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Abstract— The emerging uplink (UL) and downlink (DL)
decoupled radio access networks (RAN) has attracted a lot of
attention due to the significant gains in network throughput,
load balancing and energy consumption, etc. However, due to
the diverse vehicular service requirements in different vehicle-
to-everything (V2X) applications, how to provide customized
cellular V2X services with diversified requirements in the UL/DL
decoupled 5G and beyond cellular V2X networks is challeng-
ing. To this end, we investigate the feasibility of UL/DL
decoupled RAN framework for cellular V2X communications,
including the vehicle-to-infrastructure (V2I) communications
and relay-assisted cellular vehicle-to-vehicle (RAC-V2V) com-
munications. We propose a two-tier UL/DL decoupled RAN
slicing approach. On the first tier, the deep reinforcement
learning (DRL) soft actor-critic (SAC) algorithm is leveraged
to allocate bandwidth to different base stations. On the second
tier, we model the QoS metric of RAC-V2V communications
as an absolute-value optimization problem and solve it by the
alternative slicing ratio search (ASRS) algorithm with global
convergence. The extensive numerical simulations demonstrate
that the UL/DL decoupled access can significantly promote
load balancing and reduce C-V2X transmit power. Meanwhile,
the simulation results show that the proposed solution can
significantly improve the network throughput while ensuring the
different QoS requirements of cellular V2X.

Index Terms— RAN slicing, decoupled access, soft actor-critic,
reinforcement learning.
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I. INTRODUCTION

AS 5G cellular networks commercially roll out, the cellu-
lar vehicle-to-everything (C-V2X) communications will

play a critical role in facilitating the application of auto-
motive and intelligent transportation. The recently expanded
3GPP Release 16 extension is standardized to support more
vehicle services, such as platooning, extended sensors, auto-
mated driving, and modern intelligent driving experience, etc.
To keep up with the ever-increasing mobile traffic demand,
5G cellular networks have evolved from a single-tier homoge-
neous network to multi-tier heterogeneous networks (HetNets),
which consists of several macro base stations (MBSs) with a
wide coverage area and a large amounts of small base stations
(SBSs). With the trends of network densification and exploding
of mobile data usage, one of the most challenging issues
of the HetNet topology is the user association, especially
for the C-V2X user access with high mobility and stringent
communication demand. The uplink and downlink decoupling
paradigm has attracted a lot of attentions and a pioneering
uplink (UL) and downlink (DL) decoupling paradigm for
radio access networks (RAN) is emerging by allowing the
access association in uplink and downlink to be different
and flexible [1], [2]. It has been proved that the UL/DL
decoupled access can obviously reduce the transmit power of
UL users [3]. Besides, with flexible cell association, the dis-
ruptive uplink and downlink decoupling paradigm has shown
great advantages in terms of network throughput enhancing,
load balancing, energy efficiency improving, and interference
eliminating, etc. [4]. Therefore, as an important part of the 5G
and beyond networks, it is of great significance to investigate
the impact of UL/DL decoupled access in C-V2X communica-
tions. However, flexible access in UL/DL decoupled paradigm
will put forward more strict QoS requirements for the dynamic
C-V2X communications.

Generally, there are two important scenarios of C-V2X
communications, i.e., cellular vehicle-to-infrastructure (C-V2I)
communications and relay-assisted cellular vehicle-to-vehicle
(RAC-V2V) communications [5]–[8]. Due to the different
requirements of C-V2X communications, the demand-critical
vehicular applications have been recognized as an important
5G scenarios of enhanced mobile broadband (eMBB) com-
munications and ultra-reliable low latency communications
(URLLC). For example, the cellular vehicle-to-infrastructure
communications can support the real-time sharing of 3D
HD maps and other media-rich information among vehicles,
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TABLE I

SUMMARY OF IMPORTANT SYMBOLS

while the RAC-V2V communications enable longer-distance
safety-related vehicular applications with ultra-low-latency
requirements [9]. However, how to provide customized C-V2X
services with diversified requirements in densified heteroge-
neous 5G and beyond networks is still challenging. As a
widely recognized network architecture of 5G revolution
techniques, RAN slicing [10] is emerging as a promising
way to provide customized services with differentiated QoS
requirements in 5G and beyond C-V2X [11], [12]. With the
fast development of advanced AI technologies, the AI-based
RAN slicing approaches have become promising solutions
to effectively address the optimization problems in dynamic
resource allocation with low complexity. Hence, it is mean-
ingful to design a AI-based network slicing framework for
C-V2X communications.

For the aforementioned considerations, in this paper,
we investigate the feasibility of UL/DL decoupled RAN
framework and study the dynamic RAN slicing problem for
both V2I communications and RAC-V2V communications.
Firstly, the UL/DL decoupled access technology of vehicles
is employed in a two-tier heterogeneous cellular network.
Secondly, the effective bandwidth and effective capacity the-
ory are leveraged to map the link-layer delay of RAC-V2V
communications to different bandwidth requirements [13].
Furthermore, after analyzing the characteristics of the bidi-
rectional traffic flow between UL and DL of RAC-V2V
communications, we put forward the QoS metric of C-V2V
innovatively. Finally, we design a two-tier RAN slicing solu-
tion, including the soft actor-critic (SAC) algorithm based
on off-policy deep reinforcement learning and the alternative
slicing ratio search (ASRS) algorithm based on block coordi-
nated descent (BCD), respectively. This two-tier RAN slicing
algorithm maximizes the network capacity while guaranteeing
the different QoS requirements of V2I and RAC-V2V slice.
We highlight our contributions in three-fold:

• We investigate the UL/DL decoupled access problem
for cellular V2X, which can significantly reduce the
transmit power of vehicle users. Through the flexible
association pattern, more vehicles will choose to access

SBSs, which can significantly release the heavy burden of
MBS.

• We innovatively analyze the bidirectional properties
between UL and DL traffic and further propose an inno-
vative QoS metric for the RAC-V2V communications,
which can ensure stability and stringent delay bound
requirement of RAC-V2V communications.

• We propose a two-tier RAN slicing solution. On the
first tier, we utilize the off-policy reinforcement learning
algorithm SAC for allocating spectrum bandwidth to
each slice. On the second tier, we equivalently convert
the RAC-V2V QoS metric minimization problem into
a non-convex problem and design the ASRS algorithm
based on BCD to solve it. The convergence of ASRS
algorithm is theoretically proved, and the RAC-V2V QoS
metric can be quickly reduced to a minimum value during
the actual iteration process.

The remainder of this paper is organized as follows.
Section II briefly reviews the related works. Section III
introduces the system model. Section IV introduces the prob-
lem formulation. Section V presents the two-tier RAN slicing
approach. In section VI, the simulation results and detailed
analysis of the proposed two-tier algorithm are presented.
Finally, section VII concludes this literature. For convenience,
Table I summarizes the major notations of this paper.

II. RELATED WORKS

A. UL/DL Decoupled Access

In contrast to traditional user association scenario where
UL/DL can only connect to one particular BS, the UL/DL
decoupled access proposed by Boccardi et al. [4] is emerg-
ing as a new flexible cell association paradigm in recent
years. The decoupled access technologies which enable mobile
users to access different base stations in UL/DL can signifi-
cantly enhance UL transmission throughput, improve energy
efficiency with a relatively low cost, and bring remarkable
gains to the communication capacity of cell edge users [14].
To achieve the benefits brought from the UL/DL decou-
pled access, Lema et al. [15] proposed a dual-connectivity
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spectrum aggregation for innovative user connection in 5G
heterogeneous systems and Bacha et al. [16] utilized stochas-
tic geometry to analyze the two-tier heterogeneous networks
with multi-antenna base stations. In the context of UL/DL
decoupled resource allocation, Chen et al. [17] considered an
echo state network framework in LTE-U to choose optimal
bands with only limited information on network and user
states.

B. Radio Access Network Slicing

Network slicing is an evolving resource allocation concept
that can be leveraged to meet the diverse requirements of
user demands for 5G wireless communications. By slicing
the infrastructure network into multiple dedicated logical net-
works, wireless networks can support a variety of personal user
services [18]. Due to the spectrum resource scarcity of radio
access networks, RAN slicing can play a crucial role in guar-
anteeing the QoS requirements of different users. For the appli-
cation of RAN slicing, Ye et al. [19] proposed an alternative
concave search algorithm to maximize the aggregated network
utility. Focusing on the design of three key network slicing
building blocks, Sciancalepore et al. [20] proposed to adap-
tively modify the predicted load based on measurement devi-
ations, which can enable the traffic analysis, network slicing
prediction, and admission control decisions for network slicing
requests. However, because of the complex and dynamic net-
work environment brought about by the mobility of vehicles,
it is difficult for traditional mechanisms to handle heteroge-
neous vehicular services requirements [21]. Xiong et al. [22]
modeled this problem as a Markov decision process and
proposed a Monte Carlo tree-based smart slice scheduling
algorithm in vehicular fog radio access networks. Through
the virtualization of multi-dimensional network resources and
the design of a machine learning algorithm, the QoS of
V2X services can be dramatically enhanced. In addition,
Zhang et al. [23] investigated the air-ground integrated vehic-
ular network slicing problem and proposed a networking
slicing approach to match the multi-resources across different
slices. To enhance the quality of experience, Khan et al. [24]
proposed a joint quality selection and resource allocation tech-
nique. By leveraging the clustering algorithm and Lyapunov
drift plus penalty method, it can effectively achieve low latency
and high-reliability vehicular communications.

To further facilitate the flexibility and capability of wire-
less resource allocation while guarantee QoS requirements
of various services, intelligent allocation mechanisms based
on machine learning are widely investigated in network slic-
ing [12], [25]. Aijaz [26] adopted a post-decision state rein-
forcement learning (RL) method to allocate radio resources
for different slices. Albonda and Prez-Romero [27] proposed
an efficient Deep Q-learning based RAN slicing algorithm to
ensure the availability of spectrum resources and fulfill the
V2I and V2V slice QoS requirements. Although these afore-
mentioned model-free RL algorithms have achieved a certain
effect, they are hindered from widespread use in network
slicing by the following two bottlenecks. On the one hand,
the on-policy based RL algorithms, like trust region policy

Fig. 1. RAN slicing scenario for decoupled access.

optimization (TRPO) and proximal policy optimization (PPO)
need more samplings to calculate the gradient while the
huge amount of sampling process in the actual environment
turns out to be a great burden [28].On the other hand, the
deterministic-policy-based RL algorithms such as deep deter-
ministic policy gradient (DDPG) can often result in strong
hyperparameter sensitivity and low sampling efficiency [29].

III. SYSTEM MODEL

A. Network Model

As illustrated in Fig. 1, we consider a dynamic RAN slicing
framework for C-V2X communications underlaid a two-tier
HetNet [30]. Under the decoupled rules, the UL and DL
RAC-V2V users can be freely connected to MBS or SBS
independently. Generally, there are three different UL/DL
association cases (i.e., the two-hop RAC-V2V communications
can be achieved through one or two base stations) in Fig. 1.
In cases 2 and 3, the two-hop relay can be achieved through
one base station. However, in case 1, the relay which is
realized by establishing UL/DL connections with two base
stations should be supported by the interface between BSs.
The inter-BS communication (i.e., the communication between
MBS and SBS) can be achieved by the standardized X2
interface while the data will be forwarded to another BS via
a common public radio interface [4]. Specifically, in the slic-
ing framework, we consider both V2I and RAC-V2V slices.
Meanwhile, the cloud-RAN (C-RAN) technique is leveraged
to aggregate UL/DL bandwidth at the edge cloud. Since the
communication requirements of V2I and RAC-V2V slices
are different, in this paper, we design a two-tier bandwidth
slicing algorithm to maximize the sum capacity while meeting
different QoS requirements of different slices. As shown in
Fig. 1, at the first slicing tier (i.e., tier 1), resource orchestration
between V2I and RAC-V2V slice is achieved by allocat-
ing bandwidth among MBS and SBSs. At the second tier
(i.e., tier 2), bandwidth will be precisely allocated to each
vehicle user.

Let M and b denote the macro BS and small BS, respec-
tively, where b ∈ {1, · · · , b, · · · ,B}. In addition, M and Φb
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represents UEs associated with MBS and SBSs, respectively.
The total UL and DL bandwidths are denoted as WUL and
WDL, respectively. In order to improve the efficiency of spec-
trum bandwidth utilization, bandwidth resources are reused
between small BSs. Besides, the spectrum is orthogonally
allocated between macro BS and small BSs. Therefore, we can
denote βfW f ,

(
1−βf

)
W f , f ∈ {UL,DL} as the bandwidth

allocated to the macro cell M and a small cell b, respectively.
By deciding the optimal slicing ratios β∗

UL and β∗
DL, the

purpose of this slicing framework is to maximize bandwidth
utilization and ensure different QoS of V2I and RAC-V2V
slice. There are two kinds of vehicle users, one is the downlink
V2I users H = {1, · · · , h, · · ·H} and the other is the pairs of
RAC-V2V users D = {1, · · · , d, · · ·D}.

We consider the queues at the base station and user side,
which are responsible for the uplink and downlink transmis-
sion. We analyze different QoS requirements of flow of data
packets from different vehicle users. The packet transmission
rate from the BSs to the V2I user is λh packets/s, the
length of each packet is a constant Lh bits. For RAC-V2V
communications, considering its strict delay requirements and
link instability, we model the process of the arrival of both
UL and DL packets of RAC-V2V users as Poisson processes
with the same average rate λd packet/s, and the length of the
packet is Ld bits.

B. Capacity Analysis of Vehicle Users

We assume all vehicle users are equipped with a single
antenna. Traditional UL/DL access is based on the maximum
average received signal power (RSP). However, in the decou-
pled scenario, vehicular users choose the nearest BS as UL
service provider while DL users choose the BS with the largest
received power.

For a typical vehicle user i ∈ {H,D} connected to a
cell l in UL, the distance is xi,l, l ∈ {Φb,M}, if and
only if:

�i,lGl‖xi,l‖−αl ≥ �i,kGk‖xi,k‖−αk , ∀l, k ∈ {Φb,M} . (1)

Similarly, a user connected to a cell l in DL with distance
xi,l, if and only if:

∂lGl‖xi,l‖−αl ≥ ∂kGk‖xi,k‖−αk , ∀l, k ∈ {Φb,M} , (2)

where Gk and αk represents the antenna gain and path loss
constant of user i connected to BS k, respectively. �i,M and ∂M

indicates UL transmit power of vehicle users and DL transmit
power of macro cell, respectively [31]. Similarly, �i,Φb

and
∂Φb

denotes UL and DL transmit power of users associated
with small cells and transmit power of small BSs, respectively.

We denote the SNR of communication link between vehicle
user and connected macro cell as:

SNRiUL,M =
�i,MGMh‖xi,M‖−αM

σ2
;

SNRiDL,M =
∂MGMh‖xi,M‖−αM

σ2
. (3)

We consider the spectrum bandwidth can be reused between
small BSs and allocated orthogonally in one small BS. Due to

the co-channel interference, the SINR of communication link
between vehicle user and a small BS can be shown as:

SINRiUL,Φb
=

�i,Φb
GΦb

h‖xi,Φb
‖−αΦb∑

j∈Φb
′ �=Φb

�j,Φb
GΦb

h‖xj,Φb
‖−αΦb + σ2

;

SINRiDL,Φb
=

∂Φb
GΦb

h‖xi,Φb
‖−αΦb∑

Φb
′ �=Φb

∂Φb
′GΦb

′h‖xi,Φb
′‖−αΦ′ + σ2

. (4)

with σ2 being the power of the additive white Gaussian noise.
The interference IiUL,Φb

=
∑

j∈Φb
′ �=Φb

�j,Φb
GΦb

h‖xj,Φb
‖−αΦb

and IiDL,Φb
=

∑
Φb

′ �=Φb

∂Φb
′GΦb

′h‖xi,Φb
′‖−αΦb

′ represents the

uplink and downlink inter-cell interference, respectively.
The load of each cell is determined by the number of

devices associated with the same BS and the achievable rates
of corresponding users. There are two different users, i.e.,
V2I and RAC-V2V users. The matrix A and B represents
the Shannon capacity with full bandwidth associated with
macro and small BSs in UL and DL, respectively. The index
i ∈ {1, · · · ,H}, j ∈ {1, · · · , 1 + B} denotes the rows and
columns of matrix A, respectively. Therefore, when the UL
bandwidth of each BS is given, the Shannon capacity of each
user Ai,j can be expressed as:

Ai,j =

{
βULWUL log(1 + SNRi,j) j ≤ 1;
(1− βUL)WUL log(1 + SINRi,j) otherwise.

(5)

For the DL association, the index i ∈ {1, · · · ,H + D}, j ∈
{1, · · · , 1 + B} denotes the rows and columns of matrix B.
When the DL bandwidth of each BS is given, the Shannon
capacity of each user matrix Bi,j can be calculated by:

Bi,j =

{
βDLWDL log(1 + SNRi,j) j ≤ 1;
(1− βDL)WDL log(1 + SINRi,j) otherwise.

(6)

C. Effective Bandwidth Theory for
RAC-V2V Communications

The effective bandwidth theory derived from the large
deviation theory represents the lowest service rate under the
queuing delay constraint of a given data rate of source flow,
which is often used to obtain the optimal resource allocation
strategy. We consider the end-to-end delays can be calculated
between a packet from its arrival to departure, e.g., a packet
is generated at the user side or base station side, and then to
its destination. For the two-hop RAC-V2V communications,
to simplify the problem formulation, we consider both the
uplink and the downlink packets of the relay are Poisson
arriving, and the effective bandwidth is the same [32]. There-
fore, we can derive a minimum transmission rate with delay
violation probabilities of RAC-V2V communications.

We first denote the QoS index �, and the effective band-
width of RAC-V2V communications can be expressed as:

Λ (�) = lim
t→∞

1
t

1
�

log
(
E
[
e�O(t)

])
, (7)

where O (t) represents the number of packets arriving over
[0, t) for RAC-V2V communications, E[·] represents the
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Fig. 2. The framework of two-tier RAN slicing for UL/DL decoupled cellular V2X.

expectation. Since O (t) is modeled as a Poisson process with

λfd packet/s [19], it can be further expressed as:

Λ (�) = λfd
e� − 1
�

. (8)

The total transmission delay Di,l of a packet from the
transmitter BS/vehicle-user l to the receiver BS/vehicle-user i
exceeding the maximum delay constraint Dmax can be fitted
as:

Pr {Di,l ≥ Dmax} ≈ e−�pi,lDmax ≤ ε, (9)

where ε represents the delay violation probability, pi,l = ci,l

Ld
is

achievable rate from V2V user i to BS l (under the constraint
of the number of packets transferred per second) and vice
versa. The minimum realizable rate pmin is

pmin = − logε
�Dmax

. (10)

According to the effective bandwidth theory, pmin should
be equal to the effective bandwidth Λ (�) to ensure that the
probability of delay violation does not exceed ε. So we can
get � = log

(
1− log ε

λf
dDmax

)
. Then the minimum transmission

rate of RAC-V2V communication can be derived as:

cmin = pminLd = − Ld logε
Dmax log

(
1− logε

λf
dDmax

) . (11)

We consider an equal-length time-slotted system with the
time as T = {1, · · · , T }. The t-time slot is set as hundreds
of milliseconds. Hence, the vehicle locations do not change
too much during this time slot. Additionally, the channel is
assumed to be constant in each time period [33]. Therefore,
the capacity of vehicle users and the minimum required
transmission rate in (11) remains unchanged during the t-th
time period.

IV. TWO-TIER RAN SLICING APPROACH

A. MDP Model for RAN Slicing

The detailed process of learning, storing, and updating in
our proposed two-tier slicing framework is illustrated in Fig. 2,
which can be described as a Markov Decision Process (MDP).
We denote the state, action, state change and return of the slice
controller to get the fully observed MDP model. By dynamic
interactions between slice controller and wireless network
environment, we can derive the tuple: (S,A, r,P, a), where S

denotes the collection of states, A indicates a set of possible
actions. P is defined as the probability of state transition.
In our environment, due to the dynamic and random nature of
the state, it is impossible to know the probability of real-time
state transition, so in the following, we adopt a model-free
deep reinforcement learning algorithm to deal with the fully
observed MDP problem. We denote rt (st, at) as the reward at
a specific state st with taking action at, which will be further
returned to the network slice controller.

State: We denote the cell state st as a tuple:
{Γt−1,Υt, rt−1}, where Γt represents the bandwidth allocated
to V2I and RAC-V2V slices at last time period t − 1, Υt

denotes the total bandwidth requirement of different slices at
time period t, and rt−1 represents the reward last time period
t− 1.

Action: At a certain state, DRL agent performs an action of
at = {βUL, βDL}, where βUL and βDL are restricted to [0, 1].

Reward: The payoff for the state transfer is rt ∈ R (s, a).
In the proposed scenario, at time period t, the reward including
the utility function and the QoS of RAC-V2V cellular mode
can be expressed as:

rt (s, a) =
∑
i

∑
j

AP +
∑
i

∑
j

BQ. (12)

We consider the dimensions of these matrices A, P , B and
Q are the same, constituted by i rows and j columns. The
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Fig. 3. Two-tier RAN slicing process.

index i represents the vehicles, while the index j represents
the BSs. The matrices A and B denotes the UL/DL vehicle
user’s capacity with full bandwidth allocated to the associated
BS, respectively. The matrices P and Q represents the UL/DL
bandwidth slicing ratios to each user, respectively. As shown in
Fig. 3, the two-tier bandwidth allocation diagram is described.
Every vehicle user adopts UL/DL decoupled access procedure
and reports its minimum rate requirement to each associated
BS. Firstly, the edge cloud collected the rate requirement of
different slices. Secondly, the policy network in SAC chooses
an action (i.e., the UL/DL bandwidth allocation ratios) based
on the network state. Thirdly, the ASRS is designed to allocate
bandwidth to each user. When the allocation is completed, the
rewards and new state will be put into the replay buffer.

The goal of the slicing controller is to maximize the

long-term reward
T∑
t=1

γt−1rt(st, at), which is represented as

the discount summation of the reward over the time period T .
The discount factor γ is restrict to [0, 1].

B. SAC for Allocating Spectrum to BSs

As a typical model-free algorithm, Q-learning performs
poorly in processing continuous action situations, due to the
fact that discretizing the actions will cause the exponential
growth of action’s number and some important information for
solving the problem may be lost. Therefore, we propose a SAC
algorithm based on the Actor-Critic framework. The adoption
of SAC algorithm has the following three advantages: 1), based
on policy iteration, it can deal with the problem of continuous
action space; 2) the combined reward based on maximum
entropy and state value can effectively explore more excellent
actions, which gives a stronger exploration ability; 3) SAC
overcomes the complexity brought by massive sampling and
the sensitivity of reinforcement learning in hyperparameters
(e.g., learning rates, exploration constants) [34].

The goal of traditional RL algorithms is to maximize
long-term expected rewards

∑
t E(st,at)∼ρπ

[r(st, at)] accord-
ing to a policy π (a|s). However, in order to learn more

effective movements, we add entropy to the long-term reward,

J(π) =
T∑
t=0

E[r(st, at) + αH(π(·|st))|π], (13)

where the parameter α is the temperature index and represents
the relative importance of the entropy compared to the reward.
The larger the value of α, the more stochastic actions we want.
Otherwise, the effective actions learned will be more specific.
H(π(·|st)) = − log π(a|s) denotes an entropy for actions at
state s. So Eq. (13) can be further described as,

J(π) =
T∑
t=0

E[r(st, at)− α log π(·|s)|π], (14)

In the policy evaluation step of soft iteration, we wish to
compute the value of a policy π according to the maximum
entropy objective in Eq. (14). For a fixed policy, the dis-
count soft Q-value can be computed iteratively, starting from
any function Q and repeatedly applying a modified Bellman
backup operator �π.

�
πQ(st, at) � r(st, at) + γE[V (st+1)]. (15)

The soft value function can be obtained from Bellman
backup operator, which is denoted as,

V (st) = E[Q(st, at)− α log π(at|st)|π]. (16)

Theorem 1: Given the policy π, when the action reward at
any state is finite, the sequence Qk can be converged to the
soft Q-value, where Qk+1 = �πQk.
Proof : See Appendix B.1 in [34].
For the Actor-Critic algorithm in continuous action space,

we run actor and critic alternately until convergence. Here,
we use deep neutral network (DNN) to separately fit the Critic
network and the Actor network, and then use the stochastic
gradient descent method to update the parameters in the two
networks alternately.

As shown in Fig. 2, there are 4 networks in the critic part,
two value networks and two Q networks. Value networks are
parameterized by V (s) ≈ Vψ(s) and V (s) ≈ Vψ̄(s), i.e.,
evaluate network ψ and target network ψ̄. The reason for using
two value networks is to make the training more stable. The
update of value network can be trained by minimizing the
mean squared error (MSE) LV (ψ).

LV (ψ)

= E

[
1
2

(Vψ (st)−E [Qθ (st, at)− α log πφ (at|st)])2
]
. (17)

The parameters needed for neural network update come
from replay memory D, where the D is the distribution of
previous sampled states and actions. The gradient of Eq. 17
can be estimated with an unbiased estimator,

∇̂ψLV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st, at)
+α log πφ(at|st)) . (18)

The parameters of the evaluate network is updated by

ψ ← ψ − ϑV 
̂ψLV (ψ) , (19)
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where the parameter ϑV ≥ 0 is the learning rate of evaluate
value network.

Leveraging the soft deep network parameter update method
in double deep Q-learning (DDQN), we can derive target
network update formula:

ψ̄ ← ψ + (1 − τ)ψ̄, (20)

where the parameter τ ∈ [0, 1] is update weight of the target
value network.

The two Q networks with parameters θ1 and θ2 are respon-
sible for evaluating the state-action, which are illustrated in
Fig. 2. The reason for using two Q networks is to select a
lower Q value when updating the policy network to reduce
overestimation, where the actions are sampled according to the
current policy. The soft Q-function parameters can be trained
to minimize the squared error,

LQ(θ) = E

[
1
2

(
Qθ (st, at)− Q̂ (st, at)

)2
]
, (21)

with

Q̂(st, at) = r(st, at) + γE
[
Vψ̄(st+1)

]
, (22)

where Vψ̄(st+1) is the target state value in st+1. The MSE
loss LQ(θ) can be optimized with stochastic gradients:

∇̂θLQ(θ) = ∇θQθ(st, at) (Qθ(st, at)− r(st, at)
−γVψ̄(st+1)

)
. (23)

From the above, we can update the Q network parameter
θi, where i ∈ {1, 2}, according to the following formula:

θi ← θi − ϑQ�̂θiLQ(θi), (24)

where the parameter ϑQ ≥ 0 is the learning rate of evaluate
value network.

The policy network is responsible for outputting the
Gaussian mean and variance of continuous actions. In the
policy improvement step, for each state, we update the policy
towards the exponential of the new Q-function, which is
proved to lead to an improved policy with respect to the
objective in Eq. (15) [35]. Also, we leverage KL-divergence to
project the parameterized policy of Gaussian distribution. The
entire soft strategy iteration algorithm alternates between soft
strategy evaluation and soft strategy improvement. Finally, the
policy parameters can be learned by directly minimizing the
expected KL-divergence,

Lπ(φ) = E

[
DKL

(
πφ (·|st)

∣∣∣∣∣∣exp (Qπold (st, ·))
Zπold (st)

)]
. (25)

In our case, the target density is the Q-function, which is
represented by a neural network. Therefore, it can be differen-
tiated. And it is also convenient to apply the reparameterization
trick instead, resulting in a lower variance estimator. The
function Zπold is the normalized distribution, which has no
contribution to the gradient and thus can be ignored. To that
end, we reparameterize the policy using a neural network
transformation,

at = fφ(εt; st), (26)

where εt is an input noise vector, sampled from Gaussian fixed
distribution. Use reparameterization techniques, we can now
rewrite the objective in Eq. (25) as:

Lπ(φ) = E [log πφ (fφ (εt; st)−Qθ (st, fφ (εt; st)))] , (27)

where πφ is defined implicitly in terms of fφ, and we have
noted that the function Zπold is independent of φ and thus
can be ignored. We can approximate the gradient of Eq. (27)
with

∇̂φLπ(φ)
= ∇φ log πφ(at|st)

+ (∇at log πφ(at, st)−∇atQ (st, at)∇φfφ(εt; st)) .
(28)

To minimize Lπ(ψ), it is easy to get the policy network
parameter update equation as:

φ← φ− ϑπ�̂Lπ(φ), (29)

where the parameter ϑπ ≥ 0 is the learning rate of policy
network.

Theorem 2: Given the policy π ∈ Π, the state-action value
is finite, when we alternately update the critic network and the
policy network, the policy π will converge to the optimal π∗,
which can be expressed as Qπ

∗
(st, at) ≥ Qπ(st, at) ∀π ∈ Π.

Proof : Detailed proof can be found in [34].

Algorithm 1 SAC-Based Slicing Strategy on Large Time
Scales

1 Initialize parameters ψ, ψ̄, θ, φ
2 for time step t = 1, · · · , T in each training episode do
3 Initialize system state st;
4 Choose slicing ratiosat = (βUL, βDL) form the policy

at ∼ π (·|st, φ);
5 Perform action at and get the UL DL bandwidth for

MBS and SBSs, respectively ;
6 Perform Algorithm 2 to get the reward rt;
7 Observe the new state st+1, namely, the feedback

tupe: {Γt,Υt+1, rt};
8 Store {st, at, rt, st+1} to the replay memory D;

9 for each gradient step do
10 Sample {si, ai, ri, si} from the D;
11 Update the evaluate value network according to Eq.

(19);
12 Update the two Q networks, according to Eq. (24);
13 Update the policy network according to Eq. (29);
14 Update the target value network parameters according

to Eq. (20);

Algorithm 1 presents the functionality of the agent part in
Fig. 2, including parameters updating, action selecting, state
storing, etc. The parameters ψ, ψ̄, θ, φ need to be initialized
before the algorithm starts. At each step of network slicing, the
actor-network in SAC selects an action based on the current
state. When the bandwidth of each BS is determined according
to slicing ratios (βUL, βDL), Algorithm 2 will allocate the
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bandwidth to each vehicle user, and then the edge controller
obtains the network states of V2I and RAC-V2V Slice, and
reward is sent to the replay buffer D, which is used to
store experience. When the replay buffer reaches a certain
amount, the network starts training and updates the network
parameters.

C. ASRS for Allocating Spectrum to Vehicle Users

In terms of RAC-V2V communications, the UL and DL
are independently associated with different BSs. However,
since the communicating vehicles need to exchange safety-
related information. By leveraging RAC-V2V, the roles of
transmitter and receiver of RAC-V2V communications are
constantly reversible to complete the interactive communica-
tions. Generally, UL and DL sessions of RAC-V2V cellu-
lar users are coupled to complete bidirectional information
exchanges. To ensure stability and stringent delay bound
requirement, UL/DL resource allocation must be considered
simultaneously. The bidirectional safety-related data and sig-
naling flow between RAC-V2V transmitter and receiver in
UL/DL are general symmetrical traffic. Therefore, RAC-V2V
communications require symmetric resource allocation in UL
and DL. Therefore, we can formulate the QoS metric of RAC-
V2V communication as |RUL − RDL|. The variable RUL and
RDL represents the achievable rate in UL/DL, respectively.
To ensure safe and timely communication, it is necessary
to ensure that the UL/DL capacity of the RAC-V2V users
is as the same as possible through synchronous resource
allocation. Therefore, in the following, we will design the
ASRS algorithm to minimize the RAC-V2V QoS metric.
We use 1 to indicate that the vehicle user has established
a link with the corresponding BS, and 0 indicates there is
no link established with the BS. Therefore, we denote UL
and DL association matrix as �H×(B+1) and (H+D)×(B+1),
respectively,

� =

⎛
⎜⎝1 0 · · · 0

...
...

. . .
...

1 0 · · · 0

⎞
⎟⎠  =

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0
1 0 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

where the number of rows and columns of matrix � and 
indicates the number of vehicles and BSs, respectively, �i,j ∈
0, 1 and � · e = e, and i,j ∈ 0, 1 and  · e = e. The unit
vector e = [1, . . . , 1]T .

Here we also denote the UL and DL slicing ratios matrices,
namely, PH×(B+1) and Q(H+D)×(B+1), which have the same
order as � and , respectively. Besides, Pi,j ∈ (0, 1), Qi,j ∈
(0, 1), which can be further represented as: � ≥ P ;  ≥ Q.
The sum of each column of matrix, i.e.,

∑
Pj
j

and
∑
Qj
j

are

both equal to 1.
Based on the above analysis, we know that the bandwidth

allocation of each BS is given by Algorithm 1. Hence, in the
second tier, the goal is to minimize the QoS metric of
RAC-V2V communications. The objective function and

corresponding constraints are formulated as follows:

Minimize
{P∗, Q∗}

N∑
i

∣∣∣∣∣∣
∑
j

Ai,jPi,j −
∑
j

Bi,jQi,j

∣∣∣∣∣∣ (30a)

s.t. 0 ≤ Pi,j ≤ 1, PT · e = e,Pi,j ≤ �i,j , (30b)

0 ≤ Qi,j ≤ 1, QT · e = e,Qi,j ≤ i,j , (30c)∑
j

Ai,jPi,j ≥ cmin, i ∈ {1, · · · ,H}, (30d)

∑
j

Bi,jQi,j ≥ cmin, i ∈ {1, · · · ,H}, (30e)

∑
j

Bi,jQi,j ≥ λhLh, i ∈ {H + 1, · · · ,H + D}. (30f)

The solution of the optimization problem in (30) is the band-
width allocation in both UL and DL while satisfying the
minimum rate requirements of V2I and RAC-V2V users. The
objective function is an absolute value function. In addition,
the absolute value function is NP-Hard and not smooth [26],
traditional gradient-descent based methods are difficult to
solve it. The objective function in Eq. (30) for the optimization
problem is not convex. Therefore, we let Γ be equivalent to the
objective function, and then the original optimization problem
can be equivalently transformed into,

Minimize
{P∗, Q∗}

Γ (31a)

s.t. 0 ≤ Pi,j ≤ 1, PT · e = e,Pi,j ≤ �i,j , (31b)

0 ≤ Qi,j ≤ 1, QT · e = e,Qi,j ≤ i,j , (31c)∑
j

Ai,jPi,j ≥ cmin, i ∈ {1, · · · ,H}, (31d)

∑
j

Bi,jQi,j ≥ cmin, i ∈ {1, · · · ,H}, (31e)

∑
j

Bi,jQi,j ≥ λhLh, i ∈ {H + 1, · · · ,H + D}, (31f)

Γ ≥
N∑
i

⎡
⎣∑

j

Ai,jPi,j −
∑
j

Bi,jQi,j

⎤
⎦ , (31g)

Γ ≥ −
N∑
i

⎡
⎣∑

j

Ai,jPi,j −
∑
j

Bi,jQi,j

⎤
⎦ , (31h)

Γ ≥ 0. (31i)

However, this is still not a standard convex problem
because the inequality constraints (32g), (32h) are dual non-
convex (i.e., one of the two constraints must be non-convex).
By leveraging the block coordinated descent algorithm [36],
we designed ASRS, namely, fixed matrix P to get the optimal
Q∗, then we can utilizeQ∗ to calculate the optimal P∗. In each
iteration loop of ASRS, we need to fix one variable to solve
another variable, so that the problem (31) can be transformed
into two linear programming problems. In each iteration, first,
we fix the matrix P to solve for the optimal matrix Q, so the
subproblem is described as,

Minimize
{Q∗}

Γ

s.t. (31b), (31d)− (31h). (32)
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After the above problem (32) is solved, we get the optimal
matrix Q∗. Due to the characteristics of cyclic optimization,
in the next iteration, we use the optimal Q∗ to solve the
optimal P∗. So another sub-problem (33) is expressed as,

Minimize
{P∗}

Γ

s.t. (31a), (31c), (31e)− (31h). (33)

In this way, the original non-convex optimization problem
is split into two sub-optimization problems. Through the loop
calculation, each iteration needs to solve two sub-problems,
which is illustrated below:

{P0,Q0} → Γ0︸ ︷︷ ︸
initialization

→ · · · → Qn−1 → {Pn−1,Γn−1}︸ ︷︷ ︸
(n−1) th iteration

→ · · ·

→ Pn → {Qn,Γn}︸ ︷︷ ︸
(n) th iteration

→ · · · → {P∗ ,Q∗ } → Γ∗︸ ︷︷ ︸
optimal value

. (34)

Before the loop of the ASRS algorithm, we need to find
an initial bandwidth allocation matrices P0,Q0. Therefore,
we need to calculate the minimum communication rate for
each vehicle user, and the minimum bandwidth requirement
for each uplink user can be represented as:

Pmin
i,j =

⎧⎪⎨
⎪⎩

cmin

log(1 + SNRi,j)
j = 1,�i,j �= 0;

cmin

log(1 + SINRi,j)
j �= 1,�i,j �= 0.

(35)

Similarly, the minimum bandwidth requirement for the
downlink users Qmin

i,j is represented as:

Qmin
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cmin

log(1 + SNRi,j)
j = 1, i ≤ H,i,j �= 0;

λhLh
log(1 + SNRi,j)

j = 1,H≤ i≤H+D,i,j �=0;
cmin

log(1 + SINRi,j)
j �= 1, i ≤ H,i,j �= 0;

λhLh
log(1 + SINRi,j)

j �= 1,H≤ i≤H+D,i,j �= 0.

(36)

Therefore, we can get the minimum uplink bandwidth
requirement for the j th BS bUL

i =
∑
i Pi,j . Similarly, the

minimum downlink bandwidth requirement for the j th BS is
bDL
i =

∑
iQi,j .

The ASRS slicing algorithm is described in Algorithm 2.
It is responsible for timely resource customization. We design
a heuristic initial bandwidth allocation method, which can find
suitable iterative initial test matrices P0,Q0. In the process of
cyclic iteration, we first fix a matrix P and find the optimal
objective function Γ and the optimal matrix Q, then utilize
the optimal matrix Q to find the optimal matrix P and the
optimal objective function Γ.

Convergence Analysis: Base on the results presented in the
previous two subsections, we propose an iteration algorithm
ASRS for problem (31) by the block coordinated decent
method, also known as the alternating optimization method.
Specifically, the entire optimization variables in original prob-
lem (31) are partitioned into two blocks, i.e., {P ,Q}. Then

Algorithm 2 The ASRS Slicing Algorithm

1 Input Parameters {βUL, βDL} from Algorithm 1,
maximum iteration times �, and the tolerance ω ≤ 0.

2 Output Optimal bandwidth slicing ratio matrix
{P∗,Q∗}, the optimal value Γ∗ and reward r.

3 Calculate Pmin
i,j and Qmin

i,j .
4 for j ∈ {1, · · · , 1 + B} do
5 If �i,j �= 0,

6 P0
i,j =

UL bandwidth of BS j−�
i

Pmin
i,j

�

i

�i,j
+ Pmin

i,j ,

7 If i,j �= 0,

8 Q0
i,j =

DL bandwidth of BS j−�
i

Qmin
i,j

�

i

	i,j
+Qmin

i,j ,

9 Get the initialized matrices
{
P0,Q0

}
.

10 Initialize iteration variable n = 0.
11 while

∣∣Γn − Γn−1
∣∣ ≥ ω do

12 Given uplink slicing ratio matrix Pn, obtain the
downlink slicing ratio matrix Qn and the objective
function Γn according to problem (32),

13 Calculate matrix Pn and update Γn by leveraging the
above matrix Qn according to problem (33),

14 Return: Optimal slicing ratio matrix {P∗,Q∗}, the
optimal objective value Γ∗ and the reward r according to
Eq. (12).

TABLE II

DETAILED SIMULATION PARAMETERS

the uplink spectrum bandwidth scheduling ratios P and down-
link spectrum scheduling ratios Q are alternately optimized,
by solving problem (32) and (33) correspondingly, while
keeping another block of variables fixed. Furthermore, the
obtained solution in each iteration is used as the input of
the next iteration. The details of this algorithm are summa-
rized in Algorithm 2. It is worth pointing out that in the
classical block coordinate descent method, the sub-problem
for updating each block of variables is required to be solved
exactly with optimality in each iteration to guarantee the
convergence [37].

V. PERFORMANCE EVALUATION

Our simulation implementation is divided into two parts,
e.g., the SAC reinforcement learning is implemented in Python
3.6.10 and PyTorch 1.4.0, while the optimization algorithm
of ASRS is based on CVXPY 1.0.31. In terms of hard-
ware, we utilize the 1.60GHz intel(R)Core(TM) i5 CPU
with 256GB memory, and the RAM is 8GB 2133MHz.The
important modeling parameters are listed in Table II.
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Fig. 4. The two-way six-lane free-way. There is a macro BS and two small
BSs.

Fig. 5. Percentage of users accessing each BS when the bias = 0 dB, 3 dB
and decoupled access.

A. Evaluation of Decoupled Access

We first evaluate the performance of decoupled access.
As shown in Fig. 4, the simulation scenario is set up according
to 3GPP TR 36.885 [5]. We consider the classic 1000-meters-
long road with 6 lines and 2 directions. In this scenario, there
is a heterogeneous cellular network with an MBS and two
SBSs. The MBS is 40 meters away from the road, and the
MBS is set to the origin of coordinates. Also, the two SBSs
are located close to the road (set the distance as 10 meters
away from the road), and the coordinates of the two SBSs
are (−250m, 30m) and (250m, 30m). The vehicles are located
on the roads according to the spatial Poisson process and the
vehicle density is determined by the vehicle speed [30]. The
H V2I users and D pairs of RAC-V2V users are randomly
selected from the generated vehicles.

Fig. 5 shows the performance comparison of the decoupled
access, the traditional access (bias = 0 dB), and the bias-
access, which is commonly used in LTE (e.g., bias = 3 dB
means that only when the transmit power of macro is 3 dB
higher than the small BSs that vehicles choose to access
macro BS). However, the decoupled access performs better
in offloading UL traffic to small BSs in contrast to traditional
access and bias manner. This is meaningful to macro BS which
suffers the heavy burden in both UL and DL.

Fig. 6 shows the cumulative distribution function (CDF)
curve of transmit power for vehicle users using decoupled,
traditional access (bias = 0 dB) and the bias access (bias =
3 dB). Here we use channel inversion uplink power compen-
sation for vehicle users, and the minimum received power is
−106dBm. Obviously, it can be seen that transmission power
CDF of decoupled access is located on the left, which means
that the transmit power is lower compared with traditional
and bias access. It is worth mentioning that the CDF curve of

Fig. 6. The CDF of vehicle transmission power when the bias = 0 dB, 3 dB
and decoupled access.

Fig. 7. The learning effect of SAC compared with PPO, DDQN, PG, and
Heuristic algorithm.

decoupled access is not significantly better than that of bias
access because the distance between the vehicles on the Y-axis
is relatively small.

B. Evaluation of Two-Tier Slicing Algorithm

Since the distribution of vehicle flow is stable in a certain
period time [11], it is reasonable to assume that the number of
vehicles that conduct V2I and RAC-V2V communications in
each time slot of a period time is subject to Poisson distribu-
tion. Here we assume that the mean of Poisson process of the
V2I and the RAC-V2V communications are 30 and 10 pairs,
respectively.

The simulation of the proposed two-tier slicing framework
is shown in detail below. First, in terms of the parameters
of SAC neural networks, we chose the Adam optimizer, the
learning rate of NN is set to 1e-4 (including 2 value networks,
2 Q-networks, and 1 policy network), and the discount factor
γ is set to 0.999. Besides, the size of the replay buffer is 1000,
the hidden layer of all neural networks is set to 3 layers, each
layer has 128 neurons. At last, we chose Relu as the activation
function of the neural networks.

In Fig. 7, we train 30 episodes, each episode has 100 steps.
The X-axis Fig. 7 represents the value of the normalized
capacity in each episode through the training process. Further,
we give the normalized capacity curve through the training
process of different DRL algorithms, including off-policy
discrete action-space double deep Q-learning (DDQN), on-
policy continuous action-space policy gradient (PG), and on-
policy actor-critic continuous action-space PPO algorithm.
We can see the excellent performance of SAC in improving
the network capacity and better stability in contrast to other
listed DRL algorithms.
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Fig. 8. The learning effect between different action variance when the clipped
variance is 1, 2, 3, and 5.

Fig. 9. The sum rate-difference with iteration steps of each sub-problem in
proposed ASRS algorithm.

The outputs of the policy network in SAC are the mean
and variance of Gaussian distribution. The actions defined as
UL/DL slicing ratios are sampled according to the mean and
variance of the Gaussian distribution obtained from the policy
network. In the actual simulation, we limit the maximum and
minimum variance values of the policy network. Since the
slicing ratios are limited to (0, 1), the maximum and minimum
variance values will have a huge impact on the sampled
actions. So a proper variance is crucial. Here we compare
the effects of four cases of variances, namely, logarithmic
standard (logstd) on the total normalized reward in each
episode. As can be seen from Fig. 8, when the variance is
equal to 3, the SAC algorithm can effectively converge to
a higher reward and has more stability. When the variance
is large (i.e., logstd = 5), it can quickly learn the optimal
action. However, because the variance is too large, it is easy
to cause the sampling actions to move away from the optimal
slicing ratios, resulting in performance degradation. When the
variance is small (i.e., logstd = 1), because of the small change
of action, it is easy to cause the action to fall into the local
optimal, to obtain a relatively poor learning effect.

In Fig. 9, we draw the iteration process of the proposed
ASRS algorithm, including the blue, yellow line in the main
picture. The blue line in the main-picture represents the itera-
tive process of subproblem 32. The blue line in the sub-picture
shows the iterative process of subproblem 33. Moreover, the
yellow line represents the value of the objective function value
of subproblem 31. Fig. 9 shows that the ASRS algorithm has
converged when iterating at about the 15th step. It is worth
mentioning that after one optimization cycle, the value of the
objective function is reduced to 1e-9.

We also compare the ASRS algorithm with traditional
resources allocation algorithms, such as the round-robin (RR)

Fig. 10. CDF of UL/DL sum rate of ASRS compared to RR bandwidth
allocation method.

Fig. 11. The CDF comparison of UL/DL rate difference using ASRS, RR,
and BCQI algorithm.

Fig. 12. The comparison of sum rate of SAC and heuristic algorithm with
ASRS on different slice.

and best channel quality indicator (BCQI). Fig. 10 shows the
CDF curve of the total uplink and downlink rate when using
the ASRS, RR, and BCQI algorithms. It can be seen that the
UL/DL rates of ASRS are almost identical. However, from
the distribution, we can see that the proposed ASRS algorithm
sacrifices the total throughput of the network while obtaining
a very low rate difference.

Fig. 11 shows the CDF of the UL/DL rate difference of
ASRS, RR, BCQI, respectively. It can be seen that ASRS
has stronger robustness and better performance than RR and
BCQI. Almost every iteration, The RAC-V2V QoS metric can
be reduced to a minimum value.

The two logical networks, namely the V2I slice, and RAC-
V2V slice are shown in Fig. 12, we compare the proposed
two-tier slicing algorithm with the heuristic algorithm. In dif-
ferent slices (i.e., V2I slices and RAC-V2V slices), it can
be seen that the normalized reward brought by our proposed
slicing algorithm is always higher than that of the heuristic
with ASRS algorithm in the V2I slice and RAC-V2V slice.

Fig. 13 shows one episode of the stable training. It can
be seen that, in one episode, the reward value of our
two-tier slicing algorithm is higher than that of the SAC+RR
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Fig. 13. The comparison of sum capacity of SAC+ASRS and SAC+RR in
different slice.

Fig. 14. The comparison of SAC+ASRS algorithm and slice capacity
requirements on UL/DL.

algorithm. Specifically, the sum capacity of the RAC-V2V
slice is significantly higher than that of V2I slice, and the
reason is that we need more capacity/bandwidth to ensure
low-latency communications of RAC-V2V. In Fig. 14, we can
see that our two-tier slicing algorithm can cope with the
dynamic changes in different QoS requirements. More specifi-
cally, the capacity of V2I and RAC-V2V slice is always higher
than the rate demand of the corresponding slices.

VI. CONCLUSION

In this paper, we have investigated the feasibility of
uplink/downlink decoupled RAN framework for cellular V2X
communications, which can play a vital role in offload-
ing the traffic from MBS to SBSs and decreasing uplink
transmission power of vehicle users. Under the framework,
we have detailedly analyzed the characteristics of relay-
assisted cellular-V2V communications and innovatively pro-
posed the RAC-V2V QoS metric. To fulfill the different QoS
requirements of V2I and RAC-V2V slice, we have proposed
a two-tier RAN slicing solutions including the reinforcement
learning SAC algorithm on the first tier and ASRS derived
from the block descent algorithm on the second tier. Compared
with other algorithms, the performances of SAC algorithm
have been verified to be significantly better than their other
counterparts. In addition, the ASRS algorithm has been proved
to quickly converge to a minimum value, and it has been the-
oretically proved to reach a stable point. In the future, we will
jointly consider the traffic load forecasting and network slicing
issues in UL/DL decoupled 5G and beyond cellular V2X
networks.
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