicly accessible for related
researchers at https://github.com/zcheng19/CQF-based_TSN

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2811

Fig. 1. Queuing discipline for the original 2-buffer CQF model. The cyclic
queuing and forwarding mechanism is implemented by repeatedly changing
the open and closed status for Rx-gate and Tx-gate attached to each queue.

attached to each queue. The time intervals within a hyper
period are the cycle time for queue operations [8]. Fig. 1
assumes that two time intervals T0, T1 are in a hyper period.
During even interval T0, the Q1 opens Tx-gate to send the
flows, and Q2 opens Rx-gate to receive the flows. In odd
interval T1, the execution operates conversely. Thus, the queue
operations for different time intervals can be described by{

Q1 = 0, Q2 = 1; if T0,
Q1 = 1, Q2 = 0; if T1,

(4)

where 0 denotes the de-queue operation, otherwise 1.
To provide the deterministic transmission latency, jitter, and
high reliability, all the sending flows from the upstream nodes
are required to be received by the downstream nodes within
one time interval [8], and continued to be forwarded during
the next time interval. Let delay [vs,vd]

i be the real end-to-end
latency, and jitter [vs,vd]

i be the jitter (i.e., latency variance) of
the system. Then the end-to-end latency and jitter for CQF
model can be bounded with{

(N − 1)× T ≤ delay [vs,vd]
i ≤ (N + 1)× T ,

0 ≤ jitter [vs,vd]
i ≤ 2× T ,

(5)

where N is the number of hops along the flow path
fi.path , and T is the size of time interval. To guarantee the
deterministic flow transmission performance, CQF establishes
a common time reference shared by all the TSN entities based
on a precise network-wide time synchronization mechanism,
which is supported by IEEE 802.1AS [15] stand-alone
standard with the profile of generic precision time protocol
(gPTP). The core idea of gPTP is to adjust the clock offset
between the Grand Master (GM) and each slave node to ensure
that the slave nodes can work well with GM at the same
pace.

B. Challenges for Mixed-Flow Scheduling in CQF Model

The mixed-flow scheduling in the original CQF model
mainly faces the following three challenges.

One major challenge is to ensure the high reliability for both
bursting and TT flows. On the one hand, the flow transmission
principle in the original CQF model cannot avoid frame loss
for bursting flows. As shown in Fig. 2, the original CQF model
requires that all the flows sent from host H1 must be received
by switch S1 within one time interval. However, impacted
by flow transmission delay and unexpected sending time, the
bursting flows may be sent during the dead time and cannot
be accommodated by only one time interval. This leads to
frame loss. Dead time is caused by the bursting flows arriving

Fig. 2. Comparison of different variants for CQF model. The flows are sent
from host H1 to the adjacent switch S1.

later than the closing time of the Rx-gate attached to the
receiving queue. On the other hand, it is difficult to guarantee
the reliability of mixed flows as the flows may exceed the
capacity of the time interval when they gather into the same
queue. Therefore, how to avoid the frame loss for mixed-flows
in CQF model is a critical problem to be investigated.

Another great challenge is to guarantee the end-to-end
latency of mixed flows with different priorities. The bursting
flows have the highest latency priority compared with other
types of flows. As a result, any interference on bursting flows
that increases end-to-end latency is expected to be avoided.
Besides, different latency demands of TT flows should be
satisfied by the queue model. However, the original CQF
model only provides two cyclic queues without distinguishing
TT and bursting flows that have different latency demands.
Although the existing Multi-CQF models introduce multiple
queues, and solve the packet loss problem of TT flows
transmitted through the long-link DetNet [10], they still do
not consider any bursting flows or different latency demands
of TT flows. Therefore, a new queuing and forwarding strategy
of the queue model should be designed.

Finally, given the complexity of mixed-flow scheduling
and queue model, traditional scheduling algorithms, such
as SMT and heuristics, are very difficult to fully utilize
the available network resources [16]. As a result, the QoS
of the whole system, including the number of schedulable
flows and load balance are degraded. Compared with the
traditional algorithms, the DRL algorithm is regarded as a
promising technology to intelligently adapt to the dynamic
environment, because it can iteratively learn the good policies
from experience by trial and error [17]. However, the
investigations of DRL-based scheduling methods for the
mixed-flow transmission in TSN is still at the early stage,
and need a further exploration. We believe that solving the
challenges mentioned above will bring a leap for TSN in the
aspects of practicability and intelligence.

III. ENHANCED MULTI-CQF MODEL: PROVIDING A
GUARANTEE OF HIGH RELIABILITY

AND LATENCY

In this section, we propose an enhanced Multi-CQF model,
which supports both bursting and TT flows. The proposed
mixed-flow scheduling theorems provide the analysis of
flow scheduling characteristics in the enhanced Multi-CQF
model.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2812 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

A. Design of Enhanced Multi-CQF Model

To enhance the original CQF, we establish K (K ≥ 3)
queues on each switch port cyclically performing the en-queue
and de-queue operations, namely enhanced Multi-CQF model.
During each time interval, only one queue has the privilege
to send the flows, denoted as Qi = 0, 0 ≤ i ≤ K − 1,
and the rest of queues only receive the flows, denoted as
Qj = 1, j ̸= i, j = 0, 1, . . . ,K − 1. This queuing principle
effectively avoids any conflicts of flows sent from different
queues. Specifically, in each time interval Tξ, the operations
on different queues are defined by{

Qξ%K = 0, ξ ≥ 0, ξ%K ≤ K − 1,
Qj = 1, j ̸= ξ%K, j = 0, 1, . . . ,K − 1, (6)

and the queue operations can be achieved by controlling
the Rx-gate and Tx-gate attached to each queue based on
time synchronization. For example, in time interval T0, the
Q0 opens Tx-gate to send the flows, and the rest of queues
open Rx-gate to receive the flows.

With the queuing principle of Eq. (6), the flow receiving
strategy is further defined to support the mixed-flow
transmission in the enhanced Multi-CQF model. We introduce
the queuing offset to describe the flow receiving strategy.

Definition 1 (Queuing Offset): The queuing offset tag ψj
on the queue Qj refers to the distance from Qj to the
queue Qξ%K that is used for sending flows during the current
time interval Tξ. The queuing offset of Qξ%K is denoted as
ψbase = 0, while for the rest of queues, the queuing offset is
sequentially accumulated by 1 in a circulating shift manner.

Based on above definition, the queuing offset ψj for each
queue Qj in time interval Tξ can be described byψj = ψbase + (j − ξ%K +K); if j − ξ%K < 0,

ψj = ψbase + (j − ξ%K); if j − ξ%K ≥ 0,
j = 0, 1, . . . ,K − 1, ξ ≥ 0.

(7)

To ensure the high reliability, any bursting flows sent during
the dead time Td from the upstream nodes can choose the
receiving queue of the downstream nodes tagged with ψr ≥
2 to prevent the frame loss as shown in Fig. 2, such that

ψir × T ≥ f−i .offset + delay [vx,vy ]
i + δ, (8)

where ψir is the queuing offset chosen by flow f−i , and T <
f−i .offset + Td. The Eq. (8) extends the expected receiving
duration of the downstream nodes from T to ψir × T , and
any bursting flow f−i transmitted in dead time Td can be
accommodated. As such, the flow receiving strategy can be
set up in real CQF-based TSN system as follows. Because
the bursting flows are generally triggered by the hosts, they
have to choose ψir ≥ 2 of the first hop to avoid the frame
loss. On next several hops, the stored bursting flows from
the upstream nodes can be immediately sent when the Tx-
gate opens, which means they are transmitted before dead
time Td with high reliability guarantee. For this case, the
bursting flows will select ψir = 1 of the downstream nodes to
reduce the transmission latency between any two hops. This
is an effective way to achieve the “quick-forwarding” without
waiting for several time intervals. For the TT flows, we aim
to avoid the interference to bursting flows, and flexibly adjust

Fig. 3. An example for the enhanced Multi-CQF model.

the forwarding speed at each hop based on different latency
demands of TT flows. Therefore, TT flows can select ψir ≥ 1 at
each hop based on the traffic volume and latency demands.

Fig. 3 gives an example to describe the enhanced Multi-
CQF model. In time interval T0, host H1 sends the bursting
and TT flows to H2 passing by 4 TSN switches. We set
K = 3 for the queue model. To ensure the high reliability,
the bursting flow selects ψir = 2 during T0, i.e., Q2 according
to Eq. (7), to receive the frames at first hop S1, such that Eq.
(8) is satisfied. After two time intervals, in T2, the bursting
flow is forwarded by S1, and then assigned ψir = 1 of next
3 hops to reduce the transmission latency between any two
adjacent hops. The TT flow selects ψir = 1 at each hop to meet
its deterministic end-to-end latency, jitter, and high reliability
demand without interfering bursting flows. If more time-delay
can be tolerated, TT flow can also selects ψir > 1 to leave
more spaces for other flows that need low-latency guarantee.

B. Mixed-Flow Scheduling Theorems

Based on our enhanced Multi-CQF model, several mixed-
flow scheduling theorems are further presented as follows.

Theorem 1: The end-to-end latency and jitter for any flow
∀fi ∈ F transmitted from vs to vd is bounded with

delay
[vs,vd]
i ≤

N+1∑
n=1

ψ
i(n)
r × T ,

delay
[vs,vd]
i >

( N∑
n=1

ψ
i(n)
r − 1

)
× T ,

jitter
[vs,vd]
i <

(
ψ
i(N+1)
r + 1

)
× T ,

(9)

in our system model, where N denotes the number of hops
traversed by flow fi along the path. Based on this notation, all
the nodes along the flow path are numbered as 0, 1, . . . ,N +
1 from the source to destination host. ψi(n)

r is the queuing
offset that the flow fi chooses on node n.

Proof: For ∀fi ∈ F transmitted through the link
[vx, vy] ⊆ [vs, vd], where vy is the next hop of vx, the

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2813

constraint

fi.offset + delay [vx,vy ]
i + δ ≤ ψi(n)

r × T ,

⇒ delay [vx,vy ]
i ≤ ψi(n)

r × T − fi.offset − δ, (10)

should be satisfied, where fi.offset is the clock offset between
the Tx-gate opening time on node vx and the actual sending
time of flow fi, and it has 0 ≤ fi.offset ≤ T . δ ≈ 0 holds
for the precise time synchronization. Therefore, the maximal
transmission latency delay [vx,vy ]

i .max = ψ
i(n)
r × T holds

when fi.offset = 0, deduced by Eq. (10). Then, delay [vs,vd]
i

has the upper limit, described as

delay [vs,vd]
i ≤

[vd−1,vd]∑
[vx,vy ]=[vs,vs+1]

delay [vx,vy ]
i .max

=
N+1∑
n=1

ψi(n)
r × T . (11)

Taking the forwarding process into consideration. Because
fi sent from the source node vs is stored into the queue tagged
with ψ

i(1)
r of the first hop vs+1, and it cannot be forwarded

until the Tx-gate opens, there should exist

fi.offset + delay [vs,vs+1]
i + δ = ψi(1)r × T ,

⇒ delay [vs,vs+1]
i = ψi(1)r × T − fi.offset − δ, (12)

which means the queuing delay will be additionally appended
to delay [vs,vs+1]

i if fi arrives before Qr = 0. When fi.offset =
T , delay [vs,vs+1]

i .min = (ψi(1)r − 1) × T holds. On the rest
of links [vx, vy], where [vx, vy] ̸= [vd−1, vd], the delay [vx,vy ]

i

of fi should be at least ψi(n)
r × T according to the queuing

principle defined by Eq. (6). delay [vd−1,vd]
i = ρ > 0 holds as

the propagation delay exists. Therefore, the lower bound of
end-to-end latency delay [vs,vd]

i can be described by

delay [vs,vd]
i ≥ delay [vs,vs+1]

i .min+
N∑
n=2

ψi(n)
r × T + ρ

=

( N∑
n=1

ψi(n)
r − 1

)
× T + ρ

>

( N∑
n=1

ψi(n)
r − 1

)
× T . (13)

Thus, the jitter can be computed by subtracting Eq.(11) and
Eq.(13), which is jitter[vs,vd]

i <
(
ψ
i(N+1)
r + 1

)
× T . □

Theorem 2: For the dead time Td existing in any time
interval Tξ of the original CQF model, a necessary and
sufficient condition to eliminate Td by our enhanced Multi-
CQF model is to choose the queuing offset ψir for receiving
flows that satisfies

ψir ≥
delay [vx,vy ]

i

T
+ 1, (14)

such that for ∀Tξ, it has Td = 0. Where, ∀fi ∈ F , and node
vy is the next hop of node vx.

Proof: We first prove that ∀Tξ, Td ̸= 0 holds in the
original CQF model. Based on the method of counter-proof,

it can be assumed that ∃Tk, it has Td = 0 in CQF. That means
for any flow fi transmitted in time interval Tk, there must be{

fi.offset + delay [vx,vy ]
i + δ ≤ T ,

delay [vx,vy ]
i > 0, δ ≈ 0.

(15)

Actually, for the last sending flow fl in Tk, who has
fl.offset = T , the transmission latency is

Θl = fl.offset + delay [vx,vy ]
l + δ

= T + delay [vx,vy ]
l + δ

> T . (16)

However, the Eq. (16) contradicts with Eq. (15), which
proves the existence of Td in any time interval Tξ. Then, when
the Eq. (14) holds, we have

T + delay [vx,vy ]
i + δ ≤ ψir × T , (17)

where Eq. (17) is the identical deformation of Eq. (14). For
any flow with fi.offset ≤ T , it has fi.offset + delay

[vx,vy ]
i +

δ ≤ T + delay [vx,vy ]
i + δ ≤ ψir × T . That means all the

flows transmitted in Tξ can be received without any frame
loss, that is Td = 0. In turn, with the elimination of Td, ∀fi
transmitted in Tξ, where fi.offset ≤ T , can be accommodated
by the receiving duration with the length of ψir × T , that is
fi.offset + delay

[vx,vy ]
i + δ ≤ ψir × T . As a result, in case

of fi.offset = T , T + delay [vx,vy ]
i + δ ≤ ψir × T should

be satisfied. Thus, the Eq. (14) holds. The sufficiency and
necessity of Eq. (14) are proved. □

After the dead time has been eliminated by choosing the
proper queuing offset in Thm. 2, the flow aggregation that
affects the network performance should be further avoided,
analyzed in Thm. 3 and Thm. 4.

Definition 2: Flow aggregation. The flow aggregation of
any two flows fi, fj ∈ F means there exists frames of fi and
fj gathered into the same sending queue, denoted as fi ≻ fj .

Theorem 3: For any two periodic TT flows fi, fj ∈ F
mapped with the same queuing offset, that is ψir = ψjr , fi ≻ fj
will happen on node vk when existing integers m ≥ 0, n ≥ 0,
such that the Eq. (18) and Eq. (19) hold,∣∣∣(fi.offset +m× fi.period + delay [vi

s,vk]
im

)− (fj .offset

+ n× fj .period + delay [vj
s,vk]

jn
)
∣∣∣ ≤ ψir × T , (18)∣∣∣(fi.offset +m× fi.period + delay [vi

s,vk]
im

+ ∆[vk,vp]
im

)

− (fj .offset + n× fj .period + delay [vj
s,vk]

jn
+ ∆[vk,vp]

jn
)
∣∣∣

≤ T , (19)

where delay[vi
s,vk]

im
means the delay between source node vis

and switch node vk for transmitting the m-th frame of flow fi
along the path fi.path . ∆[vk,vp]

im
refers to the queuing delay for

the m-th frame of fi at the port of node vk, whose adjacent
node is vp.

Proof: Upon fi ≻ fj at node vk, there exists frames
arriving at the same port of vk during the same receiving
time interval. Thus, Eq. (18) holds. Besides, after queuing,
the variation of sending offsets between fi and fj on the NIC

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2814 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

should be no more than T before the Tx-gate closes, and Eq.
(19) holds. In turn, if only Eq. (18) holds, meaning that fi and
fj are received by vk during the same interval t ∈ [0, ψir×T ],
it still cannot guarantee that the flow fi and fj aggregate into
the same queue. For example, we let the m-th frame of fi
send within Tξ from the upstream node vk−1, and it arrives to
vk during time interval Tξ+1. In this case, it will be mapped to
queue QI (ξ,ψi

r), where I (·) is the index mapping function,

I (ξ, ψir) =
{
ξ%K + ψir; if ψir ≤ K − ξ%K − 1,
ξ%K −K + ψir; if ψir > K − ξ%K − 1,

(20)

we then let the n-th frame of fj send during Tξ+1 from v′k−1,
and it arrives at vk during the same time interval Tξ+1, such
that it satisfies with Eq. (18) equivalent to∣∣∣(fmi .offsetvk−1

+ delay [vk−1,vk]
im

)− (fnj .offsetv ′k−1
+ T

+ delay
[v′k−1,vk]

jn
)
∣∣∣ ≤ ψir × T , (21)

and the frame fnj will be mapped into queue QI (ξ+1,ψj
r).

As ψir = ψjr , we have QI (ξ,ψi
r) ̸= QI (ξ+1,ψj

r), which means
they cannot be aggregated into the same queue. When Eq. (19)
holds, the difference of sending offsets between fmi and fnj
can be limited within T , and they are sent during the same
time interval from vk. Therefore, fi ≻ fj holds. □

The scheduling performance of TT flows is mainly affected
by the flow aggregation described by Thm. 3. In particular,
if an existing queue contains too much data, the frames are
more likely to be dropped because the time interval has finite
capacity to accommodate flows. In our queue model, the
queuing offset ψir for each flow is determined mainly by
their different levels of end-to-end latency demands according
to Thm. 1. If we dynamically change ψir to avoid flow
aggregation, it greatly increases the latency variance and even
dissatisfies the end-to-end latency demands. Thus, scheduling
time interval resources without affecting ψir would be a better
way to to avoid the flow aggregation, described by Thm. 4.

Theorem 4: For the m-th frame of fi and n-th frame of
fj that has fmi ≻ fnj , a sufficient condition for avoiding the
aggregation is to postpone the sending offset of flow fi by õ
from source node vis, such that the Eq. (22) and Eq. (23) hold,∣∣∣(fi.offset + õ+m× fi.period + delay [vi

s,vk]
im

)

− (fj .offset + n× fj .period + delay [vj
s,vk]

jn
)
∣∣∣ > ψir × T ,

(22)
fi.offset + õ ≤ fi.period , (23)

where m,n ≥ 0, m,n ∈ Z, ψir = ψjr .
Proof: As analyzed by Thm. 3, if fmi ≻ fnj appears,

Eq. (18) must hold. On the contrary, if Eq. (22) holds, which
means the difference of arriving time between fmi and fnj on
vk exceed ψir × T , the two frames cannot be stored into the
same queue Qj as the Rx-gate of Qj will close before fmi
comes. As they are stored into different queues, the sending
offset on the link [vk, vp] cannot satisfy with Eq.(19), either.
Thus, the aggregation of fmi and fnj is avoided. Moreover,
the sending offset of fi cannot be postponed for more than a

period of fi to avoid the conflict with other frame fei generated
in other period. Thus, Eq. (23) holds as another condition. □

As analyzed by Thm. 4, an effective way to avoid the
flow aggregation is to postpone the sending time of fi from
source host. Based on our enhanced Multi-CQF model, such
an operation can be transformed into allocating the time
intervals for each flow fi from source hosts, and the scheduling
performance highly depends on the quality of time interval
resource allocation policy. The complexity of allocating time
interval resources is analyzed by Thm. 5.

Theorem 5: The optimization problem P0 based on the
time interval allocation policy for each flow fi described by
Eq. (26) is NP-hard.

Proof: First, the time interval allocation optimization
problem P0 is not NP because when the solution is given, it is
uncertain whether the given solution is optimal in a polynomial
time. Second, if the number of time intervals is set to 1 as a
special case, the problem can then be converted to a choice of
which flow should be mapped to that time interval, such that

Maximize
n∑
i=1

ri × xi, (24)

and it is subject to
n∑
i=1

fi.size× xi ≤ Tξ.c,

xi ∈ {0, 1}, n ≤ |F|,
(25)

where xi indicates whether flow fi is mapped into the time
interval, ri is the reward for mapping fi into this time interval,
and Tξ.c refers to the capacity of Tξ. Eq. (24) and Eq. (25)
are equivalent to 0-1 knapsack problem that has been proved
as an NP-hard. Therefore, the 0-1 knapsack problem can
be reduced to our problem, meaning that the time interval
allocation optimization problem is also the NP-hard. □

IV. PROBLEM FORMULATION AND TRANSFORMATION

In this section, we formulate the optimization problem as
the management of time interval and queuing resources in the
enhanced Multi-CQF model, and then the formulated problem
is transformed into a Markov Decision Process (MDP).

A. Problem Formulation

We set up a multi-objective optimization problem P0 for
mixed-flow scheduling in the enhanced Multi-CQF model.
The objective goals of P0 include maximizing the schedulable
number of TT flows and system load balance. These goals can
be achieved by properly allocating the sending time intervals
for each TT flow to avoid the flow aggregation, according
to Thm. 3 and Thm. 4. Moreover, the end-to-end latency of
bursting flows is also expected to reach the minimum, where
the “quick-forwarding” queues should be assigned to bursting
flows referred to Thm. 1 and Thm. 2. Let Rξ(·) denote the
value of scheduling each flow, and Φξ(fi) indicates whether
fi is allocated into Tξ. As such, the objective goals in problem
P0 are formulated by the cumulative values.

P0 : Maximize
1
|F|

|F|∑
i=1

λ−1∑
ξ=0

Rξ(fi, λ,F)× Φξ(fi), (26)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2815

where Φξ(fi) ∈ {0, 1}. If flow fi is allocated into Tξ, then
Φξ(fi) = 1, otherwise, Φξ(fi) = 0. The value Rξ(fi, λ,F)
depends on the number of scheduled flows computed by A (·),
load balance of C (·), and the real end-to-end latency of
bursting flows delay[vs,vd]

i− . Hence,

Rξ(fi, λ,F) = α×A (fi, λ)− β × C (λ,F)

+ o× 1

delay
[vs,vd]
i−

, (27)

where 0 < α, β, o < 1 are the discounting factors. If all the
frames of flow fi can be successfully planned, A (fi, λ) will
be 1, otherwise, it should be 0. Hence, it has

A (fi, λ) =

 1; if
℧i∑
j=1

λ−1∑
t=0

Φt(f
j
i ) = ℧i,

0; if otherwise.
(28)

where ℧i denotes the frame number of fi appeared in a hyper
period. In particular, it is required that one frame can only be
mapped into one corresponding time interval, that is

λ−1∑
t=0

Φt(f
j
i ) ≤ 1,Φξ(f

j
i ) ≥ 0,Φξ(f

j
i ) ∈ Z, (29)

C (λ,F) measures the performance of load balance by
computing the standard deviation of time interval utilization,

C (λ,F) =

√√√√ 1
λ

λ−1∑
t=0

(χt − χ̄)2, (30)

where χt denotes the resource usage of Tt, that is

χt =

|F|∑
m=1

℧m∑
s=1

Φt(fsm)× fm.size

Tt.c
, (31)

and χ̄ = 1
λ

∑λ−1
t=0 χt. Here, delay[vs,vd]

i− is the real end-to-
end latency of the bursting flows. The shorter the delay is,
the better the value Rξ(·) can acquire. Besides, the problem
P0 is subject to several network resource constraints, including
hyper period, time interval, and bandwidth capacity. The hyper
period defined in TSN is the least common multiple (LCM) of
all flow periods [13] ensuring that the flows can be periodically
scheduled. Hence, the hyper period is constrained by

C1 : P = LCM (F .periods). (32)

As each time interval is the granularity for scheduling in
our enhanced Multi-CQF model, all the flow periods should
be divisible by the predefined time interval size, described
by condition C2. Thus, the maximal size of each time interval
should be the greatest common divisor (GCD) of flow periods,
constrained by

C2 : P%T = 0, fi.period%T = 0, (33)
C3 : T ≤ GCD(F .periods). (34)

To guarantee the high reliability of transmitting the bursting
flows, the receiving duration ψir ×T of the cyclic queue with
ψir should be large enough to accommodate all the flows,
i.e., TT and bursting flows, sent from the upstream nodes.

Considering the worst case that the bursting flows sent at
the end of time interval, ψir × T must be larger than the
summation of a whole time interval T , transmission delay,
other propagation delays D, and the time synchronization bias
δ. Hence, the time interval constraint is described by

C4 : ψir × T ≥ T +
max(F .sizes)

B
+D + δ, (35)

where the transmission delay depends on the bandwidth and
the maximal frame size in the network, which is max(F.sizes)

B .
It is required that the total size of sending flows during each
time interval cannot exceed its maximal capacity Tξ.c. Thus,
the time interval capacity constraint is

C5 : 0 ≤
|F|∑
m=1

℧m∑
s=1

fm.size× Φξ(fsm) ≤ Tξ.c, (36)

and the flow transmission constraints are described by C6-C10.
In constraint C6, it requires that the sending time of each TT
flow should be smaller than its flow period, which can protect
the frames in different periods against preempting the limited
resources of NIC at the same time.

C6 : 0 ≤ fi .offset ≤ fi.period . (37)

To guarantee deterministic transmission latency, the worst
end-to-end delay of each flow should be no later than the
latency demand. Therefore, the latency constraint is

C7 :
N+1∑
n=1

ψi(n)
r × T ≤ fi.rd. (38)

The jitter of each flow is the latency variance of all its
frames. We let f ji .Lvd

vs
be the real end-to-end latency of the j-

th frame in flow fi. It is required that the gap between end-to-
end latency of each frame f ji .Lvd

vs
and the average flow latency

does not exceed the required jitter. Thus, the jitter constraint
is described by

C8 :
∣∣∣f ji .Lvd

vs
− 1

℧i

℧i∑
s=1

fsi .Lvd
vs

∣∣∣ ≤ fi.rj . (39)

The high reliability of each flow is required by C9, where
the loss of frames cannot be larger than the target threshold.
The mapping function Φt(fsi ) is used to compute the number
of successfully scheduled frames. More variable constraints
of C1-C9 are described in C10, and other application related
constraints can be flexibly appended by users.

C9 :
∣∣∣ ℧i∑
s=1

λ−1∑
t=0

Φt(fsi )− ℧i
∣∣∣ ≤ 1× 10−6, (40)

C10 : ∀i ∈ {1, 2, . . . , |F|}, ∀j ∈ {1, 2, . . . ,℧i},

λ =
P
T
,∀ξ ∈ {0, 1, . . . , λ− 1}. (41)

B. Problem Transformation

To solve the problem P0 in the different scheduling
scenarios, we transform P0 into an MDP [18]. With a fully
centralized architecture proposed by IEEE 802.1Qcc [19], the
controller in the control plane can be considered as an agent.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2816 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

By collecting the flow information and network status at each
step, the agent learns the optimal time interval allocation
policies from the environment. The core elements of MDP,
including the state, action, and reward are designed as follows.

State: The time interval utilization of network and flow
features are covered in the observation space O. In particular,
at step t, the state ot = outilt ∪ oflow

t , where ot ∈ O. outilt is
comprised by a set of occupied time interval capacity on each
queue, which is described by

outilt = {H
Qp0

n0
T0

,H
Qp1

n1
T0

, . . . ,H
Q

pK−1
nJ−1

T0
,H

Q
pK
nJ

T0
,

H
Qp0

n0
T1

,H
Qp1

n1
T1

, . . . ,H
Q

pK−1
nJ−1

T1
,H

Q
pK
nJ

T1
,

...
...

...
...

...

H
Qp0

n0
TL

,H
Qp1

n1
TL

, . . . ,H
Q

pK−1
nJ−1

TL
,H

Q
pK
nJ

TL
},
(42)

where H
Q

pk
nj

Tℓ
symbolizes the resource usage of available space

within each time interval Tℓ when storing the flows into each
receiving queue on port pk at node nj . o

flow
t includes the

features of ft that arrives at step t, described by

oflow
t = {ft.id, ft.period , ft.src, ft.dst, ft.path,

ft.rd, ft.rj , ft.℧t, ft.size}. (43)

Action: The action space A consists of λ sending time
intervals waiting to be planned in a hyper period P . We let
aft

denote one of the sending time intervals in A for the flow
ft to insert, which means flow ft will send the data from time
interval aft

. Because each aft
under the observation ot has

its corresponding Q-value Q(ot, aft), at each step t, the agent
will choose the final action at among all the available aft

according to the mapping policy π : O → A [20], and the
mapping policy is described by

at =


arg max
aft∈A

Q(ot, aft); if rand ≥ ϵ,

aft ; otherwise,
ϵ ∈ [0, 1],

(44)

where at ∈ A denotes allocating Tt for ft to make the Q-value
Q(ot, aft

) optimal in the probability of ϵ. And Q(ot, aft
) is

computed by the action-value function Qπ(o, a) that reflects
the long-term revenue by interacting with the environment,
formatted as Bellman equation as follows [21], [22].

Qπ(o, a) = E
[
rt+1 + γQπ(ot+1, aft+1)|ot = o, aft

= a, π
]
,

(45)

where the immediate reward denoted as rt+1 can be obtained
by the agent after at has been taken.

Reward: The immediate shaping reward rt+1 can be
received when the agent takes action at, and it acts as a
feedback to conduct the agent performing better at the next
step t + 1. The design of rt+1 is relevant to the objective
function [23], where rt+1 is the summation of rat+1, denoting
the capability of flow scheduling, and rbt+1, referring to the
difference of load balance between any two consecutive time

Fig. 4. The state array of the time interval resource utilization.

steps. Hence, the equation of rt+1 can be described as
rt+1 = µa × rat+1 + µb × rbt+1,

rat+1 =
∣∣∣Γt+1 − |F|

∣∣∣− γa × ∣∣∣Γt − |F|∣∣∣,
rbt+1 =

∣∣∣outilt+1.max − Ξ
∣∣∣− γb × ∣∣∣outilt .max − Ξ

∣∣∣,
rat+1 ≤ 0, rbt+1 ≥ 0,

(46)

where µa, µb ∈ [−1, 0], γa, γb ∈ [0, 1] are the parameters
for fine-tuning. Γt is the number of scheduled flows at step
t. outilt .max denotes the maximum usage of time interval
resources, and Ξ is the ideal occupancy of the time interval.
Besides, when the task is done, the additional reward is given
based on the scheduling performance. With the core elements
of MDP designed above, the DRL algorithm can then be used
to solve the problem P0.

V. TIMEDRS: A TIME-CORRELATED DRL RESOURCE
SCHEDULING ALGORITHM

In this section, the TimeDRS is proposed as a DRL-
based algorithm to solve the mixed-flow scheduling problem
both from offline and online in the enhanced Multi-CQF
model. Several tricks are designed to further improve the
schedulability. Without loss of generality, TimeDRS can
be extended to many other time-related network resource
scheduling scenarios, such as joint time-queue scheduling
for TSN using queue models other than CQF, joint time-
frequency domain scheduling in wireless networks, or other
types of TDMA-based resource scheduling in wired and
wireless networks.

A. Designing Tricks

Given the discrete problem P0, the TimeDRS uses a value-
based framework. Several tricks are designed to help the agent
capture key features and train better policies. Specifically,
given that time interval and queuing resources are correlated
in the enhanced Multi-CQF model, one-dimensional fully-
connected neural network cannot well learn the relationship
between time intervals and queues because the time interval
and queuing resources are separately input into the neural
network. Thus, a two-dimensional time-resource matrix is set
up in Trick 1 to jointly consider the time intervals and queues.

Trick 1: Create two-dimensional time-resource matrix.
This matrix is composed by both queuing and time interval

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2817

Fig. 5. Designed extraction method of feature maps through residual blocks.

resources of the network. Each row represents a time interval,
and each column denotes a cyclic queue of node. This matrix is
set to the first channel of the state for the agent’s observation.
When a new flow comes, the resource utilization of each queue
within various time intervals will be changed, and the state
can be transited. By introducing other time-related network
resources, such as frequency and computing resources, into
each column of the matrix, TimeDRS can be extended
to more generic time-related network resource scheduling
scenarios, such as joint time-queue scheduling for TSN using
queue models other than CQF, joint time-frequency domain
scheduling in wireless networks, or other types of TDMA-
based resource scheduling in wired and wireless networks.
To further enhance the key features, we vectorize each element

H
Q

pk
nj

Tℓ
to a u × m array ν

(ℓ)
qk , which maps the usage of

each time interval into each queue qk. Zeros padding is made
between any two queues, such that a p × p state matrix
P(outilt ) is re-created, depicted by Fig. 4.

To capture the key features of the two-dimensional state,
the convolution neural network is used because it can be more
adapted to the two-dimensional input. Moreover, utilizing the
residual neural network (ResNet) as the enhanced structure
of convolutional neural network can well solve the problem
of gradient disappearance or explosion in the process of
back propagation. As a result, ResNet provides a more stable
training process, and quick convergence performance. Hence,
the Trick 2 is introduced.

Trick 2: Utilize the modern residual neural network. The
ResNet consists of a several residual blocks shown in Fig. 5.
Two methods are designed for residual blocks. The rise-
dimensional method introduces 1 × 1 kernels to increase the
number of channels for state array, and the basic method
operates same convolution from observed state. The extracted
information passes from rise-dimensional block to the basic
block. Based on ResNet, a general mapping strategy from xℓ
to the deeper layer xL can be expressed by

xL = h(xℓ) +
L−1∑
i=ℓ

F (xi;Wi), (47)

where F (·) is the end-to-end mapping function including
convolution, batch normalization, and activation. h(·) denotes
1× 1 convolution operation used to increase the dimension of

xℓ. Thus, The back propagation (BP) function can be deduced.

∂lo
∂xℓ

=
∂lo
∂xL

∂xL
∂xℓ

=
∂lo
∂xL

[
∂h(xℓ)
∂xℓ

+
∂

∂xℓ

L−1∑
i=ℓ

F (xi;Wi)

]

=
∂lo
∂xL

∂h(xℓ)
∂xℓ

+
∂lo
∂xL

∂

∂xℓ

L−1∑
i=ℓ

F (xi;Wi), (48)

where lo is the loss function, and ∂lo
∂xL

∂h(xℓ)
∂xℓ

enhances the BP
of gradient by skipping several intermediate layers.

Algorithm 1 TimeDRS for Scheduling TT Flows Based
on the Enhanced Multi-CQF Model
Input: Empty replay buffer D, Initial network parameters

ω and ω−, Target network update frequency L ,
Replay buffer size Nr, Batch size Db, Action
space A.

Output: Optimal policy π· : O → A.
1 for episode e ∈ {1, 2, . . . ,M} do
2 Reserve queuing and time interval resources for

bursting flows by Algorithm 2;
3 Deduce ψir for each TT flow by Thm. 1 based on

their different latency demands;
4 Initialize and wrap the state array o;
5 for step t ∈ {1, 2, . . . ,U} do
6 Select at from Q(ot, aft ;ω) according to

ϵ− greedy strategy and expert guidance;
7 Allocating flow ft into sending time interval at;
8 Store flow fi into QI (ξ,ψi

r) at each Tξ;
9 Transit ot to the next state ot+1;

10 Obtain an immediate reward rt+1;
11 Store tuple (ot, at, rt+1, ot+1, done) into D;
12 Replace the old tuples if |D| > Nr;
13 Sample a batch of Db tuples (o, a, r, o′, done)

from replay buffer D;
14 Define ζmax(o′;ω) = arg max

a′∈A
Q(o′, a′;ω);

15 Determine yj ={
r, if done,
r + γcQ′(o′, ζmax(o′;ω);ω−), otherwise;

16 Perform a gradient decent step with loss
lo = E[(yj −Q(o, a;ω))2];

17 Reset ω− = τω + (1− τ)ω− every L steps;
18 if done then
19 break;
20 end
21 end
22 end

In the training process, there exists many invalid actions
based on the constraints of problem P0. To assist the agent
in distinguishing the valid or invalid actions under different
observations, the action array marked with legitimacy for each
action should be merged into the observed state, which is
described by Trick 3.

Trick 3: Design collaborative working mechanism between
the state and action. To help the agent actively choose
the valid actions based on the constraints of problem P0,

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2818 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 6. Decision process based on the input state from environment.

we concatenate P(outilt ) in Fig. 4 with action array in the
dimension of channels to collaboratively update the state and
action at each step. The action array includes two channels,
one denotes the queuing status during each time interval Tξ
based on Eq. (6), and the other marks the valid sending time
intervals for flow ft constraint by Eq. (37). The valid actions
are encoded by 1, while those invalid ones are filled with 0.
As a result, P(outilt ) is wrapped by three channels.

To facilitate the training process, we introduce an expert to
predict the state transition before the selected action is taken.
It can efficiently guide the agent to choose a better action at
each step, described by Trick 4.

Trick 4: Expert guidance. The expert can predict the
operation condition of the system before the agent selects
an action. If the selected action will degrade the mixed-flow
scheduling performance, the expert can guide the agent to take
a better action. This mechanism can effectively assist the agent
learning high-quality policies.

B. Working Mechanism

The principle of our proposed TimeDRS algorithm can be
summarized by the following five parts.

Initialization: In line 1-4 of Alg. 1, at each episode,
we assign the queuing offset for each bursting flow based on
high reliability and low end-to-end latency requirements, and
reserve enough time interval capacity to send the bursting data.
In particular, the ψir on the first hop should be constrained by
ψir ≥ 2 so that any bursting flows generated from the hosts
can be successfully received by the queue, described by Eq.
(8). In the subsequent forwarding process, the queued bursting
flows from the upstream node will select ψir = 1 queue of the
downstream node for receiving. This policy not only ensures
the high reliability, but also reduces the end-to-end latency for
bursting flows. The TT flows choose the ψir of receiving queue
mainly based on their different end-to-end latency demands
according to Thm. 1. The global network resources observed
by Eq. (42) and Eq. (43) are also initialized.

State Transition: The state transition is illustrated in line 5-
10 of Alg. 1. At each step t, the agent captures the state
information ot, and uses the evaluation ResNet to abstract the
feature maps from the wrapper state P(outilt ). After going
through the fully-connected layer, the other part of state oflow

t

is concatenated, as shown in Fig. 6. Then based on Q-values
output by the neural network, the agent decides which time

Algorithm 2 Dealing With Bursting Flows
Input: Time interval set T , bursting flows set Fb.
Output: Rest space of each Ti ∈ T .

1 for each interval Ti ∈ T do
2 spacei ← alloc_space(Ti);
3 listrest.push((Ti.c− spacei));
4 end
5 for each flow f−i ∈ Fb do
6 ψi

−

r ← fast_queue(f−i );
7 QI (ξ,ψi−

r ) ← assign(f−i , ψ
i−

r , Tξ) based on the time

interval Tξ and allocated ψi
−

r ;
8 end
9 return listrest;

interval Tt should be allocated for the TT flow ft. After the
flow is transmitted through each hop along the path and stored
by the corresponding queues, ot transits to the next state ot+1,
and the reward rt+1 described by Eq. (46) can be acquired to
assist the agent learning better policies.

Exploring approach: To achieve the balance of exploration
and exploitation, TimeDRS applies the ϵ-greedy strategy in
choosing at according to Eq. (44), where ϵ decreases in a
regular pattern with episodes ep, which is described by

ϵ = I0 −
|I0 − Ie|
Dc

× ep, (49)

where I0, Ie ∈ (0, 1] represent the upper and lower bounds of
ϵ, respectively, and I0 > Ie. Dc is a large positive number and
it is constrained by ∀ep ≤ Dc.

Sampling management: As described in line 11-13 of Alg.
1, TimeDRS utilizes the off-policy updating method. Thus, the
replay buffer is introduced to sample the transition trajectories
{ot, at, rt+1, ot+1, done} obtained by the agent at each step.
Using the off-policy strategy can not only stabilize the training
process, but also improve the sampling efficiency, because the
batch-sampling based training method covers a larger state
space for observation.

Training process: To overcome the instability caused by
the self excitation effect of bootstrap in Bellman function,
we introduce the target network with the same structure of
the evaluation ResNet. Starting from line 14 in Alg. 1, the
agent samples a batch of trajectories and minimizes the loss
function lo by updating network parameters ω, illustrated by

lo =
1
Db

Db∑
j=1

(yj −Q(oj , aj ;ω))2, (50)

which is a Q-value based updating approach. And yj is the
target value calculated by

yj =

 rj ; if done,
rj + γcQ′(o′j , arg max

a′j∈A
Q(o′j , a

′
j ;ω);ω−); otherwise.

(51)

Then the parameters of target network ω− can be updated
every L steps by computing the moving average value

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2819

between evaluation and target parameters, that is ω− = τω +
(1− τ)ω−, where τ ∈ [0, 1] is the temperature to smooth the
process of update [24].

VI. IMPLEMENTATION AND ANALYSIS

In the different scheduling scenarios, the changes for
algorithms, time interval sizes, flow period sets, and bandwidth
of bursting flows can affect the network performance. In this
section, we evaluate the mixed-flow scheduling performance
on our CQF-based TSN simulator with Python. For the
simulated environment, we assume that the deterministic
transmission can be guaranteed with the enhanced Multi-CQF
model. To further validate the assumption of determinism
in real environment, the end-to-end latency and jitter are
measured by transmitting different flows on our TSN testbed.

A. Performance Evaluation in Simulated Environments

Settings for TSN network: The Orion Crew Exploration
Vehicle (CEV) network [25] is selected as the benchmark
topology in our experiments, which is combined with star,
tree, and ring topologies, connecting with 31 end stations and
13 switches, depicted in Fig. 7, where the dotted lines are
added links to leave some redundancy during the scheduling.
We assume that all the switches enable the function of
enhanced Multi-CQF. 1,000 TT flows are scheduled under
different network parameter settings, and the bursting flows
are randomly generated in each time interval. The detailed
network parameters are listed in Table I.

Settings for TimeDRS: TimeDRS uses two ResNet neural
networks with the same structure for evaluating and updating,
respectively. Based on our experience, we set 8 residual blocks
B1 ∼ B8 for each ResNet to deal with the wrapper state,
whose parameters are set by Table III. The wrapper state is
set to 3 × 44 × 44 transformed from the original state. The
extracted information is forwarded from B1 to B8, where B1,
B3, B5 and B7 use the rise-dimensional method to abstract
key features, while the rest of blocks are basic ones used to
enhance the abstracted information. For the training process,
we set 10,000 episodes, each includes 1,000 steps of iteration.
The other parameters of TimeDRS are described in Table I.

Settings for SOTA algorithms: The SOTA scheduling
algorithms, such as DeepCQF, SMT, Greedy-3q, and Tabu-
ITP, are compared to analyze the scheduling performance.2

DeepCQF uses two fully-connected hidden layers, each with
1,000 neurons, and the other learning parameters are also
described in Table I. The SMT returns the satisfiable results
of problem computed by Z3-solver tool for Python within an
acceptable time set by 30 minutes. And Greedy-3q always
chooses the sending time interval with the maximal capacity
along the path. The exchanging mode is used in Tabu-ITP,
where the size of tabu list is set to 500, and the iterations along
with repetitions are 10,000 and 200, respectively. During each
iteration, no more than 5 flows can be shifted between the
flow sets to generate the candidates.

2We reproduce SOTA algorithms, including DeepCQF, SMT, Greedy-3q,
and Tabu-ITP, described in their corresponding papers. The scheduling are
extended from the original CQF to the enhanced Multi-CQF model.

Fig. 7. Topology of the Orion CEV network.

Fig. 8. Experimental results. (a) Training or searching process of different
algorithms; and (b) Computational time cost comparison.

The experiments are conducted in the off-line and on-line
scheduling scenarios with our enhanced Multi-CQF model,
whose results and data analysis are described as follows.

Convergence comparison: The iterative searching process
is shown in Fig. 8(a), where the time interval T is 800us,
and the flow periods are {1600us, 3200us}. Compared with
Tabu-ITP, the convergence speed of TimeDRS is relatively
faster because it can better extract the key features from the
regular experience. Furthermore, TimeDRS hits the highest
reward after converging. On the contrary, the performance of
DeepCQF does not meet our expectations, which is because
the fully-connected layer in DeepCQF only observes one-
dimensional input (i.e., queuing resources) at each step, and it
cannot find the relationship between time intervals and queues.

Time cost comparison: The computational time cost
of various algorithms with different time interval sizes is
compared in Fig. 8(b). TimeDRS, DeepCQF, and Greedy-
3q can schedule the flows in a few seconds, while Tabu-ITP
and SMT need dozens of minutes to compute the scheduling
results. For better visualization, we take the logarithm function
to deal with the computational time spent by each algorithm.
Specifically, TimeDRS spends more time computing the
ResNet than Greedy-3q and DeepCQF. Fortunately, as the
time interval size gets larger, the computational time cost
of TimeDRS tends to be closer to Greedy-3q and DeepCQF
because Greedy-3q and DeepCQF require more time to make
inference for the increased flows.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2820 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

TABLE I
SIMULATION PARAMETERS

TABLE II
SIMULATION PARAMETER DESCRIPTIONS

TABLE III
THE PARAMETERS OF RESIDUAL BLOCKS

Schedulability comparison: Fig. 9(a) shows the TimeDRS
can schedule nearly 1,000 flows at most, and increase
the number of schedulable TT flows by 2x, 60%, 77.9%
and 35% compared with SMT, DeepCQF, Greedy-3q, and
Tabu-ITP, respectively, in the condition of T = 800us.
Although SMT is very popular in TSN scheduling task,
it takes too much time to schedule a large number of flows.
While for Greedy-3q, it always selects the current sending
time interval with maximal capacity, but it is very hard
to predict all the flow aggregation conditions that change
in the subsequent forwarding process. Fig. 9(b) depicts the
relationship between load balance and scheduling algorithms.
The TimeDRS has the best quality in load balance of time
interval utilization, as its balance factor deduced by 1−Eq.
(30) can always reach the highest level when setting different
time interval sizes. That means TimeDRS can achieve a
good trade-off between the schedulable flow number and load
balance.

Impact of time intervals: Fig. 9(a) illustrates the
relationship between the time interval size and accommodated
flow number. As the time interval size gets larger, the number
of schedulable TT flows for various algorithms increases
mainly for two reasons. One reason is that the number of time

Fig. 9. Evaluation of scheduling performance. (a) Scheduled flow
number affected by time intervals; (b) Load balance of various algorithms;
(c) Scheduled flow number affected by flow periods; and (d) Load balance
under the condition of different flow periods.

intervals within a hyper period decreases according to Eq. (41),
which reduces the effort of finding optimal solutions. Another
reason is that the capacity for each time interval becomes
larger that can accommodate more flows. Fig. 9(b) shows that
TimeDRS and Tabu-ITP can better balance the time interval
resource utilization, especially when the time interval size is
large.

Impact of flow periods: As shown in Fig. 9(c) and
Fig. 9(d), we analyze the scheduling performance under the
condition of different flow periods, which are set to {800us,
1600us}, {800us, 1600us, 3200us}, and {1600us, 3200us},
respectively. For the flow periods of {800us, 1600us} and
{800us, 1600us, 3200us}, the schedulable flow number and
load balance are almost the same for different algorithms. This
is because the TT flows with shorter periods have the higher
generation frequency during a hyper period, and they tend
to consume more time interval resources, which significantly
affect the performance of scheduling. The flow set with periods
{1600us, 3200us} performs the best on schedulable flow
number and load balance because the shortest flow period
is 1600us, which is larger than the other two flow sets.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2821

Fig. 10. Experimental results of scheduling online. (a) Cumulative distribution function of scheduled flow number; (b) Cumulative distribution function of
load balance; (c) Computational time cost comparison; and (d) Comparison of reliability for bursting flows.

Besides, TimeDRS still has the best scheduling performance
on TT flows and load balance compared with SOTA
algorithms.

Fig. 10 shows the experimental results of scheduling
online. Noting that the computational time cost is required
to be in the second level for the incrementally added TT
flows, we select TimeDRS, DeepCQF and Greedy-3q as the
comparison algorithms to schedule the flows, respectively. The
performance analyses are detailed as follows.

On-line schedulability: We totally test 2,000 rounds of
scheduling 1,000 TT flows along with bursting flows. For each
test round, the frame size of each added flow is randomly
assigned from the range of 50B∼1KB [26], and the sequence
of added flows is out of order from the flow set. Fig. 10(a) and
Fig. 10(b) show the cumulative distribution function (CDF) of
the schedulable flow number and balance factor. In particular,
TimeDRS can schedule the most number of TT flows with
the range of 976∼987, and achieve the best load balance of
0.988∼1.0 compared with Greedy-3q and DeepCQF. Although
Greedy-3q can schedule more TT flows than DeepCQF in
this case, it does not perform as well on system load balance
because it only focuses on allocating the current optimal time
intervals for each incoming flow without taking the long-term
reward into account.

Loss of bursting flows: In the on-line scheduling scenarios,
we need to pay more attention to the bursting flows co-
transmitted with TT flows. By controlling the frame generation
rate (i.e., bandwidth) of bursting flows, we calculate the frame
loss rate within 500 hyper periods (i.e., 2,000 time intervals)
by using the original CQF, extended CQF and our enhanced
Multi-CQF models, respectively. The extended CQF equipped
with two cyclic queues only extends the waiting time of
receiving queue to accommodate more flows. Considering the
limited resource of each time interval, we gradually increase
the bursting flows bandwidth from 10bits/us to 60bits/us,
and Fig. 10(d) shows that the frame loss of bursting flows
on the original CQF model becomes more severe because
of the dead time, setting to 30us on average. In contrast,
the frames are barely dropped for the enhanced Multi-
CQF and extended CQF models. Specifically, when the
bandwidth of bursting flows is up to 60bits/us, the frame
loss rate of our enhanced Multi-CQF model can be reduced
from 13.45% to 0.97% compared with the original CQF
model.

End-to-end latency of bursting flows: As shown in
Fig. 10(d), although the reliability of extended CQF performs
as good as the enhanced Multi-CQF model, the extended CQF
can lead to a very long end-to-end latency for bursting flows.
The reason is that the extended CQF model increases the
waiting time of cyclic queues to prevent the frames against
loss. While for our enhanced Multi-CQF model, it can forward
the bursting flows into fast queues to reduce the end-to-
end latency. In addition, with the increasing bandwidth of
bursting flows, the probability of retransmission in the original
CQF model also increases due to frame loss, which enlarges
the end-to-end latency and jitter (i.e., latency variance). For
simplicity, three hops are simulated, and the enhanced Multi-
CQF model reduces the end-to-end latency by almost 2.18x
over the extended CQF model.

B. Scheduling on TSN Testbed in Real Environment

Implementations on TSN testbed: In Section VI-A,
we evaluated the scheduling performance of TimeDRS based
on an assumption that the enhanced Multi-CQF model
could guarantee deterministic transmission. In this subsection,
we further validate this assumption on a real TSN testbed. The
fully centralized architecture is set up on our TSN testbed
in Fig. 11(a) as referred to IEEE 802.1Qcc. To support
the shaper of our enhanced Multi-CQF model, the NICs on
devices are equipped with INTEL I210 that support cables
and optical fibers. Detailed by Fig. 11(b), the architecture is
composed of two parts, which are control plane for centralized
control by the controller, and data plane for transmitting the
data flows, respectively. The Centralized User Configuration
(CUC) and Centralized Network Configuration (CNC) are
the key components in the controller. CUC collects the flow
information by interacting with users, and CNC gathers the
network status, computes the scheduling, and deploys the
configurations. The TimeDRS is implemented in CNC, and
we create the database to connect CUC with CNC. To support
running TimeDRS algorithm, the high performance hardwares
of CPU (AMD R9 5950X), GPU (NVIDIA QUADRO RTX
6000), and 64GB Kingston RAM are utilized in controller on
Ubuntu 20.04 with kernel 5.11.0-41-generic. In data plane,
we set up the benchmark topology with 10 hosts and 2 TSN
switches, each with CPU (INTEL CORE i7-6700K) and 16GB
memory, taking the Traffic Control (TC) tool to achieve the

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2822 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 11. Architecture of our TSN testbed. (a) Entities of TSN devices; and
(b) Fully-centralized architecture of TSN.

original CQF or Multi-CQF based queuing regularities of
TAPRIO. The time synchronization of the global network is
achieved by LinuxPTP installed in each device with the same
Ubuntu version of controller. The TT flows are generated from
SAMPLE-APP-TAPRIO flow generator [27]. The time interval
and flow periods are set to 800us and {1600us, 3200us},
respectively. And the other parameters are listed in Table I.
The scheduling procedures can be concluded as follows.

Step 1: Registration. The TT flows, each with 50B∼1KB
frame size are registered to CUC by users, where the source
hosts are selected from H1 to H5, and destination hosts are
chosen from H6 to H10 to ensure they pass through two hops
along the path. Then the flow features in Eq. (2) are stored
into database of the flow templates.

Step 2: Gathering. The network status, including topology
and available resources, are detected by CNC in real time
through the Link Layer Discovery Protocol (LLDP). Then the
status information can be used to update the database.

Step 3: Computation. According to the flow features
and gathered network resource status in database, TimeDRS
computes the allocation policies for mapping each flow into
different time intervals.

Step 4: Deployment. Based on the computing results
extracted from database and parameters we set, CNC deploys
the configurations of GCLs to switches, and manages the
sending time windows for each TT flow from source hosts.

The end-to-end latency can then be measured by capturing
the frames from source and destination hosts. Taking 50 TT
flows with 100,000 frames for scheduling as an example,
we validate the deterministic flow transmission with the
original CQF and our enhanced Multi-CQF models, respec-

Fig. 12. End-to-end latency and jitter measured on TSN testbed. (a) Deter-
ministic transmission with the original CQF model; and (b) Deterministic
transmission with the enhanced Multi-CQF model.

tively. Fig. 12(a) shows the scheduling results with the
original CQF model. After converging, the average end-to-
end latency of CQF model is 963.42us, with the minimum
and maximum values of 823.54us and 1595.54us, respectively.
Thus, the actual end-to-end latency (823.54us∼1595.54us) of
the original CQF model is within the expected theoretical
range of 800us∼2400us. The average jitter is 15.17us with
a maximum value of 632.12us, which is below the upper limit
of 1600us. Moreover, the flow transmission with the enhanced
Multi-CQF model is depicted by Fig. 12(b). The end-to-
end latency is in the range of 2585.01us∼2882.57us, with
the average value of 2711.01us. This is within our expected
latency range of 2400us∼4800us, which is computed by Eq.
(9). The maximum and average values of jitter are 308.73us
and 17.78us, respectively, which satisfies with Eq. (9). As a
result, the deterministic performance for transmitting the flows
can be ensured, and users can flexibly select the model from
the above two CQF models to well balance the frame loss of
bursting flows and end-to-end latency of TT flows.

VII. RELATED WORK

With the rising of TSN techniques, considerable works
have focused on real-time and high-reliable flow transmission.
Steiner et al. [28] concentrated on minimizing the transmission
latency of TT flows based on TAS shaper by utilizing
the method of SMT. Nevertheless, the time consumed by
SMT increases exponentially with the growing number of
flows. To reduce the computational time and obtain optimal
results, the optimization modulo theories (OMT) for jointly
scheduling and routing were further researched by Xu
et al. [9]. Yan et al. [11] proposed an injection time planning

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: BURST-AWARE TT FLOW SCHEDULING WITH ENHANCED MULTI-CQF IN TSN 2823

(ITP) mechanism based on the Tabu Search algorithm to
optimize the temporal scheduling of TT flows with CQF
model, and it greatly improved the schedulable flow number
and network resource utilization. Taking the jitter-sensitive
flows into consideration, Huang et al. [29] presented a
time-aware cyclic-queuing (TACQ) mechanism that combines
TAS and CQF together to support the co-transmission of
TT and isochronous flows. Yuan et al. [30] proposed an
adaptive priority adjustment scheduling method with analysis
of response time, which improved the successful rate and
reduced worst-case end-to-end latency for transmitting TT
flows in TSN. As a result, the off-line scheduling tasks in
TSN have been well planned.

After the network goes online, dealing with the incre-
mentally added new flows can be a significant challenge.
Li et al. [25] presented an enhanced reconfiguration
mechanism to avoid the conflicts of various arrival TT flows
based on the dependence graph. Quan et al. [31] proposed
a dynamic scheduling mechanism based on CQF model with
the light-weight framework. To further reduce the transmission
complexity of mixed flows, Zhang et al. [32] set up a
divisibility theory-based analysis approach that significantly
improved both runtime efficiency and network load balance.
However, it is difficult for traditional algorithms to fully
utilize the available network resources. Hence, the DRL-
based resource scheduling algorithms in TSN are further
investigated. Prados-Garzon et al. [33] scheduled flows in the
asynchronous networks by designing a DRL-based solution
LEARNET, which achieved higher gains of revenue in the
5G backhaul environment. Zhou et al. [14] significantly
decreased the occurrence of misbehaviors when sending TT
flows by utilizing the Deep Deterministic Policy Gradient
framework.

Different from the above related works, we focus on
scheduling the mixed flows (i.e., TT and bursting flows) in
CQF-based TSN. The enhanced Multi-CQF model is proposed
to satisfy the QoS demands of bursting flows without affecting
TT flow transmission. To fully utilize the large time interval
and queuing resources in the queue model, a time-correlated
DRL resource scheduling algorithm is further designed that
effectively improves scheduling performance of whole system.

VIII. CONCLUSION

In this paper, we have investigated the mixed-flow (i.e.,
TT and bursting flows) scheduling problem in CQF-based
TSN. We have designed an enhanced Multi-CQF model, which
defines the queuing principles and flow receiving strategies to
support the deterministic transmission for both bursting and
TT flows. To fully utilize the time-related network resources in
our queue model, the TimeDRS algorithm has been proposed
to jointly schedule the time interval and queuing resources
in the unit of flow. Simulation results have demonstrated that
our enhanced Multi-CQF model can greatly reduce the frame
loss and end-to-end latency of bursting flows. Meanwhile, the
TimeDRS can schedule more TT flows and achieve better load
balance of the whole system. Different from the original CQF,
our enhanced Multi-CQF model is able to guarantee the high-
reliable and low-latency transmission of bursting flows while

satisfying the deterministic latency, jitter, and high reliability
demands of TT flows. The TimeDRS algorithm can also be
extended into more generic time-related resource scheduling
scenarios. For the future work, we will investigate the reliable
transmission for bursting flows in DetNet.

REFERENCES

[1] S. Sudhakaran, K. Montgomery, M. Kashef, D. Cavalcanti, and
R. Candell, “Wireless time sensitive networking impact on an industrial
collaborative robotic workcell,” IEEE Trans. Ind. Informat., vol. 18,
no. 10, pp. 7351–7360, Oct. 2022.

[2] L. Xu et al., “Learning-based scalable scheduling and routing co-design
with stream similarity partitioning for time-sensitive networking,” IEEE
Internet Things J., vol. 9, no. 15, pp. 13353–13363, Aug. 2022.

[3] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, and K. Li, “A survey of real-
time Ethernet modeling and design methodologies: From AVB to TSN,”
ACM Comput. Surv., vol. 55, no. 2, pp. 1–36, Jan. 2022.

[4] S. Schriegel and J. Jasperneite, “A migration strategy for profinet
toward Ethernet TSN-based field-level communication: An approach to
accelerate the adoption of converged IT/OT communication,” IEEE Ind.
Electron. Mag., vol. 15, no. 4, pp. 43–53, Dec. 2021.

[5] M. Kim, D. Hyeon, and J. Paek, “ETAS: Enhanced time-aware
shaper for supporting nonisochronous emergency traffic in time-sensitive
networks,” IEEE Internet Things J., vol. 9, no. 13, pp. 10480–10491,
Jul. 2022.

[6] Wireless Systems for Industrial Automation: Process Control and Related
Applications, Standard ISA-100.11a-2011, May 2011.

[7] D. Yang, K. Gong, J. Ren, W. Zhang, W. Wu, and H. Zhang, “TC-Flow:
Chain flow scheduling for advanced industrial applications in time-
sensitive networks,” IEEE Netw., vol. 36, no. 2, pp. 16–24, Mar. 2022.

[8] IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 29: Cyclic Queuing and Forwarding,
IEEE Standard 802.1Qch-2017, Jun. 2017.

[9] L. Xu, Q. Xu, Y. Zhang, J. Zhang, and C. Chen, “Co-design approach
of scheduling and routing in time sensitive networking,” in Proc. IEEE
Conf. Ind. Cyberphys. Syst. (ICPS), Jun. 2020, pp. 111–116.

[10] J. Krolikowski et al., “Joint routing and scheduling for large-scale
deterministic IP networks,” Comput. Commun., vol. 165, pp. 33–42,
Jan. 2021.

[11] J. Yan, W. Quan, X. Jiang, and Z. Sun, “Injection time planning:
Making CQF practical in time-sensitive networking,” in Proc. IEEE
Conf. Comput. Commun., Jul. 2020, pp. 616–625.

[12] N. Finn. (Sep. 2019). Multiple Cyclic Queuing and Forwarding.
[Online]. Available: https://www.ieee802.org/1/files/public/docs2019/df-
finn-multiple-CQF-0919-v01.pdf

[13] Z. Cheng, D. Yang, W. Zhang, J. Ren, H. Wang, and H. Zhang,
“DeepCQF: Making CQF scheduling more intelligent and practicable,”
in Proc. IEEE Int. Conf. Commun., May 2022, pp. 1–6.

[14] B. Zhou and L. Cheng, “Mitigation of scheduling violations in time-
sensitive networking using deep deterministic policy gradient,” in Proc.
4th FlexNets Workshop Flexible Netw. Artif. Intell. Supported Netw.
Flexibility Agility, Aug. 2021, pp. 32–37.

[15] IEEE Standard for Local and Metropolitan Area Net
works—Timing and Synchronization for Time-Sensitive Applications,
IEEE Standard 802.1AS-2020, Jun. 2020.

[16] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. Wang,
“Deep reinforcement learning for mobile 5G and beyond: Fundamentals,
applications, and challenges,” IEEE Veh. Technol. Mag., vol. 14, no. 2,
pp. 44–52, Jun. 2019.

[17] X. Shen et al., “AI-assisted network-slicing based next-generation
wireless networks,” IEEE Open J. Veh. Technol., vol. 1, pp. 45–66, 2020.

[18] W. Zhang et al., “Optimizing federated learning in distributed industrial
IoT: A multi-agent approach,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3688–3703, Dec. 2021.

[19] IEEE Standard for Local and Metropolitan Area Net
works—Bridges and Bridged Networks—Amendment 31: Stream
Reservation Protocol (SRP) Enhancements and Performance
Improvements, IEEE Standard 802.1Qcc-2018, Oct. 2018.

[20] X. Liao, J. Shi, Z. Li, L. Zhang, and B. Xia, “A model-driven deep
reinforcement learning heuristic algorithm for resource allocation in
ultra-dense cellular networks,” IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 983–997, Jan. 2020.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 



2824 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

[21] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6G,” IEEE
Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, 1st Quart., 2022.

[22] D. Yang, E. Cui, H. Wang, and H. Zhang, “EH-edge—An energy
harvesting-driven edge IoT platform for online failure prediction of
rail transit vehicles: A case study of a cloud, edge, and end device
collaborative computing paradigm,” IEEE Veh. Technol. Mag., vol. 16,
no. 2, pp. 95–103, Jun. 2021.

[23] L. Ale, S. A. King, N. Zhang, A. R. Sattar, and J. Skandaraniyam,
“D3PG: Dirichlet DDPG for task partitioning and offloading with
constrained hybrid action space in mobile-edge computing,” IEEE
Internet Things J., vol. 9, no. 19, pp. 19260–19272, Oct. 2022.

[24] W. Zhang et al., “Deep reinforcement learning based resource
management for DNN inference in industrial IoT,” IEEE Trans. Veh.
Technol., vol. 70, no. 8, pp. 7605–7618, Aug. 2021.

[25] Z. Li, H. Wan, Z. Pang, Q. Chen, and M. Gu, “An enhanced recon-
figuration for deterministic transmission in time-triggered networks,”
IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1124–1137, Jun. 2019.

[26] Industrial Internet Consortium. (Mar. 2019). Time Sensitive Networks
for Flexible Manufacturing Testbed Characterization and Mapping of
Converged Traffic Types. [Online]. Available: https://www.iiconsortium.
org/pdf/IIC_TSN_Testbed_Char_Mapping_of_Converged_Traffic_Ty
pes_Whitepaper_20180328.pdf

[27] Intel Corporation. (Apr. 2019). TSN Reference Software for Linux.
[Online]. Available: https://github.com/intel/iotg_tsn_ref_sw/tree/
apollolake-i/

[28] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-
sensitive communication,” IEEE Commun. Standards Mag., vol. 2, no. 2,
pp. 42–47, Jun. 2018.

[29] Y. Huang, S. Wang, B. Wu, T. Huang, and Y. Liu, “TACQ: Enabling
zero-jitter for cyclic-queuing and forwarding in time-sensitive networks,”
in Proc. IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.

[30] Y. Yuan, X. Cao, Z. Liu, C. Chen, and X. Guan, “Adaptive priority
adjustment scheduling approach with response-time analysis in time-
sensitive networks,” IEEE Trans. Ind. Informat., vol. 18, no. 12,
pp. 8714–8723, Dec. 2022.

[31] W. Quan, J. Yan, X. Jiang, and Z. Sun, “On-line traffic scheduling
optimization in IEEE 802.1 Qch based time-sensitive networks,” in Proc.
IEEE 22nd Int. Conf. High Perform. Comput. Commun., IEEE 18th
Int. Conf. Smart City, IEEE 6th Int. Conf. Data Sci. Syst., Dec. 2020,
pp. 369–376.

[32] Y. Zhang, Q. Xu, L. Xu, C. Chen, and X. Guan, “Efficient flow
scheduling for industrial time-sensitive networking: A divisibility
theory-based method,” IEEE Trans. Ind. Informat., vol. 18, no. 12,
pp. 9312–9323, Dec. 2022.

[33] J. Prados-Garzon, T. Taleb, and M. Bagaa, “LEARNET: Reinforce-
ment learning based flow scheduling for asynchronous deterministic
networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

Dong Yang (Member, IEEE) received the Ph.D.
degree in communication engineering from the
School of Electronics and Information Engineering,
Beijing Jiaotong University, China, in 2008.

From March 2009 to July 2010, he was a
Post-Doctoral Researcher with Jönköping University
and ABB Corporate Research, Sweden, where he
participated in the standardization and innovation of
industrial wireless sensor network. He is currently
a Full Professor in communication engineering and
the Director of the Intelligent Industry Network

Research Institute, Beijing Jiaotong University. His current research interests
include network architecture, the Internet of Things, wireless sensor networks,
and data driven network resource management. He has authored or coauthored
over 70 scientific publications in the field of network and communication
technologies. More than 20 of his invention patents were licensed to ZTE.
He has served as the Co-Chair for IEEE INFOCOM 2023 Workshop PerAI-
6G, the Session Chair for IEEE ICCT 2022, and a TPC Member for
IEEE MetaCom 2023. He has been serving as an Associate Editor for
IEEE TRANSACTIONS ON MOBILE COMPUTING and an Executive Editor
for Transactions on Emerging Telecommunications Technologies (Wiley).
He has served as the Guest Editor for IEEE TRANSACTION ON INDUSTRIAL
INFORMATICS in 2021.

Zongrong Cheng (Student Member, IEEE) received
the B.E. degree from the School of Automation
Engineering, Northeast Electric Power University,
Jilin, China, in 2019. He is currently pursuing the
Ph.D. degree in communication and information
systems with Beijing Jiaotong University, Beijing,
China. His current research interests include the
Industrial Internet of Things, deterministic network-
ing, resource management, data analytics, and deep
reinforcement learning.

Weiting Zhang (Member, IEEE) received the Ph.D.
degree in communication and information systems
from Beijing Jiaotong University, Beijing, China,
in 2021. From November 2019 to November 2020,
he was a Visiting Ph.D. Student with the BBCR
Group, Department of Electrical and Computer
Engineering, University of Waterloo, Canada. Since
December 2021, he has been an Associate Professor
with the School of Electronic and Information Engi-
neering, Beijing Jiaotong University. His research
interests include the Industrial Internet of Things,

deterministic networking, edge intelligence, and machine learning for wireless
networks.

Hongke Zhang (Fellow, IEEE) received the M.S.
and Ph.D. degrees in electrical and communication
systems from the University of Electronic Science
and Technology of China, Chengdu, China, in
1988 and 1992, respectively. From 1992 to 1994,
he was a Post-Doctoral Researcher with Beijing
Jiaotong University, Beijing, China, where he is
currently a Professor with the School of Electronic
and Information Engineering and the Director
of the National Engineering Laboratory on Next
Generation Internet Technologies. He has authored

more than ten books and the holder of more than 70 patents. His research
has resulted in many papers, books, patents, systems, and equipment in the
areas of communications and computer networks. He is the Chief Scientist of
the National Basic Research Program of China (973 Program) and has also
served on the editorial boards for several international journals.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from
Rutgers University, New Brunswick, NJ, USA,
in 1990.

He is currently a University Professor with the
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. His research
interests include network resource management,
wireless network security, the Internet of Things,
5G and beyond, and vehicular ad hoc and sensor
networks. He is a registered Professional Engineer

of Ontario, Canada, an Engineering Institute of Canada Fellow, a Canadian
Academy of Engineering Fellow, a Royal Society of Canada Fellow, a Chinese
Academy of Engineering Foreign Member, and a Distinguished Lecturer
of the IEEE Vehicular Technology Society and Communications Society.
He received the R.A. Fessenden Award from IEEE, Canada, in 2019, the
Award of Merit from the Federation of Chinese Canadian Professionals
(Ontario) in 2019, the James Evans Avant Garde Award from the IEEE
Vehicular Technology Society in 2018, the Joseph LoCicero Award in
2015 and Education Award in 2017 from the IEEE Communications
Society, and the Technical Recognition Award from Wireless Communications
Technical Committee in 2019 and AHSN Technical Committee in 2013.
He has also received the Excellent Graduate Supervision Award from the
University of Waterloo in 2006 and the Premier’s Research Excellence Award
(PREA) from the Province of Ontario, Canada, in 2003. He served as the
Technical Program Committee Chair/the Co-Chair for IEEE Globecom’16,
IEEE Infocom’14, IEEE VTC’10 Fall, and IEEE Globecom’07, and the Chair
for the IEEE Communications Society Technical Committee on Wireless
Communications. He is the President Elect of the IEEE Communications
Society. He was the Vice President for Technical & Educational Activities,
the Vice President for Publications, a Member-at-Large on the Board of
Governors, the Chair of the Distinguished Lecturer Selection Committee, and
a member of IEEE Fellow Selection Committee of the ComSoc. He served
as the Editor-in-Chief for the IEEE INTERNET OF THINGS JOURNAL, IEEE
Network, and IET Communications.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:24 UTC from IEEE Xplore.  Restrictions apply. 


