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Abstract—In this article, with the objective of significantly in-
creasing the frame rate of virtual reality (VR) videos, we design
an efficient end-edge collaborative VR streaming system which
consists of three modules: frame similarity analysis, offloading
decision making, and collaborative frame interpolation. In specific,
frame similarity analysis tries to eliminate redundant frames based
on perceived quality assessment, so that the required number of
interpolated frames can be reduced without deteriorating visual
quality. Then, an end-to-end (E2E) delay optimization problem is
formulated to obtain the optimal offloading strategy, by balancing
the transmission and computing burden of neural frame interpola-
tion via end-edge collaboration. Furthermore, the E2E delay of the
proposed system is theoretically analyzed based on queuing theory.
Our analysis reveals that, the proposed collaborative distribution
of interpolation tasks between edge and end devices are effective to
achieve the minimal E2E delay of streaming VR videos. Extensive
experimental results demonstrate that the proposed system can sig-
nificantly improve the frame rate of VR videos, while maintaining
timely VR content delivery in various networking conditions.

Index Terms—Mobile edge computing, end-to-end delay, virtual
reality, neural frame interpolation.

I. INTRODUCTION

V IRTUAL reality (VR) videos have attracted growing
global interest in place of traditional two-dimensional

(2D) videos in the past decade [1]. With the help of head-
mounted devices (HMD), e.g., HTC Vive and Facebook Oculus,
users can immerse themselves in a virtual environment and
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explore content in different directions by moving their heads
around as if in the real world. However, in contrast with 2D
videos played on flat screens, the spherical viewing range of VR
content represented by substantial volumes of data poses tech-
nical challenges on timely content delivery, due to the dynamic
and scarce network bandwidth. It is reported that the bandwidth
consumption of VR delivery is around 80 times that of 2D video
streaming [2]. To enable VR streaming in current networks,
tile-based streaming method is proposed by partitioning VR
videos into non-overlapping tiles which can be flexibly delivered
and processed according to varying network conditions and user
behaviors [3].

Compared with watching 2D videos [4], [5], users become
more sensitive to visual quality (e.g., frame rate and resolution)
when exposed to immersive VR videos. As a consequence, users
with a headset may easily suffer from dizziness, eye fatigue,
and nausea if video playback is not smooth [6]. Those factors in
turn deteriorate the quality of experience (QoE) of watching VR
videos. This symptom is called VR sickness which gets even
worse with longer exposure time. Unfortunately, as reported by
[7], more than 80% of users feel discomfort when experiencing
current VR services.

Frame rate is a key performance indicator of VR streaming
system. It is recommended that [6] increasing the frame rate
of VR videos to 90 frames per second (fps) can effectively
relieve sickness. Besides, when it is difficult to maintain high
frame rate and high resolution at the same time due to limited
network capacity, providing resources to improve frame rate is
more critical. In addition, a higher frame rate indicates that more
video information can be included within the same amount of
time. For VR videos that contain high-motion contents, e.g.,
sports events and live games, the motion changes in the virtual
world should be updated more frequently with a higher frame
rate to decrease visual artifacts and enable smoother viewing
experience. It has been verified that VR videos with a high frame
rate (e.g., 90 fps) can provide higher user-perceived quality than
low frame rate (e.g., 30 fps) ones through extensive subjective
tests [8]. Moreover, although existing commercial VR headsets
with a refresh rate ranging from 60 to 120 Hz are qualified to
support high frame rate VR videos1, the frame rate of source
VR videos is merely 25 fps or 30 fps. This mismatch results in a
series of critical quality issues which can be alleviated by frame
rate enhancement. Motivated by the above observations, in this
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article, we focus on increasing the frame rate of VR videos, in
order to provide enhanced VR video experience.

In contrast to low frame rate VR videos, streaming VR
videos with high frame rate over bandwidth-scarce networks
is challenging due to the demand of delivering substantially
high volumes of data. The data rate of an encoded 4K VR
video at 60 fps can reach 100 Mbps [9] while the response to
user’s headset movement should be contained in a millisecond
level. The corresponding rendering time (rendering a 1440p
frame takes over 10 ms [10]) which is positively correlated
with the number of frames also increases, making VR’s strict
delay satisfaction challenging. In order to alleviate the burden
of bulk transmission from the cloud server, a neural video frame
interpolation technique is exploited to increase the frame rate
of VR videos in a cost-effective manner. Specifically, frame
interpolation synthesizes intermediate frames between any two
consecutive frames. Those interpolated frames are then inserted
into the pristine frame sequence before playback. In this way, the
overall transmission delay can be reduced. However, generating
high-quality interpolated frames often relies heavily on neural
networks (NNs), which is computationally intensive beyond the
capacity of current VR HMDs. Remote cloud server is powerful
yet delivering the interpolated video frames from the cloud is
subject to unacceptable transmission latency.

Mobile edge computing (MEC) is a key enabler of NN-
interpolated VR delivery [11], [12]. By deploying an edge
server in the vicinity of users, the frame interpolation task
can be offloaded to the edge where the computing resources
are abundant compared with the HMDs. Besides, an accurate
estimation of bandwidth can also be made from the edge thus
facilitating adaptive offloading decisions [13]. Inspired by those
observations, we design an end-edge collaborative VR delivery
system, where the frame interpolation task is properly distributed
between the edge and the HMDs to fully exploit the end-edge
coordination gain. Nevertheless, offloading frame interpolation
task to the edge for reducing workloads on the HMDs is not
always beneficial to reducing latency, especially in the case of
ultra-high frame rate improvement. Since the frames generated
by interpolation are uncompressed with substantial data volume,
the transmission of the edge-interpolated frames from the edge to
the HMDs may mitigate the benefits from task offloading to the
edge. In order to trade off the transmission delay with interpo-
lation delay under different network conditions, the end-to-end
(E2E) delay, which consists of transmission delay and interpo-
lation delay, is analyzed at the tile level, taking into account
the impact of available bandwidth and computing resources.
Moreover, considering the heavy data traffic for a multi-user
case, queuing delay of tile frames on the edge is provided based
on the modeling of VR video traffic. The optimal offloading ratio
of the frame interpolation task is then derived according to the
E2E delay analysis to guarantee timely VR delivery.

Considering the diversity among different tiles owing to the
wide viewing range of VR videos, we employ this feature to
further reduce resource consumption while maintaining im-
proved QoE. Through calculating the similarity of consecutive
frames, whether to interpolate or not can be determined for every
frame pair. Frame interpolation can be considered only when

notable motion changes are detected, namely, adjacent frames
are with low similarity. The main contributions of this article are
summarized as follows:
� We design an end-edge collaborative VR content delivery

system to improve user’s QoE through providing high
frame rate VR videos. In order to reduce the amount of
data to be transmitted, neural video frame interpolation
is utilized to reconstruct videos from low frame rate to
high frame rate, in joint consideration of the computing
resources on the edge and HMDs to ensure timely delivery.
Moreover, in order to further relieve the computation and
transmission burden of neural frame interpolation tasks,
frame similarity evaluation is exploited to avoid interpo-
lating unnecessary frames within frame pairs with high
similarity.

� We analyze the E2E delay of the proposed system in single-
user and multi-user cases, which includes transmission
delay, computing delay and edge queuing delay based on
the modeling of VR video traffic. The E2E delay analysis
reveals that the distribution of interpolation tasks between
edge and end devices can effectively contain the streaming
latency of VR videos. Therefore, an optimal offloading
strategy is developed to minimize the lowest E2E delay
under various network conditions.

The remainder of this article is organized as follows. First,
related works are reviewed in Section II. Section III describes
the system model and Section IV presents the E2E delay analysis
under dynamic network conditions, which leads to the design
of optimal interpolation strategy. In Section V, the proposed
end-edge collaborative VR delivery system design is introduced,
following the E2E delay analysis. Experimental results and per-
formance analysis are given in Section VI. Finally, we conclude
this article and discuss our future work in Section VII.

II. RELATED WORK

Extensive research efforts have been devoted to VR video
streaming, including encoding, tiling, viewpoint prediction, and
adaptive streaming [2], [14], [15]. The attempts on video en-
coding aim to reduce the data size of video files to lower the
requirement on transmission rate. Considering that only a small
portion of the panoramic scene is viewed by the user at a time,
various viewpoint prediction algorithms have been proposed to
predict user’s field of view (FoV) at different moments. Addi-
tionally, combined with efficient tiling and adaptive streaming
strategies, video tiles are delivered at different quality levels to
save bandwidth, while maintaining certain level of visual quality.
These works focus on the scenario of one server and one user,
without considering edge nodes. However, enabling promising
VR experience can be very time- and resource-consuming, fur-
ther quality improvement such as video frame interpolation is
even more challenging.

With the emergence of mobile edge computing, the capabil-
ities of edge are envisioned as key enablers for delivering VR
videos [16], [17]. Mehrabi et al. exploit edge servers to select
video quality by considering both users’ QoE and the fairness of
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Fig. 1. Effect of different frame interpolation methods.

Fig. 2. Frame averaging (left) with PSNR= 35.88 dB and neural interpolation
(right) with PSNR = 42.57 dB.

bit rate allocation [18]. The recent proposal [13] develops a soft-
ware framework on the edge server to run a deep reinforcement
learning model for adaptive video transmission. However, these
works do not exploit the unique features of VR videos thus their
performances are limited. Sun et al.,sun2019communications
design a MEC-based VR delivery model by assigning video
rendering task to the edge server and pre-caching FoVs on the
edge to save latency. Similarly, Dang et al.,dang2019joint con-
sider joint caching and computing in fog radio access networks
to maximize the mean tolerate delay. In [21], an analytical model
is proposed to study the delay performance of MEC-based video
streaming. However, the delay performance is not clear as there
are actual queues of video tiles on the edge [22]. Note that all
the works in [19], [20], [21] utilize edge capacity to accelerate
VR rendering which mainly focuses on decoding and stitching
without consideration of further quality improvement.

In this article, different from existing approaches on enhanc-
ing the QoE of VR streaming, we investigate improving frame
rate of VR videos. High frame rate can be achieved through
video frame interpolation [23], [24], [25], which generates an
intermediate frame between two reference frames. Early frame
interpolation methods, such as frame averaging that based on
the weighted combination of reference images, have rather low
computation demands. However, the neglect of complex motion
changes can lead to noticeable blurry artifacts, deteriorating
user’s experience. Currently, with deep learning techniques gain-
ing growing popularity, neural network-based video frame inter-
polation methods become dominant. Fig. 1 gives a comparison
between two interpolation methods. The performance of neural
interpolation always surpasses frame averaging owing to its
powerful nonlinear fitting ability, which is able to model various
motion modes of complicated scenes. As shown in Fig. 2, blurry

Fig. 3. An overview of the end-edge collaborative VR streaming system.

artifacts of frame averaging are easily perceptible, resulting in
much lower Peak Signal to Noise Ratio (PSNR) compared with
neural interpolation.

To optimize video streaming, Usman et al. propose to perform
frame interpolation on mobile devices to reconstruct lost frames
[26], [28]. Nevertheless, implementing neural interpolation [23],
[24], [25] for better visual quality relies heavily on powerful
hardware, i.e., GPU, while current VR headsets are not computa-
tionally capable of neural interpolation under VR’s strict latency
requirement. Witnessing the potential of MEC, an edge-assisted
frame interpolation and super-resolution framework is proposed
to reconstruct downsampled videos [27]. But it aims for low
frame rate VR video delivery with a target frame rate at merely
30 fps, and ignores the capability of user devices.

To fully unleash available resources on both user devices and
edge nodes, we exploit neural edge intelligence to significantly
increase VR frame rate in this article. Through offloading part of
heavy neural frame interpolation task to the edge, the computing
burden on the HMDs can be largely alleviated. Furthermore, to
guarantee timely VR delivery in a cost-effective manner, the
optimal offloading decision is derived based on our E2E delay
analysis under varying bandwidth and computing resources. The
comparison of our work with related works is listed in Table I.

III. SYSTEM MODEL

As depicted in Fig. 3, we consider an end-edge collaborative
VR delivery system with an edge server deployed in the vicinity
of a setM � {1, ...m, ..., |M|}of users (i.e., VR HMDs), where
| · | denotes the set cardinality andm represents user index. Edge
and HMDs are equipped with the amounts of computing re-
sources, denoted byW ′ andW , respectively. Source VR videos,
with an initial frame rate, f , are pre-cached and pre-coded on the
cloud after being temporally segmented into short chunks with
the same duration, τ , and then spatially cropped into equal-size
tiles. Denote by k tile index. Upon receiving user demands, the
cloud pushes corresponding VR content to the edge and the
HMDs to jointly perform the neural frame interpolation tasks to
achieve a required high frame rate, f ∗, before playback. Let T0

be the transmission delay enroute from the cloud to the edge and
R(t) be the data transmission rate from the edge to the HMDs
at time t. In order to guarantee timely VR delivery, the cloud
should determine the offloading ratio, according to the available
bandwidth and computing resources, while achieving the lowest
E2E delay. Denote byα ∈ [0, 1] the offloading ratio, namely, the
percentage of frames interpolated on the edge server.
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TABLE I
RELATED WORKS

A. Communication Model

Fig. 3 also illustrates the transmission process of VR tile
packets. Tiles requiring frame interpolation are sent to the edge
for frame rate improvement. When the edge receives bin files
(video data after compression) of a designated tile, a copy of this
file is delivered to the HMDs immediately. Since tiles requiring
interpolation are sent to the edge, the transmission delay from
the cloud to the edge, T0, is equivalent for all tiles, regardless of
whether they are interpolated on the edge or on the HMD. Denote
byDk the original data size of the raw bin file of tile k. The trans-
mission delay of delivering a tile from the cloud to the HMDs is
T0 +

Dk

Rm(t) , where Rm(t) is the bandwidth allocated to user m
at time t. Considering the huge data volume of uncompressed
tile frames, edge-interpolated frames are compressed with ratio,
β (< 1), before being transmitted to the HMDs. Therefore, the
delay of transmitting one edge-interpolated tile frame with data
size d is βd

Rm(t) . For notational brevity, R(t) is abbreviated as R
in the following.

B. Computing Model

In our system, the computation tasks of VR videos mainly
comprise video frame interpolation and video decoding. To
guarantee the visual quality of interpolated frames, neural video
frame interpolation is adopted in our system. Note that, for a
certain neural interpolation approach, the amount of required
floating operations is fixed. Hence, given the computing capac-
ity, the runtime of the interpolation NN is constant determined
by the frame resolution, which is also evaluated in our experi-
ments. Let τ̌m and τ̌ ′m be the time required to interpolate one
tile frame by an NN on the HMD and the edge given certain
computing resources, respectively. They are calculated as φc

Wm

and φ′c
W ′

m
[29], where φ and φ′ (cycles/bit) denote the computing

intensity of the computing task and c (bits) is the amount of data
to be processed per frame. Wm and W ′

m (cycles/sec) are the
mth HMD computing capacity and edge computing resources
allocated to user m, respectively. According to our experiments
on an RTX 3080 GPU, the time of interpolating one 640× 480
frame with RIFE [23] is around 10 ms. Considering that the
computing resources on the edge server are much higher than
that on the HMDs, the corresponding edge interpolation time is
much shorter under the same level of computing intensity. The
interpolation time of a tile is proportional to the required number
of interpolated frames and the offloading ratio. The required

amount of interpolated frames of tile k, Ǐk, is represented as

Ǐk = (f ∗ − f)τ. (1)

Consequently, the time of interpolating a tile on the HMDs and
the edge is (1− αm,k)τ̌mǏk and αm,k τ̌

′
mǏk, respectively.

Since there is usually high redundancy between consecutive
frames, for frame pairs with high similarity, the latter frame can
be approximated by the former one. Therefore, neural frame
interpolation is not performed for highly similar frame pairs.
By analyzing the similarity of different frames, frame pairs with
high similarity are ignored and the required amount of inter-
polated is thus reduced, which further alleviates the computing
burden on the edge server and HMDs. Considering the high con-
sistency with the perception of human eyes, the widely adopted
metric, Structural Similarity (SSIM), is employed to calculate
frame similarity [30], [31]. Extensive subjective experiments
have been carried out to validate the effectiveness of SSIM by
inviting various viewers to rate videos of different genres. SSIM
is defined as

SSIM(x, y) =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) , (2)

where x and y represent two images, μ and σ are mean and
standard deviation of pixel intensity, respectively. C1 and C2 are
constants. According to [32], if the SSIM between two images
is lower than a threshold (e.g., 0.9), it indicates that noticeable
motion changes take place, calling for supplementary frames
to enhance user’s QoE. However, a high value of SSIM means
that the content is regarded as static. According to the subjective
tests in [8], the perceptual quality of interpolated videos is worse
or just slightly better than that of the source videos when the
source videos contain very small amount of motion. Therefore,
interpolating more frames cannot lead to enhanced experience in
this condition. Consequently, no interpolation will be performed
for those frame pairs. By calculating SSIM between frames, Ǐk
can be reduced for every tile while maintaining enhanced quality.

A comparative experiment between high- and low-motion
VR videos has been conducted to see tile diversity with the
threshold set to 0.9. A set of VR videos are classified using
conventional optical flow method [33], videos with high average
field strength are considered to contain high-motion contents,
and vice versa. Each of those videos lasts for 10 seconds, and
is spatially cropped into 4 × 6 tiles, at a frame rate of 30 fps.
In total, each video contains 300 frames. By calculating SSIM
of the tiles of each video, we can obtain the required amount of
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Fig. 4. The number of frame pairs requiring interpolation.

frames to be interpolated for smooth VR playback experience.
As shown in Fig. 4, the inter-frame difference of videos with
high motion is so large that the required amount of interpolated
frames can be as high as 299 if doubling frame rate is expected,
which means that one additional frame should be interpolated
into any two consecutive frames. In contrast, contents change
mildly in slow-motion videos, pixels in previous frames can be
reused to approximate subsequent frames while hardly impair-
ing the user-perceived visual quality. As for low-motion VR
videos, since the background content takes up a large portion
of the entire scene, the corresponding tiles almost remain still
through the whole video. Hence, the frame rate of those tiles
can be suppressed to save bandwidth. Note that, the decision
of interpolation of each frame can be capsulated in the video
description file, and streamed along with the video files. As the
data size of the interpolation information is insignificant, the
corresponding transmission delay can be ignored.

Since interpolated frames are generated with reference to
uncompressed frames, video tiles should be decoded before
frame interpolation. Denote by τd and τ ′d the time required to
decode one tile frame on the HMDs and the edge, respectively.
They can be recorded through tests on real-world VR videos.
Similarly, the time of decoding a tile is τdτf on the HMDs and
τ ′dτf on the edge.

C. Problem Formulation

Thanks to the computing capacity of edge servers,
computation-intensive neural interpolation tasks can be par-
tially offloaded before playback on the HMDs. However, it
also incurs additional processing and transmission delay, es-
pecially considering the computational complexity of the NNs
used for interpolation, as well as the inflated data volume after
increasing frame rate. In order to guarantee timely VR video
streaming, the E2E delay of delivering VR videos should be
carefully analyzed. Denote by Tm,k and T ′

m,k the E2E delay for
delivering tile k requested by user m with HMD-only and edge
interpolation, respectively, the final E2E delay of delivering tile
k is max{Tm,k, T

′
m,k}. Consequently, the optimal offloading

ratio can be derived from the following min-max optimization
problem, given by

min
α

max{Tm,k, T
′
m,k}, (3)

where Tm,k and T ′
m,k are comprised of transmission delay,

decoding delay, and interpolation delay. Next, we provide an
E2E delay modeling of the proposed frame interpolation sys-
tem in single-user and multi-user scenarios, accounting for the

bandwidth dynamics, and the constrained computing resources
on both edge server and the HMDs.

IV. E2E DELAY MODELING

A. Single-User Scenario

In a single-user scenario, the edge serves for a single user,
thus the E2E delay of delivering one tile with HMD-only inter-
polation, T , is given by

Tk = T0 +
Dk

R
+ τdτf + (1− αk)τ̌ Ǐk. (4)

where user index is omitted for brevity. The first two terms
indicate the transmission delay from the cloud to the edge and
that from the edge to the HMD. The last two terms represent the
decoding delay and interpolation delay, respectively. Similarly,
the E2E delay of delivering the frames generated via end-edge
collaborative interpolation, T ′, is given by

T ′
k = T0 + �αk�τ ′dτf + αk τ̌

′Ǐk +
αkβdǏk

R
, (5)

where αkβdǏk is the data size of the total frames generated
by edge interpolation. The last term of (5) corresponds to the
transmission delay of delivering all edge-interpolated frames of
a tile to the HMDs. Note that if the interpolation ratio αk of a
certain tile equals 0, the corresponding bin file is not decoded on
the edge server. In case of αk > 0, the objective of accelerating
end-edge collaborative frame interpolation boils down to the
min-max optimization problem (3). In order to solve problem
(3), the deciding factors on the gap between Tk and T ′

k should be
analyzed, which helps to characterize the impact of bandwidth
and computing resources on the E2E delay. DefineΔTk � Tk −
T ′
k, we have

ΔTk=
Dk−αkβdǏk

R
+(τd−�αk�τ ′d)τf+τ̌ Ǐk − αk(τ̌+τ̌ ′)Ǐk.

(6)
According to our experimental results, which have also been
shown in [10], the HMD decoding time, τd, can be as small
as 0.7 ms, which is even smaller when frames are decoded
on the edge. The difference, τd − τ ′d, is thus of smaller order
than that of transmission and interpolation delay, and can be ne-
glected. Therefore, ΔTk ≈ Dk−αkβdǏk

R + τ̌ Ǐk − αk(τ̌ + τ̌ ′)Ǐk.
From this, the solution to (3) can be obtained in a divided-and-
conquer manner. Since the lowest E2E delay depends on the
larger one of Tk and T ′

k, it is achieved when the two delay values
are equal, namely, when their difference equals 0. Hence, by
letting ΔTk = 0, we have

αk =
(Dk/R) + τ̌ Ǐk

(βdǏk/R) + (τ̌ + τ̌ ′)Ǐk
. (7)

In case ΔTk ≥ 0, the E2E delay of HMD-only frame interpo-
lation dominates. From (4), the ratio, αk, should be made close
to (7) from below. In contrast, when ΔTk < 0, the E2E delay
of edge frame interpolation dominates, and the optimal value
of α approaches (7) from above. In what follows, two typical
cases are analyzed to demonstrate the impact of bandwidth and
computing resources.
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Fig. 5. Delay under different network capacities.

Case 1: Bandwidth-sufficient and computing-constrained. In
this case, the data rate, R, is sufficiently large. The two terms
of transmission delay, Dk/R and βdǏk/R, in (7) are thus neg-
ligible. The value of ratio αk is determined by the interpolation
speed on both the HMDs and the edge, i.e., αk → τ̌

τ̌+τ̌ ′ . That
is, when the edge is equipped with higher computing power
facilitating rapid neural interpolation, i.e., a smaller value of τ̌ ′,
the value of αk increases and more interpolated frames should
be generated from the edge. This is validated in Fig. 5(a), where
γ denotes the ratio of τ̌ to τ̌ ′. Note that the optimal offloading
ratio decreases with the increase of the number of interpolated
frames.

Case 2: Bandwidth-constrained and computing-sufficient. In
this case, the transmission delay is significant, while the de-
lay of frame interpolation on both the HMDs and the edge,
τ̌ Ǐk and τ̌ ′Ǐk, in (7) are negligible. The value of ratio αk

is determined by the data size of edge-interpolated frames,
i.e., αk → Dk

βdǏk
. That is, when the transmission link from

the edge to the HMD is experiencing poor channel condi-
tions, the ratio αk should decrease with the total amount of
interpolated frames, as shown in 5(b). It is also observed
from αk → Dk

βdǏk
that efficient video compression with lower

value of β also contributes to more frames generated from the
edge.

B. Multi-User Scenario

In practice, the cloud provides VR streaming services to
multiple users simultaneously. Multiple tiles for different HMDs
are continuously streamed via the edge server, leading to packet
queuing on the edge [22], [34]. Once a tile arrives at the edge,
it joins the processing queue before decoding and frame in-
terpolation. In order to characterize packet arrival and queue
accumulation, experiments have been done to figure out the tile
frame size distribution. The frame size distribution of a VR video
lasting for 30 s is shown in Fig. 6. According to [35], video traffic
of H.264 codecs can be modeled with Gamma distribution and
this is consistent with our tests on H.265 video stream. Owing
to the additive property of Gamma distribution, the inter-arrival
time of tile frames, follows Gamma distribution as well. Hence,
the tile flow of user m ∈ M can be characterized as a GI/G/1
queuing process [36], upon which the average queuing delay

Fig. 6. Distribution of tile frame size.

can be approximated to shed light on the overall E2E delay2.
For tile flow of the user m, suppose that tile frames, denoted by
l1,..., ln (n is frame index),..., arrive at the processing queue on
the edge server where they are processed in the order of their
arrival. Denote by an the inter-arrival time of ln and ln+1 and
sn the processing time of ln (i.e., the time for decoding and
interpolation). Let qn be the waiting time of ln in the processing
queue and un denote the time difference between processing
time and inter-arrival time, which equals sn − an. It is clear that

qn+1 = (qn + un)
+, (8)

where x+ = max{x, 0} holds for any real number x. (8) indi-
cates that the waiting time of frame ln+1 is positive if the waiting
time and processing time of ln is larger than the inter-arrival time
between ln and ln+1. Otherwise, qn+1 equals zero, indicative of
no queuing of ln+1.

Denote by λm the average arrival rate, the average inter-arrival
time is 1/λm which is related to the mean value of the Gamma
distribution. Note that different video content corresponds to
different Gamma distributions. The average processing time
can also be defined as 1/μm. μm is the average processing
rate of the edge server and is mainly determined by the edge
interpolation time, τ̌ ′m, which is determined according to the
allocated computing resources in proportion to the amount of
frame interpolation tasks of user m. If the average processing
time of tile frames is less than the average inter-arrival time, qn
converges to a random variable q in distribution. Therefore, the
mean waiting time (namely, queuing delay) of the processing
queue on the edge is E(q).

Let z = q + u be the difference between the time a tile frame
leaves the queue and the time the next frame arrives at the queue,
where u and un have the same distribution and are independent
of q. Thus z+ represents the situation where a tile frame arrives
at the queue before its last frame leaves so that it has to wait

2Queuing theory focuses on the long-term performance of a system by study-
ing network dynamics. Therefore, it is beneficial to understand the operating
characteristics and performance bottlenecks of the system, and to develop
targeted improvement plans accordingly. Although the solution derived from
the optimization problem based on queuing theory may not be accurate when
evaluating the short-term performance of the system, the average system perfor-
mance can be guaranteed.
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for processing. Let z− = (−z)+, which denotes the situation
where the last frame leaves the queue before the next one arrives.
Clearly, we have z = z+ − z−, leading to the following equality

E(z) = E(z+)− E(z−) = E(q) + 1/μm − 1/λm. (9)

Due to (8), z+ = (q + u)+ has the same distribution as q,
indicating E(z+) = E(q). Hence, we obtain

E(z−) = 1/λm − 1/μm. (10)

It can be observed that if the arrival rate of tile frames is smaller
than the processing rate of the edge server, E(z−) > 0 meaning
no queuing occurs statistically.

According to [36], the relationship of the variance of z, z+

and z− is as follows

var(z+) + var(z−)

= var(q + u)− 2E(z+)E(z−)

= var(q) + var(u)− 2E(q)[1/λm − 1/μm], (11)

where var(·) represents the operation of variance. Note that
var(z+) = var(q) because of the same distribution. Therefore,
the average queuing delay can then be derived as

E(q) =
var(u)− var(z−)
2[1/λm − 1/μm]

, (12)

which yields the upper bound of E(q),

E(q) ≤ [(σ
(a)
m )2 + (σ

(s)
m )2]

2[(1/λm)− (1/μm)]
, (13)

where (σ
(a)
m )2 and (σ

(s)
m )2 denote the variance of inter-arrival

time (i.e., Gamma distribution) and that of processing time.
Lemma 1: With a normalizing fraction [36], the upper bound

can be scaled down to an approximation of q since the derivatives
of the upper bound and the Pollaczek-Khintchine formula are
equal, given by

q ≈ 1 + [σ
(s)
m μm]2

μ2
m/λ2

m + [(σ
(s)
m )μm]2

· [(σ
(s)
m )2 + (σ

(a)
m )2]

2[(1/λm)− (1/μm)]

=
ρ2m[1 + (σ

(s)
m )2μ2

m][(σ
(a)
m )2λ2

m + ρ2m(σ
(s)
m )2μ2

m]

2λm(1− ρm)[1 + ρ2m(σ
(s)
m )2μ2

m]
, (14)

where ρm equals λm

μm
, representing the nonempty probability of

the processing queue.
The proof of 1 is given in Appendix A.
Generally, the speed of NN interpolation is mainly determined

by the input size, namely, the resolution of frames. Without
loss of generality, we assume the resolution of interpolated
frames remains constant. The variance, (σ(s)

m )2, thus tends to
zero. Consequently, the average queuing delay of one frame is

q =
ρ2m(σ

(a)
m )2λm

2(1− ρm)
. (15)

Since the decoding time (< 1 ms) per frame is much shorter than
the interpolation time (tens of ms), the queuing delay of a tile

Fig. 7. System architecture.

on the edge server mainly depends on the required number of
interpolated frames and can be given by

Qm,k = αm,k Ǐkq, (16)

where αm,k Ǐk is the amount of frames interpolated on the edge.
As a result, the problem of accelerating end-edge collaborative
frame interpolation becomes

min
αm,k

max{Tm,k, T
′
m,k +Qm,k}. (17)

In practice, the arrival rate of tile packets, λm, at the edge can
be approximated by the data rate, Rce, from the cloud to the
edge. Following the derivation of (7), similar analysis on the
difference, Tm,k − (T ′

m,k +Qm,k), can be performed in order
to obtain the optimal ratio of edge-interpolated frames, which is
given by

αm,k =
(Dk/Rm) + τ̌mǏk

(βdǏk/Rm) + (τ̌m + τ̌ ′m + q)Ǐk
. (18)

When bandwidth is sufficient and computing resources are the
bottleneck, the offloading ratio αm,k → τ̌m

(τ̌m+τ̌ ′
m+q) . On the

contrary, queuing delay can be neglected thus αm,k → Dk

βdǏk
.

V. SYSTEM DESIGN

In this section, the architecture of the proposed end-edge
collaborative VR delivery system is presented based on the
E2E delay analysis. The details of the functionality of the
cloud, edge and HMDs are shown in Fig. 7, including source
VR video preparation, packet transmission, etc. The proposed
system consists of three core building blocks. 1) Frame similarity
analysis: As temporally adjacent frames may be quite similar
to each other, there is no need to interpolate for every frame
pair to enhance video playback smoothness. Through similarity
analysis, the least number of frame pairs that require frame
interpolation can be calculated while achieving the same quality
of high frame rate VR videos. 2) Offloading decision making: To
trade off the corresponding transmission delay and interpolation
delay resulting from frame interpolation, an offloading decision
making module is deployed on the cloud to decide the ratio
of frame interpolation task offloaded to the edge under band-
width and computing resources constraints. Also, this module
predicts the set of tiles that are likely to be in user’s FoV after
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receiving user request. 3) Collaborative frame interpolation: A
neural interpolation model is employed to enhance VR frame
rate according to the interpolation decision obtained from the
offloading decision making module. Considering the substantial
data volume to be transmitted after interpolation, interpolated
frames (i.e., mid-frames) are encoded via fast intra-frame com-
pression. When all the required mid-frames are ready, the video
player inserts them into the original video sequence displaying
for the user.

A. System Workflow

The workflow of the proposed system is shown in
Algorithm 1. Specifically, source VR videos are stored on
the cloud after being segmented and compressed at tile level.
Through frame similarity analysis on each frame pairs, those
with relatively low similarity are thought to contain high motion.
Therefore, supplementary mid-frames are needed to improve
video playback smoothness, calling for extra frame interpolation
tasks. When receiving user’s demand for a specific VR video at a
target frame rate, the cloud server predicts which set of tiles are to
be delivered to the user, and determines relevant task offloading
ratio of each tile based on current network conditions and the
result obtained from the frame similarity analysis module. Then
the predicted set of tiles along with the offloading decisions
are sent to the edge server and HMDs together. Based on the
offloading decisions, the frame interpolation module deployed
on the edge and HMDs performs the corresponding interpolation
tasks. Edge-interpolated mid-frames are later transmitted to the
HMDs and inserted into the original video sequence to provide
improved VR video experience for the user.

B. Frame Similarity Analysis

Recall that SSIM is utilized to quantify similarity of different
frames due to its consistency with the perception of human eyes.
It is noteworthy that other similarity metrics can also be applied
in this module. Every two consecutive tile frames are carefully
examined and compared to get their similarity. Based on their
similarity, we determine into which frame pairs interpolated
mid-frames will be later inserted to improve playback smooth-
ness. If SSIM is lower than a threshold (set to 0.98 according to
the experiments in Section VI), extra interpolated frames are re-
quired to improve video quality. On the contrary, if neighboring
frames are with a larger SSIM value, the inter-frame difference
can hardly be distinguished thus the benefit of interpolation is
marginal. In this case, frame averaging will be employed in real
time to keep a constant frame rate across all of the tiles. Note
that videos with scene switches can cause low SSIM between
adjacent frames as well, but this can be solved by dedicated scene
change detection technologies [37]. For simplicity, we consider
VR videos with no scene switches in this article.

C. Offloading Decision Making

After obtaining the similarity comparison results of the video
frames, an offloading decision making module is activated. The
functionality of this module is two-fold. On the one hand, based

Algorithm 1: Workflow of the Proposed System.
Input: User request
Output: Tile set S to be transmitted, required frame rate
f ∗ and offloading ratio α

1: for Each chunk of the requested VR video do
2: Given user request and historical user information
3: Predict the set of tiles S to be transmitted
4: for Each tile in S do
5: Determine f ∗ by obtaining SSIM between frames

and derive α based on (3) or (17)
6: Offload frame interpolation task to the edge and

the HMDs according to α
7: Deliver edge-interpolated frames to the HMDs
8: end for
9: end for

on historical traces of user requests, this module predicts user’s
FoV, i.e., the subset of tiles that are most likely to be requested
in the next. On the other hand, this module determines the
percentage of the frame interpolation task to be completed on
the edge and the HMDs. To strike a balance between the trans-
mission delay and interpolation delay, the frame interpolation
task should be properly split between the edge and the HMDs in
accordance with the previous E2E delay analysis. This split ratio
is calculated by the offloading decision making module based on
the computing resources on the edge and the HMDs, as well as
the available bandwidth. Information about network conditions
and HMD capacities as well as user request can be collected via
uplink transmission with negligible delay because of the small
data volume [21].

The final interpolation decision consists of both the number of
interpolated mid-frames and the insert positions. This decision
is sent to the edge server along with the requested tiles. In certain
conditions, not all of the tiles in the predicted user FoV require
frame interpolation. As shown in Fig. 7, tiles with relatively
static content are directly sent to the HMDs rather than waiting
in the edge processing queue.

D. Collaborative Frame Interpolation

Upon the receiving of all of the data packets of a certain tile,
the edge or the HMDs decode the frames and input them into
the frame interpolation module. To cater for the stringent delay
requirement of VR video streaming, the state-of-art real-time
video frame interpolation neural network, RIFE [23], is adopted
in our system3. For the edge server, the data to be transmitted
after interpolation consists of the pristine video tile and raw
tile frames, both of which have much larger data size compared
with the compressed ones. For example, the data size of an 8-bit
640× 480 tile frame in original YUV420 format is 3.6 Mb while
that of a bin file of an entire tile containing 30 frames can be
as low as 200 kb. Since RIFE encodes the output image into

3All the experiments are conducted using RIFE as the interpolation network,
due to its relatively low complexity and acceptable frame quality. In case
interpolated frames with higher quality are expected, alternative interpolation
NNs [24], [25] can also be considered with higher time consumption.
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TABLE II
INTRA-FRAME ENCODING TIME

TABLE III
A SUMMARY OF VIDEO SEQUENCES

PNG (lossless encoding with comparatively low compression
ratio) format to maintain fidelity, transmitting those PNGs with
limited network bandwidth is still a burden.

In order to further reduce the transmission latency, the edge
server transfers the copies of the tile bin files to the HMDs
immediately after receiving them so that only the interpolated
tile frames are transmitted after decoding and processing on the
edge. Subsequently, the frames generated via edge interpolation
are encoded before delivering to the HMDs. For instance, intra-
frame compression of the H.26x coding standards [38] can help
to effectively reduce the data size with slightly loss of details and
negligible encoding time. We have tested the encoding speed of
intra-frame compression using FFmpeg4 under different quanti-
zation parameters (QP). Results in Table II show that the average
time of encoding an 640 × 480 tile frame is less than 2 ms. Note
that, the decoding time is even less than that of encoding, thus can
be ignored as well [10]. Another benefit of applying intra-frame
coding lies in the encoding independence of each frame, which
allows more flexible decoding before video playback.

VI. PERFORMANCE EVALUATION

We now evaluate the E2E delay performance of the proposed
system and the effects of different system parameters are also
studied under various experimental settings.

A. Experimental Setup

As listed in Table III, we select a set of 4K VR videos from the
dataset in [14] and YouTube5 (Dogs without viewpoint traces)
covering different genres, and crop them into 6 × 4 equal-size
video tiles as recommended in [39] with a duration of 1 s. All
video tiles are encoded at a QP value of 226, which is the best
quality level according to some recent studies [2], [15]. The
average decoding time of a video tile on the HMD using FFmpeg
is around 20 ms after testing on a personal computer with an
Intel i9-10900K CPU. The interpolation time of RIFE for one

4[Online]. Available: http://www.ffmpeg.org/
5[Online]. Available: https://www.youtube.com/watch?v=D01wilu5j_M
6The E2E delay analysis in Section IV holds under different encoding config-

urations since the source video tiles are completely decoded before interpolation.
The amount of I, P and B frames only affect the value of decoding delay and
video data size.

tile frame is around 10 ms using an RTX 3080 GPU. These
settings are used for the HMD. Since the computing capacity
of edge server is tens of times that of the HMD [21], the time
consumption of decoding and interpolation on the edge is set to
one-tenth of that on the HMD, in case of no parallel accelerators
are used. The compression ratio of edge-interpolated frames is
set to 1/2, and the original data size of edge-interpolated frame
is set to 1000 kb. Real-world network traces, as shown in Fig. 8,
in static (60 Mbps on average) and mobile (33 Mbps on average)
cases from the dataset in [40] are selected to emulate practical
bandwidth variation between the edge and the HMD. Besides,
one square wave-like trace is synthesized with mean throughput
at 50 Mbps.

Baselines: 1) HMD,huang2020rife: This baseline directly
transmits all low frame rate video chunks to the HMDs,
and executes all the frame interpolation tasks on a sin-
gle HMD for each user, without edge intelligence. 2)
Edge,madarasingha2022edge: This algorithm deploys a neural
interpolation model on an edge server to implement frame
interpolation. Then it delivers all the edge interpolated frames to
the HMDs, without consideration of task offloading between the
edge and HMDs. 3) HMD-Edge (T),sun2019communications:
The computing capacity of the edge and HMD are both taken into
account. The interpolation task is offloaded completely either to
the edge or to the HMD, namely, the offloading ratio is ∈ {0, 1}.
For fair comparison, frame similarity analysis is applied for these
baselines and ours. Our algorithm is named HMD-Edge in the
following.

B. Performance Comparison

In order to evaluate the effectiveness of the proposed system,
we compare the performance of the baselines and ours. Firstly,
in order to verify the impact of different SSIM values as the
interpolation threshold, we downsample video “Dogs” into 30
fps and compare the reconstruction quality and E2E delay of
different schemes. Fig. 9(a) shows the quality of RIFE and frame
averaging. Due to the strong fitting capability of neural networks,
RIFE always outperforms frame averaging, especially when
interpolated frames are added to every pair of consecutive frames
(i.e., SSIM = 1). However, the time consumption increases
dramatically with higher demand of video quality as shown
in Fig. 9(b). Under such circumstances, partially offloading
heavy interpolation task to the edge can significantly reduce the
E2E delay. In comparison with the HMD-only and Edge-only
schemes, the HMD-Edge scheme achieves a delay reduction
by up to 51% and 14%, respectively, on account of the joint
utilization of the computing resources on the edge and HMD.
Since the task offloading ratio is derived at finer granularity
in our work, i.e., mid-frames of a tile are generated by the
edge and HMD jointly, our algorithm performs better than
HMD-Edge (T). Based on the above results, we choose 0.98 as
the similarity threshold to decide whether to interpolate or not in
the following experiments. Note that other thresholds can also
be employed, depending on the delay requirement of applica-
tions, network conditions and the computation capability of the
HMD.
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Fig. 8. Snapshot of network traces.

Fig. 9. Impact of different SSIM values.

Fig. 10(a)–(c) illustrate the delay performance under different
network traces. Higher bandwidth results in lower E2E delay
by reducing the transmission delay of delivering mid-frames,
especially for tiles with heavy interpolation tasks. It can be
clearly seen that the long tail (corresponding to tiles with a
large amount of mid-frames to be interpolated) in Fig. 10(b)
decreases in Fig 10(a) and (c). However, if the interpolation

task is excessively heavy, the delivery of interpolated frames
may mitigate the benefits of offloading task to the edge. For
example, as shown in Fig. 10(a), the HMD-only scheme some-
times outperforms the Edge-only scheme. Therefore, it is im-
portant to derive a rational offloading strategy to balance the
computing cost and transmission cost as analyzed in Section IV.
Since VR contents near the equator of the spherical viewing
range usually contain a lot of motion, while those in the polar
regions are with relatively low motion, the required amount
of interpolated frames of different tiles are of high diversity.
As a result, the consequent E2E delay of equatorial tiles and
polar tiles can be quite different, leading to unsmoothness of
the CDF plots. Moreover, the adopted network traces exhibit
significant fluctuations, which also has an impact on the delay
performance.

Meanwhile, the capabilities of different schemes to interpo-
late tile frames are evaluated. Considering that the prefetching
time (i.e., prediction time window of viewpoint algorithms)
of video tiles should be carefully determined to ensure high
viewpoint prediction accuracy while preventing stalls, we eval-
uate under different prefetching time settings as in [3], [41].
The average number of interpolated mid-frames for a chunk of
different VR videos is presented in Fig. 11(a) and (b). Under
different time settings, the HMD-Edge scheme always achieves
the best performance and the performance gain grows with the
increase of prefetching time. With the prefetching time setting
to 500 ms, the transmission delay of tile bin files accounts for
a large portion thus there is little remaining time to perform
frame interpolation. Consequently, the edge server with far more
computing resources is more likely to deal with part of the task
while it is tough for the HMD to undertake within a short time.
Since the amount of interpolated frames is relatively small within
500 ms, it is more beneficial to offload interpolation tasks to the
Edge. Hence, the performance of Edge and HMD-Edge (T) are
almost equivalent. With longer prefetching time as illustrated
in Fig. 11(b), the gaps among different schemes are further
enlarged thus it is advantageous to realize the computational
potential of employing user HMD. However, prefetching tiles
too early may cause decrease in viewpoint prediction accuracy,
which means more missed tiles should be retransmitted leading
to larger transmission delay of delivering bin files. This in turn
deteriorates the interpolation performance of all schemes.
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Fig. 10. Delay performance under different network traces.

Fig. 11. Interpolation capability under different prefetching time.

C. Impact of System Parameters

The delay analysis in Section IV implies that, the E2E delay
is affected by various factors. Hence, we carry out experiments
under different parameter settings to figure out their influences
on the system performance in the case of enhancing frame rate of
video “Plane” from 30 fps to 90 fps. Since we mainly study the
potential of end-edge collaboration, the following experiments
focus on the comparisons between the Edge-only scheme and

HMD-Edge scheme and the conclusions will be similar when
involving other schemes.

Impact of video data size: The selected VR video is encoded
into different quality levels with different data size by adjusting
the QP from 22 to 32. The CDF of the E2E delay with different
video data size is shown in Fig. 12(a). It can be seen that the
HMD-Edge scheme undoubtedly outperforms the Edge-only
scheme in all conditions since it not only exploits the strong
computing resources on the edge, but also releases the pressure
of transmitting the mid-frames from the edge to the user by
partially offloading the frame interpolation task to both sides.
For each scheme, the E2E delay decreases with the growth of
QP as a larger QP leads to smaller video data size at the cost of de-
teriorating video quality. However, the delay reduction resulted
from reducing video data size gradually becomes marginal, since
the E2E delay is dominated by the delivery of edge-interpolated
frames and interpolation delay.

Impact of compression ratio: Fig. 12(b) compares the E2E de-
lay of the Edge-only scheme with that of the HMD-Edge scheme
under different settings of compression ratio of the interpolated
mid-frames. If those mid-frames are delivered without further
compression, the corresponding E2E delay is largely affected
by the transmission delay, especially for the Edge-only scheme
which needs to transmit all the mid-frames to the user according
to the interpolation decision. However, slight compression of
the pristine interpolated mid-frames can lead to a huge delay
reduction with almost negligible encoding and decoding time
cost and loss of quality. With a higher compression ratio, the
data to be transmitted after completing the frame interpolation
task on the edge becomes less thus lowering the requirement
of bandwidth and further reducing the E2E delay. But later,
the delay reduction resulting from the growth of compression
ratio rarely increases because the time consumption of the frame
interpolation task is gradually dominant over the transmission
delay.

Impact of edge computing capacity: As previously mentioned,
γ denotes the ratio of the processing rate of the edge to that of
the HMD. The results of evaluating under different settings of
edge computing capacity are exhibited in Fig. 12(c). It can be
distinctly observed that both schemes benefit from the growth of
computing resources on the edge server. Same as increasing the
compression ratio, when the required number of the interpolated

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:54 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DELAY-OPTIMIZED MULTI-USER VR STREAMING VIA END-EDGE COLLABORATIVE NEURAL FRAME INTERPOLATION 295

Fig. 12. Impact of system parameters.

Fig. 13. Average E2E delay under different number of users watching different videos.

mid-frames is small or the data size of the tile bin files is not large,
more computing resources can eliminate the computational de-
ficiency of the HMD. For example, the green line with γ = 20 is
above the red line with γ= 4 at the beginning of the CDF curves,
pointing out the necessity to assign more frame interpolation
task to the edge. Besides, the advantage of appending more
computing resources is in decline since the transmission of the
mid-frames gradually becomes the bottleneck of VR streaming.

D. Multi-User Scenario

To verify the performance in the multi-user case, we conduct
experiments under the impact of the number of users and dif-
ferent parameter settings. Fig. 13(a) illustrates the average E2E
delay when users watch the same video, “Dive” or “Plane” (dif-
ferent videos correspond to different Gamma distributions). The
E2E delay increases with the number of users since bandwidth
and computing resources are equally allocated to multiple users,
leading to an increase of transmission delay and interpolation
delay for a single user. Besides, edge queuing delay of video
packets grows due to concurrent video traffic. As shown in
Fig. 13(a), when multiple users concurrently request VR content
from the same source, the potential of utilizing one edge server
to share the frame interpolation task decreases. Therefore, in this
context, more edge servers should be deployed in the vicinity of
users to jointly increase the frame rate of VR videos or deploy
more computing resources on a single edge server.

The E2E delay performance when users watch different VR
videos are illustrated in Fig. 13(b) and (c), where computing and
bandwidth resources are allocated in proportion to the amount
of required interpolated frames. Deploying more computing

resources on the edge server undoubtedly reduces the E2E delay
by alleviating the edge interpolation and queuing burden. How-
ever, the gain from increasing computing resources becomes
marginal, since the transmission of video tiles or interpolated
mid-frames is the bottleneck in this condition. Therefore, to
further reduce the E2E delay, the impact of compression ratio is
also shown in Fig. 13(c). Similar to adjusting compression ratio
in the single-user case, further compression of edge interpolated
frames significantly reduces the delay of delivering interpolated
frames. In some cases, the Edge-only scheme with smaller
compression ratio even achieves lower delay compared with the
HMD-Edge scheme with higher compression ratio. For instance,
the green curve (β= 1/15) is below the red curve (β= 1/5) when
the number of users is small.

E. Discussion

Based on the above experiments, the superiority of the pro-
posed end-edge collaboration scheme can be clearly noted under
different network conditions and system settings. By jointly
exploiting the computing resources on the edge and HMDs, the
HMD-Edge scheme always achieves the lowest E2E delay when
the computation-intensive interpolation task is the bottleneck of
VR video streaming. However, if the bandwidth is not sufficient
to guarantee timely delivery of edge-interpolated frames, it is
more beneficial to offload more tasks to the HMDs, suggested
by the experimental results. This conclusion also holds in the
multi-user scenario. Besides, since multiple users compete for
bandwidth and computing resources, more edge nodes should
be involved to further provide improved services under this
circumstance.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 09,2024 at 18:36:54 UTC from IEEE Xplore.  Restrictions apply. 



296 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2024

For the future work, we will investigate the application of the
proposed system with the assistance of multiple edge servers.
The cost of deploying edge nodes should be taken into account
to yield more practical solutions. Besides, energy consumption
of edge servers and mobile devices cannot be ignored, since the
computing resources are limited and the demand of green and
sustainable development is gaining growing popularity.

VII. CONCLUSION

In this article, we have proposed an efficient end-edge collab-
orative VR video streaming system through neural frame inter-
polation to significantly increase VR frame rate for improving
visual quality. To cope with the great demand for computing re-
sources, an edge server and several VR HMDs have been jointly
applied to implement the computation-intensive neural interpo-
lation tasks, guaranteeing timely VR content delivery. Besides,
we have modeled the queuing of video frames using Gamma
distribution to characterize heavy video traffic in multi-user sce-
nario. Based on the E2E delay analysis of the proposed system,
an optimal task offloading strategy is developed to minimize the
E2E delay via balancing computation and transmission burden
on the edge and HMDs. Finally, real-world video sequences have
been used to evaluate the system performance and the results
demonstrate the effectiveness under various network conditions.

APPENDIX A
PROOF OF LEMMA 1

In Section IV-B, the upper bound of average queuing delay
is given in (13), where VR video tile flow is characterized as a
GI/G/1 queuing process. In the special M/G/1 case (with Poisson
arrivals, i.e., σ(a)

m = 1/λm), the mean queue length proves to be

L =
ρ2m + [λmσ

(s)
m ]2

2(1− ρm)
, (19)

which is called the Pollazcek-Khintichine formula[42]. Accord-
ing to Little’s rule, the mean waiting time in the M/G/1 queue is
thus

q′ = L/λm =
ρ2m + [λmσ

(s)
m ]2

2λm(1− ρm)
. (20)

It can be noted that the derivative of (20) with respect to
σ
(s)
m is equivalent to that of the upper bound given by (13).

Therefore, the actual queuing delay in the GI/G/1 queue can be
approximated by its boundary with a normalization factor [36],
which can be further derived based on the special M/G/1 case.
By substituting σ

(a)
m = 1/λm into (13), the right term scaled

down by a normalization factor, should be equal to (20). The

normalization factor can thus be derived as 1+[σ
(s)
m μm]2

1/ρ2
m+[(σ

(s)
m )μm]2

.

Consequently, the average queuing delay of the GI/G/1 queuing
process is

q ≈ 1 + [σ
(s)
m μm]2

1/ρ2m + [(σ
(s)
m )μm]2

· [(σ
(s)
m )2 + (σ

(a)
m )2]

2[(1/λm)− (1/μm)]
, (21)

which concludes the proof.
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