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Deep Reinforcement Learning Based Resource
Management for DNN Inference in Industrial IoT

Weiting Zhang "“, Student Member, IEEE, Dong Yang
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Abstract—Performing deep neural network (DNN) inference
in real time requires excessive network resources, which poses a
big challenge to the resource-limited industrial Internet of things
(IToT) networks. To address the challenge, in this paper, we in-
troduce an end-edge-cloud orchestration architecture, in which
the inference task assignment and DNN model placement are
flexibly coordinated. Specifically, the DNN models, trained and
pre-stored in the cloud, are properly placed at the end and edge
to perform DNN inference. To achieve efficient DNN inference, a
multi-dimensional resource management problem is formulated
to maximize the average inference accuracy while satisfying the
strict delay requirements of inference tasks. Due to the mix-integer
decision variables, it is difficult to solve the formulated problem
directly. Thus, we transform the formulated problem into a Markov
decision process which can be solved efficiently. Furthermore, a
deep reinforcement learning based resource management scheme
is proposed to make real-time optimal resource allocation decisions.
Simulation results are provided to demonstrate that the proposed
scheme can efficiently allocate the available spectrum, caching,
and computing resources, and improve average inference accuracy
by 31.4% compared with the deep deterministic policy gradient
benchmark.

Index Terms—DNN inference, industrial resource

management, deep reinforcement learning.
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1. INTRODUCTION

ITH the advances in artificial intelligence (AI) tech-

W nologies [2], modern industry is developing towards
smart automation. Emerging industrial Internet of things (IIoT)
applications powered by Al, such as intelligent manufacturing,
predictive maintenance, and automatic warehousing, are being

Manuscript received October 4, 2020; revised January 24, 2021; accepted
March 14, 2021. Date of publication March 23, 2021; date of current version
August 13, 2021. This work was supported in part by the National Key Re-
search and Development Program of China under Grants 2018YFB 1702000 and
2018YFE0206800, in part by the National Natural Science Foundation of China
under Grant 61771040, and in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada. This paper was presented at IEEE
GLOBECOM 2020 [1]. The review of this article was coordinated by Dr. Yan
Zhang. (Corresponding author: Dong Yang.)

Weiting Zhang, Dong Yang, Wei Quan, and Hongke Zhang are with the
School of Electronic and Information Engineering, Beijing Jiaotong University,
Beijing 100044, China (e-mail: 17111018 @bjtu.edu.cn; dyang@bjtu.edu.cn;
weiquan @bjtu.edu.cn; hkzhang @bjtu.edu.cn).

Haixia Peng, Wen Wu, and Xuemin Shen are with the Department of Electrical
and Computer Engineering, University of Waterloo, Waterloo N2L 0B5, Canada
(e-mail: h27peng @uwaterloo.ca; w77wu@uwaterloo.ca; sshen @uwaterloo.ca).

Digital Object Identifier 10.1109/TVT.2021.3068255

, Member, IEEE, Hongke Zhang
and Xuemin Shen

, Member, IEEE, Haixia Peng ", Student Member, IEEE,
, Fellow, IEEE,

, Fellow, IEEE

Deep Neural Networks

Normal

- ) N = = Fault 1
e I . :

v%w «5 FaultN

4 Storing \

Determining the
parameters in the
network is referred

to as offline
training stage.

(1) Offline Training

(2) Online Infe e P - FetChinE 4
- i End/Edge/Cloud
= Running the model
iy | mp = Faultl to perform its task
o is referred to as
online inference
stage.
\ - !

Fig. 1. The procedure of implementing DNN inference: (1) offline training
and (2) online inference.

extensively applied in practical industrial systems [3], [4]. Par-
ticularly, deep neural networks (DNNs) have become an essen-
tial component for these intelligent IIoT applications [5], [6].
For automated production lines (APLs), the operating status of
industrial facilities, e.g., numerically-controlled machine tools,
robot arms, and automated guided vehicles, needs to be moni-
tored in real time [7]. Based on the collected sensing data from
on-site I[ToT devices, DNNs can efficiently perform the condition
monitoring and predict the impending failures of industrial fa-
cilities, namely DNN inference, which can significantly improve
the production efficiency.

As shown in Fig. 1, implementing DNN inference requires
two stages, namely, offline training and online inference [8]. In
the offline training stage, the parameters of the DNN models
are updated via iteratively training, and the well-trained DNN
models are stored in a cloud server. In the online inference
stage, the pre-trained DNN models can be placed at edge servers
or end devices, to perform the inference tasks. With the wide
deployment of intelligent IIoT applications, a large amount of
inference tasks need to be processed instantly, which requires
high demands on computing resources [9]. Due to the limited
computation capabilities of IloT devices, computation-intensive
inference tasks can be offloaded to the remote cloud server [10],
yet long-distance data transmission results in a high response
latency [11]. To provide delay-sensitive computing services,
multi-access edge computing (MEC) [12], arises as a novel
paradigm by deploying substantial computing resources at the
network edge [13]. When the pre-trained DNN models are
placed at the edge servers, it is no longer necessary to transmit
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tasks to the cloud, thus DNN inference tasks can be performed
with a low latency.

Except for the computing resource, caching resource is an-
other necessity for inference task execution. When an inference
task is offloaded to a node, the task can be executed only if the re-
quired pre-trained DNN model is cached in this node. However,
neither an edge server nor an end device has sufficient capacity
to cache all the required DNN models. Therefore, how to flexibly
place the pre-trained DNN models among network nodes with
limited caching resources is of significance for supporting DNN
inference. In addition, spectrum resource also has a big impact
on the transmission delays of inference tasks and pre-trained
DNN models, thus reasonable spectrum resource allocation can
provide low-latency transmission for tasks and DNN models.
Hence, how to jointly manage multi-dimensional resources in
IIoT networks to deliver low-latency DNN inference is critical.
Moreover, except for the delay requirements, inference accuracy
becomes a particularly key performance metric for intelligent
IIoT applications [2]. However, due to the heterogeneity of
industrial facilities, dedicated pre-trained DNN models need to
be provided for inference tasks based on the dynamic service
requests, which poses a great challenge to efficiently manage
multi-dimensional resources in IIoT networks to provide low-
latency and high-accuracy inference services.

Recently, advanced learning-based algorithms [14]-[17] can
be applied to improve the decision-making efficiency. Particu-
larly, deep reinforcement learning (DRL) approaches have been
utilized to solve resource optimization problems in wireless net-
works [18]. Deep Q-learning (DQN) and policy gradient based
algorithms [19], [20] have demonstrated the strong capability for
solving the optimization problems with discrete and continuous
decision variables, respectively. Moreover, unlike traditional
optimization methods, DRL can effectively capture network dy-
namics while solving complicated optimization problems with
a low time complexity, thereby improving the problem-solving
efficiency [21]. Hence, DRL is a promising method to address
the multi-dimensional resource management problem for DNN
inference.

In this paper, aiming to maximize the average accuracy of in-
ference tasks, we investigate how to leverage DRL to efficiently
allocate multi-dimensional resources to ensure DNN inference
can be completed within strict delay requirements. Specifically,
an end-edge-cloud orchestration architecture is introduced to
support massive inference tasks in IIoT networks. In addition,
the pre-trained DNN models are flexibly placed at the end device
and edge server to provide low-latency inference services. Then,
a joint inference task assignment and DNN model placement
problem is formulated to maximize the average inference accu-
racy under multi-dimensional resource constraints. To efficiently
solve the optimization problem, we therefore transform the
formulated problem into a Markov decision process (MDP), and
then propose a twin delayed deep deterministic policy gradient
(TD3) based resource management scheme to obtain the solution
rapidly. Extensive simulation results are provided to demonstrate
that the proposed learning-based resource management scheme
can improve the average accuracy of inference tasks while
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satisfying the strict delay requirements. The main contributions
of this paper are summarized as follows.
® We introduce an end-edge-cloud orchestration architecture
to flexibly coordinate the inference task assignment and
DNN model placement, thereby providing low-latency
DNN inference services in IIoT networks.

® We formulate a joint task assignment and DNN placement
(TADP) problem to maximize the average accuracy of mas-
sive inference tasks while satisfying the delay requirements
under constrained spectrum, caching, and computing re-
sources.

e To effectively solve the joint optimization problem, we

transform the TADP problem into an MDP, and propose
a DRL-based algorithm to learn the inference task assign-
ment and DNN model placement policy and make instant
resource allocation decisions for DNN inference.

The remainder of this paper is organized as follows. Section II
presents related works. Section IIT describes the system model
and problem formulation. In Section IV, the learning-based
resource management scheme is proposed, including the trans-
formation of the formulated problem. Section V presents the
performance evaluations for the proposed algorithm, and the
concluding remarks are provided in Section VI.

II. RELATED WORK
A. End, Edge, and Cloud Orchestration for DNN Inference

Cloud computing significantly promotes the development of
Al due to the powerful computing capabilities can be provided
for DNN training [22]. Recently, to facilitate efficient DNN
inference, the orchestration among end, edge, and cloud has
attracted increasing attentions. In [23], an end-cloud synergy
DNN inference method is presented for inference accelerating,
where the hidden layers of DNN models are respectively pro-
cessed in the mobile devices or cloud servers such that only
intermediate results need to be transmitted. Moreover, Huang
et al. [24] proposed a layer-level DNN partitioning strategy and
deployed different hidden layers of DNN models among the end,
edge, and cloud to distribute the computation loads. In addition
to partitioning DNN models, in [25], an edge-cloud orchestration
scheme is proposed, in which the shallow hidden layers and deep
hidden layers of DNN models are sequentially trained in the
cloud and edge servers, thereby the online inference tasks can be
processed by the edge. To provide low-latency inference services
for intelligent IIoT applications, Yang et al. [26] proposed an
end-edge collaborative framework, in which a light-weight and
a heavy-weight DNN models are respectively deployed at IloT
devices and MEC servers, such that the computing resources can
be efficiently utilized to perform DNN inference.

In short, the reviewed works provide valuable insights to sup-
port efficient DNN inference. Different from the above schemes,
our work focuses on joint multi-dimensional resource manage-
ment in end-edge-cloud orchestrated IIoT networks, thereby
providing low-latency inference services for intelligent IIoT
applications. In our preliminary paper [1], we consider a homo-
geneous industrial scenario, in which a pre-trained DNN model
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can provide inference services for all intelligent IIoT applica-
tions. Hence, spectrum and computing resources are allocated to
support the inference task assignment. As an extension of [1], in
this work, we consider a heterogeneous industrial scenario where
the pre-trained DNN models with differentiated structures are
required to support intelligent IIoT applications. In particular,
the pre-trained DNN models should be appropriately placed
among network nodes to satisfy the diversified inference service
requests. Thus, except for spectrum and computing resources,
we further consider the caching resource to support the flexible
DNN model placement.

B. DRL for Resource Management

DRL algorithms have been extensively applied to address the
resource management problems due to the efficient decision-
making capability. For instance, Liu ef al. [27] proposed a
DQN-based algorithm to maximize the long-term computation
resource utility of MEC networks. Zhao et al. [28] utilized
dueling double DQN to enable efficient user association in
cellular networks. In [29], an asynchronous advantage actor
critic based scheme has been proposed to achieve adaptive band-
width allocation in radio access networks, thereby providing
reliable transmission for video data streams. In [30], Zhang
et al. exploited the deep weighted double Q-learning algorithm
to learn a dynamic caching policy in ultra dense networks,
with the objective of delay minimization. Moreover, in [31],
the deep deterministic policy gradient (DDPG) algorithm has
been leveraged to solve the joint resource optimization problem
in vehicular networks.

To sum up, the above DRL-based schemes can vastly im-
prove the resource utilization in wireless networks. Most of
which focused on optimizing different network performance
metrics, such as communication delay and network throughput.
However, our work considers the DNN inference services, in
which inference accuracy is a key performance metric, and we
focus on leveraging DRL methods to achieve efficient resource
management and provide high-accuracy inference services for
intelligent IToT applications.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, an end-edge-cloud orchestration architecture
is introduced to support flexible inference task assignment and
DNN model placement, and followed by the communication,
caching, and computing models for resource allocation in the
considered IIoT networks. Then, a joint optimization problem
is formulated under multi-dimensional resource constraints.

A. End-Edge-Cloud Orchestration Architecture

We consider an Al-empowered smart factory, where numer-
ous APLs and industrial facilities are operating, and DNN mod-
els are deployed to achieve intelligent IIoT applications, e.g.,
fault identification. To complete a DNN inference at one node,
the node should possess the inference task and its dedicated
pre-trained DNN model simultaneously. As shown in Fig. 2,

7607

Inference Task Assignment
DNN Model Placement

@ EJ Computing/Caching Server (Cos/Cas)

Industrial Gateway (IGW)

Pre-trained DNNs
W8 Industrial Facilities (e.g., CNNs, RNNs, GNNs,...)

Edge CoS

=6 A e

Edge | SU LPo W 777"

Controller Base dtation
ErTr iy s <o \X\ 7777777
1 LS N
e R S TN

i
1

51 |

****** |

TN
& /:/ﬁ;“\J o Sl NN
I3 A . N X
& (. i ) A ) B R
\ 2 ~ " ’ . 4 -
é’ \- iline 1i - E ; ‘[/‘
S o o o - .
Automated Production Lines
Fig. 2. The end-edge-cloud orchestration architecture in IIoT networks.

we introduce an end-edge-cloud orchestration architecture com-
posed of three layers with different functionalities and resources,
i.e., end, edge, and cloud layers.
® In the cloud layer, sufficient computing and caching re-
sources are deployed, thus DNN training is carried out in
this layer, and the well-trained DNN models are stored in
the cloud caching server (CCaS) as placeable intelligent
services.
¢ In the edge layer, a pair of edge computing/caching server
(ECoS/ECaS) are deployed on one base station (BS) [32],
which can support the inference task execution and DNN
model placement, respectively. In addition, an edge con-
troller is installed at the ECoS which coordinates net-work
nodes and observes network status in real time [33].

¢ In the end layer, IIoT devices collect real-time data from
the APLs, and the industrial gateway (IGW) connects the
massive inference tasks into the Internet. In each time slot,
the edge controller makes decisions to assign inference
tasks to the IGWs or ECoS, and place DNN models from
the CCaS to the IGWs or ECaS.

We consider a set IC; of IIoT devices and a set G of IGWs
which covers all IIoT devices, where C; = {1,2,...,|K;|}
and i € G ={1,2,...,|G|}. Hence, we define a DNN in-
ference I; . = [Wik, M]"],Vi € G, k € Ki,n € {0,1}, where
Wi i and M, respectively denote the generated inference task
and the required DNN model, n denotes the accuracy level of
DNN models, i.e., a light-weight DNN with low accuracy and
a heavy-weight DNN with high accuracy. The details of the
DNN inference definition are described in the following parts.
A summary of important notations is given in Table I.

Inference Task: In the considered IIoT scenario, massive
inference tasks are generated by various applications. Due to
the complex industrial environment, the on-site data is sus-
ceptible to be interfered by the high-frequency noises. Hence,
for IIoT device k, an inference task is defined as W; £
(D; k, e, k), Vi € G, k € KC;, where D, j, (in bits) denotes
the data size, T[f}c‘” (in seconds) denotes the maximum tolerance
of task completion delay, and 6, ;, € {0, 1} denotes the data
quality. After the inference task is generated, packet detection is
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TABLE I
SUMMARY OF NOTATIONS

Notation Description
Dk Task data size of IIoT device k under IGW 4
T/ Maximum tolerance of task completion delay
0k Data quality of inference task
Pl Inference accuracy of each IoT device with level n
:L,c Required workload
SZ” k Model size
R°, R Transmission rates from cloud to BS and from BS to IGWs
B, B° Available bandwidths from device to IGW and from IGW to BS
ct, ce Computing capabilities of IGWs and ECoS
St o8¢ Caching capacities of IGWs and ECoS
uij‘k uf’L Denote whether the required DNN exists in the IGWs or ECaS
M k The binary decision variable of task assignment
Pik The binary decision variable of DNN model selection
O‘i,k: ag | The decision variables of spectrum allocation
57& P ﬁf k The decision variables of computing resource allocation
wi’;c s wffi The decision variables of DNN model placement

performed first. Here, if the data is noiseless, 6; , = 0, otherwise
;.1 = 1. Note that, the data size of a task is the same regardless
of 0; , =0or 1.

Pre-trained DNN Model: We define a pre-trained DNN model
My, & (PP, Q7. S1), Vi € Gk € Kiyn € {01}, where
Py, Q' and ST represent the inference accuracy, the required
workload, and the model size, respectively. Considering the
heterogeneity of industrial facilities and the limited resources
of IIoT networks, the system provides each task with two
accuracy levels’ dedicated DNN models, which can be selected
to perform the corresponding inference tasks according to the
available resources. Here, n = O represents a light-weight DNN
model which can provide low-accuracy inference services, and
n = 1 represents a heavy-weight DNN model which can provide
high-accuracy inference services. Both levels” DNN models
have the same neural network structure, such as fully-connected,
recurrent, and convolutional structures, yet are with different
number of hidden layers. In addition, the number of hidden
layers of heavy-weight DNN models is more than light-weight
DNN models. Notably, more hidden layers generally lead
to lower approximation errors, such that achieving higher
inference accuracy. For each inference task, both accuracy
levels of DNNs can be selected to complete the DNN inference,
yet a more accurate DNN model occupies more computing and
caching resources. Table II shows the relationship among
the inference accuracy, the required workload, and the
model size. For simplicity, if #;;, = 1, then P,S » = Ppr
and P!, = Ppp; otherwise, P, =Py and P!, = Pyp.
Note that Pyr < Puw,Ppr < Ppu,Ppr < PUL, and
Ppa < Pym.In addition, S?k < Sil’k and Q(i),k < Qllk

At the beginning of each time slot, the edge controller makes
the following decisions: 1) where the task should be assigned
to, namely task assignment decision; 2) which pre-trained DNN
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TABLE II
THE RELATIONSHIP BETWEEN PRE-TRAINED DNNS AND DATA QUALITY

DNNs
Data Quality

Noiseless Data

Light-weight
(n=0)

Heavy-weight
(n=1)

(pUL7S?,k’Q?,k) (’PUHvsil,k*Qz‘l,k)

(0i, = 0)
Noisy Data
(9i ky: 1) (PDL’S?,kaQ?,k) (PDHvSil,k’Q},k)

model should be selected and whether it is cached at the corre-
sponding nodes, namely DNN model placement decision; and 3)
how much spectrum, computing, and caching resources should
be allocated, namely resource allocation decisions. In each time
slot, we assume that each IIoT device generates one task, so there
are N = ZzG:1 |IC;| tasks need to be processed by their dedicated
pre-trained DNN models. Considering the limited resources of
IGWs, the tasks have to be collaboratively performed within the
end-edge-cloud orchestration architecture, thereby completing
inference tasks within the strict delay requirements.

B. Communication Model

Due to the long distance between IIoT devices and BS,
massive sensing data of IIoT devices is aggregated by IGWs.
The IGWs further access the aggregated data by cellular
network techniques that can support reliable long-distance
data transmission. For communication between IIoT devices
and IGWSs, we consider the industrial wireless sensor network
technique [34]. For communication between IGWs and BS,
we consider orthogonal frequency division multiple access
technique to transmit inference tasks from the IGWs to the BS.
Both networks are equipped with the available bandwidth B
and B¢, respectively. The task W , in each time slot can only
be assigned to one node, i.e., IGW i or ECoS. Let m; j, € {0,1}
denote the binary decision variable of task assignment. Here,
if m; i is 1, W; i, is accordingly assigned to IGW 7, otherwise
to ECoS. We assume the communication between each IIoT
device and each IGW is assigned an orthogonal channel, i.e., no
interference exists in the network. Thus, the spectrum efficiency
for IIoT devices is given by

Pigeli g

vik = log, (1 + 2 ) WVie g, kek;. (D

Similarly, 7, = log, (1 + pfkla#’“‘) represents the spectrum
efficiency for IGWs. Here, p; , and p{ ;. denote the transmission
powers of IIoT device k and IGW 4, |h; x|* and |h¢ . |* denote
the gains of the IIoT device-IGW and IGW-BS channels,
and o2 denotes the power of the Gaussian noise. Hence, the
transmission rate for device k is calculated by

Rix = ol Byig, Vi € G,k € K;. )

Similarly, R{, = af , B®y;, represents the transmission rate
for IGW i. IIoT device k and IGW i are allocated a fraction ol
of bandwidth B and a fraction o ; of bandwidth B¢, respec-
tively, where 0 < O‘é,kvaik <1, Zieg,kem mi_,.kaé’k < 1,and
Y icg.rex, (I —mix)as, < 1.Thus, the transmission delay for
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offloading an inference task from IToT device k to the connected
IGW i and from device k to the BS can be calculated by

D;
=2 Vie g, kek,, 3)
Ry
and
Diy Dy
k= Vie G ke, 4
i,k R + Rfk 1 g ( )

respectively. Here, we ignore the transmission delay on wired
communications between the BS and ECoS due to the wired
connection. In addition, the size of the inference result is much
smaller than that of the task [26], hence, the time consumption
on returning the inference result to the APLs can be neglected
in this paper.

C. Caching Model

As depicted in Section III-A, all the pre-trained DNN models
are stored in the CCaS. In addition, the IGWs and ECaS are
respectively equipped with S’ and S¢ caching spaces for caching
DNN models. During the system operation, the pre-trained DNN
models are placed to the IGWs or ECaS from the CCaS ac-
cording to the requests. For each inference task, a heavy-weight
and a light-weight DNN models can be provided for inference
services. In each time slot, the system selects an appropriate
DNN model for each inference task. Hence, we define ¢; , €
{0,1},Vi € G, k € K;, to represent which level of DNN model
is selected, where ¢; ;, = 1 indicates a heavy-weight DNN and
@i, = 0 indicates a light-weight DNN. Note that heavy-weight
DNN models have higher inference accuracy, yet occupying
more caching resources.

Let binary variables ul Uik €{0,1}, Vi€ Gk € Kyyn €
{0, 1} denote whether the requ1red DNN model exists in the
IGWs or ECaS. Taking ', as an example, 4/, = 0 indicates
that the required light—weiéht DNN does not exist in the corre-
sponding IGWs, otherwise is the opposite. If an inference task is
assigned to a node and an appropriate pre-trained DNN model
is selected, the edge controller then checks the corresponding
caching pools to make sure whether the required DNN has been
stored. If u'" i or u;’. is 0, a DNN model placement request of
a node in low layers is sent to the superior nodes, and then the
required DNN models can be transmitted to the node that sent
the request. Note that the request is unidirectional, namely, the
required DNN models can only be transmitted from CCaS to
ECaS, from CCaS to IGW, or from ECaS to IGW. Hence, the
transmission delay of M, from CCasS to ECaS is given by

o _ %k yicg ek 5
= vieg ke K, ®)
Similarly, 7 T k = S7 * Thus, TZlk = c" Lt T» , where T k and

ln ;. represent the transm1ss1on delays from ECaS to IGW, and

from CCasS to IGW, respectively. In addition, R® and R denote
the transmission rates from cloud to the BS and from BS to the
IGWs, respectively.

Let binary decision variables wfj’k, win € {0,1},Vie G,k e
K; denote whether cache the requested DNN models in the
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corresponding caching pools after finishing the inference tasks,
where n = 0 or 1 represents the caching decision for a light-
weight or heave-weight DNN model. Taking wi”k as an example,

w! =1 indicates that the DNN models can be cached in the
colresponding IGWs to provide instant inference services for the
following tasks, otherwise is the opposite. With these caching
decisions, the pre-trained DNN models can be flexibly placed
at the end device and edge server, and the caching resources of
network nodes can be utilized more reasonably.

D. Computing Model

The IGWs and ECoS are equipped with the computing ca-
pabilities of C' and C® (CPU cycles per second), respectively.
As depicted in Table II, a heavy-weight DNN model achieves
high inference accuracy while consuming more computing re-
source, and a light-weight DNN is the opposite. Let 6f > and

(0 < Bl v B85 < 1) denote the fractions of computing re-
sources allocated to the inference tasks, respectively. Thus, the
delay for inference task executing at IGWs can be calculated by

77.

k= 2 o0
7kC

l
Ci’

Vie g, kek,. (6)

Similarly, cf" B = ﬂ? e for task executing at ECoS. In addition,

the decision variables of computing resources are constrained
by Yicg her, MikBix < land 3oicg e, (1—mix)B5, < L.

Accordingly, the inference task completion delay at IGWs
and ECoS can be calculated by

dl,k = max{tﬁ_k, (1- %“k)ufe’}ﬁfz +(1— ul'nk)'
(1 — gy ) }Jrczk,VzGQkGICl, @)
and
fk= max{tf’,€7 (1— uf’}c)Tf’;c} +cipVi€G, ke, (8)

respectively. Here, for d!  or df ., due to the inference task
and the required DNN model are simultaneously transmitted
to a node, thus the maximum value between the transmission
delays of inference task and DNN model is considered as the
corresponding total transmission delay.
Taking two cases into consideration, the total time for com-
pleting the inference task W; ;. can be calculated by
di,k - 1kdzk+mz kdz kvvz. € g,kE ICz (9)
Once the DNN selecting decision ¢; . is determined and the
data quality 6; ;, is detected, the task can be executed and then
each IIoT device obtains an inference accuracy, i.e.,

U= (1=0i1) ¢irPur+ 1 —vir)Pur] +
i klpi kP + (1 — i) Porl, Vi€ G, k € K,.
(10
Note that the corresponding accuracy can be obtained only when
the task is completed within the delay requirement.
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E. Problem Formulation

In the considered IIoT networks, we deploy an end-edge-
cloud orchestration architecture to support DNN inference, in
which the inference tasks of IloT devices are assigned to the
IGWs and ECoS, while the pre-trained DNN models are placed
to the IGWs and ECaS from CCaS. In this paper, we focus
on enabling high-accuracy DNN inference in IIoT networks.
As previously described, inference accuracy is a key perfor-
mance metric for DNN-based IIoT applications. Only the task
is completed within strict delay requirements, the system then
can obtain the corresponding accuracy. Enabling the tasks to
be reasonably assigned among network nodes to obtain more
inference accuracies is important to improve the overall sys-
tem performance. Therefore, aiming at maximizing the average
accuracy of inference tasks, while satisfying the delay require-
ments of tasks and the constraints of spectrum, caching, and
computing resources, we formulate the optimization problem as
follows:

G K]
U;, 11
5 7 3 2 Ui (1

and subject to:
Cl: d;, <T}™VieGkek,
C2: my € {O, 1},Vie G,k ek,
C3: ¢ €{0,1},Vie G, ke K,,
C4: Z miykaé’k <1, Z (1 =m;p)ag, <1,
i€G,kek; i€G,kek;
0< aé,kaaf,k <1
C5: > mixBl <1,

1€G,kekl;

O</sz)7

C6 : Z Z mi,k[@i,ksil7k + (1= ir) SPpl <8
i€G kek;

Z Z (1 —mi ) @iSin + (1 —@in) Sipl <8,
i€G kek;

Z (1 - mi,k)ﬁfﬁk < 17

G, kek;

<1,

l() l[ (=)

CT: w'p, wip,wiy,wiy €{0,1},Vi € G,k € K,

where U, j, is given by Eq. (10) and N is the number of in-
ference tasks in each time slot. In addition, the optimization
variables consist of five components: 1) m = {m, ;} is the
task assignment decision matrix for assigning inference tasks
to IGWs and ECoS; 2) ¢ = {¢; 1} is the matrix describing
the multi-level DNN selection decisions; 3) ¢ = {aé) jo 5 1 1S
the matrix describing spectrum resources allocated to inference
tasks by the IGWs and BS; 4) 8 = {3! o Bi .} is the matrix
describing computing resources allocated to inference tasks by
the IGWs and ECoS; and 5) w = {wl o Wi k, ; k,wi‘k} is the
matrix describing whether cache the requested DNN models in
the corresponding nodes. For constraints, C1 first guarantees
that the entire time cost of DNN inference cannot exceed the
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maximum delay tolerance 777" of W; . C2 and C3 ensure
that the inference task can only be executed at one node and
only one pre-trained DNN model can be selected in each time
slot. Moreover, C4 — C6 indicate that the resource allocation
decisions should be made with the available bandwidth (B
and B€), computing (C' and C¢), and caching (S! and S¢)
resources, respectively. C7 indicates whether the requested DNN
models can be stored in the corresponding nodes or not. By
solving the formulated problem, the pre-trained DNNs can be
flexibly placed and selected based on the delay requirements
and available multi-dimensional resources, thereby effectively
supporting DNN inference.

IV. DRL-BASED RESOURCE MANAGEMENT SCHEME

According to the Eq. (11), the formulated TADP problem
is a mix-integer programming problem, which is difficult to be
solved by traditional optimization methods. Moreover, due to the
strict delay requirements of inference tasks, the problem should
be solved quickly. To this end, we propose a DRL-based scheme
to achieve efficient resource management, thereby obtaining the
solution rapidly. In this section, we first transform the formulated
problem into an MDP, and then propose a learning-based algo-
rithm to solve the formulated optimization problem efficiently.

A. Problem Transformation

Considering the mix-integer variables of the formulated op-
timization problem and the strict delay requirements of infer-
ence tasks, instead of using traditional optimization methods,
we present a learning-based algorithm for efficient resource
management to achieve DNN inference in IIoT networks [35].
To rapidly obtain the optimal decisions under stochastic en-
vironment, we first transform the formulated problem into an
MDP, and then adopt a DRL-based approach to solve it [36].
The framework of DRL is composed of the agent and envi-
ronment. As shown in Fig. 2, the agent is coordinated by the
edge controller installed at the ECoS, and everything beyond
that is deemed as the environment. The key components of the
DRL method, i.e., the observed state, action, and reward, are
summarized as follows:

1) State: At each time slot, IIoT devices and network nodes
periodically send the task information {D; j,T,}**, 0, 1.} and

A eg

caching pool state information {ulk,ui7k,ui,k, z,k} to the
ECoS. Thus, the agent can obtain the state space S of the
considered IIoT system. Then, the state vector at time slot ¢,
s(t) € S, can be defined as

s(t) = {Dun (), T (1), 000 (1), ul, (1), ul (1),
ug (t), ufy (1)}, Vi € G k € K.

2) Action: According to the observed environment states,
the agent makes decisions based on the policy . The
decisions, including the task assignment m; j, multi-levels
DNN selection ¢; 5, resource allocation ratios of spectrum
{al,af .} and computing {3 ., ¢ .}, and DNN model place-

12)

l[ €o

ment {wﬁ‘:k, W;' s Wi wf,‘k}, made by the agent at time slot ¢,
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a(t) € A, can be described as
a(t) = {miu(t), pin(t), af 1 (1), af (1), B 4 (2), BE (D),

wzl‘(,)k (t)7 wi:k(t)v wf,ok (t)’ wilk (t)}7 Vie gv ke ICZ'?
13)
where a(t) € Ais with N x 10 dimensions.

3) Reward: Once action a(t) is taken by the environment based
on the observed state s(t), the agent then will obtain a reward.
In the training stage, the policy 7 is iterated according to the
obtained reward until achieving the convergence. To maximize
the accuracy of DNN inference, we therefore define the reward
for inference tasks at time slot ¢, i.e.,

r(t) = + DO Z‘,lel Ui k(t), if C1 — C7 are satisfied,
0, otherwise,

(14)
where U; j(t) is the accuracy of inference task W, 5, in time
slot £. The reward function indicates that only the appropriate
resources are allocated and the delay requirement are satisfied,
simultaneously, the agent then can obtain the system reward.
Otherwise, the task cannot be completed, thereby r(¢) = 0. For
notational simplicity, the time index ¢ is abbreviated as the
subscript in the following context.

B. Proposed TD3-Based Algorithm

In the considered IIoT networks, it is difficult to model the en-
vironment state accurately due to the massive inference requests
and the unknown caching pool state transitions. Moreover, the
high-dimensional state and action spaces caused by the network
scale (i.e., G and N) and multi-dimensional resources, also
result in intractable convergence performance [31]. In recent
years, actor-critic methods, such as DDPG [37], have obtained
considerable achievements in solving optimization problems
with large action spaces or continuous decision variables [20].
TD3, as an enhanced version of DDPG, effectively addresses the
function approximation error to reduce overestimation bias and
avoid suboptimal policy updates, thereby improving the learning
speed and performance in continuous control domains [38].
In this paper, we propose a TD3-based algorithm to solve the
transformed MDP problem.

For the proposed TD3-based algorithm, the goal of the agent is
to find an optimal policy 7* with the maximum average inference
accuracy. During the learning stage, the agent randomly samples
a minibatch experiences from D,.. Taking the g-th experience
{8q,aq,7q, Sq+1} as an example, the actor makes TADP actions
a=mg(sy) and o' = me/(s4+1) via the evaluation and target
networks with parameters @ and 6'. Then, the evaluation crit-
ics evaluate a and a, with parameters w;, j € {1,2}, and the
target critics evaluate a’ with parameter w;-, to calculate the
Q(sq,aq;wj) and Q(s4+1,Ter(S4+1); W), respectively. Thus,
the target Q-values are given by

Yg = 7q T I Q(sgr1, o (sg41) HEwi). (15)
where € ~ clip(N(0, p), —c, ¢) denotes the added noise, ¢ de-
notes the clip bound of ¢, and v € [0, 1] denotes a discounting
factor. Thus, the loss function of the evaluation critics can be
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Algorithm 1: TD3-Based Algorithm for Multi-
Dimensional Resource Management.
1 Initialize actor network 7g(s) and critic networks Quw,, Qu,
with parameters 6, w1, wo;
2 Initialize target networks with weights 0, wi, w5;
3 Initialize experience replay buffer D, ;
4 for episode =1 to E do
5 Initialize environment, and receive initial state s1;
6 for step t =110 T do
7 Select action with the current policy a; ~ mwg(st)+
€, € ~ N(0, p);
8 > DNN caching pool updating
9 Discretize action mi k, i,k w;' k,wi N Wi e W5 13
10 for IGWs i =1 to G do
1 for 110T devices k = 1 to |K;| do
12 e Step 1: Compute remaining caching space
13 if ul“k =1 then
14 | Sl[z] = S'[i] + S/
15 e Step 2: Compute transmission delay 7;
16 ifmi,kzl,cp,k_o uf, =0,
S'i] + Sg <8, and ;) < T3 then
17 ‘ uiok =1, S'[i] = S'[i] + S,
18 else
19 L ul.o =
20 Update ul o fk, ughs
21 Execute the inference task;
22 e Step 3: Compute completion delay d; i
23 ifmir=1 pir =0, ui"k =0,
S'i] 4+ SPy < S8, and d;, < TP5™ then
24 ‘ ui"k =1, S'[i] = S'[i] + SZ}
25 else
26 L ul.o =
27 Update uz k? zekv uf,lk;
28 ° Step 4: Perform caching actions
{wz koW
29 if uf’k = 1 and wfok =1 then
30 ‘ ui(’k =1
31 else
32 L ui"k =0
33 | Update ul o fk, uf}k;
34 > Learning algorithm iterating
35 Obtain the reward r; and observe next state s¢y1;
36 Store the experience {s, a¢, ¢, S¢41} into the D,.,
and replace the oldest ones if the buffer is full;
37 Randomly sample a minibatch of D; experiences
{SQ7 Qq,Tq, 3q+1} from D, ;
38 Set yg =14+ mm Qw (8q+1, o’ (Sq41) + €),
Jj=
e ~ clip(N(0, p), Ze, c)
39 Update w1, w2 by minimizing the loss in Eq. (16);
40 if t mod d then
41 Update @ via the policy gradient in Eq. (19);
42 Update target networks by Eq. (21).
expressed by
1 2
Lw;) = — mln Sq, Qg; W 16
(w;) 2D, Z (yq iy Q(sq; ag; J)) ;o (16)

q€Dy,
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where D, is the size of the sampled minibatch experiences from
D,.. Then, parameter w; can be updated by minimizing the loss
function, i.e.,

VL(w;) =

1 .
Dy Z (yq - H_lllr)le(sqvan’j)) :

q€Dy /
Vi, Q(5q, ag; wj).

Moreover, the objective function of the evaluation actor can
be expressed by

a7

Z Q sqvaqvwl

q€Db

(18)

Although two critics are deployed in the proposed scheme,
only one critic, either Criticl or Critic2, needs to be used to
perform policy update. Here, the policy update depends on
the value estimations of Criticl. Thus, the parameter 8 of the
evaluation actor can be updated via policy gradient theorem, i.e.,

Z vﬂ'(sq

qGDb

(g, 7(8q);w1)Vem(sq). (19)

Hence, the parameters w; and € of the evaluation critics and
actor can be updated by the gradient descent method, i.e.,

w; =w; —e.VL(w;),

0=06—c,VJ0) (20)

where €, and €. denote the learning rate of the actor and critics,
respectively. In addition, the soft-updating technique is used for
the parameter updating of target networks, i.e.,

r ) _ ’
Wi =Tw; + (1 - 1), 21

0 =70+ (1-1)0,

where 7 denotes the update factor. Notably, the updates of policy
and target networks are only occurred after d times updates to
the evaluation critics, and thus effectively limits the likelihood
of repeating updates with an unchanged critic. The proposed
TD3-based algorithm for solving the formulated TADP problem
in real time can be summarized in Algorithm 1.

C. Main Techniques of the Proposed TD3-Based Solution

As described in Algorithm 1, a DNN caching pool updating
(DCPU) subroutine is proposed to achieve efficient caching
resource utilization. In each time slot, once the DNN models
requested by inference tasks are sent to the nodes, a certain
caching resource needs to be allocated to cache the DNN models
in the corresponding caching pools. To improve the flexibility
of the system for DNN model placement, we propose a DCPU
subroutine to support flexible DNN model placement among
end, edge, and cloud, thereby ensure DNN inference can be
completed within strict delay requirements. The designed DCPU
subroutine consists of the following steps.

Step 1 (Lines 12-14): At the beginning of each time slot, the
edge controller first checks the state of DNN caching pools,
and allocates caching resources for the DNN models cached in
the previous time slot. Thus, the remaining caching spaces of
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network nodes can be calculated and then can be allocated to
the requested DNN models that are transmitted from the ECaS
or CCaS.

Step 2 (Lines 15-21): According to the amounts of spectrum
and computing resources allocated to the inference tasks, the
DNN transmission delay Tf ’ T, y k, and Tl i can be calculated
based on the sending location of the requested DNN models. If
Ti s Ti o OF i 7 1s smaller than 772, which means the requested
DNNs can be placed to the correspondmg caching pools within
the delay requirement, thus the DNN models can be cached in
this time slot. In such cases, although the inference tasks cannot
be guaranteed to be completed within 77;**, the DNN models
requested by current tasks can provide instant inference services
for the tasks of following time slots.

Step 3 (Lines 22-27): Similarly, the task completion delay d; ;.
can be calculated. If d; ;, is smaller than the delay requirement of
inference task Ti‘f}cax, the requested DNN model can be cached
in the caching pools to be provided for executing the inference
tasks.

Step 4 (Lines 28-33): According to the decision variables wﬁ:‘k

€n

and w; 7, the states of caching pools can be updated, where

wl 1. = lorw;} = 1indicates that the DNN models requested
by inference tasks are continuously cached in the IGWs or ECaS,
otherwise indicates that the requested DNN models are deleted
from the corresponding nodes.

In addition, as shown in Fig. 3, the proposed learning algo-
rithm is supported by three main techniques:

1) The experience replay technique is adopted for accelerating
the convergence efficiency in an off-policy way, in which the
experience of the agent at each time slot e; = {s¢, ar, ¢, S¢+1}
is stored in a replay buffer D, = {e}, e, ..., e, } with a certain
capacity. When the training process is started, the first D,
experiences are stored in the replay buffer. During the time slots
of the learning stage, the agent randomly samples a minibatch of
experiences from the replay buffer, thus the correlation among
the samples can be effectively reduced.

2) The “double-network” (i.e., evaluation and target net-
works) mechanism is utilized to stabilize the learning process,
and the actor-critic framework is adopted in each network
to handle the high-dimensional and continuous action space.
Moreover, the clipped double Q-learning for actor-critic is
adopted to reduce the overestimation bias. Hence, the agent is
equipped with six function approximators, namely, evaluation
actor/Critic1/Critic2 and target actor/Criticl/Critic2. In each
time slot, the evaluation actor firstly makes resource allocation
decisions according to the observed environment state and the
policy 7. The evaluation critics (i.e., Criticl and Critic2) evaluate
the decisions by generating a pair of Q-values, and the minimum
between the two estimates is selected to update the pair of
critics. The target network is responsible for calculating a pair of
target Q-values and the minimum between the target Q-values is
provided to the evaluation network for parameter iterating, such
that mitigating overestimation bias and improve the algorithm
performance. And then, the target network periodically updates
the latest network parameters from the evaluation network.
Notably, we deploy multi-layer fully-connected neural networks
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Fig. 3. The framework of the proposed TD3-based algorithm.
(FCNNSs) as the function approximators of the proposed TD3-
based learning algorithm.

3) The delayed policy update and target policy smoothing
regularization are used to reduce per-update error and avoid
overfitting in the value estimation. Generally, deep function
approximators require massive gradient iterations to converge.
However, policy updates with high-error Q-values often result in
divergent behavior, thus the evaluation actor should be updated
at a lower frequency than the evaluation critics until the value
error is neglectable. In the proposed TD3-based algorithm, the
policy and target networks can be updated only after d updates
to the evaluation critics. Additionally, when updating the critic
networks, the target Q-values are very susceptible to inaccura-
cies caused by function approximation error, thereby increasing
the variance of the target Q-values. Thus, a clipped random noise
is added to further improve the accuracy of Q-value estimation
and the stability of the learning process.

Remark: The TD3-based algorithm is proposed to achieve
efficient resource utilization, which is different from existing
learning approaches. The difference is two-fold: 1) The proposed
TD3-based resource management scheme is endowed with the
DCPU subroutine to achieve more flexible task assignment and
DNN placement; and 2) The algorithm is enhanced with three
important techniques, i.e., dual critics, delayed policy update
and target policy smoothing regularization, which can reduce the
overestimation bias and stabilize the learning process effectively,
as compared to other learning approaches.

V. PERFORMANCE EVALUATION
A. Experimental Setup

In this section, we carry out evaluations to demonstrate the
performance of the proposed learning-based algorithm for DNN
inference in the end-edge-cloud orchestrated IloT networks.
We consider a smart factory with 10 IGWs deployed in this
scenario, where each IGW is equipped with a Raspberry Pi
4B [39] and connected with 35 IIoT devices. We deploy an ECoS
and an ECaS on the BS, and deploy a CCaS on the cloud. All
these nodes are equipped with a certain amount of resources for

TABLE III
PARAMETERS OF PRE-TRAINED DNN MODELS

Parameter Value Parameter Value
Pur [0.915, 0.938] Pun [0.973, 0.992]
PorL [0.876, 0.897] Pou [0.929, 0.954]
S04 [3.5, 5.5] MB St [9, 12] MB
QY% [15, 20] MHz Te [25, 30] MHz

supporting the inference task assignment and pre-trained DNN
model placement, and the ratio of the noisy data is set to 30%.
In the simulation, we set the performance metrics of pre-trained
DNN models according to [5] and [40], which are listed in
Table III. Here, the parameters of each pre-trained DNN model
are sampled uniformly from the corresponding value interval,
which follows the sampling rules described in Section III-A.
For the proposed TD3-based algorithm, we deploy a four-
layer FCNN with [1800, 2400, 3000, 3500] neurons as the actor,
and deploy two five-layer FCNNs with [4800, 3500, 1500, 500,
1] neurons as the critics. Here, the neurons in the output layer
of the actor are activated by the tanh function, and other layers’
neurons of the actor and critics are activated by the ReLU
function. All the network parameters are trained using Adam
optimizer [41]. In addition, the variance p of the added noise is
set to 0.001, and the clip bound cis set to 0.03. Other simulation
parameters of the network and learning algorithm are listed in
Table IV. To show the efficiency of the proposed algorithm, the
following benchmarks are utilized for performance comparison.
e DDPG: The edge controller allocates the spectrum, com-
puting, and caching resources with the deterministic policy,
where we deploy a four-layer FCNN with [1800, 2400,
3000, 3500] neurons as the actor and a four-layer FCNN
with [2000, 1500, 500, 1] neurons as the critic to achieve
the optimal performance.
® Random: In the random policy, the edge controller ran-
domly assigns the inference tasks to IGWs or ECoS, selects
an accuracy level of DNN model for each task, and allocates
the multi-dimensional resources for the inference tasks of
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TABLE IV
SIMULATION PARAMETERS [31], [38]

Network Parameter Value Learning Parameter Value
Di ks> Pi ke 30, 40 dBm episode 300
o2 -104 dBm step 50
B, B¢ 10, 20 MHz D, 10,000
ct, ce 1.5, 5 GHz Dy 64
St o8¢ 03,24 GB vy 0.95
R°, R® 200, 300 Mbps €a, €c le-4, 3e-4
Dy i [40, 60] KB T 0.01
T [1.5,2]s d 2
0.9 A
0.8 31.5%
0.7
% 06 —— Proposed
E;o.s — DDPG
0.4
0.3
0.2
ot 0 50 100 150 200 250 300

Episode

Fig. 4. The convergence performance of the proposed algorithm.
IIoT devices. All available actions are selected with an
equal probability.

B. Evaluation of TD3-Based Algorithm

1) Convergence of the Proposed Algorithm: As shown in
Fig. 4, the convergence performance of the proposed TD3-based
algorithm is presented with respect to training episodes. It can
be seen from the red curve that the reward fluctuates in the first
fifty episodes and tends to reach a stable level after parameter
iterations for 130 episodes. Additionally, compared with DDPG-
based scheme, the proposed algorithm can not only achieve a
faster convergence speed, but also obtain a higher converged
value which is larger than that of the DDPG benchmark by
31.5%. This is because three improvements of the TD3 algo-
rithm mentioned in Section IV-B effectively mitigate possible
overestimation, thereby achieving a faster learning speed and
better performance than the DDPG benchmark.

2) Impact of Spectrum, Caching, and Computing Resources at
the IGWs: We use the following evaluation metrics to measure
the resource management performance of the proposed algo-
rithm: 1) average inference accuracy; and 2) task completion
ratio which is defined as the number of inference tasks completed
within the delay requirements over the total number of tasks.

As shown in Fig. 5, the achievable average inference accu-
racy and task completion ratio are presented with respect to
the spectrum, caching, and computing resources at the IGWs,
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respectively. As can be seen from Fig. 5(a-c), with the in-
creasing of the available spectrum/caching/computing resources
of IGWs, the average inference accuracy and task completion
ratio achieved by the proposed TD3-based algorithm and both
benchmarks increase. This is because more spectrum resources
can be allocated to the IIoT devices to offload the tasks, more
caching capacities can be provided for pre-trained DNN model
placement, and more computing resources can be used to execute
the inference tasks at IGWs. Particularly, the proposed algorithm
can improve the average inference accuracy by 31.4% and
74.5%, respectively, as compared to the DDPG and Random
schemes. In addition, the proposed algorithm achieves 1.31x
and 1.71 x task completion ratio improvement compared with
DDPG and Random schemes, respectively. When the IGWs
are equipped with sufficient spectrum, caching, and computing
resources, inference tasks can be offloaded to the IGWs with
a low latency, more pre-trained DNN models can be placed
at the IGWs from ECaS or CCaS, and adequate computing
resources can be utilized to accelerate DNN inference. Thus,
urgent inference tasks can be executed at the end side within the
strict delay requirements.

3) Impact of Spectrum, Caching, and Computing Resources at
the BS: As shown in Fig. 6, we compare the achievable average
inference accuracy with benchmark schemes in terms of the
spectrum, caching, and computing resources of BS, respectively.
Similar to the IGWSs, with the increasing of the available spec-
trum/caching/computing resources, the average inference accu-
racy achieved by the TD3-based algorithm and the compared
schemes also increases. The reason is that more resources can
be utilized to satisfy the requirements of inference tasks that are
assigned to the BS. In particular, the proposed algorithm can
achieve a converged average inference accuracy faster than the
benchmark schemes. Specifically, when the amount of spectrum
resource is 6 MHz, the proposed algorithm achieves 1.51x and
2.20x average inference accuracy improvement compared with
DDPG and Random schemes, respectively. When the caching
capacity is 0.6 GB, the proposed algorithm achieves 1.48 x and
1.95x average inference accuracy improvement compared with
the benchmarks, respectively. When the computing capability
is 2 GHz, the proposed algorithm achieves 1.60x and 2.14x
average inference accuracy improvement compared with the
benchmarks, respectively. The above observations indicate that
the proposed algorithm can assign inference tasks and place
DNN models among network nodes more reasonably, and can
utilize multi-dimensional resources more efficiently, thus faster
converged average inference accuracy can be reached with a low
resource demand.

4) Impact of Transmission Rates of R¢ and R°: As shown
in Fig. 7, the distribution of inference task assignment and pre-
trained DNN placement is presented in terms of the transmission
rates from cloud to the BS (i.e., R¢) and from BS to the IGWs
(i.e., R®).For the upper part of Fig. 7(a) and Fig. 7(b), the number
of DNN models which are placed at the IGWs or ECaS is pre-
sented in terms of the R and R°. For the below part of Fig. 7(a)
and Fig. 7(b), the number of completed tasks which are assigned
to the IGWs or ECoS is presented in terms of the R and R°.
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Several observations can be captured from Fig. 7. First, with
the increasing of R® and R¢, more pre-trained DNN models
can be placed at the IGWs and ECaS, and more inference tasks
are executed within the strict delay requirements, thus the task
completion number can be improved. Second, if the network is
equipped with larger transmission rate R°, the edge controller is

inclined to select heavy-weight DNN

models for maximizing

2206 2206
. IGW-lightweight (End) '/ 7 ECaS-lightweight (Edge) o] -6~ IGW-lightweight (End) ECaS-lightweight (Edge)
s IGW-heavyweight (End)  \\ ECaS-heavyweight (Edge) g 2001 —A— |GW-heavyweight (End) - ECaS-heavyweight (Edge)
151.0 S 153.0
150 136.0 Z 150
z
1059 1034 z R
100 92.0 280 0 100
610 \\ 65.0 20 H] 65.0 64.0 sdo 65.0
50 N 44.0 N 9 501390
320 35.0\ ¥ ® 320
2 z N & | 480 8
o 00 /700 7 \ L2 0\ 0 3
30 120 210 300 50 100 150 200
R R R 2038 ] R : 203.6|
W IGW-lightweight (End) i ECoS-lightweight (Edge) i <9 500/ “©— IGW-lightweight (End) ECoS-lightweight (Edge)
N\ IGW-heavyweight (End) ~ ® ECoS-heavyweight (Edge) \ g IGW-heavyweight (End) ~ —O~ ECoS-heavyweight (Edge)
=
1249 1200 \ %0 127.0 127.0
N S \ 8
85, 0\ \ t 1004910 90.1 92,0
\ X % 65 0 635 550 63.0
\ 5 s0{3%0 318
£ 480 18
8 0l285

100

0
Transmission Rate from BS to the IGWs R¢ (Mbit/s)

151

(b)

7615

the IGWs. (a) Impact of the spectrum resources of IGWs.

Average inference accuracy over inference tasks assigned to the BS (i.e., ECaS and ECoS). (a) Impact of the spectrum resources of BS. (b) Impact of the

Numbers of completed inference tasks and placed DNN models at the IGWs and BS with respect to the transmission rates of R¢ and R°. (a) The impact

the average inference accuracy due to the accuracy-optimal
objective. It is interesting to note that, when the ¢ increases to
150 Mbit/s, the edge controller tends to execute more light-
weight DNNs at the ECoS to improve the average inference
accuracy. Third, if R and R® are large enough, the edge con-
troller can place the pre-trained DNN models to the IGWs with
low latency, thus more inference tasks can be executed at the
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Fig.8. Average inference accuracy of the proposed TD3-based algorithm with

respect to the number of IGWs.

end side, and more heavy-weight DNN models can be selected
to maximize the average inference accuracy. For example, when
the R and R* are set to 300 and 200 Mbit/s, the edge controller
assigns 267 inference tasks to the IGWs, which is larger 4.17 x
than the assignment number of ECoS. Meanwhile, the edge
controller selects 256 heavy-weight DNN models which is larger
3.41 x than the selection number of light-weight DNN models.
In particular, the utilization of the placed DNN models of IGW's
achieves 93.3% for R = 300 Mbit/s and R® =200 Mbit/s. The
result indicates that the proposed algorithm achieves a high
utilization of the placed DNN models, which effectively supports
the real-time DNN inference at the end devices or the edge nodes.

5) Impact of the Number of IGWs: As shown in Fig. 8§,
the impact of the number of IGWs on the achievable average
inference accuracy of the proposed TD3-based algorithm is
presented, where the number of IIoT devices connected to each
IGW is the same. It can be seen that the average inference
accuracy increases with the number of IGWs when it is less
than 10, which is because more resources can be allocated to
the inference tasks. In addition, the average inference accuracy
improvement introduced by each IGW diminishes with the
increasing number of IGWs, and a decline trend appears after
the number of IGWs exceeds 10. This is because more caching
and computing resources are deployed at the end side with the
increasing number of IGWs. In such a case, the edge controller is
inclined to make decisions to assign inference tasks to the IGWs.
The embedded figure shows the distribution of task assignment
decisions with respect to the number of IGWs. However, to
perform DNN inference at the end side, more pre-trained DNN
models need to be placed to the IGWs from the CCaS or ECaS,
thus urgent inference tasks cannot be completed within the strict
delay requirements due to the large transmission delay of DNN
models.

VI. CONCLUSION

In this work, we have studied the joint TADP problem for
DNN inference in the end-edge-cloud orchestrated IIoT net-
works with multi-dimensional resource constraints. A learning-
based algorithm has been proposed to make resource allocation
decisions in real time, such that providing DNN inference ser-
vices for intelligent IIoT applications. In resource-limited IloT
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networks, the proposed algorithm can learn the optimal DNN
model placement scheme, and select appropriate DNN models
for inference tasks via efficient resource utilization, thereby
effectively improving the average accuracy of inference tasks
while satisfying the strict delay requirements. For the future
work, we will investigate the distributed DNN training problem
in IIoT networks.
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