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Abstract—In this article, we propose SPADE, an encrypted data deduplication scheme that resists compromised key servers and

frees users from the key management problem. Specifically, we propose a proactivization mechanism for the servers-aided message-

locked encryption (MLE) to periodically substitute key servers with newly employed ones, which renews the security protection and

retains encrypted data deduplication. We present a servers-aided password-hardening protocol to resist dictionary guessing attacks.

Based on the protocol, we further propose a password-based layered encryption mechanism and a password-based authentication

mechanism and integrate them into SPADE to enable users to access their data only using their passwords. Provable security and high

efficiency of SPADE are demonstrated by comprehensive analyses and experimental evaluations.

Index Terms—Message-locked encryption, brute-force attacks, password-hardening protocol, password-based layered encryption, dictio-

nary guessing attacks, password-based authentication
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1 INTRODUCTION

IN THE big data era, the volume of digital data increases
explosively. A recent report1 indicates that the data we

create and copy are doubling in size every two years, and
will reach 175 zettabytes by 2025. As the amount of data has
increased exponentially, users suffer from critical problems
in data management [2], [3], [4]. With the significant devel-
opment of cloud storage, people are increasingly outsourc-
ing their data to cloud servers, which enables them to
efficiently manage their data without deploying infrastruc-
tures and maintaining local devices [5], [6].

Commercial cloud service providers always perform data
deduplication across their users to save storage space signifi-
cantly. Recent literature [7], [8] has demonstrated that such a
strategy can save space by more than 65 percent in electronic
health systems and 90 percent in backup systems. While
storage costs can be reduced by data deduplication, the

outsourced data are confronted with critical security issues.
One of the most important concerns is data confidentiality [9],
[10], [11]. From the data owners’ perspective, the contents of
outsourced data may contain their privacy information [12],
[13]. As such, the data are always encrypted by using conven-
tional encryption algorithms before outsourcing. However,
because of the randomness of the encryption (i.e., different
users would output different ciphertexts for the same data),
deduplication is impeded.

Message-locked encryption (MLE) is a special type of sym-
metric encryption, in which the MLE key (i.e., the encryption
and decryption key) is derived from the plaintext itself [14],
[15]. This enables different users to output the same ciphertext
for the same plaintext and allows the cloud server to perform
deduplication over encrypted data across all its users.
Whereas, MLE is inherently vulnerable to brute-force dictio-
nary attacks [16]: given a ciphertext, an adversary (e.g., an
adversarial cloud server) can encrypt all plaintext candidates
by using MLE and identify the matched ciphertext to recover
the content. The most practical and affordable way to resist
such a brute-force attack is the server-aided MLE [16], i.e., an
independent key server which holds a server-side secret is
introduced to assist users in generating MLE keys. In such a
scheme, an MLE key is derived from the plaintext itself and
the server-side secret, a user requests an MLE key from the
key server in an oblivious manner [17], such that she/he can
obtain the MLE key without revealing any information about
the plaintext to the key server. We note that resistance against
brute-force attacks has become a basic security requirement
and such a “server-aided mechanism” has become a general
architecture for encrypted data deduplication schemes.

Despite the advantages of server-aided MLE, it is also
confronted with security and efficiency issues when inte-
grated into cloud storage systems.

From the perspective of security, the server-aided
MLE bears a strong assumption that its security against the
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brute-force attack relies on the reliability of the key server:
once the key server is compromised, the adversary can still
break the confidentiality of outsourced data by performing
the brute-force attack. As a consequence, the key server
becomes a single point of failure in the scheme.

To resolve this tension, existing schemes [8], [18] distrib-
ute the generation of MLE keys from the single key server
to multiple ones. It surely makes performing the brute-force
attack more difficult, but does not resolve the fundamental
issue of trusting a specific group of key servers during the
lifetime of protected data. In reality, it is feasible and practi-
cal for a sophisticated adversary to corrupt these key servers
given enough time [19], [20], and for long-lived data, protec-
tion provided by servers-aided MLE could be insufficient
[21], [22], [23]. A straightforward way to remedy this prob-
lem is to periodically replace key servers by some new ones
and let the new key servers re-share a new server-side
secret. However, it makes the deduplication on the same
file protected under different server-side secrets impossible.

In regards to efficiency, the server-aided MLE [16] as well
as traditional MLE schemes [15] requires the user to well
maintain the MLE key during the lifetime of protected data,
which causes the key management problem to the user. Spe-
cifically, in existing server-aided MLE schemes, the number
of MLE keys linearly increases with the number of out-
sourced files. Consequently, the user has to bear heavy stor-
age costs to maintain MLE keys when she/he has a large
number of files. This problem could be further exacerbated
by the fact that in cloud storage systems, a user always
needs to access the outsourced files using different devices.
To decrypt the outsourced files, the user has to securely
store the MLE keys in all potential devices that would be
used to access the outsourced files, which introduces new
security issues on key migration between different devices
and key storage on multiple devices.

To mitigate the key management problem, the existing
work [24] utilizes multiple key storage servers to help the user
in maintaining their MLE keys in a threshold way. How-
ever, such a mechanism is unsatisfactory due to the follow-
ing reasons. First, it could not be well compatible with the
server(s)-aided MLE, since the key storage servers should
be independent of the key server(s) to secure against the
brute-force attack, which changes the user’s interaction pat-
tern in the server(s)-aided MLE and introduces additional
costs to employ the key storage servers. Second, the mecha-
nism implicitly requires the user to authenticate herself/
himself with key storage servers. To this end, the user might
need to store a secret key in all potential devices that would
be used to access the outsourced files, which also causes the
key management problem.

We observe that an affordable way to address the key
management problem is to utilize a password-based layered
encryption mechanism: the user utilizes the server(s)-aided
MLE to encrypt the file, uses a human-memorable password
to encrypt theMLE key, and outsources the ciphertexts of the
file and theMLE key to the cloud server. In addition, the user
authenticates herself/himself with the cloud server and the
key server(s) using a password-based authentication proto-
col. By doing so, the user, who only needs to provide the cor-
rect password, can access the outsourced files in different
devices. However, since human-memorable passwords are

inherently low-entropy [25], [26], such a password-based
mechanism is vulnerable to off-line dictionary guessing
attacks (short for DGA).

In this paper, we propose a secure password-protected
MLE key scheme for deduplicated cloud storage systems,
dubbed SPADE, to address the above problems. SPADE is
based on the servers-aided MLE to avoid the single-point-
of-failure problem, and its security protection is periodically
renewed to free from the reliance on a specific group of key
servers in a long period of time. This is achieved by a proac-
tivization mechanism: time in SPADE is divided into fixed
intervals of predetermined length called epochs; the key
servers are replaced by newly employed ones in different
epochs such that an adversary who compromises some key
servers in previous epochs cannot help in attacking in sub-
sequent epochs. To enable the cloud server to perform
deduplication over files outsourced in different epochs, a
handoff mechanism is employed, where the server-side
secret is transferred from some key servers that are not com-
promised in the current epoch to all key servers in the next
epoch.

The user’s password serves as a fundamental role in
SPADE. On the one hand, SPADE is built on a password-
based layered encryption mechanism described above. The
user only needs to retrieve the corresponding MLE key
from the cloud server using the correct password when
she/he wants to decrypt the outsourced files, which frees
the user from the key management problem. On the other
hand, in SPADE, the user authenticates herself/himself
with the key servers and the cloud server using the same
password. The key observation behind SPADE is that the
success of DGA against passwords and the success of the brute-
force attack against MLE are essentially caused by the same vul-
nerability: the only secret is low-entropy and anyone who has the
secret can completely execute the prescribed scheme. With this
observation, we present a servers-aided password-harden-
ing protocol that protects the user’s password against DGA
while remaining the functionalities of the password, which
we believe might be of independent interest.

Specifically, the contributions of this paper are summa-
rized as follows.

� We propose a secure proactivization mechanism for
servers-aided MLE to resist the brute-force attacks
and support periodical changes to key servers to
renew the security protection. With the integration
of the proposed proactivization mechanism, the
security of servers-aided MLE does not rely on a spe-
cific group of key servers during the lifetime of pro-
tected data, and the cloud server can still perform
deduplication over ciphertexts across its user, even if
the ciphertexts are protected by different groups of
key servers.

� We present a servers-aided password-hardening pro-
tocol to protect the user’s password against DGA
while remaining the functionalities of the password.
We further propose a password-based layered encryp-
tion mechanism for the encrypted data deduplication
scheme, where the user utilizes the password to pro-
tect the MLE key such that she/he can manage
the MLE via the cloud storage service without
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maintaining any secret in her/his local devices. We
also propose a password-based authenticationmecha-
nism to enable the user to authenticate herself/himself
with both the key servers and the cloud server only
using the password. Both these mechanisms are built
on the servers-aided password-hardening protocol
such that they are secure against DGA.

� We integrate the above mechanisms into one scheme
called SPADE, which remains all features of each
individual mechanism without changing the under-
lying architecture of servers-aided MLE. We provide
formal security proofs to demonstrate that SPADE is
secure against brute-force attacks towards cipher-
texts and DGA towards users’ passwords launched
by an adversarial cloud server, even if one or more
key servers are compromised. We also evaluate the
performance of SPADE via the implementation and
comprehensive analysis, which shows that SPADE is
efficient and can be easily deployed in reality.

The remainder of this paper is organized as follows. We
review the related works in Section 2, and provide the pre-
liminaries in Section 3. We overview SPADE and present its
construction in Sections 4 and 5, respectively. In Section 6,
we prove the security of SPADE. Then, we evaluate the per-
formance of SPADE in Section 7. Finally, we draw the con-
clusion and outlook the future research directions in
Section 8.

2 RELATED WORK

The data deduplication technique allows a storage server to
check duplicate data in its local storage and enables it to
save storage space significantly. In cloud storage systems,
due to the existence of internal and external threats, data is
always outsourced to the cloud server in the ciphertext
form. If users utilize convention symmetric-key encryption
algorithms, different users would produce different cipher-
texts for the same data, which precludes the cloud server
from performing deduplication.

The problem of encrypted data deduplication (i.e., dedu-
plication over ciphertexts) is first pointed out by Douceur
et al. [14], where an elegant solution, called convergent
encryption (CE), is proposed. In CE, the encryption/decryp-
tion key is the hash value of the data to be encrypted, which
enables different users to obtain the same ciphertext for the
same data. Subsequently, many CE variants [7], [27], [28], [29]
are proposed to improve efficiency. These works mainly tar-
get at designing an encrypted deduplication scheme for spe-
cific application scenarios, but the theoretical treatment on
such a type of encryption algorithms is still lacked. Bellare
et al. [15] first formalize CE and its variants as a cryptographic
primitive of “message-locked encryption” (short for MLE),
and such a name indicates that the message is “locked” by
itself. In [15], formal security definitions onMLE are also pro-
posed. Theoretically, any encryption algorithm that supports
deduplication across multiple users can be subsumed into
MLE.

Traditional MLE algorithms can be mainly classified into
four types and have been introduced in [15]. In these MLE
algorithms, the only secret is the message itself. As a conse-
quence, if the message is low-entropy, the message protected

by these MLE algorithms is vulnerable to the brute-force
attack: an adversary can enumerate all possible messages and
encrypt them using anMLE algorithm one by one, if a cipher-
text (or a deduplication fingerprint) matches a target one that
has been outsourced to the cloud server, the underlying mes-
sage is recovered.We stress that vulnerability of MLE against
the brute-force attack is a major hindrance towards the broad
adoption ofMLE, and variants of the attack would cause seri-
ous threats on the users’ privacy [30].

The first deduplication scheme with resistance against
the brute-force attack is proposed by Bellare et al. [16]. The
key technique is to utilize a server-aided MLE as the under-
lying encryption algorithm: an independent key server,
which has a server-side secret, is introduced to assist users
in generating MLE keys. As a result, an MLE key is derived
from the message itself and the server-side secret. As long
as the server-side secret remains inaccessible to adversaries,
the ciphertext is secure against the brute-force attack. Fur-
thermore, the interaction between a user and the key server
is oblivious, which ensures that the information about the
message would not be leaked to the key server. Subse-
quently, variants of server-aided MLE [31], [32], [33], [34]
have been proposed to improve efficiency. However, the
server-aided MLE is confronted with the single-point-of-
failure problem: if the key server is incentivized by the
adversary to assist him in launching the brute-force attack,
the adversary can recover the data content. Although subse-
quent schemes [8], [18] mitigate this problem by employing
multiple key servers, the fundamental issue of trusting a
specific group of key servers during the lifetime of protected
data still exists. An alternative solution to address the secu-
rity issues caused by employing key server(s) is to “avoid”
the key server(s). The first scheme is proposed by Liu et al.
[35]. In this scheme, to resist the brute-force attacks in a
deduplicated cloud storage system, a user, who wants to
upload some data M to the cloud server, needs to encrypt
M with the aid of users who previously outsource M to the
same server. However, in such a scheme, when a new user
wants to upload M to the cloud server, at least one of the
owners of M needs to keep online to assist her/him in
encrypting M, which introduces additional costs on the
“old” user side.

Another line of work [24], [36] focuses on the MLE key
management in encrypted data deduplication schemes,
where a group of key storage servers is employed to help
users in maintaining their MLE keys. However, such a
mechanism introduces additional costs on the user side and
essentially requires users to securely maintain secret keys
(at least one secret key) in all potential devices that would
be used to access the outsourced data.

We also note that some password-hardening protocols
[37], [38], [39] have been proposed to resist the password
dictionary guessing attack (DGA). However, they cannot be
integrated into SPADE since they are not compatible with
the proactivization mechanism.

In the previous version of this paper [1], a secure
encrypted deduplication scheme, dubbed DECKS, is pro-
posed. In DECKS, the security against the brute-force attack
does not rely on a specific group of key servers during the
lifetime of protected data. Compared with DECKS [1], we
have made the following improvements in this paper.

ZHANG ETAL.: SECURE PASSWORD-PROTECTED ENCRYPTION KEY FOR DEDUPLICATED CLOUD STORAGE SYSTEMS 2791

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:30:54 UTC from IEEE Xplore.  Restrictions apply. 



� We propose a servers-aided password-hardening pro-
tocol to resist DGA. The proposed protocol is well
compatible with the proactivization mechanism in
DECKS and is highly efficient in terms of computation
and communication.

� Based on the servers-aided password-hardening pro-
tocol, we further construct a password-based layered
encryptionmechanism and a password-based authen-
tication mechanism, which enables users to securely
and efficiently access the cloud storage services with-
out needing to maintain any secret key in their local
devices.

� We integrate the proposed mechanisms into DECKS
to construct a new scheme, i.e., SPADE, to allow
users to manage their MLE keys in a secure and effi-
cient way, which does not change the system model
of DECKS and remains all characteristics. We also
provide a formal security proof of SPADE and dem-
onstrate that SPADE is efficient via a comprehensive
performance evaluation.

3 PRELIMINARIES

3.1 Notations and Basic Theory

In this paper, we denote by ‘ the security parameter, by iþ
þ the operation of i ¼ iþ 1 for a positive integer i, and by
j~T j the number of components in a finite set ~T .

Message-Locked Encryption (MLE). MLE is a special type of
symmetric encryption, in which encryption/decryption
keys are extracted from messages themselves. It supports
encrypted data deduplication, since different users can out-
put the same ciphertext for the same message.

Threshold Cryptography. In a ðt; nÞ-threshold cryptosys-
tem, n players share a secret and each one has a secret share.
Any t players can pool their shares and accomplish certain
cryptographic operations, but no coalition of fewer than t
players can extract any information on the secret from their
collective shares [40], [41].

Bilinear Pairing. Suppose that G is an additive group
whose order is a prime p, and GT is a multiplicative group
with the same order. e : G�G ! GT is a bilinear pairing if
it has three properties. Bilinearity: eðaX; bY Þ ¼ eðX; Y Þab,
8X; Y 2 G; a; b 2 Z�

p ; non-degeneracy: 8X;Y 2 G;X 6¼ Y ,
eðX;Y Þ 6¼ 1; computability: e can be computed efficiently.

3.2 Modeling Servers-Aided Deduplicated Cloud
Storage System

As shown in Fig. 1, there are three entities in a servers-aided
deduplicated cloud storage system.

� Users. The users are data owners and outsource files
to the same cloud server. Users never communicate
with each other directly, but they desire to reduce
the storage costs from data deduplication. For the
purpose of privacy protection, the contents of out-
sourced files should not be leaked to anyone who
does not own the data. Hence, the files should be
encrypted on the user side before they are out-
sourced to the cloud server.

� Cloud server. The cloud server provides storage
services for users. It checks the duplicate file across

its users and stores only a single copy of the dupli-
cate file to reduce the storage costs. The cloud server
only provides services for registered users, therefore,
any user needs to register with and log in the cloud
server before accessing its services.

� Key servers. Key servers are independent of users
and the cloud server. They are employed to help
users in generating MLE keys to resist the brute-
force attack. To this end, all key servers share a
server-side secret via a ðt; nÞ-threshold secret sharing
protocol, and each key server has a server-side secret
share. An MLE key is derived from the outsourced
file itself and the server-side secret and is generated
by an algorithm that is interactively executed by the
user and all key servers. Similarly, key servers only
provide services for registered users, and thereby a
registration process and an authentication process
between each key server and a user are required.

From the perspective of data processing, the procedure
of a servers-aided deduplicated cloud storage system is
described as follows.

To utilize the services provided by the key servers and
cloud server, each user needs to register with all key servers
and the cloud server. After the registration, there are two
cases in the system.

First, when the user generates a new file and wants to
outsource it to the cloud server, she/he authenticates her-
self/himself with the key servers. After the authentication
succeeds, the user interacts with key servers to generate an
MLE key on the newly generated file, which is achieved by
a threshold, deterministic, and oblivious protocol such that

� for the same file, different users would obtain the
same servers-derived MLE key,

� key servers can assist users in generating MLE keys
but cannot learn anything about the file,

� and compromising any one of the key servers would
not break the security of the scheme.

With the servers-derived MLE key, the user encrypts the
file by using a secure symmetric-key encryption algorithm.
She/he also authenticates herself/himself with the cloud
server. After the authentication passes, the user outsources
the ciphertext to the cloud server, deletes the file as well as its
ciphertext locally, andwellmaintains theMLE key locally.

Second, when the user wants to access her/his out-
sourced file, she/he also needs to be authenticated by the
cloud server. If the authentication passes, the user is able to
download the ciphertext of target file from the cloud server
and decrypts it using the MLE key.

In reality, human-memorable passwords remain the most
prevalent form of user authentication in cloud storage
systems.

Fig. 1. System model.
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3.3 Threat Model

In the threat model, we mainly consider two types of
adversaries.

Adversarial but Rational Cloud Server. The goal of an adver-
sarial cloud server is to violate the users’ privacy. It either
attempts to extract the contents of outsourced files, or tries
to impersonate the user to pass the key servers’ authentica-
tion. To this end, the adversarial cloud server may perform
various attacks, such as brute-force attacks, compromising
key servers, and dictionary guessing attacks (if the pass-
word-based authentication is adopted). The cloud server is
also a rational party: it would not launch attacks if its profits
cannot be increased.

Compromised Key Server(s). Key servers can be fully con-
trolled by the adversarial cloud server to help it to launch
various attacks to violate the users’ privacy. As the genera-
tion of an MLE key requires the user to communicate with
key servers, a key server may extract the information about
the file from the interaction between them. Furthermore, a
compromised key server also attempts to impersonate a tar-
get user to pass other key servers’ authentication.We assume
that given a fixed time interval, the number of key servers compro-
mised by the adversarial cloud server is limited, otherwise, the
costs to launch attacks are higher than the value of protected files.

We stress that external adversaries exist in reality. They
may eavesdrop on the communications between the user
and other entities in the system to violate the user’s privacy.
In addition, they may impersonate the user to pass the
cloud server and key servers’ authentication. However, as
the key servers could be compromised by the cloud server,
such an external adversary can be considered as a weak-
ened adversarial cloud server, i.e., any attack performed by
the external adversary can also be launched by the adversar-
ial cloud server. Therefore, if the adversarial cloud server
can be resisted, the external adversary can also be thwarted.

3.4 Design Goals

SPADE should achieve the following objects.

� Functionality. Both the cloud server and the key serv-
ers can authenticate users. The cloud server can per-
form deduplication across all its users. Users are not
required to directly communicate with each other
and do not need to maintain any secret key in their
local storage.

� Security. SPADE should be secure against the adver-
sarial cloud server and compromised key servers. Its
security against various attacks should not rely on
the reliability of a specific group of key servers.

� Efficiency. The communication and computation
overhead on each entity in SPADE should be as effi-
cient as possible.

4 OVERVIEW OF SPADE

In this section, we give an overview of SPADE, focusing on
the challenges addressed by our scheme.

Resistance Against Compromised Key Servers. We notice that
the deduplication schemes constructed on the single-server-
aided MLE, e.g., [16], [32], are confronted with the single-
point-of-failure problem: an adversarial cloud server, which

compromises the key server, is able to break the confidenti-
ality of the outsourced data by launching the brute-force
attack. SPADE employs the servers-aided MLE [8] as the
underlying encryption algorithm, where n key servers
fKS1;KS2; . . . ;KSng are introduced to assist users in gener-
ating MLE keys in a deterministic and threshold way as
described in Section 3.2. However, such a servers-aided
MLE does not resolve the fundamental issue of trusting a
specific group of key servers during the lifetime of protected
data.

To address this problem, SPADE leverages a proactiviza-
tion mechanism that periodically replaces the key servers by
newly employed ones. Specifically, time in SPADE is divided
into fixed intervals of predetermined length called epochs. In
each epoch, a committee of n key servers shares a server-side
secret a in an oblivious ðt; nÞ-thresholdmanner to assist users
in generating MLE keys, where the ith key server has a
server-side secret share ai for i ¼ 1; 2; . . . ; n. In different
epochs, SPADE updates the committee of key servers to
renew the security protection. To enable the cloud server to
perform deduplication over ciphertexts outsourced in differ-
ent epochs, the server-side secret a should be kept consistent.
This is achieved by a handoff process described below. We
assume that the key servers in the xth epoch form a committee
~KSðxÞ ¼ fKSðxÞ

1 ;KSðxÞ
2 ; . . . ;KSðxÞ

n g and the key servers in

the ðxþ 1Þth epoch form a committee ~KSðxþ1Þ ¼ fKSðxþ1Þ
1 ;

KSðxþ1Þ
2 ; . . . ;KSðxþ1Þ

n g. At the end of each epoch, t honest key
servers in the current epoch securely transfer a to all key serv-
ers in the next epoch, such that

� a can be re-distributed among all key servers in the
next epoch,

� the shares of a owned by key servers in different
epochs are independent,

� and any key server cannot extract others’ shares, no
matter whether they are in the same epoch.

The key technique used here is the Shamir secret sharing
protocol [23], [40]. Recall that in the xth epoch, a is shared
among ~KSðxÞ, and KSðxÞ

i has the server-side secret share a
ðxÞ
i .

At the end of the xth epoch, t honest and reliable key servers

fKSðxÞ
i1

, KSðxÞ
i2

, . . . , KSðxÞ
it

g are selected, and for k ¼ 1; 2; . . . ; t,

KSðxÞ
ik

splits its server-side secret share a
ðxÞ
ik

into n fragments

faðxÞ
ik;1

;a
ðxÞ
ik;2

; . . . ;a
ðxÞ
ik;n

g using the Shamir secret sharing proto-

col, where KSðxÞ
ik

plays the role of the trusted dealer. Then,

KSðxÞ
ik

sends a
ðxÞ
ik;j

to KSðxþ1Þ
j for j ¼ 1; 2; . . . ; n via a secure

channel. Finally, KSðxþ1Þ
j utilizes the received t fragments

(from fKSðxÞ
i1

, KSðxÞ
i2

, . . . , KSðxÞ
it
g) with the Lagrange coeffi-

cients to compute its server-side secret a
ðxþ1Þ
j . By doing so, a is

securely transferred from ~KSðxÞ to ~KSðxþ1Þ.
MLE Key Management. Regarding to resistance against the

brute-force attack, the inefficiency that users employ key
storage servers to manage their MLE keys has been discussed
and analyzed in Sections 1 and 2. SPADE utilizes a layered
encryption mechanism: The original file is encrypted by
using MLE, and the MLE key is encrypted by using a secure
symmetric-key encryption algorithm under a master key.
Such a mechanism ensures that the storage costs to maintain
MLE keys on the user side are constant and are independent
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of the number of outsourced files. However, such a mecha-
nism still suffers from the key management problem.
Through the lifecycle of outsourced files, the user needs to
well maintain the master key in her/his local device, which
requires the user to employ additional secure mechanisms
and introduces significant costs on the user side. This prob-
lem would be further exacerbated by the fact that a user
always accesses the outsourced files using different devices.

SPADE addresses the above problem in a very pragmatic
way: the user encrypts MLE keys with her/his password, i.e.,
the master key is set to the user’s password. By doing so,
the user does not need to maintain any secret in her/his
local device, and thereby would not be confronted with the
key management problem. Nevertheless, such a password-
based layered encryption mechanism introduces new chal-
lenges in reality.

First, human-memorable passwords are inherently low-
entropy, which causes the vulnerability of passwords
against off-line dictionary guessing attacks (DGA). There-
fore, resistance against DGA is a fundamental security
requirement that should be achieved.

Second, it requires the user to authenticate herself/himself
with other entities (i.e., the cloud server CS and key servers
fKS1;KS2; . . . ;KSng) by using a password-based authentica-
tion mechanism. We notice that except the password-based
authentication mechanism, others require the user to either
maintain a secret in her/his local device (e.g., identity-based
authentication mechanisms [42]) or equip a powerful device
(e.g., hardware-based authentication mechanisms [43]) for
secure authentication.When they are employed in our scheme,
the problems addressed by adopting the password-based lay-
ered encryption mechanism are introduced again. However,
due to the low entropy of passwords, directly integrating exist-
ing password-based authentication protocols (e.g., [44], [45],
[46]) into our scheme is also vulnerable toDGA.

Resistance Against DGA. The above two problems corre-
spond to the same challenge, i.e., how to design a secure
password-hardening protocol that resists DGA while
remaining its functionality. In regards to our scheme, such a
mechanism also needs to be well compatible with the
underlying encrypted data deduplication scheme as well as
the proposed proactivization mechanism to constitute a
secure system without introducing additional entities.

Recall our observation on the relationship between the vul-
nerability of password-based cryptographic schemes against
DGA and that of MLE against brute-force attack presented in
Introduction, it inspires us to adopt the servers-aided mecha-
nism in password-based cryptographic schemes to thwart
DGA. Based on the observation, we propose a servers-aided
password-hardening protocol. With the proposed protocol,
we further design a password-based authentication mecha-
nism and a password-based layered encryption mechanism.
Both the mechanisms are secure against DGA while remain-
ing the functionalities and can be utilized in other application
scenarios, whichwe believemight of independent interest.

Particularly, in SPADE, in addition to the server-side
secret a, when a user U registers with fKS1;KS2; . . . ;KSng,
they generate and share a password-hardening key � for U
in a distributed ðt; nÞ-threshold way, such that KSi has a
password-hardening key share �i. U takes her/his pass-
word pswU as input and interacts with the key servers in an

oblivious and deterministic way to obtain a signature dU on
pswU under �. With dU , U can compute a servers-protected
password spswU as hðdUjjpswUÞ, where h is a secure hash
function. With spswU , the authentication credential to
authenticate U could be �hðspswUÞ and the encryption key to
encrypt MLE keys could be h1ðspswUÞ, where �h and h1 are
secure hash functions. Since spswU can be interactively gen-
erated with key servers, U only needs to utilize the correct
password to retrieve it, which does not require U to main-
tain any secret in her/his local device. Meanwhile, spswU is
computed on both the password and the password-harden-
ing key, as well as t key servers remain unavailable to the
adversary, spswU is secure against DGA. We also stress that
such a servers-aided password-hardening protocol can be
well compatible with the proactivization mechanism, i.e.,
the key servers can be periodically replaced by newly
employed ones to provide a strong security guarantee.

However, there is still a subtle security problem. Con-
sider an adversary who compromises a key server and
obtains the authentication credential hðspswUÞ of U, then he
is able to impersonate U to pass the authentication of CS
andKSi without knowing pswU . To resist such an imperson-
ation attack, the authentication credential maintained by CS
andKSi should be different, such that an authentication cre-
dential maintained by one entity cannot be deduced from
those maintained by others. To this end, in SPADE, the
authenticate credential maintained by the entity is the hash
value of spswU and the entity’s identity.

Resistance Against Online Adversaries. We further consider
an online adversary. On the one hand, the adversary may
impersonate valid users to request MLE keys on all possible
file candidates from key servers. With the MLE keys for
these candidates, the adversary can recover the content of a
target ciphertext in an off-line manner. Such an attack is
called the online brute-force attack. On the other hand, the
adversary may impersonate a target user to interact with
key servers using all possible passwords. If anyone is valid,
the adversary can pass the key servers’ authentication. Such
an attack is called the online DGA.

SPADE thwarts the online adversary by utilizing a rate-
limiting mechanism: in each epoch, the number of requests on
MLE keys and the number of failures for login request made by
a user are limited by key servers. To keep the consistency of
these two numbers on different key servers without requir-
ing the key servers to communicate with each other, SPADE
requires the user to interact with all key servers, rather than
t of them, in each request of MLE key and/or servers-pro-
tected password. This yields the final scheme, SPADE,
which achieves all the design goals presented in Section 3.4.

In Fig. 2, we provide an illustrate the procedure of
SPADE to show the purpose of each interaction between
two entities.

5 PROPOSED SPADE

5.1 Construction of SPADE

A set of users ~U, a set of key servers ~KS ¼ fKS1; . . . ;KSng
with identities fIDKS1 ; . . . ; IDKSng, and a cloud server CS
are involved in SPADE. In this section, we only show the
process that a user U 2 ~U with an identity IDU logs in
SPADE, outsources files, and accesses the outsourced files
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in the following. Other users in ~U would follow this process,
and we would not repeat it.

Algorithm 1. DSGS

Input: Security parameter ‘, the identities of key servers
fIDKS1 ; . . . ; IDKSng, a threshold t, the index i of key
server who executes this algorithm.

Output: A secret s is generated and shared among all key serv-
ers and the corresponding public key PS is published.
Each key server obtains a secret share (i.e., KSi obtains
si) of s, and the corresponding public share is
published.

1: KSi randomly chooses a nonceNi, an element ai;0 2 Z�
p and a

polynomial fiðxÞ ¼ ai;0 þ ai;1xþ � � � þ ai;t�1x
t�1 over Zp with

degree at most t� 1 such that fið0Þ ¼ ai;0, and publishesNi;
2: KSi generates a session identity SIDð0Þ ¼ fðIDKS1 ; N1Þ; ðIDKS2 ;

N2Þ; . . . ; ðIDKSn ;NnÞg, computes ai;0 � P and ai;� � P for � ¼
1; 2; . . . ; t� 1, and calculates fiðjÞ for j ¼ 1; 2; . . . ; n and j 6¼ i;

3: For � ¼ 1; 2; . . . ; t� 1 and j ¼ 1; 2; . . . ; n and j 6¼ i, KSi com-
putes

ui ¼ fSIDð0Þ; ai;0 � P; fai;� � Pg; fEncðepkj; fiðjÞÞgg;
Fi ¼ Sigðsski; uiÞ;

and publishes fui;Fig.
4: For j ¼ 1; 2; . . . ; n and j 6¼ i, KSi obtains fuj;Fjg, accepts it if

SIDð0Þ and Fj are valid, and decrypts Encðepki; fjðiÞÞ to get
fjðiÞ. If Equation (1) holds, KSi accepts fjðiÞ.

fjðiÞP ¼
Xt�1

�¼0

i�aj;� � P: (1)

5: KSi computes its secret share si ¼
Pn

g¼1 fgðiÞ, the public
share PSi ¼ si � P ;

6: KSi computes public key PS ¼Pn
i¼1 ai;0 � P , securely stores

si and maintains fPS1; PS2; . . . ; PSng.
7: The secret key s ¼Pn

i¼1 ai;0 is shared among all key servers.

Setup. With the security parameter ‘, public parameters
fp, P , G, GT , e, H1, H2, h, h1 �h, Eð�Þ, Encð�Þ, Sigð�Þ, t, n, r, cfg
are determined, where e : G�G ! GT is the bilinear pair-
ing, P is a generator of G, H1; H2 : f0; 1g� ! G, h; h1 : G !
f0; 1g‘, �h : f0; 1g� ! Zp are secure hash functions, Eðk;MÞ is
a symmetric encryption algorithm (CTR[AES]) to encrypt
M with k, Encðepk;MÞ is a secure public-key encryption

algorithm to encryptM with epk, Sigðssk;MÞ is a secure sig-
nature algorithm [47] to sign M with ssk, t is a threshold, n
is the number of key servers, r is the upper bound of MLE
key requests made by a user in an epoch, cf is an upper
bound that a user fails to pass key servers’ authentication.

For i ¼ 1; 2; . . . ; n, KSi generates a signing key pair
ðsski; spkiÞ and a public-key encryption key pair ðeski; epkiÞ.
All key servers jointly execute the distributed secret gener-
ating and sharing protocol (short for DSGS) shown in Algo-
rithm 1 to generate the server-side secret a ¼ s. After the
execution, KSi has a server-side secret share ai ¼ si. The
corresponding public key is Q ¼ PS ¼ a � P , and the corre-
sponding public share is Qi ¼ PSi ¼ ai � P .

KSi maintains rU to count up howmany times U requests
MLE keys in the current epoch.

Register. Before outsourcing data to the cloud server CS,
U registers with CS and all key servers as follows.

� U creates a human-memorable password pswU , ran-
domly selects r 2 Z�

p , blinds her/his password as
psw�

U ¼ r �H1ðpswUÞ, and sends ðIDU ; psw�
UÞ to all

key servers.
� For i ¼ 1; 2; . . . ; n,KSi first checks whether IDU exists

in its local storage, if yes, it means that IDU has been
registered; otherwise, all key servers store IDU and
generate a password-hardening key � by performing
DSGS shown in Algorithm 1, where ai;0; ai;1; . . . ; ai;t�1

are newly selected and are different from those in
generating a. For U, the password-hardening key � ¼
s, the corresponding public password-hardening key
V ¼ PS ¼ � � P ,KSi’s password-hardening key share
�i ¼ si and the corresponding public password-hard-
ening key share Vi ¼ PSi ¼ �i � P .

� For i 2 ½1; n�, KSi computes d�i ¼ �i � psw�
U and sends

d�i to U .
� U verifies d�i by verifying

eðd�i ; P Þ ¼ eðpsw�
U ; ViÞ: (2)

If the verification passes, d�i is considered as a valid
signature. After receiving t valid signatures (for the
sake of brevity, these signatures are denoted by
fd�1; d�2; . . . ; d�t g), U computes

vz ¼
Y
1�h�t
h6¼z

h

h� z
; (3)

dU ¼ r�1 �
Xt
z¼1

vz � d�z : (4)

� U verifies the validity of dU by verifying

eðdU ; P Þ ¼ eðH1ðpswUÞ; V Þ: (5)

Due to Lagrange interpolation, dU ¼ � �H1ðpswUÞ is a
BLS signature of pswU under the password-harden-
ing key �.

� U computes a servers-protected password spswU as

spswU ¼ hðdUjjpswUÞ: (6)

Fig. 2. Procedure of SPADE.
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� For i ¼ 1; 2; . . . ; n, U computes the authentication
credential crei ¼ �hðspswU jjIDKSiÞ and sends crei to
KSi via a secure channel. U also computes creU ¼
�hðspswUjjIDCSÞ and sends ðIDU ; creUÞ to CS.

� KSi stores crei locally as the authentication creden-
tial of U, and initiates a counter cfU ¼ 0 to count up
how many times U fails to pass the authentication in
the current epoch.

� CS checks whether IDU exists in its local storage, if
yes, it means that IDU has been registered; other-
wise, CS locally stores ðIDU ; creUÞ in its secure stor-
age for subsequent authentications.

MLEKeyGen. When U wants to outsource some file to CS,
she/he needs to authenticate himself/herself with CS and
encrypt the file before outsourcing it to CS, which requires
U to generate the authentication credential creU and the cor-
responding MLE key. To this end, U interacts with key serv-
ers as follows.

� U takes her/his password pswU as input, randomly
selects two elements r1; r2 2 Z�

p , generates a fileM and
computes psw�

U ¼ r1 �H1ðpswUÞ,M� ¼ r2 �H2ðMÞ.
� U sends ðIDU ; psw�

UÞ to KSi for i ¼ 1; 2; . . . ; n.
� After receiving ðIDU ; psw�

UÞ, KSi verifies cfU � cf , if
the verification fails, it aborts; otherwise, it computes
d�i ¼ �i � psw�

U , randomly selects gi 2 Zp, and sends
ðd�i ; giÞ to U .

� Upon receiving ðd�i ; giÞ, U verifies the validity of d�i by
checking Equation (2). After receiving t valid signa-
tures,U is able to retrieve dU (using r1) via Equations (3)
and (4). With dU , U can compute spswU by Equation (6)
and further compute crei ¼ �hðspswUjjIDKSiÞ. Then, U
sendsEM ¼ Eðcrei; gijjM�Þ toKSi.

� After receiving EM, KSi decrypts it and obtains gi

andM�. If the decryption fails, gi is different from the
one it sent before, or rU > r, it aborts and increments
cfU by 1; otherwise,KSi increments rU by 1, computes
s�
i ¼ ai �M�, and sendsES ¼ Eðcrei; s�

i Þ to U.
� Upon receiving ES, U decrypts it, obtains s�

i , and
verifies

eðs�
i ; P Þ ¼? eðM�; QiÞ; (7)

to check the validity of s�
i . After receiving t valid sig-

natures (similarly, these signatures are denoted by
fs�

1; s
�
2; . . . ; s

�
t g), U computes

wk ¼
Y
1�h�t
h6¼k

h

h� k
; (8)

s ¼ r�1
2

Xt
k¼1

wk � s�
k: (9)

U checks whether eðs; P Þ ¼ eðH2ðMÞ; QÞ holds and
rejects s if the checking fails.

� U computes the MLE key ofM asmkM ¼ h1ðsÞ.
Deduplication. U first generates all ciphertexts that would

be outsourced to CS as follows:

� EncryptM as CM ¼ EðmkM;MÞ;
� Compute kU ¼ h1ðspswUjjIDUÞ;

� EncryptmkM as CU
mkM

¼ EðkU ;mkMÞ.
Then, U computes creU ¼ �hðspswUjjIDCSÞ and obtains the

authentication credential to authenticate herself/himself
with CS. With ðIDU ; creUÞ, it can establish an authenticated
and secure channel between U and CS. Using this channel,
U outsources ðCM;CU

mkM
Þ to CS. CS only performs dedupli-

cation on CM across all its users.
For CS, some methods can be utilized to check dupli-

cates. One of the most efficient methods is to check the hash
value of the ciphertext. Specifically, CS computes tM ¼
�hðCMÞ as a fingerprint for deduplication and maintains
fCM; tMg locally. For a subsequent user who uploads a
ciphertext C

0
, CS verifies �hðC 0 Þ ¼? tM . If the verification

passes, CS performs deduplication; otherwise, CS maintains
C

0
locally.
After ðCM;CU

mkM
Þ has been outsourced to CS successfully,

U deletes it from her/his local storage.
DataAccess. Anytime U wants to access M, she/he needs

to authenticate herself/himself with CS, download
ðCM;CU

mkM
Þ from CS and decrypt CM to obtain M. This pro-

cess only requires U to provide the correct password pswU ,
and the details are described as follows.

� U takes pswU as input, randomly chooses r3 2 Z�
p ,

blinds pswU as psw�
U ¼ r3 �H1ðpswUÞ, and sends

ðIDU ; psw�
UÞ to KSi for i ¼ 1; 2; . . . ; n.

� After receiving ðIDU ; psw�
UÞ, KSi verifies cfU � cf , if

the verification fails, it aborts; otherwise, it computes
d�i ¼ �i � psw�

U , randomly selects g�
i 2 Zp, and sends

ðd�i ; g�
i Þ to U.

� Upon receiving ðd�i ; g�i Þ, U verifies the validity of d�i
by checking Equation (2). After receiving t valid sig-
natures, U is able to retrieve dU (using r3) via Equa-
tions (3) and (4). With dU , U can compute spswU by
Equation (6) and further compute crei ¼
�hðspswUjjIDKSiÞ. Then, U sends EM� ¼ Eðcrei; g�

i Þ to
KSi.

� After receiving EM�, KSi decrypts it and obtains g�
i .

If the decryption fails, KSi did not receive any infor-
mation from U, or g�i is different from the one it sent
before, it aborts and increments cfU by 1.

� With spswU , U computes creU ¼ �hðspswUjjIDCSÞ to
obtain the authentication credential and computes
kU ¼ h1ðspswU jjIDUÞ.

� With ðIDU ; creUÞ, it can establish an authenticated
and secure channel between U and CS. Using this
channel, U can authenticate herself/himself with CS
and download ðCM;CU

mkM
Þ from it.

� After downloading ðCM;CU
mkM

Þ, U first decrypts
CU

mkM
with kU to obtain mkM , and then decrypt CM

withmkM to obtainM.
Proactivization. At the end of an epoch, the key servers

should be replaced by n new key servers. For the sake of
brevity, we assume that the key servers in the xth epoch
form a committee

~KSðxÞ ¼ fKSðxÞ
1 ;KSðxÞ

2 ; . . . ;KSðxÞ
n g;

and the new key servers in the next epoch, i.e., the ðxþ 1Þth
epoch, form a committee
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~KSðxþ1Þ ¼ fKSðxþ1Þ
1 ;KSðxþ1Þ

2 ; . . . ;KSðxþ1Þ
n g:

We notice that the local storage of a key server (say KSðxÞ
i ) in

the xth epoch has the form shown in Fig. 3, where the public
parameters are omitted.

The replacement is achieved by a handoff process, where
the server-side secret a and password-hardening key � are
redistributed among ~KSðxþ1Þ. This process is shown in the
following (unless specified otherwise hereinafter, k ¼
1; 2; . . . ; t and j ¼ 1; 2; . . . ; n).

� t honest and reliable key servers fKSðxÞ
i1

, KSðxÞ
i2

, . . . ,
KSðxÞ

it
g are selected. Their indexes form a set T ðxÞ ¼

fi1; . . . ; itg. Since the user’s identity IDU is not a
secret, we assume that IDU has been sent to ~KSðxþ1Þ

when they are determined.
� KSðxÞ

ik
generates a nonce N

ðxÞ
ik

and publishes it. KSðxþ1Þ
j

generates a nonceN
ðxþ1Þ
j and publishes it.

� KSðxÞ
ik

randomly chooses bik;1, bik;2, . . . , bik;t�1, cik;1,
cik;2, . . . , cik;t�1 2 Zp and generates

g
ðxÞ
ik

ðxÞ ¼ a
ðxÞ
ik

þ bik;1xþ � � � þ bik;t�1x
t�1; (10)

l
ðxÞ
ik

ðxÞ ¼ �
ðxÞ
ik

þ cik;1xþ � � � þ cik;t�1x
t�1: (11)

� KSðxÞ
ik

generates a session identity

SIDðxÞ ¼ IDKSðxÞ
i1

; N
ðxÞ
i1

� �
; . . . ;

�
IDKSðxÞ

it

; N
ðxÞ
it

� �
;

IDKSðxþ1Þ
1

; N
ðxþ1Þ
1

� �
; . . . ; IDKSðxþ1Þ

n
; Nðxþ1Þ

n

� �
g;

computes bik;1 � P , bik;2 � P , . . . , bik;t�1 � P , cik;1 � P ,
cik;2 � P , . . . , cik;t�1 � P , a

ðxÞ
ik;j

¼ g
ðxÞ
ik

ðjÞ, and �
ðxÞ
ik;j

¼ l
ðxÞ
ik

ðjÞ.
� KSðxÞ

ik
computes

u
ðxÞ
ik

¼fSIDðxÞ; fbik;� � P; cik;� � Pg�¼1;���;t�1;

fEncðepkðxþ1Þ
j ;a

ðxÞ
ik;j

jj�ðxÞ
ik;j

jjcreðxÞik
Þgg;

F
ðxÞ
ik

¼ SigðsskðxÞik
; u

ðxÞ
ik

Þ:

KSðxÞ
ik

publishes fuðxÞik
;F

ðxÞ
ik

g. Here, Q
ðxÞ
ik

¼ a
ðxÞ
ik

� P and

V
ðxÞ
ik

¼ �
ðxÞ
ik

� P are the public shares and have been

published.

� KSðxþ1Þ
j obtains fuðxÞik

;F
ðxÞ
ik

g, accepts it if SIDðxÞ and F
ðxÞ
ik

are valid, and decrypts Encðepkðxþ1Þ
j ;a

ðxÞ
ik;j

jj�ðxÞ
ik;j

jjcreðxÞik
Þ to

get a
ðxÞ
ik;j

, �
ðxÞ
ik;j

, and cre
ðxÞ
ik

.

� KSðxþ1Þ
j computes the Lagrange coefficients w�

ik
¼Q

i1�h�it
h2T ðxÞ ;h6¼ik

h
h�ik

, and verifies

a
ðxÞ
ik;j

P ¼? a
ðxÞ
ik

� P þ
Xt�1

�¼1

j� � bik;� � P; (12)

�
ðxÞ
ik;j

P ¼? �
ðxÞ
ik

� P þ
Xt�1

�¼1

j� � cik;� � P; (13)

Q ¼?
Xt
k¼1

w�
ik
�QðxÞ

ik
; (14)

V ¼?
Xt
k¼1

w�
ik
� V ðxÞ

ik
: (15)

If the verification fails, KSðxþ1Þ
j aborts; otherwise, it

sends an “Accept” message to other key servers.
� After receiving “Accept” messages from all other key

servers, KSðxþ1Þ
j computes its secret shares a

ðxþ1Þ
j and

�
ðxþ1Þ
j as

a
ðxþ1Þ
j ¼

Xt
k¼1

w�
ik
� aðxÞ

ik;j
; (16)

�
ðxþ1Þ
j ¼

Xt
k¼1

w�
ik
� �ðxÞ

ik;j
: (17)

The corresponding public shares are Q
ðxþ1Þ
j ¼

a
ðxþ1Þ
j � P and V

ðxþ1Þ
j ¼ �

ðxþ1Þ
j � P .

After the handoff process, the local storage of a key
server (say KSðxþ1Þ

i ) in the ðxþ 1Þth epoch has the form
shown in Fig. 4, where the public parameters are omitted.

Now, in order to authenticate U, KSðxþ1Þ
i needs to use

cre
ðxÞ
ik

ðk ¼ 1; 2; . . . ; tÞ. However, this would be inefficient
and insecure. To address this problem, the credentials on
the key servers in the new epoch should also be updated.
This process is described as follows.

� In the ðxþ 1Þth epoch, U first authenticates herself/

himself with KSðxþ1Þ
i by using cre

ðxÞ
ik

ðk ¼ 1; 2; . . . ; tÞ.
This process requires U to take the correct password

pswU as input and to interact with KSðxþ1Þ
i (which

utilizes �
ðxþ1Þ
i ) to retrieves spswU .

� With spswU , U is able to compute cre
ðxÞ
it

¼ �hðspswU
jjIDKSðxÞ

it

Þ, which enables U to authenticate herself/

himself with KSðxþ1Þ
i . If the authentication succeeds,

a secure and authenticated channel between U and
KSðxþ1Þ

i can be established, and U computes a new
authentication credential cre

ðxþ1Þ
i ¼ �hðspswUjjIDKSðxþ1Þ

i

Þ
and sends cre

ðxþ1Þ
i to KSðxþ1Þ

i via the secure channel.

� KSðxþ1Þ
i maintains rU and cfU (these counters are ini-

tialized to 0 at the beginning of the new epoch).

Fig. 3. KSðxÞ
i ’s local storage form. Fig. 4. KSðxþ1Þ

i ’s local storage form after handoff.
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Now, the local storage of KSðxþ1Þ
i has the form shown

in Fig. 5, where the public parameters are omitted.
U executes MLEKeyGen, Deduplication, and DataAccess

together with ~KSðxþ1Þ as she/he did in the previous epoch.

5.2 Remark

We first prove that both the server-side secret a and the
password-hardening key � would not be changed after the
execution of Proactivization. For the sake of brevity, we
assume that the selected honest key servers in the xth epoch
are fKSðxÞ

1 ;KSðxÞ
2 ; . . . ;KSðxÞ

t g, where KSðxÞ
k ’s server-side

secret share and password-hardening key share are a
ðxÞ
k and

�
ðxÞ
k , respectively. We notice that a and � have the form

a ¼
Xt
k¼1

wk � aðxÞ
k ¼

Xt
z¼1

w�
z � aðxþ1Þ

z ; (18)

� ¼
Xt
k¼1

wk � �ðxÞ
k ¼

Xt
z¼1

w�
z � �ðxþ1Þ

z ; (19)

where both wk and w�
z are Lagrange coefficients. If a

ðxÞ
k ,

a
ðxþ1Þ
z , �

ðxÞ
k , and �

ðxþ1Þ
z are valid, then we can get

a ¼
Xt
k¼1

wk � aðxÞ
k ¼

Xt
k¼1

wk

Xt
z¼1

w�
z � aðxÞ

k;z

 !

¼
Xt
z¼1

Xt
k¼1

w�
zwk � aðxÞ

k;z ¼
Xt
z¼1

w�
za

ðxþ1Þ
z :

� ¼
Xt
k¼1

wk � �ðxÞ
k ¼

Xt
k¼1

wk

Xt
z¼1

w�
z � �ðxÞ

k;z

 !

¼
Xt
z¼1

Xt
k¼1

w�
zwk � �ðxÞ

k;z ¼
Xt
z¼1

w�
z�

ðxþ1Þ
z :

This ensures that

� in different epochs, U can only use the correct pass-
word to authenticate herself/himself with the cloud
server CS, without requiring CS to update the
authentication credential creU ;

� CS is able to perform deduplication over files out-
sourced by different users in different epochs.

Actually, the committees in different epochs may inter-
sect, and both the threshold t and the total number of key
servers n can be changed in different epochs. In addition,
some secret sharing algorithms can also be utilized in
SPADE as the underlying component to reduce the commu-
nication costs on key servers, such as [48]. Due to the space
limitation, the details are not provided.

Furthermore, we do not specify how to determine
the honest and reliable t key servers at the end of each
epoch, since it depends on the underlying application
scenario, and can be achieved by utilizing orthogonal

techniques, e.g., digital investigations [46], situation aware-
ness [49], and trust evaluation.2

SPADE does not explicitly target at resistance against
attacks, such as traffic analysis [50], side-channel attacks
[51], and leakage of the hashed plaintext [52], that may be
utilized by adversaries to violate users’ privacy and data
security. However, SPADE is well compatible with orthogo-
nal techniques [8], [30] to thwart these attacks.

5.3 Further Discussion

There is an important difference between the servers-aided
MLE to resist the brute-force attack and the servers-aided
password-hardening protocol to resist DGA. In the servers-
aided MLE, different users should correspond to the same
server-side secret a, which enables the cloud server to per-
form deduplication across all its users. Therefore, in
SPADE, for different MLE key requests made by different
users, KSi always utilizes ai to compute the signature that
is used to compute the MLE key.

However, in the servers-aided password-hardening pro-
tocol, if all users share the same password-hardening key, it
is vulnerable to online DGA. Specifically, for a target user
U�, an adversary A can enumerate all possible passwords
fpsw1; psw2; . . . ; psw’g. Then A is able to use these pass-
words to interact with all key servers to compute the corre-
sponding servers-protected passwords.3 As a consequence,
A would obtain all possible servers-protected passwords
fspsw1; spsw2; . . . ; spsw’g and can impersonate U� to
execute either MLEKeyGen or DataAccess. Then, A tries
decrypt the ciphertexts received from key servers using
fspsw1; spsw2; . . . ; spsw’g. If the decryption succeeds, A can
recover the correct password of U�. We notice that this
attack does not require A to compromise any key server.

In order to ensure the security of SPADE against online
DGA, a natural way is to have a distinct password-harden-
ing key for every user [25]. However, this would cause sig-
nificant storage costs on the key server side. To balance the
tradeoff between security and efficiency, SPADE can lever-
age a hybrid mechanism [26] to resist online DGA: all users
are grouped according to the registration time; a group of
users shares a password-hardening key; different groups of
users have distinct password-hardening keys. As a result,
for KSi, its local storage has the form shown in Fig. 6, where
every d users form a group. By doing so, the storage costs
on the key server side can be reduced significantly.

In SPADE, the authentication credentials stored on key
servers should be updated in an epoch. Specifically, in the
first epoch, Register is executed by U and ~KSð1Þ, where the
authentication credential cre

ð1Þ
i is generated and stored on

KSð1Þ
i ; in subsequent epochs, Proactivization is executed,

which requires U to interact with all key servers in the epoch
to generate a new authentication credential for each of them.

We stress that the updating of authentication credentials
in Proactivization is necessary for the security of SPADE. If
the authentication credentials are not updated, SPADE is
vulnerable to credential leakage attacks. Particularly, recall
the handoff process in Proactivization, if the authentication

Fig. 5. KSðxþ1Þ
i ’s local storage form.

2. The Common Criteria. https://www.commoncriteriaportal.org/
3. To avoid the detection, A can interact with the key servers utiliz-

ing different identities.
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credentials are not updated in subsequent epochs, all key

servers in subsequent epochs have to utilize fcreð1Þi1
; cre

ð1Þ
i2
;

. . . ; cre
ð1Þ
it
g as the authentication credentials to authenticate

U . It means that all key servers starting from the second
epoch have the copy of fcreð1Þi1

; cre
ð1Þ
i2
; . . . ; cre

ð1Þ
it
g. As a conse-

quence, if anyone of the key servers is compromised, all
authentication credentials would be leaked, and the pass-
word-based authentication would be invalidated. On the
other hand, such an updating needs to be executed only once dur-
ing one epoch. Since the frequency at which Proactivization is
executed is very low, the updating of authentication creden-
tials would not introduce heavy communication costs on
the user side.

5.4 Applications

We have designed SPADE that possesses theoretically desir-
able properties. However, we would like to emphasize the
practical nature of SPADE: since there are some promising
application scenarios, SPADE can be inexpensively imple-
mented as described.

For general cloud storage systems that only provide the
data access interface to their users, SPADE has a clear value,
which has been elaborated in Introduction.

However, one may also argue the commercial incentive
of users in SPADE, where the users have to bear the addi-
tional costs to employ independent key servers. We believe
SPADE is also favorable for current mobile cloud storage
systems. Specifically, data outsourcing has become the fun-
damental data management method in several mobile
Apps. It not only provides mobile users an efficient way to
manage their data, but also enables different mobile service
providers to utilize users’ data that are stored on the same
cloud server. We assume there are n Apps, App1, App2, . . . ,
Appn, which are subject to n mobile service providers,
MP1;MP2; . . . ;MPn, respectively. All these Apps utilize
the same cloud server (say CS) to manage users’ data and
even share the user’s data with each other (under the user’s
permission). In such an application scenario, the mobile ser-
vice providers are independent of each other and are not
fully trusted by users, which is within the threat model of
SPADE. Hence, the service providers (MP1;MP2; . . . ;
MPn) can serve as the key servers in SPADE to provide the
password-hardening service and MLE-key generation ser-
vice simultaneously, and the users do not need to bear addi-
tional costs to employ independent key servers.

In such an application scenario, compared with existing
scheme, SPADE provides users a stronger protection of
security in terms of their passwords and data without intro-
ducing additional costs; SPADE enables the cloud server to
save storage space significantly and to authenticate users in
a secure and convenient way; SPADE also frees mobile ser-
vice providers from developing data manage module while
retaining all functionalities. It motivates the users, mobile
service providers, and cloud service provider to employ
SPADE in reality.

6 SECURITY ANALYSIS

In the security analysis of SPADE, we would not consider
adversaries who interfere with Register, which follows exist-
ing schemes [25], [26]. All communications in Register are
well protected, this can be easily achieved by the way that a
user establishes a TLS connection with the key servers and
the cloud server to secure all messages that she/he needs to
send at the beginning of the registration process. Moreover,
hereinafter, we also assume that both the outsourced data
and passwords are low-entropy, and an adversary is able to
enumerate all possible candidates in an off-line manner.
According to the threat model presented in Section 3.3, the
security of SPADE is analyzed from two aspects.

6.1 Adversarial Cloud Server

We first identify the attacks that an adversarial cloud server
CS?

might launch.
To violate the user’s privacy, CS?

would either extract the
contents of the outsourced file, or compromise the user’s
password. Notice that existing works [8], [16], [26] have
proved that CS?

cannot succeed without colluding with key
servers. Here, we consider CS?

who corrupts key servers to
violate the user’s privacy. CS?

now has the following two
possible strategies if it has corrupted some key servers:

1) It performs the off-line brute-force attack to extract
the contents of the outsourced file;

2) It performs the off-line DGA to retrieve the user’s
password.

For the strategy 1, SPADE resists CS?
in two aspects.

First, due to the adoption of the servers-aided MLE [8]
(which is based on the ðt; nÞ-threshold blind signature),
SPADE is secure against off-line brute-force attacks
launched by CS?

who can compromise up to t� 1 key serv-
ers in an epoch.

Second, the security of SPADE does not rely on the reli-
ability of a specific committee of key servers, due to the pro-
posed proactivization mechanism. Specifically, SPADE
leverages different key servers in different epochs. In the
extreme case, CS?

can control t� 1 key servers in the xth
epoch and t� 1 key servers in the ðxþ 1Þth epoch, such that
it has 2t� 2 server-side secret shares from two epochs. For
the sake of brevity, these 2t� 2 server-side secret shares are
denoted by

faðxÞ
1 ;a

ðxÞ
2 ; . . . ;a

ðxÞ
t�1;a

ðxþ1Þ
1 ;a

ðxþ1Þ
2 ; . . . ;a

ðxþ1Þ
t�1 g:

To launch the brute-force attack, CS?
has to enumerate all

possible file candidates and computes the corresponding

Fig. 6. KSi’s local storage form with leverage of the hybrid mechanism.
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MLE keys. To this end, given a file candidate M�, CS?
needs

to computes s� ¼ a �HðM�Þ, where a is the server-side
secret generated in Setup. Recall Equation (9), CS?

can obtain

s� ¼
Xt�1

i¼1

wia
ðxÞ
i �HðM�Þ þ wta

ðxÞ
t �HðM�Þ; (20)

s� ¼
Xt�1

i¼1

w
0
ia

ðxþ1Þ
i �HðM�Þ þ w

0
ta

ðxþ1Þ
t �HðM�Þ: (21)

We notice that there are three unknown elements, i.e., a
ðxÞ
t ,

a
ðxþ1Þ
t , and s� but only two equations, and CS?

can compute
infinitely many solutions for these equations. Hence, the off-
line brute-force attacks launched by CS?

who compromises
key servers cannotwork, and the strategy 1 is infeasible.

For the strategy 2, SPADE also resists CS?
in two aspects

which are similar to those that resist the brute-force attack.
Since the security against DGA achieved by the servers-aided
password-hardening protocol has the essentially same con-
struction as the security of servers-aided MLE against the
brute-force attack. It is easy to prove that CS?

cannot retrieve a
target user’s password by performing DGA, even if it com-
promises up to t� 1 key servers in an epoch.

6.2 Compromised Key Server(s)

We first identify the attacks that a compromised key server
KS?

might perform. Hereinafter, we assume that KS?
is

able to collude with up to t
0 ðt0 < t� 1Þ key servers in the

current epoch.
In SPADE, the goal of KS?

is to violate a target user U?
’s

privacy, which can be classified into two types:

� Compromising the confidentiality of the data out-
sourced by U?

;
� Impersonating U?

to pass the authentication of other
key servers and the cloud server or compromising
U?

’s password pswU? .
In regards to the first goal, KS?

has the following two
strategies.

1) It extracts the information on the file (e.g., the hashed
file) from the messages received from U?

;
2) It stops counting the number of MLE keys made by

an adversary (e.g., the adversarial cloud server).
We prove that KS?

who utilizes the first strategy cannot
obtain any information about the file protected by SPADE,
which is formalized as a property of obliviousness.

Lemma 1. Obliviousness: In SPADE, the interactions between a
user and a key server are oblivious, which ensures that when
the user requests an MLE key on a file M� from KS?

, the infor-
mation on M� that is extracted by KS?

would not be more than
that extracted from a random string with the same length.

Proof. We define an obliviousness game between an envi-
ronment E, KS?

, and a simulator S as follows.
Obliviousness game.

1) E initiates SPADE, generates a server-side secret a
and its n shares fa1;a2; . . . ;ang (these shares are

generated by using the ðt; nÞ-threshold secret
sharing protocol described in Section 5.1). E gen-
erates public parameters and sends them to KS?

and S.
2) KS?

randomly chooses a file M� 2 Zp and sends
M� to S. S forwardsM� to E.

3) E randomly selects r� 2 Z�
p , computes sM� ¼

r� � a �H2ðM�Þ, and sends mkM� ¼ h1ðsM�Þ to S. S
sendsmkM� to KS?

.
4) KS?

repeats the above two steps at most polyð‘Þ
times. Then KS?

randomly selects M0 2 Zp, M1 2
Zp and sends M0 and M1 to S. S forwards them to
E.

5) E randomly selects & 2 f0; 1g, r? 2 Z�
p . Then

� if � ¼ 0, it computes C& ¼ EðmkM& ;M&Þ,
wheremkM& ¼ h1ðr? � a �H2ðM&ÞÞ;

� otherwise, it randomly selects C& from ½0; jE
ðmkM& ;M&Þj�.

E sends C& to S. S sends C& to KS?
.

6) KS?
outputs &

?
, and wins if and only if &

? ¼ &.

If KS?
wins the game with the probability of PrObli;‘

KS? , S
is able to break the D-IND$-CPA security of the underly-
ing MLE with the same probability (Refs. [8], [18] have
proven that servers-aided MLE is D-IND$-CPA secure).
Specifically, if KS?

outputs &
?
and wins the obliviousness

game, S outputs the same bit to distinguish the cipher-
text of MLE and a random jEðmkM& ;M&Þj-bit string. This
concludes the proof. tu
In addition, if KS?

is able to compromise the confidenti-
ality of the outsourced data by utilizing the second strategy,
it essentially contributes to the online brute-force attack.
However, as described in Section 5.1, each MLE key request
made by a user would be sent to all key servers, and an
adversary can obtain the MLE key on a file only if he collects
at least t signatures computed on t distinct server-side secret
shares. Thus, the second strategy cannot help KS?

in per-
forming online brute-force attacks.

Regarding to the second goal, i.e., KS?
performs the

impersonation attack, we prove that KS?
nether can imper-

sonate U?
, nor can compromise the U?

’s password pswU? . In
SPADE, the security against impersonation attacks and
compromising password is ensured by the security of the
servers-protected password spswU? : If KS?

cannot forge a
valid spswU? , it cannot impersonate U?

; if KS?
cannot extract

any information about pswU? from the interactions that it
assists U?

in generating spswU? , it cannot retrieve pswU? .
The security of spswU? is captured by two security

notions: Unforgeability and Obliviousness.

Lemma 2. Unforgeability: In SPADE, given a target user U?
’s

password pswU? , KS?
cannot forge a valid servers-protected

password spswU? , even if it colludes with up to t
0 ðt0 < t� 1Þ

key servers in the current epoch.

Proof. We define an Unforgeability game between an envi-
ronment E, KS?

, and a simulator S as follows.
Unforgeability game.

1) E initiates SPADE, generates a password-harden-
ing key � and its n shares f�1; �2; . . . ; �ng (these
shares are generated by using the ðt; nÞ-threshold
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secret sharing protocol described in Section 5.1). E
generates public parameters and sends them to
KS?

and S.
2) KS?

selects a set of indexes T
0 ¼ fi1; i2; . . . ; it0 g

and sends T
0
to S. S sends T

0
to E. E sends

f�i1 ; �i2 ; . . . ; �i
t
0 g to S. S forwards f�i1 ; �i2 ; . . . ; �i

t
0 g

to KS?
and initializes q1 ¼ 0, q2 ¼ 0, . . . , qn ¼ 0.

3) KS?
randomly selects psw

?

U? 2 Z�
p and r� 2 Z�

p and
computes ~psw

?

U? ¼ r� �H1ðpsw? Þ.
4) For i 2 ½1; n� and i =2 T

0
, KS?

submits a query of
d
?

i ¼ �i � ~psw
?

U? to S.
5) After receiving the query submitted by KS?

, S
sets qi ¼ qi þ 1 and forwards the query to E.

6) E computes d
?

i using �i and sends d
?

i to S, S for-
wards d

?

i to KS?
.

7) KS?
repeats the above steps trying different i.

Finally, KS?
outputs d

?
.

8) KS?
wins, if and only if the following two condi-

tions hold:
� Pn

i¼1 qi < t� t
0
;

� d
?

is a valid signature on ~psw
?

U? under V
(which is the public key corresponding to �).

SPADE is built on the BLS signature [47] which is exis-
tentially unforgeable. However, in the above Unforge-
ability game, if KS?

wins the probability of PrUnf;‘KS? , S is
able to forge a BLS signature with the same probability.
We prove this as follows.

Before KS?
outputs d

?
, S is able to collect f�i1 ; d

?

i1
;

�i2 ; d
?

i2
; . . . ; �i

t
0 ; d

?

i
t
0 g, fdig (i 2 ½1; n� and i =2 T

0
), and d

?
.

Here, we stress that for KS?
, the most effective way to

forge d
?
under the threat model is to let

Pn
i¼1 qi þ t

0 ¼
t� 1, no matter what attack it would launch. Therefore,
after KS?

outputs d
?
, S has t� 1 signatures under t� 1

password-hardening key shares of the same epoch.
Therefore, S can output d

?

t as a forged signature, where
d
?

t is a valid signature on ~psw
?

U? under �t. tu
Lemma 3. Obliviousness: In SPADE, for a compromised key

server KS?
, the interactions between it and a target user U?

to
generate the servers-protected password spswU? would not leak
any information about the password pswU? , even if KS?

is able
to know spswU? .

Proof. This proof is similar to the proof of Lemma 1. We first
define an Obliviousness game between an environment E,
KS?

, and a simulator S as follows. To avoid ambiguity,
this Obliviousness game is named “Pass-Obliviousness”
game.

Pass-Obliviousness game.

1) E initiates SPADE, generates a password-harden-
ing key � and its n shares f�1; �2; . . . ; �ng (these
shares are generated by using the ðt; nÞ-threshold
secret sharing protocol described in Section 5.1). E
generates public parameters and sends them to
KS?

and S.
2) For the target user U?

, KS?
randomly chooses a

password psw�
U? 2 Zp and sends psw�

U? to S. S for-
wards psw�

U? to E.
(3) E randomly selects r� 2 Z�

p , computes d
? ¼ r� � ��

H1ðpsw�
U? Þ, and sends spswU? ¼ hðd? jjpsw�

U? Þ to S.
S sends spswU? to KS?

.

4) KS?
repeats the above two steps at most polyð‘Þ

times. Then KS?
randomly selects psw0 2 Zp,

psw1 2 Zp and sends psw0 and psw1 to S. S for-
wards them to E.

5) E randomly selects & 2 f0; 1g, r? 2 Z�
p . Then

� if � ¼ 0, it computes spsw& ¼ hð� � r? �H1

ðpsw&Þjjpsw&Þ;
� otherwise, it uniformly selects a string

spsw& 2 f0; 1g‘.
E sends spsw& to S. S sends spsw& to KS?

.
6) KS?

outputs &
?
, and wins if and only if &

? ¼ &.
In the Pass-Obliviousness game, if the advantage that

KS?
wins is PrPas�Obli;‘

KS? , then S is able to compromise the
security of the hash function with a non-negligible proba-
bility. This concludes the proof. tu
As a summary, SPADE is secure against the adversarial

cloud server and compromised key servers, and its security
does not relay on a specific group of key servers in the life-
cycle of the system.

7 IMPLEMENTATION AND EVALUATION

We implement SPADE by using C++ language and MIR-
ACL library 5.6.1 version. To evaluate the performance, we
implement several settings described as follows. The experi-
ments are run on a laptop with macOS system, an Intel Core
i7 CPU, and 16 GB DDR3 of RAM. We further evaluate the
performance of the algorithms that are executed by the user
on a smartphone (HUAWEI MT2-L01, with Android 4.2.2
system and a Kirin 910 CPU, and 1596 MHz frequency) to
demonstrate that SPADE is highly efficient on the user side.
The security level is set to 80 bits. The underlying curve is
the MNT curve.4

In this section, we elaborate on the implementation of
SPADE using functions and provide the corresponding per-
formance evaluations. For clarity, we prefix calls of func-
tions with U if they are made by the user, with KS if they
are made by the key server, and with CS if they are made
by the cloud server. We assume that all public parameters
have been distributed among all entities and would not
explicitly show Setup in the following, for the sake of
brevity.

7.1 Implementation and Evaluation of Register

A schematic of Register implementation is depicted in Fig. 7.
In Register, a user U , whose identity is IDU , selects a human-
memorable password pswU and invokes RandomðÞ to gener-
ate a random element. Then, U blinds pswU to obtain psw�

U
and establishes a TLS connection with each key server such
that subsequent communications can be well protected.
Next, U sends fIDU ; psw�

Ug to each key server. Upon receiv-
ing fIDU ; psw�

Ug, each key server (say KSi) interacts with
other key servers to jointly execute DSGS by invoking
DSGSðÞ shown in Algorithm 1, which enables key servers
to generate and share a password-hardening key � for U
and allows each of them to obtain a password-hardening

4. In Section 5.1, SPADE is constructed on the Type-1 pairing. How-
ever, the MNT curve is utilized to construct Type-3 pairing. We stress
that it would not impact the feasibility, correctness, and security of
SPADE when we construct SPADE on the Type-3 pairing.
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key share. KSi signs psw
�
U using � and responses U with the

signature. With a threshold number of valid signatures, U
invokes CombðÞ to combine these signatures with the ran-
dom element r to retrieve the signature (i.e., dU ) on pswU
under �. With dU , U computes an authentication credential
for each key server and sends it via the established TLS con-
nection. Finally, U establishes a TLS connection with the
cloud server CS and sends her/his identity and the authen-
tication credential (i.e., fIDU ; creUg) to CS. After the key
servers and the cloud server securely store the identity
and the authentication credential of the user, Register is
completed.

We evaluate the performance of Register in terms of com-
munication and computation.

The communication costs include the ones between U
and KSi and the ones between U and CS, which only takes
hundreds of bytes in our setting (actually, it takes within
200 bytes on U and within 100 bytes on CS for one user). We
notice that in Register, key servers need to communicate
with each other to generate the password-hardening key.
The communication costs on the key server are shown in
Fig. 8, where we only consider the single user case. As dis-
cussed in Section 5.3, in reality, the communication costs
can be amortized over multiple users who share the same
password-hardening key.

The computational costs on U consist of blinding the
password, computing the servers-protected password, and
computing authentication credentials, which increases with
the total number of key servers (i.e., n) and the threshold
number t. The computational costs on KSi consist of execut-
ing DSGS and generating a signature. For one user, the
computational costs on KSi depend on n and t, and the
computational costs on CS are constant. In Fig. 9, we show
the computation delay on U and KSi, where we fix n ¼ 30.

7.2 Implementation and Evaluation ofMLEKeyGen

A schematic of MLEKeyGen implementation is depicted in
Fig. 10. In MLEKeyGen, to request an MLE key from key

servers, U needs to authenticate herself/himself with them.
To this end, U first interacts with key servers to recover the
servers-protected password spswU , which requires two
rounds of communications. With spswU , U can compute the
authentication credential. U also generates a file M (by
invoking GenFile) that would be outsourced to CS, blinds
M using a random element to obtain M�, and sends M� (in
the ciphertext form) to KSi. KSi computes the correspond-
ing signature s�

i using the server-side key share ai and
responses U with encrypted s�

i . With t valid s�
i , U can

retrieve the signature on M under the server-side secret a
by invoking CombðÞ. We notice that in SPADE, since both U
and KSi utilize the authentication credential as the encryp-
tion/decryption key, the authentication between U and KSi

and the MLE key generation can be completed in two
rounds of communications, which is highly efficient in
terms of communication costs.

Similarly, we evaluate the performance of MLEKeyGen in
terms of communication and computation.

The communication costs on U in MLEKeyGen are
slightly more than those in Register, since U needs to receive
an additional random element, which protects SPADE from
reply attacks. However, we stress that the communications
between U and key servers in MLEKeyGen are under public
channels, the user does not need to establish a TLS connec-
tion with a key server. On the other hand, the communica-
tion costs on the key server inMLEKeyGen are much smaller
than those in Register, since key servers do not need to com-
municate with each other. As a result, in MLEKeyGen, it
only takes within 200 bytes on both U and KSi.

The computation costs on U consist of three parts: retriev-
ing the servers-protected password, recovering the authen-
tication credentials, and computing the MLE key, which
increases with n and t. For one user, the computation costs
on KSi are constant. In our experiment, the computation

Fig. 7. Implementation of Register.

Fig. 8. Communication costs on KSi in Register.

Fig. 9. Computation delay on U and KSi in Register.

Fig. 10. Implementation ofMLEKeyGen.
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delay on the key server is within 3 ms. In Fig. 11, we show
the computation delay on the user side in MLEKeyGen,
where we set n ¼ 30.

7.3 Implementation and Evaluation of Deduplication

A schematic of Deduplication implementation is depicted in
Fig. 13. In Deduplication, U first computes the authentication
credential creU to authenticate herself/himself with CS. With
the correct creU , a secure channel between U and CS can be
established. Then, U encrypts M with the MLE key mkM to
obtain the encrypted file CM and encrypts the MLE key mkM
with a key kU derived from spswU to obtain the encrypted
MLE key CU

mkM
. Finally, U outsources fCM;CU

mkM
g to CS. The

latter performs deduplication over CM and well maintains
CU

mkM
.

In Deduplication, the communication costs on U and CS
mainly depend on jMj (i.e., the size of the file to be out-
sourced by the user). Compared with jMj, communication
costs caused by sending/receiving other parameters can be
negligible.

The computation costs on U consist of encrypting M and
encrypting the MLE key. For jMj ¼ 1 GB, the computation
delay is within 11 seconds; For jMj ¼ 10 GB, the computa-
tion delay is within 210 seconds. The computation costs on
CS mainly depend on the underlying deduplication strategy
and could also be impacted by the number of files that have
been stored.

7.4 Implementation and Evaluation of DataAccess

A schematic of DataAccess implementation is depicted in
Fig. 14. In DataAccess, U first interacts with key servers to

retrieve the servers-protected password spswU , which ena-
bles U to authenticate herself/himself with both the key
servers and the cloud server. Then, U can download the
ciphertext of the target data (i.e., CM ) and the ciphertext of
the corresponding MLE key (i.e., CU

mkM
) from CS. With

spswU , U can decrypt CU
mkM

to obtain mkM and further
decrypts CM withmkM to retrieve the fileM.

In DataAccess, the communication costs on the user and
the cloud server are mainly caused by receiving/sending
data. The communication costs on the key server are slightly
less than those inMLEKeyGen.

We mainly focus on the computation costs on each entity.
For U, the computation costs consist of retrieving the serv-
ers-protected password, computing authentication creden-
tials, and recovering the target file. If jMj is more than 100
MB, the computation delay to decrypt the file would be
much more than that to compute other parameters. To dem-
onstrate the high efficiency of SPADE, we set jMj ¼ 10 MB
to evaluate the computation delay on U and provide the
experiment results in Fig. 12.

7.5 Implementation and Evaluation of Proactivization

A schematic of Proactivization implementation is depicted in
Fig. 15. In Proactivization, the handoff algorithm is jointly
executed between t honest key servers in the xth epoch (say
KSðxÞ

i for i ¼ 1; 2; . . . ; t) and n key servers in the ðxþ 1Þth
epoch (i.e., KSðxþ1Þ

j for j ¼ 1; 2; . . . ; n), such that a and � can
be re-distributed among KSðxþ1Þ

j . Then, U interacts with
KSðxþ1Þ

j to update her/his authentication credential.
In Proactivization, t key servers (say KSðxÞ

i ) in the current
epoch and all key servers (say KSðxþ1Þ

j ) need to participate
in the handoff process to transfer a and �. The communica-
tion costs on KSðxÞ

i are different from those on KSðxþ1Þ
j , and

Fig. 11. Computation delay on U inMLEKeyGen.

Fig. 13. Implementation of Deduplication.

Fig. 14. Implementation of DataAccess.

Fig. 12. Computation delay on U in DataAccess.

Fig. 15. Implementation of Proactivization.
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the experiment results are provided in Fig. 16. The commu-
nication costs on U are slightly less than that inMLEKeyGen.

The computation costs on KSðxÞ
i are also different from

those on KSðxþ1Þ
j , which is shown in Fig. 17. The computa-

tion costs on U are slightly more than those in Register, since
U only needs to additionally compute some hash values to
update authentication credentials.

Now, we compare SPADE with existing schemes, e.g.,
DupLess [16], D14 [18], Dekey [24], and LAP15 [35] in terms
of functionality, security, and efficiency. The comparison is
provided in Table 1, where “Y” denotes that the scheme has
the property, “N” denotes that the scheme does not have the
property, “?” denotes the scheme does not focus on the prop-
erty, and the experiments are tested on the laptop described
before with the same security level (n ¼ 30; t ¼ 15, and the
file size jMj ¼ 1 MB). In Table 1 “BFA” refers to “brute-force
attacks”, “SPF” refers to “single point of failure”, “KMP”
refers to “key management problem”, “PS” refers to
“proactive security”, and “MKG” refers to “MLE key gener-
ation”. For LAP15, c refers to the number of “checkers” (the
experiment results are evaluated under c ¼ 10). Moreover, in
Table 1, N denotes the RSA module; for a set S, HS , ExpS ,
MulS , AddS denote “hashing a value into S”, “exponentiation
in S”, “multiplication inS”, “addition in S”, respectively

In SPADE, as well as the existing schemes, the computa-
tion delay to generate an MLE key on the user who equips a
laptop is within 1 second, which can be negligible, com-
pared with the computation delay to encrypt some data in
reality.

As a summary, from the performance evaluation, we
observe that SPADE is efficient in terms of communication
and computation costs. Specifically, a user, who only equips
a (not-so-powerful) smartphone, can complete all required
operations in SPADE with a tolerant delay and can easily
access her/his outsourced files without maintaining any
secret except her/his password. The handoff process of
SPADE only requires key servers to bear slight communica-
tion and computation costs. With the security analysis, such
a proactivization mechanism surely enhances the security
without introducing heavy costs on key servers and users.
Therefore, SPADE is easily to be deployed and provides a
strong security guarantee.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a secure password-pro-
tected MLE key scheme for deduplicated cloud storage sys-
tems, namely SPADE. SPADE is based on two key
techniques: the first one is the servers-aided MLE with a
proactivization mechanism which is secure against the
brute-force attack without trusting a specific group of key
servers during the lifetime of protected data; the second one
is the servers-aided password-hardening protocol which is
robust against the dictionary guessing attack while remain-
ing functionalities of password and is compatible with the
proposed proactivization mechanism. We have proved the
security of SPADE against various attacks and have demon-
strated that SPADE is efficient in terms of communication
and computation costs.

For our future work, we will investigate how to achieve
the same functionalities of SPADE with the same security
guarantee without independent key servers. We notice that
there is an alternative method proposed in [35] to resist
brute-force attacks without key servers. However, the pro-
posed password-hardening mechanism is not compatible
with the scheme in [35] to address the key management
problem, which needs to be further explored. We also notice
that one can utilize the key techniques of SPADE in other
scenarios to resist similar attacks. Specifically, public-key
encryption with keyword search (PEKS) is inherently vul-
nerable to the keyword guessing attack. We notice that the
key components of SPADE is well compatible with any

Fig. 16. Communication costs on key servers in Proactivization.

Fig. 17. Computation delay on key servers in Proactivization.

TABLE 1
Comparison
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PEKS scheme to protect keywords from the guessing attack
without the single-point-of-failure problem, which would
provide a stronger security guarantee compared with exist-
ing schemes [19], [53], [54].
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