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Abstract—Generative Artificial Intelligence (GAI) stands at the
forefront of AI innovation, demonstrating rapid advancement and
unparalleled proficiency in generating diverse content. Beyond
content creation, GAI has significant analytical abilities to learn
complex data distribution, offering numerous opportunities to
resolve security issues. In the realm of security from physical
layer perspectives, traditional AI approaches frequently struggle,
primarily due to their limited capacity to dynamically adjust to
the evolving physical attributes of transmission channels and the
complexity of contemporary cyber threats. This adaptability and
analytical depth are precisely where GAI excels. Therefore, in this
paper, we offer an extensive survey on the various applications
of GAI in enhancing security within the physical layer of
communication networks. We first emphasize the importance
of advanced GAI models in this area, including Generative

Manuscript received 19 February 2024; revised 11 June 2024; accepted
13 July 2024. Date of publication 5 August 2024; date of current version
7 February 2025. This research is supported in part by the National Research
Foundation, Singapore, and Infocomm Media Development Authority under
its Future Communications Research & Development Programme, Defence
Science Organisation (DSO) National Laboratories under the AI Singapore
Programme (AISG Award No: AISG2-RP-2020-019 and FCP-ASTAR-TG-
2022-003), Singapore Ministry of Education (MOE) Tier 1 (RG87/22), and
the NTU Centre for Computational Technologies in Finance (NTU-CCTF);
in part by the National Natural Science Foundation of China (NSFC) under
Grants No. 62102099, No. U22A2054; in part by the Ministry of Education,
Singapore, under its SMU-SUTD Joint Grant (22-SIS-SMU-048), and SUTD
Kickstarter Initiative (SKI 20210204); in part by the National Research
Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT)
under Grant 2021R1A2C2007638 and the MSIT under the ICT Creative
Consilience program (IITP-2020-0-01821) supervised by the IITP (Institute
for ICT Planning & Evaluation); in part by the Hong Kong Research Grants
Council under the Areas of Excellence scheme grant AoE/E-601/22-R. The
associate editor coordinating the review of this article and approving it for
publication was Z. Qin. (Corresponding author: Dong In Kim.)

Changyuan Zhao is with the College of Computing and Data
Science, Nanyang Technological University, Singapore, and also with
CNRS@CREATE, Singapore 138602 (e-mail: zhao0441@e.ntu.edu.sg).

Hongyang Du is with the Department of Electrical and Electronic
Engineering, University of Hong Kong, Hong Kong (e-mail:
duhy@eee.hku.hk).

Dusit Niyato is with the College of Computing and Data Science, Nanyang
Technological University, Singapore (e-mail: dniyato@ntu.edu.sg).

Jiawen Kang is with the School of Automation, Guangdong University of
Technology, Guangzhou 510006, China (e-mail: kavinkang@gdut.edu.cn).

Zehui Xiong is with the Pillar of Information Systems Technology
and Design, Singapore University of Technology and Design, Singapore
(e-mail: zehui xiong@sutd.edu.sg).

Dong In Kim is with the Department of Electrical and Computer
Engineering, Sungkyunkwan University, Suwon 16419, South Korea (e-mail:
dongin@skku.edu).

Xuemin Shen is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Khaled B. Letaief is with the Department of Electrical and Computer
Engineering, Hong Kong University of Science and Technology, Hong Kong
(e-mail: eekhaled@ust.hk).

Digital Object Identifier 10.1109/TCCN.2024.3438379

Adversarial Networks (GANs), Autoencoders (AEs), Variational
Autoencoders (VAEs), and Diffusion Models (DMs). We delve
into the roles of GAI in addressing challenges of physical layer
security, focusing on communication confidentiality, authentica-
tion, availability, resilience, and integrity. Furthermore, we also
present future research directions focusing model improvements,
multi-scenario deployment, resource-efficient optimization, and
secure semantic communication, highlighting the multifaceted
potential of GAI to address emerging challenges in secure
physical layer communications and sensing.

Index Terms—Generative AI, physical layer communica-
tions, physical layer security, wireless sensor network, anomaly
detection.

I. INTRODUCTION

GENERATIVE Artificial Intelligence (GAI) represents a
transformative category of Artificial Intelligence (AI)

technologies capable of creating content, ranging from text,
images, music, to complex simulations [1]. As a kind of
unsupervised learning, GAI is trained on vast amounts of data
to understand the underlying structure and dynamics of that
data. Unlike traditional AI, which primarily focuses on ana-
lyzing and interpreting data, GAI takes a step further by
generating new, original outputs based on learned patterns and
datasets [2]. Once trained, these models can produce outputs
that mimic the original data’s style, tone, and complexity,
often indistinguishable from content produced by humans [3].
Reflecting on its inherent capabilities, GAI has been success-
fully deployed in a wide range of mature applications across
different fields, including Stable Diffusion [4], DALL-E 3 [5],
and ChatGPT [6], etc. Beyond its prowess in generating varied
content forms, GAI also demonstrates powerful capabilities in
enhancing cybersecurity measures, by generating sophisticated
simulations and datasets for threat detection and system
strengthening [7]. The innovative essence and wide-ranging
applicability of GAI have captivated the research community,
leading to an upsurge in interest to uncover its capabilities in
addressing intricate challenges and driving innovation across
various fields.

In wireless communications, security is a critical aspect of
information technology, ensuring the confidentiality, integrity,
and availability of data transmitted across networks [8].
Techniques such as encryption, secure socket layers, and
digital signatures are employed to protect sensitive information
during its transmission over the Internet or other commu-
nication networks [9]. In the Open Systems Interconnection
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TABLE I
SUMMARY OF RELATED SURVEYS

model of communications [10], physical layer security plays a
pivotal role in protecting communication networks by utilizing
the inherent physical characteristics of the communication
channel to thwart unauthorized access and guarantee data
integrity [11]. This fundamental security layer capitalizes on
the inherent unpredictability of channel properties, serving
to enhance conventional encryption techniques by adding an
extra layer of defense against eavesdropping and cyber-attacks.
Given its critical significance, researchers have dedicated
extensive efforts to conduct in-depth studies on physical layer
security [12].

With the advancement of AI, the integration of Deep
Learning (DL) methods has revolutionized communication
security, offering enhanced capabilities for anomaly detec-
tion, automatic threat identification, and adaptive security
measures based on real-time data analysis [13], [14], [15].
For instance, Convolutional Neural Networks (CNNs) are
employed to design physical layer security techniques such
as in the development of an intrusion detection system [16],
multi-user authentication [17]. In addition, Recurrent Neural
Networks (RNNs) have found utility in various studies includ-
ing automatic modulation classification [18], secure channel
coding [19], and intrusion detection [20].

However, traditional AI methods often fall short in address-
ing physical layer security challenges due to their inability
to dynamically adapt to the continuously changing physical
characteristics of transmission channels and the sophisticated
nature of modern cyber threats [21]. Specifically, traditional
AI models are typically trained on datasets from specific
environments, limiting their effectiveness when deployed
under unfamiliar conditions. Furthermore, the complexity and
variability of noise patterns, signal interference, and channel
conditions within the physical layer lead to difficulties in
collecting sufficient labeled data for physical layer attacks.
These challenges can be effectively addressed by deploying
GAI models. Due to its ability to thoroughly learn data
features via unsupervised or self-supervised learning, GAI can

adapt to changing environmental factors in communication
systems, ensuring continuous maintenance of robust security
measures [22].

Confronted with the critical challenges in secure physical
layer communications, and recognizing the distinct advantages
provided by GAI, this paper provides a thorough survey of
GAI’s applications in tackling various issues in physical layer
security.

A. Related Surveys and Contribution

1) GAI for Communication Networks: Recent literature
has witnessed a notable increase in the exploration of GAI
applications within communication networks (Table I). The
work [23] delves into the utilization of GAI to address con-
temporary challenges in mobile telecommunications networks.
This article underscores the pivotal role of GAI in the
advancement of mobile network technologies, particularly
in the overcoming of existing obstacles. Reference [52]
shifts the focus to the deployment of Artificial Intelligence
Generated Content (AIGC) in mobile networks, providing
comprehensive insights into GAI and mobile edge intelligence.
Additionally, [53] investigates the interplay between GAI and
Semantic Communication (SemCom) in wireless networks.
Their research demonstrates the utility of GAI in the creation,
transmission, and efficient management of information within
these networks. Moreover, the authors in [24] present an
analysis of GAI applications in the physical layer, addressing
various applications but the security issues are not the main
focus.

2) AI for Secure Communication: AI has significantly
transformed the landscape of communication network security
and privacy. In [54], a systematic overview is presented on
prospective technologies for 6G networks, focusing on the
physical, connection, and service layers, along with lessons
learned from existing security architectures. The authors
in [25] discuss the contribution of AI to Internet of Things
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Fig. 1. The structure of the survey paper, where we introduce GAI methods for physical layer security through Communication Confidentiality and
Authentication (Section III), Communication Availability and Resilience (Section IV), and Communication Integrity (Section V).

(IoTs) security within Edge Computing (EC) environments,
particularly emphasizing AI’s role in augmenting security
features. Regarding attack detection, [55] provides a detailed
survey on AI-based intrusion detection systems, with a focus
on securing communication within the IoT. Similarly, [56]
delves into machine learning applications, with a specific
emphasis on cyber threat detection in IoT environments. For
physical layer security, the utilization of AI in optimizing
and designing intelligent security techniques is thoroughly
explored in [58]. Reference [57] introduces intelligent wire-
less physical layer security by concentrating on physical
layer authentication, antenna selection, and relay node selec-
tion. In a related vein, [26] investigates DL based physical
layer security techniques, concentrating on their application
in addressing various security concerns in 5G and beyond
networks. However, it is noted that there is a lack of
detailed analysis regarding the role of GAI in physical layer
security.

Distinct from existing surveys and tutorials, our survey
distinguishes itself by specifically focusing on the integration
of GAI in secure physical layer for communication networks.
Unlike previous works, which either broadly address GAI
applications in communication networks or delve into AI’s
role in network security without a concentrated emphasis on
GAI, this survey offers a unique perspective by marrying the
capabilities of GAI with the requirements of physical layer
security. It fills a critical gap in the literature by providing an
in-depth analysis of how GAI can enhance security measures,

detect and mitigate threats in the physical layer that have been
previously underexplored or only briefly mentioned.

The key contributions of this paper are summarized as
follows:

• Our comprehensive analysis reveals how to employ
GAI models to enhance key security properties such
as communication confidentiality, authentication, avail-
ability, resilience, and integrity. These advancements
are facilitated by GAI’s ability to understand complex
data distributions, perform encrypted data transformation
and processing, and detect cyber threats and anomalies
within the network infrastructure. This summary provides
essential insights for further exploration and development
of GAI applications in physical layer security.

• We explore how GAI addresses the challenges of data
sparsity and incompleteness in physical layer secu-
rity, significantly impacting the efficacy of traditional
AI models. GAI’s contribution to data reconstruction
and augmentation showcases its unparalleled ability to
enhance physical layer security, surpassing the limitations
of transitional AI approaches.

• We outline crucial future research directions for the
applications of GAI in physical layer security, includ-
ing model improvements, multi-scenario deployment,
resource-efficient optimization and secure semantic
communication. These directions are considered from
multiple perspectives, underscoring the multifaceted
potential of GAI to address emerging challenges.
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TABLE II
LIST OF ABBREVIATIONS

The structure of this survey is outlined in Fig. 1.
Section II introduces the fundamental concepts of GAI and
offer a review of related works. In section III, a com-
prehensive exploration into Communication Confidentiality
and Authentication is presented. Section IV discusses
approaches for Communication Availability and Resilience.
Section V introduces GAI methods for Communication
Integrity. Section VI discusses future research directions, and
Section VII concludes the paper. Additionally, Table II lists
the abbreviations commonly employed throughout this survey.

II. BACKGROUND KNOWLEDGE

In this section, we delve into the security challenges inherent
to the physical layer of communication networks, arguing that
addressing security at this foundational level is of paramount
importance. Furthermore, we introduce the fundamental con-
cepts of GAI, including its architecture, classification, and
basic models.

A. Security Issues in Physical Layer

Security at the physical layer is deemed paramount com-
pared to other layers since it provides the foundation for all
subsequent security protocols [59]. Therefore, a breach at this
foundational level will jeopardize the entire communication
system. This layer is susceptible to a broad spectrum of phys-
ical threats, including eavesdropping, jamming, and spoofing,
making it a critical point of vulnerability that must be robustly
protected [60]. By securing the physical layer, potential attacks
can be preemptively thwarted, thereby preventing attackers’
initial access points for further intrusions.

The subsequent discussion will introduce the CIA triad [61]:
Confidentiality, Integrity, and Availability, alongside two
additional critical focuses: Resilience and Authentication in
physical layer security.

• Communication Confidentiality: Communication confi-
dentiality in the physical layer involves the use of
techniques and mechanisms to secure data transmission
over communication channels, preventing unauthorized
access and eavesdropping [62].

• Communication Authentication: Communication authen-
tication at the physical layer is a critical security
measure that verifies the identities of entities engaged
in data exchange to thwart impersonation and unautho-
rized access. This verification leverages unique attributes
intrinsic to the transmission’s physical medium, such as
radio-frequency fingerprints or specific channel proper-
ties [63].

• Communication Availability: Ensuring communication
availability at the physical layer, particularly through
anti-jamming measures, involves deploying strategies
and mechanisms to protect wireless communication
networks from deliberate interference or jamming attacks.
Techniques such as frequency hopping and direct
sequence spread spectrum are pivotal, as they disperse
the signal across a broader bandwidth, complicating the
attacker’s ability to disrupt communications [12].

• Communication Resilience: Communication resilience at
the physical layer, particularly in safeguarding against a
range of attacks, where spoofing attacks being a typical
example, necessitates the implementation of strategies
aimed at detecting and neutralizing attacks signals.
Central to this defensive approach is the use of unique
physical features or signatures, such as Radio Frequency
(RF) fingerprints or channel state information [64].

• Communication Integrity: To safeguard communication
integrity at the physical layer, it is essential to detect
anomalous data and complete missing information [65].
Techniques such as DL algorithms are employed to
learn normal behavior patterns and subsequently iden-
tify outliers or irregularities in real-time data flows.
Furthermore, data reconstruction techniques are applied
to correct or mitigate the impact of these anomalies and
incomplete data, guaranteeing the precise and dependable
transmission of information [66].

B. Overview of GAI

GAI aims to learn the underlying features of input data to
generate new content that is similar to real data, in contrast
to Discriminative AI (DAI), which focuses on predicting the
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probability or labels of data. GAI is capable of generating
a wide variety of data, including text, images, videos, and
so on [1]. Usually, these generated outputs are refereed as
AIGC. With the widespread adoption of AIGC, there has been
a significant boost in the efficiency of content creation, even
revolutionizing the production paradigms of several companies
and individual creators.

Currently, GAI models used in communication networks can
be categorized as follows:

• Autoencoder (AEs) and Variational Autoencoders (VAEs):
An Autoencoder is a type of artificial neural network
used to learn efficient codings of unlabeled data in an
unsupervised manner [27]. It works by compressing the
input into a lower-dimensional code and then recon-
structing the output from this representation as close
as possible to the original input. By shifting from a
deterministic encoding process to a probabilistic one,
VAEs can learn to represent input data as a distribution
in latent space [67]. Through latent distributions, VAEs
generate new instances that resemble the input data
by sampling from the learned distribution in the latent
space, making them highly effective in tasks includ-
ing image generation, data augmentation, and anomaly
detection [68]. Building upon the foundational principles
of VAEs, more advanced variants such as the Vector
Quantized-Variational Autoencoder (VQ-VAE) have been
developed to improve the generation quality [69].

• Generative Adversarial Networks (GANs): Generative
Adversarial Network model is a form of unsupervised
learning [28]. Within a GAN, the generator network
is responsible for creating data, and concurrently, the
discriminator network assesses the authenticity of this
generated data. Using an adversarial mechanism, the
discriminator is trained to discern between real and
fake data, while the generator aims to produce data
indiscernible from real data. GANs have evolved into
diverse variants, each enhancing the original concept
for specific purposes. The Conditional GAN (CGAN)
introduces conditionality to direct the generative process
with greater precision [70]. In parallel, the Wasserstein
GAN with Gradient Penalty (WGAN-GP) marks a sig-
nificant stride in stabilizing the training process with its
innovative loss function [71]. The Auxiliary Classifier
GAN (ACGAN) ingeniously integrates an auxiliary clas-
sifier into the discriminator, elevating the diversity of
the generated images [72]. The Adversarial Autoencoder
(AAE) forges a pathway by blending AEs with adver-
sarial training, enforcing specialized distributions within
the latent space [73]. The Variational Auto-Encoding
Generative Adversarial Network (VAEGAN) synergies
the latent spaces of VAEs with the superior generation
capabilities of GANs [74].

• Diffusion Models (DMs): Diffusion Model, also called
the score-based generative model, is a type of generative
model inspired by non-equilibrium thermodynamics [29].
Similarly to VAEs, DMs aim to learn the distribution
of the original data. By adding noise to the original

data, the data distribution can approach a normal dis-
tribution. Through denoising steps, the noise from the
normal distribution is reverted back to data from the
original distribution. As an emerging technology in
recent years, DMs can achieve higher quality generation
results than AEs, VAEs, and GANs in many traditional
generation tasks such as image, audio, and video gen-
eration. Although their applications in physical layer
communication security are currently limited, they are
promising for future communication applications [2].

In summary, the core goal of all three GAI models is to learn
the distribution of a dataset. They achieve this by using a neu-
ral network model, including the decoder in AEs and VAEs,
the generator in GANs, and the denoising stage in DMs, to
transform the known distribution of data (e.g., the normal dis-
tribution) into a distribution that accurately reflects the original
dataset. Therefore, different network models also determine
the advantages and disadvantages of the three methods. The
decoder in AEs and VAEs decodes the data sampled from
the latent space which is encoded by the encoder. However,
they have limitations such as the tendency to produce blurry
outputs, and challenges in balancing the reconstruction fidelity
and the latent space regularization during training [3]. On the
other hand, the generator in GANs excels in generating high-
quality, realistic content and learning data distributions without
explicit modeling. However, they are challenged by training
difficulties, potential for mode collapse, and the generation
of nonsensical outputs. Additionally, multi-step denoising in
DMs can achieve better fitting results for unknown distribu-
tions than VAE single-step decoding, resulting in generating
highly realistic results. Nevertheless, DMs typically require
long training times due to their iterative refinement process
and the computational complexity of simulating detailed data
distributions.

Given the powerful generative capabilities, the integration of
GAI into physical layer security in wireless communications
is a burgeoning field with promising potential. Collectively,
GAI can play several roles in enhancing security at the
physical layer: 1) Encrypted Communication; 2) Signals
Authentication; 3) Attacks Defense; 4) Anomaly Detection;
5) Adaptive Signal Processing (Table III). Since the GAN
comprises the generator and discriminator, this structure is
more adept at addressing identification and detection tasks
in security issues than other GAI models, including jamming
recognition, anomaly detection, and authentication. AEs and
VAEs can assist in communication coding to eliminate threats
such as eavesdropping due to their encoder and decoder
structure. DMs will be proficient in data recovery and enhance-
ment via the diffusion and denoising process, such as noise
elimination tasks. Based on the potential applications of
the GAI method in physical layer security, it offers many
advantages for two critical aspects of physical layer com-
munication security: communication and sensing (Table III).
From the communication perspective, GAI methods can use
time-varying information to extract valuable features that are
resilient to changing environments, thus ensuring commu-
nication security. In terms of sensing, GAI methods can
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TABLE III
THE USE OF GAI IN THE PHYSICAL LAYER AND ITS POTENTIAL SUPPORT FOR SECURITY

aid in identifying abnormal sensors and avoiding complex
parametric signal analysis, thereby enhancing physical layer
communication security at the hardware level.

III. COMMUNICATION CONFIDENTIALITY AND

AUTHENTICATION

In wireless communications, the principles of confidentiality
and authentication stand as critical pillars ensuring the security
and integrity of transmitted information [65]. However, cyber
threats, such as eavesdropping and unauthenticated attacks
in physical layer, significantly compromise communication
security, leading to unauthorized access and information
breaches [75]. This section provides an overview of employing
GAI techniques to ensure communication confidentiality and
authenticity.

A. Secure Communication

Eavesdropping is a typical attack in physical layer which
involves intercepting and accessing confidential information
transmitted over networks [79], [80]. To improve confi-
dentiality and achieve anti-eavesdropping, secure data is
usually encrypted through various encryption algorithms [81].
However, once the math problem used for encryption is
solved effectively, the security of the encryption method
will be seriously compromised. Moreover, several transitional
methods including Error-Correcting Codes (ECCs) [82] suffer
from a dilemma that they cannot achieve the trade-off between
the reliability and data leakage because of the fixed code
parameters. GAI methods, particularly those employing AEs
or VAEs, offer enhanced security via generating complex
structures that are difficult to decipher or reverse-engineer.

AEs, characterized by its encoder and decoder components,
enable the efficient encoding of information into a compressed,
less interpretable format for transmission. Based on this, the
authors proposed an AE-based framework in [76], which
allows a flexible design of finite blocklength wiretap codes
(Fig. 2). The operating point with respect to the trade-off
between Block Error Rate (BLER) and information leakage

Fig. 2. The overall architecture of the AE-based [76] and VAE-based secure
transceiver [31]. Part A demonstrates a wiretap system model with Additive
White Gaussian Noise (AWGN). Part B illustrates the whole framework of
AE-based secure transceiver, which is trained by two loss functions: the
Mean-Squared Error (MSE) between transmitter messages and reconstructed
messages and the Mutual Information (MI) between the messages and the
received symbols by the eavesdropper. In Part C, the VAE-based secure
transceiver adds additional loss function: KL divergence.

can be changed easily due to the higher flexibility. In the sce-
nario with Additive White Gaussian Noise (AWGN) channels
as noise [76], all tested AEs perform slightly worse than the
polar wiretap code [83]. The proposed framework achieve a
BLER of around 26.2% and a leakage around 1.46bits while
the polar wiretap code achieves a leakage around 1.33bits
at a similar BLER of around 26.4% [76]. Even though the
performance is not better than the polar wiretap code, the
proposed framework can take the advantage of the flexibility
to trade-off between the BLER and leakage, and may improve
performance with deeper neural networks.
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To train a secure communication system based on AEs, loss
gradients need to be passed backward from the output layer
of the receiver to the input layer of the transmitter. However,
a practical challenge arises due to the unknown gradients
of the physical channel. This issue is often circumvented
by assuming channel models with known analytic expres-
sions, such as AWGN and Rayleigh fading channels [84].
However, these models may not accurately reflect real-world
channel conditions. To overcome this limitation, the authors
in [30] proposed a communication channel density estimating
GAN, inspired by BicycleGAN [85]. The proposed method
focuses on channels characterized by a combination of non-
linear amplifier distortion, pulse shape filtering, inter-symbol
interference, frequency-dependent group delay, multipath, and
non-Gaussian statistics. They conducted a comparative anal-
ysis of the marginalized probability density functions of
the channel with a trained generator. Through experiments
conducted on four different channels, the results indicate that
the proposed model is capable of generating high-accuracy
approximations of the channel [30].

One of the shortcomings of this AE-based framework is
that it is trained based on the fixed Signal-to-Noise Ratio
(SNR). When the SNR varies in the testing phase, their
method cannot provide the optimal solution. To address this
issue, the authors in [31] proposed a VAE-based scheme for
secrecy systems in changing environment (Fig. 2). In this
framework, they proposed a secure VAE (SVAE) to perform
as a transceiver designed with a loss function which can
measure the information leakage. Its loss function is specifi-
cally designed to increase the difficulty for eavesdroppers to
recover data, thereby meeting diverse application requirements
of the transceiver. In experiments, Bit Error Rate (BER) is
adopted to evaluate the communication quality. Compared
with the AE-based method [76], the BER of SVAE achieves
around 5 × 10−6 when SNR is 10 dB where the BER of
AE-based achieves 10−2 in a perfect CSI scenario. Moreover,
the BER at eavesdropper of SVAE keeps at 0.5 where AE-
based’s BER has marked decrease [31]. With this high BER
at eavesdropper and low BER at legitimate, the eavesdropper
cannot recover correct information and the legitimate can keep
a high communication quality.

However, the model in [76] only focuses on channel
coding, where source and channel coding are performed
separately, might not be as efficient in dynamic communi-
cation networks. Joint Source Channel Coding (JSCC) can
dynamically adjust the coding strategy based on both the
source content and the channel conditions which is more
suitable for dynamic networks [86]. The authors in [77]
proposed a data-driven approach using VAE-based JSCC. The
proposed model aims to minimize the information leakage
and emphasises hiding an underlying sensitive information.

The VAE enables precise control over latent distributions
and practical variational approximation computation, crucial
for calculating information security dynamics in the proposed
model. Evaluated on colored MNIST dataset, the proposed
method provides minimally distorted source transmission with
maximum channel capacity [77]. Similarly, the authors of [32]

proposed a VQ-VAE [69] based JSCC wireless communication
framework. This framework interprets both channel and source
encoder (ENC) and decoder (DEC) as variational techniques.
A notable feature of the VQ-VAE is the codebook, which
facilitates the modeling of noisy channels in communication.
Specifically, noise is represented by codeword through an
index of binary digits to improve generalization [87].

Beyond directly employing VAEs for encoding trans-
mitted information, [78] investigated the application of
a GAN-inspired model for covert communication through
Direct-Sequence Spread Spectrum (DSSS). This model is
designed to secure communications between two parties, Alice
and Bob, by preventing an eavesdropper, Eve, from detecting
in an AWGN environment. In this setup, Alice transmits
a message to Bob using a spreading code from a shared
codebook. The GAN-inspired model utilizes the information
eavesdropped by Eve to generate the spreading code used
by Alice and Bob. The system is jointly trained with a
combined loss function, aiming to minimize Bob’s reconstruc-
tion error while maximizing Eve’s. Furthermore, spreading
sequences with low Peak Side Lobe can improve model
convergence. However, when Eve employs Auto-Correlation-
based Detection techniques, Eve detected the presence of
the DSSS signal with an accuracy of 70% at -6 dB SNRs
or higher [78]. This significant level of detection accuracy
indicates that the proposed method must adopt more proactive
strategies to ensure enhanced security in communications.

Key generation that exploits the unpredictable character-
istics of wireless channels can provide information-theoretic
security for communication confidentiality [88]. By utilizing
the unique and unpredictable characteristics of channels, key
generation methods can effectively prevent eavesdroppers from
gaining access to the encrypted data. However, when directly
adopting AEs or VAEs, the unpredictability of the hidden layer
output and the inability to estimate high-dimensional features
in advance pose challenges for applying these methods to key
generation in the physical layer of communication systems.
Therefore, a physical layer key generation method based on
WGAN-GP [71] based AAE was proposed in [33]. This model
is designed to efficiently extract features between legitimate
nodes in a way that these features align with a Gaussian
distribution. Compared with the Principal Component Analysis
(PCA) method [89], the proposed method can yield higher
security key capacity and a lower key error rate 15% which
is lower than PCA with feedback, and 10% lower than
the without feedback PCA. Additionally, the key generation
ratio of this method is much higher than that achieved with
PCA [33].

As summarized in Table IV, due to its ability to learn
distributions and extract features, GAI can significantly
improve the security of data transmission by generating
encryption algorithms preventing evolving threats. However,
existing encryption methods [30], [31], [76] mostly depend
on specific dataset reducing the generality of the method.
Improving the generalization ability of the GAI model while
maintaining accuracy may be a research direction in the
future.
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TABLE IV
SUMMARY OF GAI FOR SECURE COMMUNICATION IN PHYSICAL LAYER BLUE CIRCLES DESCRIBE THE METHODS; GREEN CORRECT

MARKERS AND RED CROSS MARKERS REPRESENT PROS AND CONS RESPECTIVELY

B. Communication Authentication

In physical layer communications, safety-critical messages
are frequently transmitted. These include vital communications
such as collision warnings, speed limit notifications, and
updates on traffic conditions in vehicular networks [93].
To guarantee the authenticity and reliability of these mes-
sages, it is crucial to implement an authentication process to
prevent malicious activities. The current authentication meth-
ods primarily incorporate RF fingerprinting, Channel State
Information (CSI), and Channel Impulse Response (CIR) [94].
These three types of information focus on hardware charac-
teristics, channel information, and signal changes within the
channel, encompassing the main aspects of wireless commu-
nication processes. Based on these information, authentication
serves as a security checkpoint to verify the identity of users
or systems, effectively distinguishing legitimate entities from
impostors.

RF fingerprinting is a technique used to identify and authen-
ticate wireless devices based on the distinctive characteristics
inherent in RF signals. Given its ability to accurately pinpoint
the source of a transmission, RF fingerprinting is seen as a
crucial tool for device authentication and access control [95].
Recently, several traditional AI methods have been adopted
as the standard approach for RF fingerprinting [96], [97].
However, the authors in [34] revealed a weakness of these
approaches that a malicious GAN can be trained to introduce
signal imperfections without modifying the contents of the
signal to force classifier errors. Then they showed that the
classifier, trained by the augmented dataset with adversarial
examples from GAN, can mitigate this vulnerability. The
experiment results demonstrate that the Receiver Operating

Characteristic (ROC) curves with GAN-augmented training
has nearly 1 Area Under the Curve (AUC), where 90%
of the networks without GAN perform even worse than
random guessing at 40 dB SNR [34]. Similarly, in [90] the
Radio Frequency Adversarial Learning (RFAL) framework
was proposed for building a robust system to identify rogue RF
transmitters by designing and implementing a GAN. The GAN
utilizes the In-phase and Quadrature (IQ) imbalance [95] to
extract unique high-dimensional features from the RF signals.
Using the augmented data from the generator, a discriminator
model can classify the trusted and the counterfeit ones with
99.9% accuracy.

Inspired by [90], the authors in [91] proposed a GAN
based wireless transmitter identification scheme. The proposed
framework uses a multi-classifier to both detect malicious
attacker and classify trusted transmitter without any extra
classifier. Once trained, discriminators are employed to check
whether the captured unknown IQ data comes from a corre-
sponding trusted transmitter. If the label vector, made up of 1s
and 0s, shows all 0s, the data is not from a trusted source, sug-
gesting a high probability of it being sourced from an attacker.
Additionally, the authors in [35] introduced the Triple-GAN
structure [98] to adopt semi-supervised classification. With the
modified structure, the classification accuracy of the proposed
framework can achieve over 90%, only 1% of the training data
samples are labeled [35].

CSI is an important parameter of a communication link
in the physical layer. By leveraging its unique properties,
CSI can be utilized in an authentication context [93], [99].

However, attackers can modify various aspects of their
transmission setup, including antenna properties, transmission
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TABLE V
SUMMARY OF GAI FOR COMMUNICATION AUTHENTICATION IN PHYSICAL LAYER BLUE CIRCLES DESCRIBE THE METHODS; GREEN CORRECT

MARKERS AND RED CROSS MARKERS REPRESENT PROS AND CONS RESPECTIVELY

timing, power levels, or use reflectors [100]. These alterations
enable them to change their CSI as measured by the receiver.
To address these issues, the author in [92] proposed a GAN
based model to authenticate devices in Multi-Input Multi-
Output (MIMO) communication systems. The proposed model
employs adversarial training to improve the authentication
process. The discriminative model at the receiver is trained
by a generator that creates fake CSI samples looking like the
authentic samples. Simulation results show that the discrimi-
nator achieves 100% accuracy for SNR greater than or equal
to 10 dB. For SNR less than 10 dB, while the discriminator
makes errors in correctly recognizing legitimate samples, it
consistently succeeds in preventing illegitimate samples from
being authenticated [92].

To handle the time-varying CSI in fast-changing environ-
ment, the authors in [36] proposed a CGAN based model
combining with LSTM and gated recurrent unit (GRU) cells.
Compared with the method in [92], the proposed model
utilizes a CGAN instead of a conventional one, which can
incorporate the previous CSI elements associated with time
as the conditional information (Fig. 3). This approach allows
for a more detailed generation and analysis of CSI data in
the temporal aspect and historical patterns. In experiments, the
CGAN-GRU network typically performed as well as or better
than the standalone LSTM or GRU networks. Especially when
mean-square error threshold is -25 dB, all of them can achieve
accuracy at almost 99% [36].

In addition to CSI, the CIR is another significant parameter
in wireless communications providing a detailed characteriza-
tion of how a wireless signal propagates from the transmitter
to the receiver in a specific environment. In [37], the authors
proposed a CIR-based hierarchical VAE physical-layer authen-
tication (HVAE-PLA) scheme. The HVAE-PLA consists of an

AE module and a VAE module. The AE module is dedicated
to extracting the characteristics of CIR, providing insights
into how signals propagate in specific environments. The VAE
module building upon this aims to enhance the representational
capacity of the extracted CIR characteristics. The simulations
show that the proposed method can improve the authentication
performance by 17.18%–69.3% compared to the vanilla AEs
and VAEs [37].

The integration of GAI in communication authentication
through specific information has highlighted GAI’s ability to
enhance the uniqueness and reliability of identifying devices
in a network, as summarized in Table V. However, generative
models require relatively long training and inference times due
to their complex structure [35]. When facing fast time-varying
information [34], they have difficulty to infer and adapt to
additional new information in real time. Therefore, pruning
the model size and enhancing model real-time adaptation are
urgently needed for security authorization.

IV. COMMUNICATION AVAILABILITY AND RESILIENCE

The concepts of communication availability and resilience
emerge as fundamental components to maintain continu-
ous and reliable access for communication systems [101].
Challenges such as network disruptions and deliberate cyber
attacks can severely impact the availability of digital commu-
nication services, leading to significant downtime and loss of
connectivity [102]. This section aims to explore the integration
of advanced strategies and GAI techniques to ensure the
communication availability and resilience via solving two
common cyber attacks: jamming and spoofing in physical
layers.
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Fig. 3. Proposed CGAN training architecture in [36]. In Part A, the
conditional information is the previous magnitudes of the CSI elements
associated with time. The output of the discriminator is the probability value,
representing the likelihood from zero to one based on its perception of whether
the sample is fake or authentic. Part B illustrates the system model structure.

A. Anti-Jamming Strategy

The jamming attack is a vital threat to communication
availability at the physical layer, aimed at disrupting legitimate
communications by introducing noise [109]. By recognizing
jamming, communication systems can effectively identify
whether the received signal is being jammed, triggering
the protection mechanism of systems. Specifically, when a
jamming attack is detected, the system can quickly adjust
and resist the attack through anti-jamming strategies such
as selecting optimal communication channels, ensuring the
availability of communication. In summary, to ensure commu-
nication availability, detecting and mitigating jamming attacks
represents a critical initial defense.

There are several conventional methods employed wire-
less jamming attacks, including random and sensing-based
jamming [110]. However, with the increasing integration of
machine learning techniques into communication systems,
both legitimate transmitters and malicious jammers leverage
machine learning algorithms to understand the spectrum envi-
ronment better which introduces new emerging types of attacks
including adversarial attacks.

In [38], the authors present an adversarial learning strategy
employing GAN to facilitate adversarial jamming attacks. This
approach enables jammers to generate synthetic data based on
a small number of real data samples. These synthetic samples
are then integrated into the training dataset. Simulation results
indicate that the detection accuracy of a jammer closely
approximates, within 0.19% for misdetection and 3.14%
for false alarms, that of a jammer trained with a larger
dataset of real samples collected over a long duration [38].
Furthermore, based on the attack characteristics, they proposed
a defense strategy for the transmitter, centered on rendering

Fig. 4. The overall network structure in [104]. Part A illustrates the generator,
which is designed as an AE comprising a convolution layer, a fully connected
layer, and a de-convolution layer. In Part B, two discriminator modules are
crafted using a convolution network and are optimized to focus on local and
global details, respectively. Part B describes the system model structure.

its behavior unpredictable. This can be achieved by the
transmitter intentionally performing incorrect actions, such as
transmitting on a busy channel or refraining from transmitting
on an idle channel, during strategically selected time slots.
Additionally, the authors in [103] proposed an input-agnostic
adversarial attack technique, which adopts GAN to create
perturbations in advance. These pre-generated perturbations
can then be efficiently applied to a variety of incoming signals.
Furthermore, this approach has the potential to substantially
aid in the development of classifiers that exhibit robustness
against adversarial jamming attacks.

In the case of small sample datasets, the performance of
autonomous feature extraction and classification of DL will
be reduced [111]. Especially in real-world network commu-
nications, it is difficult to obtain enough sample data for
anti-jamming due to the privacy policy and the inadequacy
of technical methods. To generate more realistic data, the
authors in [39] proposed a jamming recognition method based
on AC-VAEGAN, which combines the VAEGAN [74] and
ACGAN [72]. In this model, the latent space of a small
amount of signal dataset is obtained by VAE firstly. Then, the
datasets will be expanded by sampling points of the latent
space and decoding them. Finally, the discriminator of the
GAN framework is extracted for jamming recognition. In
experiments, when the Jamming-to-Noise Ratio (JNR) is -
10dB, the average correct recognition rate of AC-VAEGAN
network is approximately 65%, where the rate of ACGAN and
CNN network is only about 55% [39].

Except the scarcity of data, the occurrence of jamming
attacks frequently leads to incomplete data, which hinders
the ability of anti-jamming strategies to discern jamming
attacks [38]. To complete the missing information, the authors
in [104] proposed an efficient algorithm based on a GAN
focusing on spectrum waterfall completion, where spectrum
waterfall is a thermodynamic block diagram defining the
environmental state [112]. The algorithm can automatically
mine the relationship of the data and complete the missing data
accurately. Different from the noise input in the original GAN,
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they use the spectrum waterfall with missing data as generator
input, which can limit generator artistry (Fig. 4). From the
corresponding complement results, the proposed algorithm is
better than the method without pre-classification, since the
generator that adds auxiliary information is more targeted to
the data. The accuracy is more than 95%, where the latter is
nearly 80% [104].

Several studies have demonstrated that anti-jamming com-
munications, enhanced by Deep Reinforcement Learning
(DRL) [113], [114], can achieve near-optimal performance in
dynamic and unpredictable environments [115], [116], [117].
In [40], the authors proposed a framework combining the GAN
and DRL. The proposed framework consists of two stages:
the offline stage and online stage (Fig. 5). Initially, a GAN
is trained to complete missing spectrum data using historical
data. Once the GAN training is complete, the generator is
implemented as Spectrum Completion Network (SCN) during
the online stage. Subsequently, with the augmented spectrum
data, a DRL-based Channel Selection Network (CSN) is
employed. The CSN utilizes the enriched spectrum data to
assist users in selecting optimal communication channels
for anti-jamming. The performance of the proposed scheme
notably surpasses that of the conventional DRL-based method
in [115], as well as the scheme that combines K-Nearest-
Neighbor Interpolation (KNNI) and DRL [118] in all missing
rates. Especially, the proposed scheme achieves the discounted
accumulative reward of 8.3 when the missing rate is 10%.
In comparison, the conventional method scores 4.4, and the
KNNI-DRL combination scores 6.5 [40].

Additionally, the authors in [105] introduced a dynamic
spectrum anti-jamming access scheme in the cognitive radio
based network [119] that is friendly to Primary Users (PU)
while also safeguarding Secondary Users (SU) from indis-
criminate jamming attack by jammers. Similar to the scheme
in [40], this proposed framework is divided into two stages:
the offline stage and the online stage where the key difference
lies in the GAN model used in the first stage. Here, the GAN
is trained to accurately simulate the Spectrum Environment
(SE), which is considered a Virtual Environment (VE). By
pre-training the Channel Decision Network (CDN) offline in
this VE, the SU is equipped to evade both PU signals and
jamming in the actual SE, following the guidance of the trained
CDN. According to the experiments, it takes about 90s for the
proposed scheme to converge to the optimal policy while the
CDN trained in SE from scratch spends about 160s [105].

Existing anti-jamming technologies rely on hidden anti-
jamming strategies, but their performance tends to diminish
when facing with more sophisticated or complex jamming
types [120]. In [41], the authors proposed a DRL algorithm
with a double network structure, named ADRLDN, which
adopts the hidden anti-jamming idea and can deal with
various types of complex jamming in actual scenarios. In this
framework, they designed a GAN network-based user and
jammer decision-making correlation judgment module. The
GAN is trained to fit the environmental state under known
user information, and evaluates whether the user information
is obtained by the jammer. The DRL network is trained to
guarantee the user’s decision not obtained by jammers. In

this situation, there are two key points: compare the fitted
environmental state with the real environmental state; ensure
both the generation and the evaluation of the effect of the
network. These happen to be the essential characteristics
of GAN networks. According to the simulation experiment
results, ADRLDN is superior in anti-jamming performance
than the current anti-jamming method based on avoiding the
idea (ADRLA) [115] by reducing the probability of users
being jammed by 15%.

As for Cognitive Internet of Things (CIoT), a major chal-
lenge is extending the system’s lifespan. Energy Harvesting
(EH) technology is a promising solution to provide sustain-
able energy to energy-constrained mobile devices in CIoT
systems [121], [122]. However, EH-CIoT systems encounter
significant jamming attacks due to the wireless channels,
which exposes information transmissions to potential security
risks. In [106], the study considered an EH-CIoT system where
the communication security of the SU network is threatened.
To enhance security, the authors propose a DRL algorithm
that integrates LSTM and GAN models. This algorithm aims
to maximize the system’s secrecy rate while minimizing the
Secrecy Outage Probability (SOP). The GAN network is
utilized to mitigate the time-varying CSI and the adverse
effects of random noise at the receivers. Simultaneously,
the LSTM network is employed for extracting features from
the input environment. The study’s findings reveal that the
convergence speed of the proposed algorithm is significantly
faster 1.69 and 3.15 times than that of other algorithms that do
not incorporate the GAN model [106]. The integration of the
GAN and LSTM model significantly enhances the algorithm’s
ability to quickly capture environmental information and learn
optimal strategies.

SemCom is a revolutionary way of communicating that
helps overcome the limitations of previous methods by using
DL to send necessary information, which reduces the amount
of data sent [123]. With the focus on semantic-level trans-
mission, new challenges in jamming and anti-jamming arise.
Attackers will aim to create more effective jamming meth-
ods to degrade the quality-of-experience (QoE) for users in
communications [124]. In [107], a framework for intelligent
jamming and anti-jamming in semantic communication was
proposed based on the GAN. In the framework, the transmitter
sends data with semantic features, and the receiver tries to
understand it correctly while a jammer tries to mess up
this process. The authors designed a GAN model where the
jammer learns to generate disruptive signals, the receiver is
trained to selectively focus on legitimate segments of the
incoming data, thereby enhancing its proficiency in identifying
and mitigating semantic jamming.

In jamming attacks, a key factor for their success is the
jammer’s ability to accurately determine the frequency of
signal transmission. This capability is vital for generating
jamming noise powerful enough to disrupt the SNR within
the same frequency band. To mitigate jamming attacks,
the author in [108] developed an anti-jamming communi-
cation system model based on GANs. The proposed model
employs generator and discriminator integrated with min-
max game theory, to automatically adapt to the dynamics
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Fig. 5. Overall structure of the proposed anti-jamming spectrum access scheme in [40]. In Part A, a GAN with the Generator (G) and Discriminator (D) is
trained to complete missing spectrum data using historical data. In Part B, the generator (G) is implemented as SCN. The CSN utilizes the enriched spectrum
data to assist users in selecting optimal communication channels for anti-jamming.

TABLE VI
SUMMARY OF GAI FOR ANTI-JAMMING STRATEGY IN PHYSICAL LAYER BLUE CIRCLES DESCRIBE THE METHODS; GREEN CORRECT

MARKERS AND RED CROSS MARKERS REPRESENT PROS AND CONS RESPECTIVELY

of the spectrum. The training of the proposed model within
this defense mechanism is designed to mislead jammers,
preventing them from effectively targeting the transmission

of data. This strategic deception, rooted in game theory,
hinders the jammers’ ability to accurately select time slots for
their attacks, leading to erroneous predictions on classification
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sources, which in turn prevents significant transmission
losses.

As summarized in Table VI, GAI has demonstrated the
effectiveness in identifying jamming activities and develop-
ing suitable anti-jamming strategies. However, most existing
works only consider certain scenarios and lack real-world test-
ing [103], [104], [107]. Due to the complex architectures, GAI
models are also unsuitable for large-scale deployment [39].
Therefore, designing a model that can be used in realistic
anti-jamming scenarios especially on a large scale needs to be
considered.

B. Spoofing Defense

Authenticating wireless signals at the physical layer is
essential for ensuring communication resilience. Despite
employing numerous features discussed in Section III, wire-
less signal spoofing remains a pervasive threat. In spoofing,
attackers insert fake identification information into gen-
uine communications to join or corrupt the systems [128].
Therefore, it enables unauthorized access and data manipula-
tion, causing substantial harm to the communication resilience.

Currently, DL methods have proven effective against simple
spoofing attacks. For example, the study in [42] examines a
basic spoofing technique like the replay attack, which par-
tially replicates original signals. However, adversarial spoofing
attacks, as discussed in [38], pose a more profound threat by
evading traditional security measures. The research in [42]
explored this issue from both the attacker’s and defender’s
perspectives, proposing a GAN model to create indistinguish-
able signals. The GAN is trained to emulate the pattern
of intended transmissions which significantly improves the
possibility of a successful attack compared to random signal
and replay attacks, even when node locations vary between
training and testing phases [42]. Moreover, the proposed GAN-
based model provides defense mechanism by using GAI to
distinguish and counteract signal spoofing attacks. In [125],
the authors further provided a detailed analysis of the proposed
GAN-based spoofing attack, including its implementation on
embedded platforms. This implementation is carried out on
two distinct embedded platforms: an embedded Graphics
Processing Unit (GPU) [129] and a Field-Programmable Gate
Array (FPGA) [130]. The effectiveness of the proposed attack
is noteworthy, with a success probability ranging from 60.6%
to 97.8%. However, the technique’s dependence on real-time
compensation for transmission channels causes considerable
overhead. This feature elevates the risk of detection due to an
expanded communication footprint.

Simulating and imitating RF signals is a basic tactic
employed by spoofers. While GAI has demonstrated effec-
tiveness in augmenting short time series segments, challenges
remain in accurately generating RF signals, such as the length
of signals, and radio environments [126]. The authors in [126]
explored the potential of GAN models to accomplish full-band
spectral generation for anti-spoofing attacks. They implement
the WGAN-GP model [71] to improve training stability.
Drawing on its proven effectiveness in the image domain,

they utilize spectral representations of OFDM signals called
LTE [131], treating them as 2D images. However, the study
shows that using GANs to create long sequences over time
is quite a challenge. It is harder to capture small details and
features in these long sequences than in the shorter ones [126].

To overcome the limitations of existing methods, [43]
introduces a controllable wireless spoofing attack scheme
that leverages a Conditional Boundary Equilibrium Generative
Adversarial Network (CBEGAN) [132] in conjunction with
auxiliary channel sensing. The CBEGAN network combines
with an AAE, which is a neural network architecture for
computer vision-related tasks enabling learning with few
samples [73]. It facilitates more precise and effective spoofing
attacks by simulating a variety of emitters and modulation
types. Additionally, the integration of auxiliary channel sens-
ing effectively compensates for transmission channel effects.
Since it allows the attack model to be trained offline, it
significantly reduces the likelihood of detection by legitimate
communication pairs. Under the same channel conditions, the
proposed spoofing attack scheme reaches a success proba-
bility of 85.7%. In contrast, the comparative attack scheme
mentioned in [125] achieves a lower success rate, with a
probability of 76.2% [43].

One sophisticated form of spoofing attack is spoofing jam-
ming, where the attacker broadcasts analog signals designed
to imitate authentic signals. This can lead to a target receiver
obtaining false information instead of the true data. Due to
their long-distance transmission from satellites to receivers,
Global Navigation Satellite System (GNSS) signals are more
prone to disruptions from spoofing jamming attacks [133].
To detect spoofing jamming attacks, the authors in [127]
proposed a spoofing signal detection method based on the
GAN in the acquisition stage, which is one of several phases
in character recognition that also includes preprocessing,
feature extraction, classification, and post-processing [134].
The proposed model specifically considers the classification of
authentic and spoofing signals within the context of navigation
tasks. In this setup, both the training and test datasets are
derived from the GPS receiver code. According to the simu-
lation results, the successful detection of small-delay spoofing
signals is achieved through the use of adversarial learning
within the GAN. Additionally, while the overall performance
of the GAN is comparable to that of the CNN, the GAN
exhibits a slight advantage over the CNN, particularly when
the pseudo-code phase offset is equal to or greater than
0.5 chip [127].

However, Spoofing jamming’s creation is complex and
resource-intensive, requiring extensive prior information. So
far, only specific authorized or civilian systems have suc-
cessfully executed such attacks [135]. Drawing inspiration
from [42], the authors in [44] introduced a GAN-based
approach, termed Spoofing Jamming Generation (SJG-GAN),
for crafting spoofing jamming attacks (Fig. 6). This model
is adept at learning the latent distribution of DSSS signals
and generating a set of synthetic signals. Upon completion
of training, a improved Pearson correlation coefficient is
used as an evaluation metric to select the most aggressive
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TABLE VII
SUMMARY OF GAI FOR SPOOFING DEFENSE IN PHYSICAL LAYER BLUE CIRCLES DESCRIBE THE METHODS; GREEN CORRECT
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Fig. 6. The overall network structure in [44]. Part A illustrates the SJG-GAN
framework consisting of two parts: signal generation and the high-performance
generated signal selection. In Part B, the process of the high-performance
generated signal selection is shown. It can be split into two steps: the
evaluation and the selection.

synthetic signals for the DSSS system as spoofing jam-
ming signals. Notably, the one-dimensional GAN model of
SJG-GAN simplifies the generation process, making it more
cost-effective and feasible for a variety of communication
systems, as demonstrated in simulations [42].

In conclusions, GAI models can offer sophisticated mech-
anisms to both detect and counteract spoofing attacks, as
summarized in Table VII. However, since they are limited
to simulated environments, the detection accuracy in actual
scenarios still needs further investigation.

V. COMMUNICATION INTEGRITY

Communication integrity in the physical layer of a network
involves ensuring that the data transmitted over a physical
medium, such as copper wires, fiber-optic cables, or wireless
signals, is delivered accurately and reliably, without corruption
or alteration [65]. This often requires mechanisms for anomaly
detection or data reconstruction to maintain the fidelity of the
data as it moves from one device to another, thereby preserving
the integrity of communication.

A. Anomaly Detection

Anomaly detection is a method used to identify and mitigate
unexpected deviations or irregularities in the communication
channel [143]. However, due to the unpredictable char-
acteristics of potential anomalies, it is difficult to gather
enough abnormal data for training samples in traditional AI
methods [144]. Thus, there is an urgent need for an unsu-
pervised, automatic feature-extraction learning model, such as
GAI techniques for anomaly detection [145]. Generally, GAI
for anomaly detection can be divided into two categories:
reconstruction-based [136] and prediction-base detection [47].

1) Reconstruction-Based Detection: Reconstruction-based
methods identify anomalies through anomaly scores, which
are usually the reconstruction error in GAI models. In the
study [136], the authors proposed a deep AE-based approach
for anomaly detection in the spectrum. The time-frequency
features of preprocessed signal data are utilized to train
the proposed network. To differentiate between normal and
anomalous data, the method applies a threshold to the
reconstruction errors, transforming these errors into a binary
outcome. The threshold value is strategically selected to trade-
off a balance between the probabilities of false alarms and
missed alarms, and it is determined as the median of a
sequence of reconstruction errors in this study.
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Fig. 7. The proposed model architecture in [45]. The AAE architecture
is trained in a semi-supervised learning for making the features more
interpretable while the reconstruction is fully unsupervised.

While the model presented in [136] demonstrates effective-
ness, it lacks interpretable feature extraction capabilities, such
as signal bandwidth and position. This limitation necessitates
the training of multiple copies of the model for different
frequency bands. Addressing this issues, the authors in [45]
introduced Spectrum Anomaly Detector with Interpretable
Features (SAIFE), which is an AAE based model (Fig. 7).
SAIFE enables the training of a single model across multiple
bands in an unsupervised manner, thereby eliminating the need
for multiple model instances for different bands. Moreover,
the AAE architecture provides a flexible and robust plat-
form for semi-supervised learning, enabling the extraction of
interpretable features based on Power Spectral Density (PSD)
data [146]. Furthermore, the reconstructed signals are a key
asset for localizing anomalies within the wireless spectrum.
Impressively, the model demonstrates exceptional performance
in wireless band classification, achieving an accuracy close
to 100% while only utilizing 20% labeled samples [45].
Similar to the SAIFE model [45], the study in [137] also
designed an anomaly score based on latent representations
for electromagnetic waveform anomaly detection. This design
differs from the SAIFE model, as the generator in the proposed
method is composed of two AEs connected in series. These
encoders map original and reconstructed data to the latent
space, respectively.

In response to the complexity and training overhead of
GANs and the low accuracy of traditional AE networks in
anomaly detection of electromagnetic signals, the authors
in [138] proposed a ResNet-AE network model. This model
integrates the encoder and decoder with ResNet architecture
and LSTM architectures for efficient feature mapping and data
reconstruction. To process the anomaly detection results and
establish an adaptive decision threshold, a K-Means classifier
with two categories is constructed, using a random initial
clustering center to categorize the anomaly scores. After
iterative clustering, the centers for normal and abnormal signal
scores are determined, and the mean value of these centers
is used as the threshold for anomaly judgment. When applied
to radar signal anomaly detection, the proposed ResNet-
AE method achieves a high recognition accuracy, exceeding
85% [138].

To further investigate the impact of different weightings of
the KL divergence in the loss function of VAEs, the authors
of [46] proposed an approach for data anomaly detection
using a β-VAE [147]. This advanced model, employing a
multivariate normal distribution, introduces a coefficient β
to control the KL term. It allows for a more disentangled
representation of data, where each unit in the latent code
is responsive to a single generative element, enhancing the
model’s interpretability and effectiveness. However, the study
does not specify the method for selecting the optimal value of
the β coefficient.

While existing methods have proven effective in anomaly
detection, they often involve transmitting large volumes of
raw data, resulting in significant channel interference and
energy consumption. To address the substantial demand for
computational resources, the study [139] introduces an AE-
based distributed anomaly detection approach in Wireless
sensor network (WSN), characterized by its simplicity with
only three layers. Each sensor in the proposed approach is
equipped with a copy of the AE and is responsible for two
primary tasks, in addition to its regular sensing function. The
first task involves providing the input and output data of
the AE to the IoT cloud, which serves as the training data.
This data transfer occurs through a gateway or cluster head
at a significantly lower frequency compared to the sensing
rate. The second task is the execution of anomaly detection,
which is conducted locally at the sensor level. This process
is independent of any communication with other sensors,
the gateway, or the IoT cloud, thereby enabling efficient
and autonomous anomaly detection within each sensor unit,
offering a more efficient and autonomous approach to anomaly
detection in WSN [139].

2) Prediction-Based Detection: Besides reconstruction-
based methods, prediction-based methods have also proven
to be effective for anomaly detection, which directly predict
the probability of an anomaly without defining an anomaly
score [47], [48], [140], [141].

A primary challenge in physical layer sensing is the large
amount of unclean and irrelevant data collected from sensors,
known as data imbalance [148]. This issue often results in
traditional AI models misclassifying all samples as abnormal,
further complicating anomaly detection [149]. To tackle the
data imbalance problem, [140] introduces the MSGAN model,
a GAN-based data augmentation strategy specifically designed
for sensor anomaly detection. This model integrates WGAN-
GP [71] with a novel adaptive update strategy during offline
training. The adoption of an adaptive update strategy allows
the MSGAN to accelerate training convergence and improve
the quality of synthetic samples.

In SAIFE [45], the distribution captured by AAEs corre-
sponds more to the latent representations than to the original
training samples. To address this limitation, the study in [47]
introduced an Encoder-GAN (E-GAN) structure, which incor-
porates an encoder network into the original GAN framework
to reconstruct the spectrogram. By integrating an encoder into
the standard GAN, the latent representations are controlled
by the encoder rather than being randomly selected, which
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TABLE VIII
SUMMARY OF GAI FOR ANOMALY DETECTION IN PHYSICAL LAYER BLUE CIRCLES DESCRIBE THE METHODS; GREEN CORRECT

MARKERS AND RED CROSS MARKERS REPRESENT PROS AND CONS RESPECTIVELY

ensures that the generator produces data within the actual data
distribution. Consequently, the E-GAN model is more adept
at capturing the distribution of input samples than the SAIFE.
However due to the convolutional structure in E-GAN, the
time complexity of the proposed algorithm is higher than that
of the SAIFE model [47].

In [48], a framework integrating Dynamic Bayesian
Networks (DBNs) [150] and GANS was proposed to detect
abnormalities. A distinctive aspect of this approach is the
use of a generalized state vector [151], consisting of the
signal feature extracted from the Stockwell Transform (ST)
and the corresponding derivatives, as the input for the model.
In the proposed framework, DBNs are used to learn switching
models where each switching variable can be associated with
a different linear dynamic model. This approach is particularly
suited for scenarios involving low-dimensionality data due to
the vocabulary size of switching variables. Conversely, CGAN
is employed for scenarios involving high-dimensionality data.
While GANs are capable of effectively managing a high
number of different dynamic models implicitly, they have
a notable limitation: unlike DBNs, GANs cannot manage
uncertainty with probabilistic knowledge [48].

According the results in [48], it is demonstrated that
approaches utilizing generative learning of deep features
yield superior results in anomaly detection when compared
to conventional techniques, particularly the Cyclostationary

Feature Detector (CFD) [152]. Therefore, the authors in [141]
conducted a comparative analysis of three deep generative
models: the CGAN, the ACGAN, and the VAE for spectrum
anomaly detection in the millimeter Wave (mmWave) com-
munications. Tested on a real dataset collect by The National
Instruments mmWave Transceiver System [141], all three
models demonstrated commendable performance in anomaly
detection, particularly the AC-GAN. The ROC curves from
these tests confirmed that these models have a high probability
of detection while maintaining a low false alarm rate.

Similarly, the authors in [142] explored a range of generative
model approaches, including U-Net WGAN, ResNet WGAN,
and ResNet VAE applied to spectral density functions. The
anomaly scoring mechanism employed varies with the model:
binary cross-entropy loss is used between the input and
reconstruction for U-Net WGAN and ResNet VAE, while
mean-squared error loss is applied for ResNet WGAN. For
comparison and validation, three well-known anomaly detec-
tion methods are used as baselines: Isolation Forest [153],
One-class SVM [154], and fAnoGAN [155]. The results
demonstrate excellent performance of these generative models
compared to traditional baseline approaches for various types
of anomalies. In particular, the Unet GAN achieves the highest
average in four out of the five metrics [142].

As summarized in Table VIII, GAI models showcase supe-
rior performance in anomaly detection within complicated
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feature data than traditional AI models. However, some
methods cannot be employed to characterize and classify the
anomalous signals [138], [141], which holds critical impor-
tance for the subsequent maintenance and security of network
equipment. Consequently, future research should concentrate
on creating advanced GAI models capable of detecting and
classifying various anomalous signals.

B. Data Reconstruction

Data reconstruction focuses on retrieving the original signal
or information from corrupted or incomplete datasets [158].
This process involves various techniques to restore or approx-
imate the original data, aiming to overcome the issues caused
by interference and noise.

Traditional reconstruction methods, based on sparse rep-
resentation and low-rank matrix completion [159], assume
that both full-spectrum data and their corrupted counter-
parts are sparsely represented with a full-spectrum and
a gapped-spectrum dictionary, respectively. Therefore, both
representations are similarly sparse and share identical sparse
codes. Consequently, these reconstruction methods lack the
ability and robustness to distinguish closely situated targets
at high resolution accurately without prior knowledge of the
missing frequency bands. However, GAI models excel in learn-
ing complex data patterns, effectively reducing the dependency
on prior knowledge of missing frequency bands. Moreover,
GAI models leverage their advanced learning capabilities to
data gaps, offering a more robust and flexible approach to
signal reconstruction.

In [49], the authors introduced a GAN framework
named SARGAN, designed to reconstruct missing spectral
information in Ultra-wideband (UWB) radar systems across
multiple frequency bands. Specifically, SARGAN focuses on
recovering Synthetic Aperture Radar (SAR) data [160]. To
train the GAN model, the model uses numerous data pairs,
each comprising an uncorrupted scene and its frequency-
corrupted version. The corrupted datasets are simulated by
removing random frequency bands from the original data.
A significant advantage over conventional spectral recovery
methods is that the proposed model does not need any prior
knowledge of the missing data. This is particularly beneficial
in unpredictable scenarios including battlefield conditions,
where jamming and interference can occur unexpectedly.
The simulation results show that the recovered signals using
SARGAN achieve an average gain of over 18 dB in SNR,
even when up to 90% of the operating spectrum is missing.

Compared to radar data, DSSS signals possess more com-
plex structures which makes it challenging to characterize
accurately the properties of a target signal. To extract more
properties such as Pseudonoise (PN) sequence [161], a method
based on VAE-GAN [74] for reconstructing DSSS signals was
proposed in [50]. By integrating VAE and GAN, the encoder
provides the generator with a loss function that measures the
discrepancy between real and generated data. Furthermore, the
proposed framework incorporates a Deep Residual Shrinkage
Network (DRSN) [162] and a self-attention mechanism [163]

Fig. 8. The MTS-GAN data completion network structure [156]. The
generator network is built by the gated loop unit GRUI for data interpolation.
GRUI can simulate time irregularities allowing for more accurate extraction
of the distribution characteristics of time-frequency signal data.

into the encoder and discriminator. The DRSNs are effec-
tive in minimizing redundant information in the collected
signal, particularly noise-induced redundancy. Meanwhile, the
self-attention mechanism facilitates the establishment of long-
distance dependencies within the input sequences. However,
while the proposed model is adaptable to PN sequences
with varying code lengths, its performance in low SNR
environments significantly diminishes. Particularly, when the
SNR falls below 13 dB, there is a sharp decline in the model’s
performance [50].

To improve the precision of reconstructing electromag-
netic environment data, the authors in [156] developed a
high-precision method using a Multi-Component Time Series
Generation Adversarial Network (MTS-GAN). This approach
effectively utilizes multivariate time series data to better cap-
ture the correlations between the time and frequency domains
of electromagnetic data (Fig. 8). A key component of this
method is the use of a Gate Recursive Unit (GRUI), which
simulates time irregularities. The GRUI allows more accurate
extraction of the distribution characteristics of time-frequency
signal data and reduces the impact of random losses.

Besides GANs, VAEs are recognized as another powerful GAI
model for effective data reconstruction. In [157], a VAE-based
model was proposed for data construction in noisy channels. The
AE and VAE models are particularly effective in regularizing
the latent space distribution, a feature that is highly beneficial
in data reconstruction with Gaussian noise channels.

DMs have garnered attention in the field of wireless commu-
nications due to their inherent ability to progressively remove
noise, especially in aiding receivers to mitigate channel noise.
In response to this potential, the study [51] introduced Channel
Denoising Diffusion Models (CDDM) specifically designed
for wireless communications. CDDM aims to leverage the
noise reduction properties of DMs to enhance the quality
and reliability of signal reception in wireless communication
channels. CDDM is trained using a specialized noise schedule
specifically adapted to the wireless channel, enabling the effec-
tive elimination of channel noise through sampling algorithm.
The training algorithm for the combined CDDM and JSCC
system is structured into three distinct stages. In the first
and last stages, the JSCC encoder and decoder are trained to
minimize the reconstruction error. The second stage involves
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fixing the parameters of the JSCC encoder, thereby allowing
the CDDM to learn the distribution of latent representations.
This stage utilizes a noise schedule that closely simulates the
distribution of channel noise, rendering the CDDM adaptable
to a variety of channel conditions. The results demonstrate
that systems incorporating CDDM consistently outperform
those without CDDM across all SNR regimes. Notably, under
an AWGN channel and a Rayleigh fading channel at 20 dB
SNR, the CDDM achieves 0.49 dB gain and 1.06 dB gain,
respectively [51].

The applications of GAI for data reconstruction in Table IX
showcase its remarkable ability to process and regenerate
missing or corrupted data, ensuring communication integrity.
However, the performance is still limited in low SNR scenar-
ios [50]. Therefore, proposing more accurate models in high
noise situations is a future direction.

VI. FUTURE RESEARCH DIRECTION

Despite its impressive capabilities in complex data feature
extraction, reconstruction, and enhancement, the applications
of GAI in physical layer security are still in its early stages.
This section aims to explore the open issues and research
directions related to the integration of GAI in physical layer
security.

A. Model Improvements

Enhancing physical layer security necessitates models that
significantly advance in terms of robustness and efficiency
requiring model improvements. By incorporating advanced
neural network architectures, GAI systems can learn to
simulate and counteract time related attack patterns more
effectively [164]. Enhancements in adversarial training tech-
niques will also enable GAI models to better mitigate potential
vulnerabilities [165]. Moreover, GAI-aided encryption may be
further explored in conjunction with the near-field beam focus-
ing via Extremely large-scale multiple-input-multipleoutput
(XL-MIMO) that exploits the propagation characteristics of
both distance and direction. The latter enables to focus the
transmitted signal energy onto an intended user, so as not to
induce information leakage to eavesdroppers. This certainly
enhances the physical layer security for emerging 6G Wireless
equipped with XL-MIMO [166].

B. Multi-Scenario Deployment

As the deployment of GAI in physical layer security, its
application across various scenarios emerges as a critical area
of focus. The intricate architecture of GAI poses challenges
for its implementation on edge devices, often requiring the
transmission of additional data [139]. Incorporating distributed
deployment strategies, GAI can efficiently leverage edge com-
puting capabilities, thus minimizing latency and reducing the
need for extensive data transmission by processing information
closer to its source [167]. Furthermore, the Mixture of Experts
(MoE) model can dynamically assign tasks to specialized sub-
models or ‘experts’ [168]. It presents a promising avenue
for enhancing the adaptability and efficiency of GAI in
addressing the multifaceted and intricate scenarios encountered

in physical layer security. Exploring the integration of the MoE
model with GAI to leverage the strengths of both approaches
is a noteworthy direction for future research.

C. Resource-Efficient Optimization

Compared with traditional AI, GAI usually requires more
resources for training and inference due to its complex mission
objectives. It causes serious burden and impact on the normal
process operation of the device, especially for devices with
limited resources such as mobile phones. Therefore, future
directions should emphasize the development of lightweight
GAI models that can operate with minimal computational
resources while maintaining high security standards [169].
For instance, adapting model pruning techniques to remove
unnecessary parameters from GANs without compromising
their ability to generate or discriminate can significantly
reduce the computational load [170]. Additionally, exploring
federated learning approaches could decentralize the training
process, allowing GAIs to learn from diverse datasets across
multiple devices while ensuring data privacy and reducing
the need for centralized, powerful computing resources [171].
These strategies promise to enhance the scalability of GAIs
in securing the physical layer and ensure their applicability in
resource-constrained environments including IoT devices and
edge computing platforms, where security and efficiency are
paramount.

D. Secure SemCom

“GAI-aided Secure SemCom” is certainly a vital future
research direction. The task-oriented SemCom aims at min-
imizing the transmission overhead in resource-constrained
networks, such as AI-native wireless networks [53].
Additionally, it focuses on performing a given task properly
with the aid of GAI as well as knowledge base at both
ends, even though the reconstructed data is not exactly same
as the original data [123]. Consequently, the performance
metric changes from accuracy to task fulfillment within a
specified QoE value, with shared knowledge base. Therefore,
this paradigm shift necessitates a GAI model design criteria
within SemCom, focusing on task fulfillment levels facilitated
by the synergistic use of GAI and a shared knowledge base
in physical layer security [124].

VII. CONCLUSION

This paper has presented a comprehensive survey on the
applications of GAI in physical layer security, attributed to
its remarkable capabilities in extracting, reconstructing, and
enhancing complex data features. It introduced the back-
ground of GAI, encompassing its architecture, classification,
and foundational models. Subsequently, it explored various
security properties such as communication confidentiality,
authentication, availability, resilience, and integrity. Finally, it
highlighted crucial future research directions for generative
AI in physical layer security, which underscores the potential
of GAI to further enhance security measures, demonstrating
its vital role in safeguarding communication networks against
evolving security threats.
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