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3D On and Off-Grid Dynamic Channel Tracking for
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Abstract— The space-air-ground integrated network (SAGIN)
has drawn increasing attention for its benefits, such as wide
coverage, high throughput for 5G and 6G communications.
As one of the links, space-air communications between multiple
unmanned aerial vehicles (UAVs) and Ka-band orbiting low earth
orbit (LEO) satellites face a crucial challenge in tracking the 3D
dynamic channel information. This paper exploits a statistical
dynamic channel model called the multi-dimensional Markov
model (MD-MM), which investigates the more realistic spatial
and temporal correlation in the sparse UAVs-satellite channel.
Specifically, the spatial and temporal probabilistic relationships
of multi-user (MU) hidden support vector, single-user (SU)
joint hidden support vector, and SU hidden value vector are
investigated. The specific transition probabilities that connect
the SU and MU hidden support vector for both azimuth and
elevation directions are defined. Moreover, based on the pro-
posed MD-MM, we derive a novel multi-dimensional dynamic
turbo approximate message passing (MD-DTAMP) algorithm for
tracking the 3D dynamic channel in multiple UAVs systems.
Furthermore, we also develop a gradient update scheme to
recursively find the azimuth and elevation offset for 3D off-grid
estimation. Numerical results verify that the proposed algorithm
shows superior 3D channel tracking performance with smaller
pilot overhead and comparable complexity.

Index Terms— Channel tracking, message passing, space-air
communications.

I. INTRODUCTION

W ITH increasing communication traffic demands for
emerging applications, such as the internet of things

(IoT), cloud computing, autonomous cars and so on, future
networks have been expected to provide more robust com-
munication services. Hence, the space-air-ground integrated
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network (SAGIN) has been widely studied for its advantages
such as large coverage, high throughput and strong resilience
for 5G and beyond systems [1]. SAGIN has mainly three
segments: space segment consists of satellite network, air
segment consists of aerial network, and ground segment con-
sists of terrestrial network [2]. Acting as the middle segment,
aerial network with unmanned aerial vehicles (UAVs) is cost–
effective. It can provide a shorter line of sight (LoS) range for
transmission compared with satellite-ground links [3]. UAVs
are deployed as base stations in both crowded areas and
non-accessible emergency scenarios for UAV-aided air-ground
communications, which can provide seamless coverage. For
space-air links, UAVs play a role as a relay to transmit the
information received from satellite (e.g. low earth orbit (LEO)
and medium earth orbit (MEO) satellites [4]) to terrestrial
network with mmWave Ka-band [5], [6]. In the above
two UAV-related communication links, due to the velocity
of UAVs, it is undeniable that the estimation of the highly
dynamic communication channels with lower overhead and
good accuracy faces some challenges: the spatial and temporal
variations caused by the mobility of UAVs in three dimen-
sional (3D) space [7].

A. Related Work

Conventionally, channel state information (CSI) is estimated
using techniques, such as least square (LS) and minimum
mean square error (MMSE). However, for these methods,
training overhead is proportional to the number of transmit
antennas which is infeasible to mmWave communication with
massive MIMO system [8]. To reduce the training over-
head, compressive sensing (CS) based techniques, such as
orthogonal matching pursuit (OMP) and compressive sampling
matching pursuit (CoSaMP), have been widely studied to
estimate the approximate sparse wireless channel in different
domain [9].

Based on fundamental CS concepts and algorithms, some
studies explored the more detailed sparse structure of the
channel through spatial correlation [10]–[13] and temporal
correlation [14]–[17]. Because of the physical scattering of
the environment, [10] has concluded that the angular domain
shows a burst sparsity structure. Hence, they proposed the
burst least absolute shrinkage and selection operator (burst-
LASSO) to extract the burst structure properties in the massive
MIMO channels with enhanced performance. Reference [11]
also exploited the clustered sparse structure of the channel
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support in the spatial domain through Markov prior. [12]
proposed a hidden Markov model to capture the angular
domain structured sparsity of the channel. Moreover, [13]
exploited the double sparsity of the multipath components
in both angular domain and delay domain. However, these
studies only considered the angular domain structure ([13] also
considered the delay domain) based on static channel environ-
ment. Effectively utilizing the prior information can reduce the
training overhead and maintain a good current channel estima-
tion performance for dynamic channel tracking. Reference [14]
proposed a prior aided channel tracking scheme by taking the
practical user motion model into account through a temporal
variation law of the physical direction. Reference [15] modeled
the channel by a Markov process and the Kalman filter to
track the dynamic model. A structured matching pursuit [16]
and differential orthogonal matching pursuit (D-OMP) [17] are
proposed both by considering the temporal correlation that
path delays change slowly over time but path gains evolve
faster.

Jointly considering both spatial correlation and temporal
correlation can improve the channel tracking performance
[18]–[21]. Reference [18] proposed the channel tracking
scheme based on the prior-aided iterative angle and Doppler
shift estimation algorithm and with the help of the previ-
ously estimated channel parameters. Reference [19] decou-
pled the channel information into angles of arrival/departure
(AoAs/AoDs) information and gain knowledge. A modified
unscented Kalman filter tracks the AoAs/ AoDs, and the gain
is estimated from the proposed beam training. References [20]
and [21] formulated the more realistic dynamic models of the
AoDs support over time through hidden Markov model in flat
and 3D space, respectively.

B. Motivation and Contribution

The aforementioned channel estimation and tracking work
in [10]–[12], [14]–[20] can be directly adapted to the ground
links and air-ground links with mobile scenario. However,
for space-air links, which consist of multiple UAVs and one
satellite, there are some non-neglected features: the known
orbiting satellite, the 3D UAVs moving trajectories, and the
dominant LoS ray between each UAV and satellite [2].

Although [10]–[12] considered the angular domain spar-
sity of the channel, it’s non-trivial to include the temporal
information for channel tracking, especially in highly mobile
space-air links with orbiting satellite and UAVs navigation.
Comparatively, [14]–[17] all considered the prior channel
information for time-varying channel tracking. However, they
ignored the spatial angular structured sparsity. Reference [18]
studied the prior information of both angle and Doppler shifts
for channel tracking, the probabilistic relationship of the angle
movement is not explored. Moreover, although [19] and [20]
both jointly considered spatial and temporal correlation of
the dynamic channel, the premise of the system were both
communicated through a flat surface. Furthermore, although
our previous work [21] considered a more realistic 3D space-
air communications with only one UAV, however, the multiple-
UAVs system can provide wider coverage in practice.

Compared with one UAV in the system, for multiple UAVs,
there will have more than one structured sparse points on
the quantized grids to represent the multi-user (MU) spatial
correlation with sharing azimuth or elevation supports. Hence,
a more complicated scenario with multiple UAVs should be
further explored. The above algorithms all assumed that the
true angles lie on the quantized grids. However, in the real
world, the true angle is continuously distributed [22]. To solve
the off-grid problem, [22] and [23] all proposed algorithms
based on a two-dimensional (2D) flat environment. Hence,
none of the mentioned work considered the 3D off-grid case
of the channel model.

Motivated by the above literature review, we consider the
multiple UAVs space-air links to recursively track the 3D
off-grid dynamic channel with smaller training overhead, com-
parable complexity, and improved estimation performance.
The main contributions are summarized as follows:

• We develop a statistical 3D on-grid and off-grid chan-
nel model called multi-dimensional Markov model
(MD-MM) for space-air communication links with 3D
navigation multiple UAVs and orbit LEO satellite in the
system. The MD-MM captures the structured sparsity of
the MU azimuth and elevation spatial domains and the
probabilistic relationship between MU and SU support.

• Based on the proposed MD-MM channel model, we pro-
pose a novel multi-dimensional dynamic turbo approx-
imate message passing (MD-DTAMP) algorithm which
can recursively track the 3D on-grid dynamic channel
over time.

• We further develop a gradient azimuth and elevation 3D
off-grid estimation scheme for a more realistic channel
model, which iteratively update the optimum 3D offset
through gradient calculation.

• The proposed MD-DTAMP algorithm with and without
an off-grid scheme all show superior estimation perfor-
mance compared with benchmark algorithms. Moreover,
the proposed algorithm can achieve solid performance
with smaller pilot overhead and comparable complexity.

This paper is organized as follows. The downlink LEO
satellite to multiple UAVs system model is introduced in
Section II. In Section III, the 3D on-grid and off-grid MD-MM
channel model are elaborated. The problem of channel track-
ing is formulated in Section IV. The proposed algorithm
MD-DTAMP and the 3D gradient off-grid estimation scheme
are presented in Section V. Numerical results and conclusions
are then provided in Section VI and Section VII, respectively.

Notation: Throughout the paper, we use the following
common notation. The complex numbers are denoted by C.
The transpose and the conjugate transpose are denoted by
(·)T, (·)H respectively. I is the identity matrix. CN (mean,
covariance) indicates a complex Gaussian random vector with
defined mean and covariance. ‖ · ‖ is the l2 norm.

II. SYSTEM MODEL

In this paper, we consider the narrow-band flat fading
transmission model through space-air downlink communica-
tion from LEO satellite to multiple UAVs. Since Ka-band is
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Fig. 1. The illustration of space-air communications system model at time
slot t.

TABLE I

TABLE OF IMPORTANT NOTATIONS

weather dependent, to mitigate the high path loss, the LEO
satellite is installed with uniform planar array (UPA) with
M = Nx ×Ny antenna elements to compensate the transmis-
sion loss [6], [24]. The kth ∈ {1, . . . , K} UAV is equipped
with a high gain omni-directional single antenna1 [25], [26].
The illustration of the system model can be found in Fig. 1.

1For simplicity of only exploring the temporal and spatial correlation
of the azimuth and elevation AoD of the satellite, the high gain omni-
directional single antenna is assumed to be carried by the kth UAV. However,
the proposed system model can be further extended with UAVs also installed
with UPA. The main difference is that the channel model should further take
the receiver array response vectors with azimuth and elevation directions of
AoAs into consideration.

The important notations of the system and channel model are
shown in Table I. In training procedure, as symbols Sk ∈
CM×NS are transmitted from satellite to UAV, the received
signal at kth UAV at time slot t can be expressed as

yRX
k,t = hk,tSk + nRX, (1)

with hk,t ∈ C1×M as the frequency domain channel vector,
and nRX ∼ CN (0, σ2

nI) is the additive white Gaussian noise.

A. Channel Model

The LoS ray is the dominant path in space-air commu-
nication links [27]. Hence, the hk,t denotes the frequency
domain channel vector with one dominant LoS path, which
is written as,

hk,t = g̃k,ta
H (θk,t, φk,t) , (2)

where g̃k,t is the complex channel gain, a (θk,t, φk,t) ∈
C(Nx×Ny)×1 represents the transmit array response vectors,
θk,t and φk,t as azimuth and elevation directions of AoD for
kth UAV at time slot t. As for UPA installed LEO satellite,
the steering vector can be written as

a (θk,t, φk,t)

=
1√

Nx × Ny

[1, . . . , ej 2π
λ d sin θk,t(nx sin φk,t+ny cos φk,t),

. . . , ej 2π
λ d sin θk,t(Nx sin φk,t+Ny cos φk,t)]T , (3)

where λ is the signal wavelength, 0 � nx < Nx and
0 � ny < Ny are the indices of an antenna element with
Nx and Ny as antenna array sizes.

B. On-Grid and Off-Grid Virtual Channel Model

Conventionally, to explore the sparse property of the chan-
nel, AoDs are assumed to lie on the quantized grids for
simplicity [28]. With discretized AoDs, the channel model is
called on-grid channel. However, in practice, the true angle is
continuously distributed. The channel with this kind of AoDs
is named as off-grid channel [23]. Hence in this subsection,
we present both on-gird and off-grid cases.

For on-grid case, the channel model can be further written
into a sparse representation as

hk,t = gk,tÃ
H
(
θ̃k,t, φ̃k,t

)
, (4)

where gk,t ∈ C1×M is a sparse vector with one non-zero
elements (which means only one dominant path for the kth

UAV), M is the total number of spatial grids, the quantized
AoD pairs are considered, i.e., θ̃k,t = [0, θrange/Nx, . . . , θrange

(Nx − 1)/Nx] and φ̃k,t = [0, φrange/Ny, . . . , φrange

(Ny − 1)/Ny], which means the virtual kth UAV’s AoD

pair can consist of a M uniform grid, and Ã
(
θ̃k,t, φ̃k,t

)
∈

CM×M is the dictionary matrix. For off-grid case, we define
Δθk,t,nx and Δφk,t,ny to represent the offset angles for
both azimuth and elevation directions, respectively. Hence,
the true AoD azimuth and elevation angle should be the
combination of the nearest on-grid angle and the relative offset
angle. As an example, we demonstrate the kth UAV’s AoD
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Fig. 2. Illustration of the off-grid AoD azimuth direction.

azimuth direction. The illustration can be found in Fig. 2.
We assume that the true azimuth angle θk,t has the nearest
on-grid angle θ̃k,t,nx and the offset angle is Δθk,t,nx =
θk,t − θ̃k,t,nx . Similarly, the AoD elevation direction offset
angle can be written as Δφk,t,nx = φk,t − φ̃k,t,ny . Hence,
the off-grid channel can be written as

hk,t = gk,tÃ
H
(
θ̃k,t + Δθk,t, φ̃k,t + Δφk,t

)
, (5)

where

Ã
(
θ̃k,t + Δθk,t, φ̃k,t + Δφk,t

)
=
[
a
(
θ̃k,t,1 + Δθk,t,1, φ̃k,t,1 + Δφk,t,1

)
,

. . . , a
(
θ̃k,t,nx + Δθk,t,nx , φ̃k,t,ny + Δφk,t,ny

)
,

. . . , a
(
θ̃k,t,Nx + Δθk,t,Nx , φ̃k,t,Ny + Δφk,t,Ny

)]
(6)

is the off-grid array response vector dictionary matrix.
To be noticed, the AoD azimuth offset vector Δθk,t =
[Δθk,t,1 . . . , Δθk,t,Nx ]T with

Δθk,t,nx =

{
θk,t − θ̃k,t,nx , Active path,

0, Otherwise.
(7)

The otherwise case represents the non-active virtual on-
grid offsets which can be observed in Fig. 2 with the nota-
tion from Δθk,t,1 to Δθk,t,N without the active path offset
Δθk,t,nx . Similarly, the AoD elevation offset vector Δφk,t =[
Δφk,t,1 . . . , Δφk,t,Ny

]T
with

Δφk,t,ny =

{
φk,t − φ̃k,t,ny , Active path,

0, Otherwise.
(8)

When Δθk,t = 0 and Δφk,t = 0, the off-grid channel can
be treated as the on-grid channel in (4).

III. MULTI-DIMENSIONAL MARKOV

MULTIUSER CHANNEL MODEL

In our model, communication links connected between LEO
satellite and multiple UAVs are considered. Because of the
LEO satellite height, a certain portion of the earth’s surface is
covered at any given time slot. This means a constellation of
LEO satellites is necessary for full coverage of the earth [29].
We consider a condition that one LEO satellite communicates
with the same group of multiple UAVs simultaneously before
any communication link is handed over to the adjacent LEO
satellite. This means the LEO satellite would orbit in a certain

distance range, limiting the azimuth and elevation angle in
fixed ranges. With assumptions above, we transfer the complex
continuous relative displacement relationships between LEO
satellite and UAVs into time-varying angular domain variance
with transition probability similar to [19]–[21] (this is further
elaborated in Section III-C).

In the MU scenario with multiple UAVs, we specially
explore the relationship between the MU and SU hidden
support vector. The MU azimuth ã(T ) and elevation ẽ(T )

support vector are both modeled as two dimensional Markov
model (2D-MM) similarly in [21]. ã(T ) and ẽ(T ) represent
the MU azimuth and elevation support vector over total time
period T . During time slot t, ãt = [ãt,1, . . . , ãt,Nx ] ∈
{0, 1}Nx with ãt,nx = a1,t,m ∨ a2,t,m ∨ . . . ∨ aK,t,m, which
means MU azimuth support is the union of the SU azimuth
support of total K UAVs at time slot t. Similarly, for MU
elevation support ẽt = [ẽt,1, . . . , ẽt,Nx ] ∈ {0, 1}Nx with
ẽt,nx = e1,t,m∨e2,t,m∨. . .∨eK,t,m. Furthermore, the SU joint
hidden support vector bk,t is modeled as three dimensional
hidden Markov model (3D-HMM) which jointly combines the
single-user (SU) azimuth and elevation support.

The details of the complete multi-dimensional Markov
model (MD-MM) channel model are introduced in four
parts: probability model for SU channel, 2D Markov model
(2D-MM) for azimuth and elevation MU hidden support
vector, 3D-HMM for azimuth and elevation SU joint hidden
support vector, and Gaussian Markov model for SU hidden
value vector.

A. Probability Model for SU Channel

The dynamic angular domain channel for the kth UAV
g

(T )
k = {gk,1, . . . , gk,T } with gk,t = {gk,t,1, . . . , gk,t,M}

can be modeled as a probabilistic signal model with two
hidden random processes, SU joint hidden support vector
b
(T )
k = {bk,1, . . . , bk,T } and SU hidden value vector ϑ

(T )
k =

{ϑk,1, . . . , ϑk,T }. Here, bk,t =
[
bk,t,1,1, . . . , bk,t,Nx,Ny

]
=

[bk,t,1, . . . , bk,t,M ] ∈ {0, 1}M represents the SU joint hidden
support vector at time t, which indicates the kth UAV channel
sparsity with bk,t,m ∈ {1, 0}. The SU hidden value vector
ϑk,t = [ϑk,t,1, . . . , ϑk,t,M ] ∈ CM represents the temporal
correlation of the kth UAV channel coefficients. The dynamic
channel element for the mth AoD direction in the time t of
the kth UAV can be written as

gk,t,m = bk,t,mϑk,t,m, (9)

where bk,t,m denotes whether there is an active path or not
(i.e., bk,t,m = 1 means the mth AoD path is activated) and
ϑk,t,m represents the path gain.2

To formulate the more realistic dynamic channel (i.e., the
inactive AoD path at the current time t may be activated at
time t + 1), a probabilistic channel model of kth UAV with
channel prior distribution can be formed as

p
(
g

(T )
k , b

(T )
k , ϑ

(T )
k

)
= p

(
g

(T )
k | b

(T )
k , ϑ

(T )
k

)
p
(
b
(T )
k

)
p
(
ϑ

(T )
k

)
, (10)

2For paring the azimuth and elevation directions, m = (nx−1)×Nx +ny .
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Fig. 3. Factor graph of the SU channel.

where the kth UAV channel vector conditional prior is

p
(
g

(T )
k | b

(T )
k , ϑ

(T )
k

)
=

T∏
t=1

M∏
m=1

p (gk,t,m | bk,t,m, ϑk,t,m)

=
T∏

t=1

M∏
m=1

δ (gk,t,m − bk,t,mϑk,t,m) ,

(11)

with δ(·) is the Dirac delta function. The factor graph of the
combined kth UAV channel can be found in Fig. 3, with πk,t,m

denotes the conditional prior p (gk,t,m | bk,t,m, ϑk,t,m). This
factor graph shows that the final kth UAV channel gain gk,t

is the combination of the SU joint hidden support vector bk,t

(on the left hand side of Fig. 3) and the SU hidden value
vector ϑk,t (on the right hand side of Fig. 3).

B. Gaussian Markov Model for SU Hidden Value Vector

The illustration of the factor graph for the kth UAV SU
hidden value vector ϑk,t and the Gaussian-Markov model can
be found in Fig. 3 (on the right hand side). Due to the path
gains change smoothly over time [17], the hidden value vector
can be formulated as the Gauss-Markov processes [30]

ϑk,t,m = (1 − βk) (ϑk,t−1,m − μk) + βkωk,t,m + μk, (12)

where βk ∈ [0, 1], ωk,t,m ∼ CN (0, ζk), μk ∈ C is the mean
of the process. When βk = 0, then ϑk,t,m = ϑk,t−1,m, which
indicates that ϑk,t remain unchanged over time. When βk = 1,
then ϑk,t,m = βkωk,t,m+μk, which means that the SU hidden
value vector shows the i.i.d Gaussian distribution with mean
μk over time. If 0 < βk < 1, the conditional probability can
be written as

p (ϑk,t,m | ϑk,t−1,m)
∼ CN (

ϑk,t,m; (1 − βk)ϑk,t−1,m + βkμk, β2
kζk

)
. (13)

The distribution of the steady state of the process is
ϑk,t,m ∼ CN (μk, σ2

k = βkζk

2−βk
). And the joint distribution of

ϑk
(T ) can be formulated as

p
(
ϑ

(T )
k

)
=

M∏
m=1

p (ϑk,1,m)
T∏

t=2

p (ϑk,t,m | ϑk,t−1,m) , (14)

where p (ϑk,1,m) and p (ϑk,t,m | ϑk,t−1,m) are the transition
probabilities that equal to the factor nodes fk,1,m and fk,t,m

in Fig. 3.

Fig. 4. (a) MU hidden support matrix illustration at time slot t with Nx = 8
Ny = 8 when three UAV users are considered with three activated paths.
(b) Factor graph of 2D-MM of the MU azimuth support vectors when T = 2
and Nx = 8.

C. 2D-MM for Azimuth and Elevation MU
Hidden Support Vector

The details of the azimuth and elevation MU hidden support
vector are introduced as follows: To explain the 2D-MM for
MU hidden support vector of azimuth and elevation directions,
we take three UAV users as an example in Fig. 4(a). The
relationship of the MU azimuth support ãt and the MU
elevation support ẽt with three activated paths are shown.
To be noticed, in this example, there are two users share the
same MU azimuth support. Hence, the MU azimuth support
ãt has only two activated points at time t. For MU elevation
support ẽt has three activated points at time t.

Because of the navigation of the UAVs [31], together with
the known orbital voyage of the LEO satellite, the relative
displacement of the UAV and satellite is continuous. Hence,
the spatial sparsity pattern will act highly related with the
prior adjacent pattern, i.e., ãt+1,nx has higher probability
be influenced by the adjacent ãt,nx−1 in previous time
slot [10]. Reference [17] has also verified that the channel
support change slowly over time, which indicates ãt+1,nx

has higher probability to be influenced by itself in previous
time slot ãt,nx . This relationship which considers both spatial
correlation and temporal correlation is named as dynamic 2D
sparsity. The illustration of this 2D-MM can be found in the
factor graph in Fig. 4(b). The model over total time period T
can be expressed as:

p
(
ã(T )

)
= p (ã1,1)︸ ︷︷ ︸

qã1,1

Nx∏
nx=2

p (ã1,nx | ã1,nx−1)︸ ︷︷ ︸
q
(AS)
ã1,nx ,ã1,nx−1

×
T∏

t=2

⎛
⎜⎜⎜⎝p (ãt,1 | ãt−1,1)︸ ︷︷ ︸

q
(AT )
ãt,1 ,ãt−1,1

Nx∏
nx=1

p(ãt,nx | ãt−1,nx−1, ãt−1,nx)︸ ︷︷ ︸
q
(A)
ãt,nx ,ãt−1,nx−1,ãt−1,nx

⎞
⎟⎟⎟⎠ ,

(15)
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Fig. 5. (a) Illustration of SU joint hidden support matrix based on MU
hidden support matrix in Fig.4. (b) HMM of SU azimuth support ak,t,nx

with three users. (c) 3D-HMM Factor graph of the SU joint hidden support
vector bk,t when T = 1, Nx = 8, Ny = 8.

where qã1,1 , q
(AS)
ã1,nx ,ã1,nx−1

, q
(AT )
ãt,1,ãt−1,1

and

q
(A)
ãt,nx ,ãt−1,nx−1,ãt−1,nx

are the transition probabilities

that equal to the factor nodes d̃1,1, d̃1,nx , d̃t,1 and d̃t,nx

in Fig. 4(b) of the azimuth directions. To be noticed, the MU
azimuth support ãt,nx ∈ {0, 1}. The support of the MU

elevation support of AoD p
(
ẽ(T )

)
can be modeled similarly.

D. 3D-HMM for Azimuth and Elevation SU Joint
Hidden Support Vector

To explore the relationship between MU and SU, we mod-
eled the joint prior distribution of MU and SU azimuth or
elevation support as HMM with conditional probability. Take
kth UAV SU azimuth support as an example:

p
(
ã(T ), a

(T )
k

)
=

T∏
t=1

K∏
k=1

p (ãt) p (ak,t|ãt)

=
T∏

t=1

K∏
k=1

Nx∏
nx=1

p (ãt) p (ak,t,nx |ãt,nx)︸ ︷︷ ︸
ς
(A)
k,ãt,nx ,ak,t,nx

. (16)

where ς
(A)
k,ãt,nx ,ak,t,nx

is the transition probability equal to the

factor node �k,t,nx in Fig.5(b). Furthermore, ã(T ) and a
(T )
k

are the MU azimuth support vector and kth UAV SU azimuth
support vector over time period T , respectively. Although in

practice, multiple UAVs may share partially MU azimuth
or elevation support, i.e., in Fig.5, user 2 and user 3 both
have the 4th grid activated which means the same azimuth
support is shared, our HMM model can still apply. To be
noticed, each element in a

(T )
k is generated by the MU azimuth

support vector in the HMM with certain conditional prob-
ability, i.e., p(ak,t,nx = 1|ãt,nx = 0) = ς

(A)
k,t,0,1 = 0 and

p(ak,t,nx = 1|ãt,nx = 0) = ς
(A)
k,t,1,1. In another word, when

the MU azimuth support element ãt,nx = 0, there is no way
that the kth UAV SU azimuth support element ak,t,nx = 1.
However, when the MU azimuth support element ãt,nx = 1,
there is a certain probability ς

(A)
k,t,1,1 that the nth

x element
ak,t,nx in the kth UAV SU azimuth support vector is 1. The
kth UAV SU elevation support can be modeled similarly.

Hence, the 3D-HMM of the SU joint hidden support b
(T )
k

over total period time T which combines both azimuth and
elevation direction supports can be found in Fig. 5(c). The
joint conditional prior of the channel support probability of
the kth UAV is given by

p
(
b
(T )
k |a(T )

k , e
(T )
k

)
=

T∏
t=1

Nx∏
nx=1

Ny∏
ny=1

p
(
bk,t,nx,ny |ak,t,nx , ek,t,ny

)
. (17)

IV. 3D OFF-GRID DYNAMIC SPARSE CHANNEL

TRACKING PROBLEM FORMULATION

By taking the off-grid channel (5) into consideration,
the received signal at kth UAV can be written as

yRX
k,t = gk,tÃ

H
(
θ̃k,t + Δθk,t, φ̃k,t + Δφk,t

)
Sk + nRX

k,t.

(18)

with yRX
k,t ∈ C

1×NS . To convert the received signal into the
standard CS model, we reshape gk,t from 1 × M to M × 1.
Hence the received signal can be rewritten as

yk,t = Φk,t

(
Δθk,t, Δφk,t

)
gk,t + nk,t, (19)

with the sensing matrix Φk,t

(
Δθk,t, Δφk,t

)
=

ST
k

(
Ã

H
(
θ̃k,t + Δθk,t, φ̃k,t + Δφk,t

))T

∈ CNS×M ,

yk,t ∈ CNS×1. For the training phase, the transmitted
pilot Sk is designed based on the partial discrete Fourier
transform (DFT) random permutation measurement matrix
Φk,t

(
Δθk,t, Δφk,t

)
[11], [32]. Details are shown in

Appendix A. Given the received signals of total t time
period y

(t)
k , the purpose is to track the dynamic channel

vector gk,t at time t. The channel vector can be estimated as

ĝk,t,m = E
(
gk,t,m|y(t)

k , Δθk,t, Δφk,t

)
, when the expectation

is over the marginal posterior

p
(
gk,t,m|y(t)

k , Δθk,t, Δφk,t

)
∝
∑
b
(t)
k

∫
g
(t)
−(k,t,m),ϑ

(t)
k

p

×
(
g

(t)
k , ã(t), ẽ(t), b

(t)
k , ϑ

(t)
k , y

(t)
k |Δθk,t, Δφk,t

)
(20)
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Fig. 6. Factor graph representation of the MD-MM.

with g
(t)
−(k,t,m) denotes the vector g

(t)
k without the element

gk,t,m. Our goal is to obtain the MMSE of the estimated gk.
At the same time, the optimal off-grid azimuth and elevation
offset Δθk,t

(opt) and Δφ
(opt)
k,t are obtained by maximum

likelihood (ML) as follows,

Δθ
(opt)
k,t , Δφ

(opt)
k,t

= argmax
Δθk,t,Δφk,t

ln p
(
y

(t)
k , Δθk,t, Δφk,t

)
= argmax

Δθk,t,Δφk,t

∫
g
(t)
k

p
(
g

(t)
k , y

(t)
k , Δθk,t, Δφk,t

)
dg

(t)
k . (21)

V. MULTI-DIMENSIONAL DYNAMIC TURBO APPROXIMATE

MESSAGE PASSING ALGORITHM WITH

3D OFF-GRID ESTIMATION

Approximate Message Passing (AMP) based algorithms
have been widely studied for user detection [33], [34] and
sparse channel estimation [30], [35], [36] because of its
good reconstruction accuracy and low complexity. Tradition-
ally, AMP is applied based on a static prior information.
However, the prior distribution knowledge is time-varying
in our structured dynamic channel model. As can be seen
from the factor graph Fig. 6, the complex structure makes it
more challenging to gain the exact marginal posterior in (20).
We further employ a turbo iterative framework [37] to improve
the reconstruction performance. The details of the proposed
algorithm is elaborated in this section.

The factor graph of the total MD-MM distribution
p(gpri

B,t, ã
(t), ẽ(t), b

(t)
k , ϑ

(t)
k , y

(t)
k ) is shown in Fig. 6. This fac-

tor graph contains three sub-graphs: the MU azimuth and
elevation vector ãt and ẽt (on the left-hand side of Fig. 6),
the SU hidden support vector bk,t (in the middle of Fig. 6),
and the kth UAV SU hidden value vector ϑk,t (on the right-
hand side of Fig. 6) all through time T . The MU azimuth and

elevation vector ãt and ẽt are both structured as 2D-MM.
The kth UAV SU hidden support vector bk,t is structured
as 3D-HMM which contains both SU azimuth and elevation
vector ak,t and ek,t. The details of all the necessary nodes
in the factor graph are already explained in Section III. The
expression of the factor nodes, distributions and functional
forms are shown in Table II.

Due to the complex structure of the total factor graph of
the MD-MM, it is challenging to achieve the exact marginal
posterior in (20). In this section, to explore the dynamic chan-
nel structure, we explain the structural details of the proposed
algorithm based on the turbo framework with the proposed
MD-MM MMSE denoiser. In [37], conventional turbo com-
pressed sensing is achieved based on a two-step iteration
framework: linear minimum mean-square error (LMMSE)
estimator and i.i.d. prior-based MMSE estimator. Our proposed
algorithm will be introduced in four parts: Module A LMMSE
Estimator, Module B MD-MM MMSE denoiser, message
passing through time, and 3D off-grid estimation.

A. Module A: LMMSE Estimator

In Module A, the angular channel vector gk,t at time t for
kth UAV is estimated based on the received signal yk,t with

the prior distribution CN
(
gk,t; g

pri
A,k,t, v

pri
A,k,tI

)
. The extrinsic

mean and variance are defined as [37]

gpost
A,k,t = gpri

A,k,t +
vpri
A,k,t

vpri
A,k,t + σ2

e

ΦH
k,t

(
yk,t − Φk,tg

pri
A,k,t

)
(22)

and

vpost
A,k,t = vpri

A,k,t −
NS

M

(
vpri
A,k,t

)2

vpri
A,k,t + σ2

e

, (23)
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TABLE II

TABLE OF FACTORS, DISTRIBUTIONS AND FUNCTIONAL FORMS ASSOCIATED WITH OUR MD-MM

respectively. The extrinsic distribution of gk,t is given by

CN
(
gk,t; g

post
A,k,t, v

post
A,k,tI

)
∝ CN

(
gk,t; g

pri
A,k,t, v

pri
A,k,tI

)
CN (

gk,t; g
ext
A,k,t, v

ext
A,k,tI

)
,

(24)

where the extrinsic mean and variance are respectively
given by

gext
A,k,t = vext

A,k,t

(
gpost
A,k,t

vpost
A,k,t

− gpri
A,k,t

vpri
A,k,t

)
(25)

and

vext
A,k,t =

(
1

vpost
A,k,t

− 1
vpri
A,k,t

)−1

. (26)

B. Module B: Message Passing MMSE Denoiser

Following LMMSE estimator in module A, the main task
for module B is to exploit the kth UAV spatial sparsity
details of the proposed MD-MM in the multi-UAVs system.
Hence, the extrinsic mean and variance pass through the graph,
which means gpri

B,k,t = gext
A,k,t and vpri

B,k,t = vext
A,k,t [37].

In module B, the purpose is to calculate the approximate
posterior distributions of p(gk,t,m|gpri

B,k) instead of (20) using
the sum-product message passing structure shown in the factor
graph. For message passing algorithm, the basic assumption

is that gpri
B,k,t = gk,t + zk,t where zk,t ∼ CN (0, vpri

B,k,tI) is
independent of gk,t [37].

The formulation details are elaborated in Appendix B
and the message passing procedure can be summarized as
follows:

• Firstly, in module A, based on the prior information
passed from the last time slot t, the message passing over
the kth UAV Gaussian hidden value vector ϑk,t are given
by (52) with μdyna and (σdyna)2 as the input to update
the message υϑk,t,m→πk,t,m

.
• Secondly, in module B, gpri

B,k,t and vpri
B,k,t from module

A are passed over the path gk,t,m → πt,m → bk,t,m →
uk,t,m → ak,t,nx using (53) to (56).

• Thirdly, the forward-backward message passing is exe-
cuted over the proposed MD-MM MU azimuth branch
with three paths: ak,t,nx → �k,t,nx → ãt,nx , the 2D-MM
of the MU azimuth support ãt, and ãt,nx → �k,t,nx →
ak,t,nx using (59) to (68).

• Then the message pass through path at,nx → ut,m →
et,ny (using (69) to (71)) to another MD-MM elevation
branch with similar three paths: ek,t,ny → �k,t,ny →
ẽt,ny , the 2D-MM of the MU elevation support ẽt, and
ẽt,ny → �k,t,ny → ek,t,ny using (71) to (82). The overall
details of the MD-MM azimuth and elevation SU joint
hidden support estimation can be found in Algorithm 1.

• The message is finally passed back over the path
ek,t,ny → uk,t,m → bk,t,m → πk,t,m → gk,t,m using
(83) to (86).
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Algorithm 1 MD-MM kth SU Azimuth and Elevation Support
Estimation

Input:ρ̃(A)in
t,nx

, ρ̃
(A)dyna
t,nx

, ρ̃
(E)in
t,ny

, ρ̃
(E)dyna
t,ny

, ρ
(A)in
k,t,nx

, ρ
(E)in
k,t,ny

Output:ρ(A)out
k,t,nx

, ρ
(E)out
k,t,ny

1: Calculate υuk,t,m→ak,t,nx
as in (59) and υ
k,t,nx→ãt,nx

as
in (68)
# HMM kth SU Azimuth Support Estimation Based on
2D-MM MU Azimuth Support:

2: if t = 1 then
3: Initialization: γ̃

(A)f
t,1 = λ, γ̃

(A)b
t,Nx

= 1
2

4: for nx = 2, . . . , Nx do
5: Use (62) to calculate γ̃

(A)f
t,nx

.
6: end for
7: for nx = 1, . . . , Nx − 1 do
8: Use (63) to calculate γ̃

(A)b
t,nx

.
9: end for

10: else if t > 1 then
11: Initialization: γ̃f

t,1 = q
(T )
0,1 (1 − ρ̃dyna

t,1 ) +(
1 − q

(T )
1,0

)
ρ̃dyna

t,1 , γ̃b
t,Nx

= 1
2 .

12: for nx = 2, . . . , Nx do
13: Calculate the γ̃

(A)f
t,nx

as in (64)
14: end for
15: for nx = 1, . . . , Nx − 1 do
16: Calculate γ̃

(A)b
t,nx

= 1
1+γ̃(A) use (65).

17: end for
18: end if
19: Calculate the kth SU AoD azimuth support vector

ρ
(A)out
k,t,nx

= ρ̃out
ãt,k,nx

ς
(A)
k,t,1,1.

#Message Passing Over kth SU Azimuth to Elevation
Support:

20: Calculate individual message ρout
ak,t,k,t,nx,ny

using (70).
21: Calculate message υak,t,nx→uk,t,m

(ak,t,nx) and
υuk,t,m→ek,t,ny

(ek,t,ny) as in (69) and (71), respectively.
22: Calculate υuk,t,m→ek,t,ny

as in (73) and υ�k,t,ny→ẽt,ny
∝∑

ek,t,ny
as in (82).

# HMM kth SU Elevation Support Estimation Based
on 2D-MM MU Elevation:

23: Similar to the procedures from step 2 to step 18 by
using elevation related parameters. Details can be found
from (76) to (79).

24: Calculate the kth SU AoD elevation support vector
ρ
(E)out
k,t,ny

= ρ̃out
ẽt,k,ny

ς
(E)
k,t,1,1.

Based on the calculated updated messages υπk,t,m→gk,t,m
,

the posterior distributions can be written as

p
(
gk,t,m|gpri

B,k,t

)
∝ υπk,t,m→gk,t,m

(gk,t,m) υck,t,m→gk,t,m
(gk,t,m) , (27)

where υck,t,m→gk,t,m
(gk,t,m) = CN

(
gk,t,m; gpri

B,k,t,m, vpri
B,k,t

)
.

Then the posterior mean and variance of each element of gk,t

can be updated as

gpost
B,k,t,m =

∫
gk,t,m

gk,t,mp
(
gk,t,m|gpri

B,k,t

)
(28)

and

vpost
B,k,t =

1
M

M∑
m=1

Var
(
gk,t,m|gpri

B,k,t

)
, (29)

where Var
(
gk,t,m|gpri

B,k,t

)
denotes the conditional variance of

gk,t,m given gpri
B,k,t. Then similar to (25) and (26), the extrinsic

update mean and covariance can be written as

gpri
A,k,t = gext

B,k,t = vpri
A,k,t

(
gpost
B,k,t

vpost
B,k,t

− gpri
B,k,t

vpri
B,k,t

)
(30)

and

vpri
A,k,t = vext

B,k,t =

(
1

vpost
B,k,t

− 1
vpri
B,k,t

)−1

. (31)

C. Message Passing Through Time

For dynamic scenario, prior information which is also
treated as the temporal correlation can be considered for better
reconstruction of the time-varying channel model. Hence,
we further consider the message passing through time for
channel tracking. There are mainly three branches passing
through time in Fig. 6 the factor graph of the MD-MM:
the path of the kth UAV Gaussian hidden value vector ϑk,t,
the path of MU azimuth support ãt and the path of MU
elevation support ẽt.

1) The kth UAV Gaussian Hidden Value Vector ϑk,t Passing
Through Time: The message passing from factor node πk,t,m

to variable node ϑk,t,m should be

υtrue
πk,t,m→ϑk,t,m

(ϑk,t,m)

= ρout
k,t,mCN

(
ϑk,t,m; gpri

B,k,t, v
pri
B,k,t

)
+
(
1 − ρout

k,t,m

) CN (
0; gpri

B,k,t, v
pri
B,k,t

)
. (32)

To be noticed, if bk,t,m = 0, gk,t,m would be 0 in (9),
which makes ϑk,t,m unobservable. Hence, similarly in [30],
a threshold which is slightly less than 1 is introduced. The
modified message passing is given by

υπk,t,m→ϑk,t,m
(ϑk,t,m) = CN (

ϑk,t,m; μin
k,t,m, (σin

k,t,m)2
)
,

(33)

with

(
μin

k,t,m, (σin
k,t,m)2

)
=

⎧⎨
⎩
(

1
ε gpri

B,k,t,
1
ε2 vpri

B,k,t

)
, ρout

k,t,m � Th,(
gpri
B,k,t, v

pri
B,k,t

)
, ρout

k,t,m > Th,

(34)

where ε is set as a small positive value close to 0. Then the
message passing from factor node fk,t+1,m to variable node
ϑk,t+1,m is formed as

υfk,t+1,m→ϑk,t+1,m
(ϑk,t+1,m)

= CN
(

ϑk,t+1,m; μdyna
k,t+1,m,

(
σdyna

k,t+1,m

)2
)

, (35)
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where

μdyna
k,t+1,m = (1 − β)

⎛
⎜⎝

(
σdyna

k,t,m

)2 (
σin

k,t,m

)2

(
σdyna

k,t,m

)2

+
(
σin

k,t,m

)2

⎞
⎟⎠

×

⎛
⎜⎝ μdyna

k,t,m(
σdyna

k,t,m

)2 +
μin

k,t,m(
σin

k,t,m

)2

⎞
⎟⎠+ βμ (36)

and

(
σdyna

k,t+1,m

)2

= (1 − β)2

⎛
⎜⎝

(
σdyna

k,t,m

)2 (
σin

k,t,m

)2

(
σdyna

k,t,m

)2

+
(
σin

k,t,m

)2

⎞
⎟⎠+β2ζ.

(37)

2) The MU Azimuth Support ãt Passing Through Time:
The azimuth support prior information passing to the next time
υãt,nx→d̃t+1,nx

(ãt,nx) can be given as

υãt,nx→d̃t+1,nx
(ãt,nx)

= ρ̃
(A)dyna
t+1,nx

δ (ãt,nx − 1) +
(
1 − ρ̃

(A)dyna
t+1,nx

)
δ (ãt,nx) , (38)

with

ρ̃
(A)dyna
t+1,nx

=
γ

(A)f
t,nx

γ
(A)b
t,nx

ρ̃
(A)in
t,nx

γ
(A)f
t,nx

γ
(A)b
t,nx

ρ̃
(A)in
t,nx

+ (1 − γ
(A)f
t,nx

)(1 − γ
(A)b
t,nx

)(1 − ρ̃
(A)in
t,nx

)
.

(39)

3) The MU Elevation Support ẽt Passing Through Time:
Similarly, the elevation support prior information passing to
the next time can be written as

υẽt,ny→r̃t+1,ny
(ẽt,ny) = ρ̃

(E)dyna
t+1,ny

δ
(
ẽt,ny − 1

)
+
(
1 − ρ̃

(E)dyna
t+1,ny

)
δ
(
ẽt,ny

)
, (40)

with

ρ̃
(E)dyna
t+1,ny

=
γ

(E)f
t,ny

γ
(E)b
t,ny

ρ̃
(E)in
t,ny

γ

(E)f

t,ny

γ
(E)b
t,ny

ρ̃
(E)in
t,ny

+ (1 − γ
(E)f
t,ny

)(1 − γ
(E)b
t,ny

)(1 − ρ̃
(E)in
t,ny

). (41)

D. 3D Off-Grid Estimation

As there is no closed-form expression due to the complex
MD-MM structure of g

(t)
k , it’s hard to directly maximize

the log-likelihood function ln p
(
y

(t)
k , Δθk,t, Δφk,t

)
in (21).

We extend the proposed in-exact majorization-minimization
(MM) algorithm in [38] to help us solve the off-grid problem.
As MM is the generalization of the expectation maximiza-
tion method, the convergence of expectation maximization
algorithm can prove that the in-exact MM can converge to
a stationary solution [39]. Firstly, we iteratively construct
the lower bound for ln p

(
y

(t)
k , Δθk,t, Δφk,t

)
which can be

named as surrogate function, i.e., for any fixed azimuth and

elevation offset pairs
(
Δθ̇k,t, Δφ̇k,t

)
, the surrogate function

can be defined as [38]

L
(
Δθk,t, Δφk,t|Δθ̇k,t, Δφ̇k,t

)
=
∫

p
(
gk,t|y(t)

k , Δθ̇k,t, Δφ̇k,t

)

× ln
p
(
gk,ty

(t)
k , Δθ̇k,t, Δφ̇k,t

)
p
(
gk,t|y(t)

k , Δθ̇k,t, Δφ̇k,t

)dgk,t, (42)

which satisfies the following properties:

L
(
Δθk,t, Δφk,t|Δθ̇k,t, Δφ̇k,t

)
� ln p

(
y

(t)
k , Δθk,t, Δφk,t

)
, ∀Δθk,t, Δφk,t, (43)

L
(
Δθ̇k,t, Δφ̇k,t|Δθ̇k,t, Δφ̇k,t

)
= ln p

(
y

(t)
k , Δθ̇k,t, Δφ̇k,t

)
, (44)

∂L(Δθk,t, Δφ̇k,t|Δθ̇k,t, Δφ̇k,t)
∂Δθk,t

∣∣∣∣∣
Δθk,t=Δθ̇k,t

=
∂ ln p

(
y

(t)
k , Δθk,t, Δφ̇k,t

)
∂Δθk,t

∣∣∣∣∣∣
Δθk,t=Δθ̇k,t

, (45)

∂L(Δθ̇k,t, Δφk,t|Δθ̇k,t, Δφ̇k,t)
∂Δφk,t

∣∣∣∣∣
Δφk,t=Δφ̇k,t

=
∂ ln p

(
y

(t)
k , Δθ̇k,t, Δφk,t

)
∂Δφk,t

∣∣∣∣∣∣
Δφk,t=Δφ̇k,t

. (46)

Then Δθk,t and Δφk,t can be updated at each iteration as

Δθ
(i+1)
k,t = argmax

θk,t

L
(
Δθk,t, Δφ

(i)
k,t|Δθ

(i)
k,t, Δφ

(i)
k,t

)
, (47)

Δφ
(i+1)
k,t = argmax

φk,t

L
(
Δθ

(i+1)
k,t , Δφk,t|Δθ

(i+1)
k,t , Δφ

(i)
k,t

)
,

(48)

with (·)(i) represents for the i(th) iteration. To be noticed, for
the (i + 1)th iteration elevation update, we use the updated
(i + 1)th azimuth offset as fixed known knowledge in (48).
However, the problems in (47) and (48) are non-convex. Hence
the gradient update can be applied as follows:

Δθ
(i+1)
k,t

= Δθ
(i)
k,t

+ Δ
(i)
θ

∂L
(
Δθk,t, Δφ

(i)
k,t|Δθ

(i)
k,t, Δφ

(i)
k,t

)
∂Δθk,t

∣∣∣∣∣∣
Δθk,t=Δθ

(i)
k,t

(49)
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Algorithm 2 3D Off-Grid Estimation

Input:gpost
B,k,t,m, vpost

B,k,t„ Δθ
(0)
k,t = 0, Δφ

(0)
k,t = 0, I .

Output:Δθ
(opt)
k,t , Δφ

(opt)
k,t

1: for i = 1 : I do
2: Azimuth offset Δθ

(i+1)
k,t can be updated use gradient

update (49) and (88) with known ith iteration elevation
offset Δφ

(i)
k,t.

3: Elevation offset Δφ
(i+1)
k,t can be updated similarly with

known (i + 1)th iteration azimuth offset Δθ
(i+1)
k,t .

4: end for
5: Δθ

(opt)
k,t = Δθ

(I)
k,t , Δφ

(opt)
k,t = Δφ

(I)
k,t

and

Δφ
(i+1)
k,t

= Δφ
(i)
k,t

+Δ
(i)
φ

∂L
(
Δθ

(i+1)
k,t , Δφk,t|Δθ

(i+1)
k,t , Δφ

(i)
k,t

)
∂Δφk,t

∣∣∣∣∣∣
Δφk,t=Δφ

(i)
k,t

,

(50)

where Δ
(i)
θ and Δ

(i)
φ are the stepsizes. The off-grid estimation

algorithm is summarized in Algorithm 2 and the detailed
equation can be found in Appendix C. Finally, the overall
proposed MD-DTAMP can be summarized in Algorithm 3.

VI. NUMERICAL RESULTS

In this section, the complexity and the estimation per-
formance of the proposed algorithm MD-DTAMP with and
without 3D off-grid estimation are evaluated. We assume that
the proposed algorithm is performed in the distributed UAVs.
For the space-air link of each single UAV, the sparsity ratio
for both azimuth and elevation directions is λ = 1

Nx
= 1

Ny

which indicates only one dominant LoS ray for each UAV-
satellite link. The parameters are set as follows3: We assume
that there are total 3 UAVs in the system. The MU azimuth
and elevation spatial correlation parameters {q(AS)

0,1 , q
(AS)
1,0 ,

q
(ES)
0,1 , q

(ES)
1,0 } = {0.05, 0.05, 0.025, 0.025}, the MU azimuth

and elevation temporal correlation parameters {q(AT )
0,1 , q

(AT )
1,0 ,

q
(ET )
0,1 , q

(ET )
1,0 } = {0.05, 0.05, 0.025, 0.175}, the MU azimuth

and elevation joint parameters {q(A)
1,1,1, q

(A)
0,0,1, q

(A)
0,1,1, q

(A)
1,0,1,

q
(E)
1,1,1, q

(E)
0,0,1, q

(E)
0,1,1, q

(E)
1,0,1} = {0.9958, 0.0013, 0.3276,

0.3936, 0.99546, 0.0007, 0.5, 0.1078}, the hidden value vector
parameters for kth UAV {μk, σ2

k, βk, ζk, ς
(A)
k,t,1,1, ς

(E)
k,t,1,1} =

{0, 1
3 , 0.5, 1, 0.9375, 0.9375}, Th = 1 − 10−2, ε = 10−7,

γbk,t
= 1, the azimuth range θrange = π and the elevation range

φrange = π/4, 3D Off-grid azimuth and elevation update step
sizes are Δ

(i)
θ = π/(100×M) and Δ

(i)
φ = π/(4× 100×M).

3The parameters can be trained through expectation maximization algorithm
which can refer to [30] for details. The MU azimuth and elevation related
parameters for multiple UAVs system in this paper are referred 2D settings
in [20].

Algorithm 3 MD-DTAMP Dynamic Channel Tracking

Input:yk,1, . . . , yk,T , sensing matrix Φ(0,0)
Output:ĝk,1, . . . , ĝk,T

1: for t=1,…,T do
2: Initialization: gpri

A,k,t = 0, vpri
A,k,t = σ2.

3: while not converge do
#Module A LMMSE estimator:

4: Update gpost
A,k,t and vpost

A,k,t in (22) and (23), respectively.
5: Calculate gpri

B,k,t = gext
A,k,t, vpri

B,k,t = vext
A,k,t using (25)

and (26).
#Module B MD-MM MMSE denoiser:

6: Message passing over Gaussian hidden value vector
ϑk,t using (52).

7: Message Passing Over gk,t,m → πk,t,m → bk,t,m →
uk,t,m → ak,t,nx using (53)-(58)

8: AoD SU azimuth support ak,t and SU elevation support
ek,t estimation in Algorithm 1.

9: Message Passing Over the Path ek,t,ny → uk,t,m →
bk,t,m → πk,t,m → gk,t,m using (83)-(86)

10: Calculate the approximate posterior distributions
p
(
gk,t,m|gpri

B,k,t

)
using (27).

11: Update gpost
B,k,t,m and vpost

B,k,t using (28) and (29).
12: Update gpri

A,k,t = gext
B,k,t and vpri

A,k,t = vext
B,k,t using (30)

and (31).
13: Repeat Module A and Module B until convergence.
14: Hence p̂

(
gk,t|y(t)

k , Δθ
(opt)
k,t , Δφ

(opt)
k,t

)
=

CN
(
gpost
B,k,t, v

post
B,k,tI

)
.

#3D Off-grid estimation:
15: Update azimuth offset Δθ

(opt)
k,t and elevation offset

Δφ
(opt)
k,t use Algorithm 2.

16: end while
17: Update dynamic messages to the next time slot

(t + 1): υak,t,nx→dk,t+1,nx
, υek,t,ny→rk,t+1,ny

and
υfk,t+1,m→ϑk,t+1,m

using (38), (40) and (35).
18: end for

To be noticed, in our simulation, our proposed algorithm
MD-DTAMP with 3D off-grid estimation is presented in
Algorithm 3. MD-DTAMP on grid which is Algorithm 3
without step 15. The benchmark algorithms which can be
employed in our MU 3D channel model are sparse Bayesian
learning (SBL) and D-OMP proposed in [38] and [17],
respectively. All simulations are average of 500 times.

A. Complexity Analysis

The computation complexity of the LMMSE estimator in
module A and MD-MM MMSE denoiser in module B are
O (MNS) and O (Nx + Ny), respectively. Hence, the total
complexity of the proposed MD-DTAMP without 3D off-grid
estimation over time T is O (T (MNS + Nx + Ny)) for
each iteration. For off-grid estimation, with defined stepsize
Δ

(i)
θ , the complexity for update azimuth offset Δθ

(i+1)
k,t is

O (NSM2
)

per iteration. The reason why the complexity
is not O (NSN2

x

)
is that the original dimension has to
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Fig. 7. Computation time of various algorithms versus the number of
antennas when SNR = 10dB, Ns = 10, T = 50, M = 16, 64, 256 and
Nx = Ny = 4, 8, 16.

be extended for paring the azimuth and elevation angles.

Similarly, the complexity for update elevation offset Δφ
(i+1)
k,t

is also O (NSM2
)

per iteration.4

Fig. 7 shows the computation time of various algorithms
versus the number of antennas. It can be observed that the
proposed on-gird MD-DTAMP shows comparable complexity
compared with D-OMP. Furthermore, compared with SBL
algorithm which requires matrix multiplication and inversion
with high computation complexity, the proposed MD-DTAMP
with off-grid estimation consumes less computation time for
different number of antennas.

B. Simulation Results

We choose time-averaged normalized mean square error
(TNMSE) as the performance metric as [30]

TNMSE =
1
T

T∑
t

‖gt − ĝt‖2

‖gt‖2
, (51)

where ĝt is the estimated result of gt in time t. This per-
formance metric is to evaluate the recovery performance of
various algorithms.

In Fig. 8, we further compare the TNMSE performance
metric versus SNR among various algorithms with antenna
array elements set as M = 64, 256. With SNR increases,
all four algorithms show better recovery performance. To be
noticed, our proposed MD-DTAMP on-grid and off-grid track-
ing algorithms always show superior performance compared
to benchmark algorithms. Moreover, the off-grid can further
improve the performance through gradient update of the 3D
offset.

In Fig. 9, we further consider the relationship between the
tracking performance and the training pilot overhead. It is easy
to be noticed that our proposed algorithm with or without
off-grid estimation can maintain a good performance with
smaller pilot overhead. This proves that our proposed algo-
rithms can achieve a solid performance by taking the dynamic
channel spatial and temporal correlation into consideration.

4To be notice, empirically, the proposed algorithm normally converges
within 30 iterations.

Fig. 8. TNMSE versus SNR when T = 35. (a) M = 64, Nx = Ny = 8,
Ns = 20. (b) M = 256, Nx = Ny = 16, Ns = 26.

Fig. 9. TNMSE versus total pilot overhead when T = 35. (a) M = 64,
Nx = Ny = 8, SNR = 0dB. (b) M = 256, Nx = Ny = 16, SNR = 5dB.

Fig. 10. TNMSE versus total time slot and SNR when (a) Ns = 26,
SNR = 20dB, (b) T = 35, Ns = 22.

The proposed on-grid and off-grid algorithms are compared
in Fig. 10. The off-grid estimation achieves sufficient per-
formance gain over the on-grid algorithm. In Fig. 10 (a),
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the performance over continuous total time slot is compared.
It is obvious that, with time increases, the performance show
superior gain for both on-grid and off-grid algorithms. More-
over, it can be observed from Fig. 10 (a) and (b) that with
M increases from 64 to 256, the tracking performance also
improves. This is because with a larger antenna array and
denser virtual gird, and the on-grid 3D tracking angle can be
estimated with a narrower grid and closer to the true angle.

VII. CONCLUSION

This paper exploits the on-grid and off-grid 3D channel
modelling and tracking for space-air communications with
multiple UAVs and an LEO satellite in the system. The relative
displacement between the orbit movement of the LEO satellite
and the 3D trajectory of multiple UAVs was modelled based
on the statistical dynamic channel model called MD-MM. The
proposed MD-MM was composed of the insight probability
relationship of the spatial and temporal correlation of the
MU hidden support vector, SU joint hidden support vector,
and SU hidden value vector. We further developed a novel
MD-DTAMP algorithm to track the dynamic channel recur-
sively. Furthermore, the gradient update for the 3D off-grid
estimation scheme was proposed, which can iteratively find
the azimuth and elevation offset. In addition, we compared the
computation complexity between benchmark algorithms and
the proposed algorithm with and without the off-grid scheme.
Simulations verified that the proposed algorithm derived from
the MD-MM dynamic channel model can better exploit the
more realistic space-air 3D dynamic channel to achieve more
accurate recovery performance over other benchmark algo-
rithms with smaller pilot overhead.

APPENDIX A
TRAINING PILOT MATRIX DESIGN

It has been proved that a partial DFT sensing matrix
outperforms the independent identically distributed sensing
matrix in solving the CS problem with AMP algorithm
[11], [32]. Hence, in our proposed model, the sensing matrix
Φk,t

(
Δθk,t, Δφk,t

)
is referred to be a partial DFT ran-

dom permutation matrix as Φk,t

(
Δθk,t, Δφk,t

) ≈ SSELSDFT

SRAND, where SSEL is a selection matrix consisting of ran-
domly selected and reordered rows of NS × M identity
matrix, SDFT is the M × M DFT matrix, and SRAND is
random permutation matrix generated by a randomly reordered
M × M identity matrix. For large M antenna elements

array, SSELSDFTSRAND = ST
k

(
Ã

H
(
θ̃k,t + Δθk,t, φ̃k,t +

Δφk,t

))T

. Hence, for simplicity with fixed on-grid and

approximate partial orthogonal, the pilot matrix ST
k =

SSELSDFTSRAND

((
Ã

H
(
θ̃k,t, φ̃k,t

))T
)−1

.

APPENDIX B
MD-MM MESSAGE PASSING IN MODULE B

1) Message Passing Over Gaussian Hidden Value Vector
ϑk,t: The message υfk,t,m→ϑk,t,m

passed from the last time

slot can be formed as CN (ϑk,t,m; μdyna
k,t,m, (σdyna

k,t,m)2). The
message passed from variable node ϑk,t,m to factor node
πk,t,m can be formed as

υϑk,t,m→πk,t,m
= CN (ϑk,t,m; μout

k,t,m, (σout
k,t,m)2), (52)

with (μout
k,t,m, (σout

k,t,m)2) = (μdyna
k,t,m, (σdyna

k,t,m)2). When t = 1,

we set (μdyna
1,m , (σdyna

1,m )2) = (μ, σ2)
2) Message Passing Over gk,t,m → πk,t,m → bk,t,m →

uk,t,m → ak,t,nx : The message from variable node gk,t,m to
factor node πk,t,m is

υgk,t,m→πk,t,m
(gk,t,m) = CN

(
gk,t,m; gpri

B,k,t,m, vpri
B,k,t,m

)
.

(53)

The message from factor node πk,t,m to variable node
bk,t,m is

υπk,t,m→bk,t,m
(bk,t,m)

= ρin
b,k,t,mδ (bk,t,m − 1) +

(
1 − ρin

b,k,t,m

)
δ (bk,t,m) , (54)

where

ρin
bk,t,k,t,m

=

(
1 +

CN (0; gpri
B,k,t,m, vpri

B,k,t)

CN (0; gpri
B,k,t,m − μout

k,t,m, vpri
B,k,t + (σout

k,t,m)2)

)−1

.

(55)

The message υbk,t,m→uk,t,m
from variable node bk,t,m to

factor node uk,t,m is the same as υπk,t,m→bk,t,m
(bk,t,m). The

message from factor node uk,t,m to variable node ak,t,nx is

υuk,t,m→ak,t,nx
(ak,t,nx)= ρin

ak,t,k,t,nx,ny
δ (ak,t,nx − 1)

+
(
1−ρin

ak,t,k,t,nx,ny

)
δ (ak,t,nx) ,

(56)

where

ρin
ak,t,k,t,nx,ny

=
ρak,t

1 + ρak,t
− ρin

bk,t,k,t,m

, (57)

with

ρak,t
= γbk,t

ρin
bk,t,k,t,mρout

ek,t,k,t,nx,ny

+
(
1 − γbk,t

)
(1 − ρin

bk,t,k,t,m)ρout
ek,t,k,t,nx,ny

+
(
1 − ρin

bk,t,k,t,m

)(
1 − ρout

ek,t,k,t,nx,ny

)
(58)

and ρout
et,k,t,nx,ny

= υek,t,ny→uk,t,m
(ek,t,ny = 1).

3) Message Passing Over ak,t,nx → �k,t,nx → ãt,nx ,
the 2D-MM of the MU Azimuth Support ãt,nx , and ãt,nx →
�k,t,nx → ak,t,nx: The forward-backward message passing
is performed over the HMM ak,t for given input messages
υuk,t,nx,ny→ak,t,nx

.
We firstly introduce the details of the MU azimuth sup-

port estimation. The condition can be divided into two
section, one is when t = 1, the other is when t > 1.
To be notice, the message from factor node ut,m to variable
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node at,nx is

υuk,t,m→ak,t,nx

= ρ
(A)in
k,t,nx

=

∏
ny

ρin
ak,t,k,t,nx,ny∏

ny
ρin

ak,t,k,t,nx,ny
+
∏

ny

(
1 − ρin

ak,t,k,t,nx,ny

) , (59)

which is derivated based on the matched dimension M from
the total gain, nx from the azimuth support and ny from the
elevation support.

The message from factor node �k,t,nx to variable
node ãt,nx is

υ
k,t,nx→ãt,nx

∝
∑

ak,t,nx

∏
nx

υuk,t,m→ak,t,nx
(ak,t,nx)ς(A)

ãt,nx ,ak,t,nx

= ρin
ãt,k,nx

δ(ãt,nx − 1) + (1 − ρin
ãt,k,nx

)ãt,nx , (60)

where

ρin
ãt,k,nx

=
ς
(A)
k,t,1,1ρ

(A)in
k,t,nx

+ (1 − ς
(A)
k,t,1,1)(1 − ρ

(A)in
k,t,nx

)

ς
(A)
k,t,1,1ρ

(A)in
k,t,nx

+ (1 − ς
(A)
k,t,1,1)(1 − ρ

(A)in
k,t,nx

)+(1−ρ
(A)in
k,t,nx

)
.

(61)

When t = 1, the MU azimuth forward parameter is

γ̃
(A)f
t,nx

=
q
(AS)
0,1

(
1−ρ̃

(A)in
t,nx−1

)(
1−γ̃

(A)f
t,nx−1

)
+q

(AS)
1,1 ρ̃

(A)in
t,nx−1γ̃

(A)f
t,nx−1(

1 − ρ̃
(A)in
t,nx−1

)(
1 − γ̃

(A)f
t,nx−1

)
+ρ̃

(A)in
t,nx−1γ̃

(A)f
t,nx−1

,

(62)

where ρ̃
(A)in
t,nx

=
�

k ρin
ãt,k,nx�

k ρin
ãt,k,nx

+
�

k(1−ρin
ãt,k,nx

)
. The azimuth

backward parameter γ̃
(A)b
t,nx

can be found in (63), shown at
the bottom of the page. When t > 1, the azimuth forward

parameter γ̃
(A)f
t,nx

can be found as

γ̃
(A)f
t,nx

=
q
(A)
1,1,1ρ̃

dyna
t,nx

+ q
(A)
1,0,1

(
1 − ρ̃

(A)dyna
t,nx

)
1 +

((
ρ̃
(A)in
t,nx−1

)−1

− 1
)((

γ̃
(A)f
t,nx−1

)−1

− 1
)

+
q
(A)
0,1,1ρ̃

(A)dyna
t,nx

+ q
(A)
0,0,1

(
1 − ρ̃

(A)dyna
t,nx

)
((

ρ̃
(A)in
t,nx−1

)−1

− 1
)−1(((

γ̃
(A)f
t,nx−1

)−1

−1
))−1

+1

.

(64)

The azimuth backward parameter γ̃
(A)b
t,nx

= 1
1+γ̃(A) is given

in (65), shown at the bottom of the page. The final MU
azimuth message which represents the non-zero probability
can be written as

υãt,nx→
k,t,nx
= ρ̃out

ãt,k,nx
δ(ãt,nx−1)+(1−ρ̃out

ãt,k,nx
)δ(ãt,nx),

(66)

where ρ̃out
ãt,k,nx

can be seen in (67), shown at the bottom of
the page. The message from factor node �k,t,nx to variable
node ak,t,nx is

υ
k,t,nx→ak,t,nx
(ak,t,nx)

= ρ
(A)out
k,t,nx

δ(ak,t,nx − 1) + (1 − ρ
(A)out
k,t,nx

)δ(ak,t,nx), (68)

where ρ
(A)out
k,t,nx

= ρ̃out
ãt,k,nx

ς
(A)
k,t,1,1.

4) Message Passing Over the Path ak,t,nx → uk,t,m →
ek,t,ny : The message from factor node ak,t,nx to variable node
uk,t,m is

υak,t,nx→uk,t,m
(ak,t,nx) = ρout

ak,t,k,t,nx,ny
δ(ak,t,nx − 1)

+ (1 − ρout
ak,t,k,t,nx,ny

)δ(ak,t,nx),
(69)

where ρout
ak,t,k,t,nx,ny

can be found in (70), shown at the bottom
of the next page. The message from factor node uk,t,m to
variable node ek,t,ny is

υuk,t,m→ek,t,ny
(ek,t,ny) = ρin

ek,t,k,t,nx,ny
δ
(
ek,t,ny − 1

)
+
(
1−ρin

ek,t,k,t,nx,ny

)
δ
(
ek,t,ny

)
,

(71)

γ̃
(A)b
t,nx

=
q
(AS)
1,0

(
1 − ρ̃

(A)in
t,nx+1

)(
1 − γ̃

(A)b
t,nx+1

)
+
(
1 − q

(S)
1,0

)
ρ̃
(A)in
t,nx+1γ̃

(A)b
t,nx+1(

q
(AS)
0,0 + q

(S)
1,0

)(
1 − ρ̃

(A)in
t,nx+1

)(
1 − γ̃

(A)b
t,nx+1

)
+
(
q
(AS)
1,1 + q

(AS)
0,1

)
ρ̃
(A)in
t,nx+1γ̃

(A)b
t,nx+1

(63)

γ̃(A) =

(
1 − ρ̃

(A)in
t,nx+1 − γ̃

(A)b
t,nx+1

) [
q
(A)
0,1,0ρ̃

(A)dyna
t,nx+1 + q

(A)
0,0,0

(
1 − ρ̃

(A)dyna
t,nx+1

)]
+ ρ̃

(A)in
t,nx+1γ̃

(A)b
t,nx+1(

1 − ρ̃
(A)in
t,nx+1 − γ̃

(A)b
t,nx+1

) [
q
(A)
1,1,0ρ̃

(A)dyna
t,nx+1 + q

(A)
1,0,0

(
1 − ρ̃

(A)dyna
t,nx+1

)]
+ ρ̃

(A)in
t,nx+1γ̃

(A)b
t,nx+1

(65)

ρ̃out
ãt,k,nx

=
γ̃

(A)f
t,nx

γ̃
(A)b
t,nx

γ̃
(A)f
t,nx

γ̃
(A)b
t,nx

+
∏

k′ �=k

(
(ρin

ãt,k′,nx
)−1 − 1

)(
1 − γ̃

(A)f
t,nx

)(
1 − γ̃

(A)b
t,nx

) . (67)
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where ρin
ek,t,k,t,nx,ny

can be found in (72), shown at the bottom
of the page.

5) Message Passing Over ek,t,ny → �k,t,ny → ẽt,ny ,
the 2D-MM of the MU Elevation Support ẽt,ny , and ẽt,ny →
�k,t,ny → ek,t,ny : The details can be derived similarly as
the message passing process of the MU azimuth support ãt

estimation. The message from factor node uk,t,m to variable
node ek,t,ny is

υuk,t,m→ek,t,ny
= ρ

(E)in
k,t,ny

=

∏
nx

ρin
ek,t,k,t,nx,ny∏

nx
ρin

ek,t,k,t,nx,ny
+
∏

nx

(
1 − ρin

ek,t,k,t,nx,ny

) , (73)

which is derivated based on the matched dimension M from
the total gain, nx from the azimuth support and ny from the
elevation support.

The message from factor node �k,t,ny to variable
node ẽt,ny is

υ�k,t,ny→ẽt,ny

∝
∑

ek,t,ny

∏
ny

υuk,t,m→ek,t,ny
(ek,t,ny)ς(E)

ẽt,ny ,ek,t,ny

= ρin
ẽt,k,ny

δ(ẽt,ny − 1) + (1 − ρin
ẽt,k,ny

)ẽt,ny , (74)

where

ρin
ẽt,k,ny

=
ς
(E)
k,t,1,1ρ

(E)in
k,t,ny

+ (1 − ς
(E)
k,t,1,1)(1 − ρ

(E)in
k,t,ny

)

ς
(E)
k,t,1,1ρ

(E)in
k,t,ny

+ (1 − ς
(E)
k,t,1,1)(1−ρ

(E)in
k,t,ny

)+(1−ρ
(E)in
k,t,ny

)
.

(75)

When t = 1, the MU elevation forward parameter is

γ̃
(E)f
t,ny

=
q
(ES)
0,1

(
1−ρ̃

(E)in
t,ny−1

)(
1−γ̃

(E)f
t,ny−1

)
+q

(ES)
1,1 ρ̃

(E)in
t,ny−1γ̃

(E)f
t,ny−1(

1 − ρ̃
(E)in
t,ny−1

)(
1−γ̃

(E)f
t,ny−1

)
+ρ̃

(E)in
t,ny−1γ̃

(E)f
t,ny−1

,

(76)

where ρ̃
(E)in
t,ny

=
�

k ρin
ẽt,k,ny�

k ρin
ẽt,k,ny

+
�

k(1−ρin
ẽt,k,ny

)
. The MU elevation

backward parameter γ̃
(E)b
t,ny

can be found in (77), shown at
the bottom of the page. When t > 1, the azimuth forward
parameter γ̃

(E)f
t,nx

can be found as

γ̃
(E)f
t,ny

=
q
(E)
1,1,1ρ̃

dyna
t,ny

+ q
(E)
1,0,1

(
1 − ρ̃

(E)dyna
t,ny

)
1 +

((
ρ̃
(E)in
t,ny−1

)−1

− 1
)((

γ̃
(E)f
t,ny−1

)−1

− 1
)

+
q
(E)
0,1,1ρ̃

(E)dyna
t,ny

+ q
(E)
0,0,1

(
1 − ρ̃

(E)dyna
t,ny

)
((

ρ̃
(E)in
t,ny−1

)−1

− 1
)−1(((

γ̃
(E)f
t,ny−1

)−1

− 1
))−1

+1

.

(78)

The azimuth backward parameter γ̃
(E)b
t,ny

= 1
1+γ̃(E) is given

in (79), shown at the bottom of the page.
The final MU elevation message which represents the non-

zero probability can be written as

υẽt,ny→�k,t,ny

= ρ̃out
ẽt,k,ny

δ(ẽt,ny − 1) + (1 − ρ̃out
ẽt,k,ny

)δ(ẽt,ny), (80)

where ρ̃out
ẽt,k,ny

can be seen in (81), shown at the top of the
next page.

ρout
ak,t,k,t,nx,ny

=
ρ
(A)out
k,t,nx

ρ
(A)out
k,t,nx

+
(
1 − ρ

(A)out
k,t,nx

)∏
n′

y �=ny

((
ρin

ak,t,k,t,nx,n′
y

)−1

− 1
) . (70)

ρin
ek,t,k,t,nx,ny

=
γbk,t

ρin
bk,t,k,t,mρout

ak,t,k,t,nx,ny
+(1−γbk,t

)(1 − ρin
bk,t,k,t,m)ρout

ak,t,k,t,nx,ny
+ (1 − ρin

bk,t,k,t,m)(1 − ρout
ak,t,k,t,nx,ny

)

γbk,t
ρin

bk,t,k,t,mρout
ak,t,k,t,nx,ny

+(1−γbk,t
)(1−ρin

bk,t,k,t,m)ρout
ak,t,k,t,nx,ny

+(1−ρin
bk,t,k,t,m)(1−ρout

ak,t,k,t,nx,ny
)+1−ρin

bk,t,k,t,m

(72)

γ̃
(E)b
t,ny

=
q
(ES)
1,0

(
1 − ρ̃

(E)in
t,ny+1

)(
1 − γ̃

(E)b
t,ny+1

)
+
(
1 − q

(S)
1,0

)
ρ̃
(E)in
t,ny+1γ̃

(E)b
t,ny+1(

q
(ES)
0,0 + q

(S)
1,0

)(
1 − ρ̃

(E)in
t,ny+1

)(
1 − γ̃

(E)b
t,ny+1

)
+
(
q
(ES)
1,1 + q

(ES)
0,1

)
ρ̃
(E)in
t,ny+1γ̃

(E)b
t,ny+1

(77)

γ̃(E) =

(
1 − ρ̃

(E)in
t,ny+1 − γ̃

(E)b
t,ny+1

) [
q
(E)
0,1,0ρ̃

(E)dyna
t,ny+1 + q

(E)
0,0,0

(
1 − ρ̃

(E)dyna
t,ny+1

)]
+ ρ̃

(E)in
t,ny+1γ̃

(E)b
t,ny+1(

1 − ρ̃
(E)in
t,ny+1 − γ̃

(E)b
t,ny+1

) [
q
(E)
1,1,0ρ̃

(E)dyna
t,ny+1 + q

(E)
1,0,0

(
1 − ρ̃

(E)dyna
t,ny+1

)]
+ ρ̃

(E)in
t,ny+1γ̃

(E)b
t,ny+1

(79)
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ρ̃out
ẽt,k,ny

=
γ̃

(E)f
t,ny

γ̃
(E)b
t,ny

γ̃
(E)f
t,ny

γ̃
(E)b
t,ny

+
∏

k′ �=k

(
(ρin

ẽt,k′,ny
)−1 − 1

)(
1 − γ̃

(E)f
t,ny

)(
1 − γ̃

(E)b
t,ny

) . (81)

ρout
ek,t,k,t,nx,ny

=
ρ
(E)out
k,t,ny

ρ
(E)out
k,t,ny

+
(
1 − ρ

(E)out
k,t,ny

)∏
n′

x �=nx

((
ρin

ek,t,k,t,n′
x,ny

)−1

− 1
) . (84)

Λ(i)(Δθk,t,m) = 2Re

(
A′
(
θ̃k,t,m + Δθk,t,m, φ̃k,t,m + Δφ

(i)
k,t,m

)H

SkSH
k A

(
θ̃k,t,m + Δθk,t,m, φ̃k,t,m + Δφ

(i)
k,t,m

))
Θ

(i)
1

+ 2Re

(
A′
(
θ̃k,t,m + Δθk,t,m, φ̃k,t,m + Δφ

(i)
k,t,m

)H

SkΘ
(i)
2

)
, (88)

The message from factor node �k,t,ny to variable node
ek,t,ny is

υ�k,t,ny→ek,t,ny
(ek,t,ny)

= ρ
(E)out
k,t,ny

δ(ek,t,ny − 1) + (1 − ρ
(E)out
k,t,ny

)δ(ek,t,ny ), (82)

where ρ
(E)out
k,t,ny

= ρ̃out
ẽt,k,ny

ς
(E)
k,t,1,1.

6) Message Passing Over the Path ek,t,ny → uk,t,m →
bk,t,m → πk,t,m → gk,t,m: The message from factor node
ek,t,ny to variable node uk,t,m is

υek,t,ny→uk,t,m
(ek,t,ny) = ρout

ek,t,k,t,nx,ny
δ
(
ek,t,ny − 1

)
+
(
1−ρout

ek,t,k,t,nx,ny

)
δ
(
ek,t,ny

)
,

(83)

where ρout
ek,t,k,t,nx,ny

can be found in (84), shown at the top
of the page. The message from factor node uk,t,m to variable
node bk,t,m is

υuk,t,m→bk,t,m
(bk,t,m) = ρout

bk,t,k,t,mδ(bk,t,m − 1)

+
(
1 − ρout

bk,t,k,t,m

)
δ (bk,t,m) ,

(85)

where ρout
bk,t,k,t,m = ρout

ak,t,k,t,nx,ny
ρout

ek,t,k,t,nx,ny
γbk,t

. The
message υbk,t,m→πk,t,m

from variable node bk,t,m to factor
node πk,t,m is the same as υuk,t,m→bk,t,m

(bk,t,m). The mes-
sage from factor node πk,t,m back to variable node gk,t,m is

υπk,t,m→gk,t,m
(gk,t,m)

= ρout
bk,t,k,t,mCN (

gk,t,m; μout
k,t,m, (σout

k,t,m)2
)

+
(
1 − ρout

bk,t,k,t,m

)
δ (gk,t,m) . (86)

APPENDIX C
GRADIENT UPDATE FOR 3D OFF-GRID ESTIMATION

As the 3D off-grid estimation step is following the step
15 in Algorithm 3 which represents the posterior estimation
at the ith iteration with p̂

(
gk,t|y(t)

k , Δθ
(i)
k,t, Δφ

(i)
k,t

)
=

CN
(
gpost
B,k,t, v

post
B,k,tI

)
. The surrogate function can be

calculated as

L̂
(
Δθk,t, Δφk,t|Δθ

(i)
k,t, Δφ

(i)
k,t

)
∝ E

p̂
�

gk,t|y(t)
k

,Δθ
(i)
k,t

,Δφ
(i)
k,t

�

×
[
− 1

σ2
e

‖yk,t − Φk,t

(
Δθk,t, Δφk,t

)
gk,t‖2

]
∝ − 1

σ2
e

(
‖yk,t − Φk,t

(
Δθk,t, Δφk,t

)
gpost
B,k,t‖2

+ vpost
B,k,ttr

(
Φk,t

(
Δθk,t, Δφk,t

)
Φk,t

(
Δθk,t, Δφk,t

)H))
.

(87)

The azimuth offset5 Δθ
(i+1)
k,t can be updated use (49).

The derivative
∂L
�

Δθk,t,Δφ
(i)
k,t|Δθ

(i)
k,t,Δφ

(i)
k,t

�

∂Δθk,t

∣∣∣∣
Δθk,t=Δθ

(i)
k,t

with

previous iteration updated elevation offset Δφ
(i)
k,t can be

written as Λ
(i)
Δθk,t

= [Λ(i)(Δθk,t,1), . . . , Λ(i)(Δθk,t,M )]T ,
with Λ(i)(Δθk,t,m) as in (88), shown at the top of the

page, where Θ
(i)
1 = − 1

σ2
e

(
gpost
B,k,t,m + vpost

B,k,t

)
, Θ

(i)
2 =

1
σ2

e

(
gpost
B,k,t,m

)
∗ yk,t,−m, yk,t,−m = yk,t − SH

k

∑
j �=m A(

θ̃k,t,j + Δθk,t,j , φ̃k,t,j + Δφ
(i)
k,t,j

)
gpost
B,k,t,j , and

A′
(
θ̃k,t,m + Δθk,t,m, φ̃k,t,m + Δφ

(i)
k,t,m

)
= dA′

(
θ̃k,t,m + Δθk,t,m, φ̃k,t,m + Δφ

(i)
k,t,m

)
/dΔθk,t,m.

(89)
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