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Abstract— This paper investigates the age of information (AoI)
and energy efficiency of wireless powered industrial Internet
of Everything (IIoE) network, where multiple low-power IIoE
devices (IIoEDs) are wirelessly charged by a hybrid access point
(HAP) to transmit their sensing information to the control nodes.
To enhance the system’s information timeliness with high energy
efficiency, we define a novel performance metric, i.e., age-energy
efficiency (AEE), which depicts the achievable AoI gain per
unit energy consumption. Then, an optimization problem is
formulated to maximize the system long-term AEE by jointly
optimizing the IIoEDs scheduling and the HAP’s transmit power.
Due to the non-convexity of the formulated problem and the
intractable challenges with discrete binary variables, we first
model the problem as a two-stage discrete-time Markov decision
process (MDP) with carefully designed state spaces, action spaces,
and reward functions. We then propose a deep reinforcement
learning (DRL)-based approach to find the effective scheduling
strategy and transmit power. To improve the accuracy of the
learned policy, we design a dual-layer deep Q-network (DLDQN)
algorithm with fast convergence. Simulation results show that our
proposed DLDQN algorithm can improve the AEE by at least
25% when the number of IIoEDs exceeds 50 compared with
benchmarks. Moreover, with the proposed DLDQN algorithm,
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the system long-term AEE can be improved with the increase of
the number of IIoEDs.

Index Terms— Industrial Internet of Everything (IIoE), wire-
less power communication network (WPCN), age of information
(AoI), energy efficiency (EE), deep reinforcement learning (DRL),
dual-layer deep Q-network.

I. INTRODUCTION

WITH the rapid evolution of industrial technologies
and the beyond fifth-generation (B5G)/sixth-generation

(6G) networks, a tremendous number of small-form industrial
sensing devices are expected to be connected to construct
industrial Internet of Everything (IIoE) [1]. Since IIoE devices
(IIoEDs) usually are required to frequently sample [2] and
transmit a lot of real-time update information for support-
ing the emerging real-time applications, the limited battery
capacity becomes a challenging issue to the wide deployment
of IIoEDs [3].

Thanks to the advance of wireless charging technologies,
especially the radio frequency (RF)-based wireless power
transfer (WPT) [4], IIoEDs are able to prolong their bat-
tery lifetimes with sustainable energy harvest (EH) [5]. On
the other hand, with the explosive growth of IIoEDs, the
energy consumption in IIoE networks increases dramati-
cally, which is inconsistent with the green communication
requirements of B5G/6G networks [6], [7]. To address this
problem, energy efficiency (EE) in low-power IIoE network
design has been widely investigated in both industry and
academia [8]. Additionally, many emerging intelligent indus-
trial applications (e.g., smart factory, smart plant and smart
supply chain [9]) supported by IIoEDs commonly have high
requirements on information timeliness [10], [11]. In such
applications, outdated information may seriously degrade their
performance, and even cause control decision errors or seri-
ous malfunctions [12]. To depict the information freshness,
age of information (AoI) has been proposed as a novel
fundamental performance index for emerging status update
applications [13], [14].

Recently, AoI and EE have been widely studied for various
wireless networks, including the wireless powered commu-
nication networks (WPCNs) [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25]. Specifically, in [17], the theoretical
bounds of the average AoI for practical WPT networks were
analyzed and derived as functions of the capacitor’s size.
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In [18], the authors studied the impact of the data packet
size on the system average AoI in WPCNs, and a closed-form
expression of the average AoI was derived. In [19], a sampling
and updating policy to minimize the average AoI of WPCNs
was investigated for a single source-destination pair. In [20],
the average AoI of wireless powered relay aided networks with
multiple sources was studied. In [21], the authors proposed
an AoI-constrained scheduling strategy in WPCNs, and the
impact of the packet arrival time on the system AoI was
revealed. In [22], an AoI-based system utility was maximized
in WPCNs with the energy regarded as a cost. The peak
AoI minimization problem was studied in [23] for wireless
powered cooperative networks, revealing the dominant impact
of power-limited relays on the system performance. In [24],
the EE of wireless powered sensor networks was maximized
with AoI constraints, where both AoI and EE were modeled
to find the optimal solution. In [25], the age-energy tradeoff
was studied for WPCNs, in which a weighted AoI and energy
consumption model was structured and the age-energy region
was explored.

In general, wireless network design problems, such as
power allocation and device scheduling, may be computa-
tional tractable by model-based approaches for small-scale
networks. To realize real-time decision-making with low com-
putational complexity, efficient model-free methods, such as
deep reinforcement learning (DRL), have been utilized for
large-scale wireless network designs [26], [27], [28]. Specif-
ically, with deep neural networks (DNNs), DRL is able to
learn from empirical data and make the effective decision
rapidly, which has been regarded as an effective tool in dealing
with mathematically intractable problems. On the other hand,
for the traditional optimization method, only the static/quasi-
static wireless environments are considered. The time-varying
features of wireless channels make it challenging to design
the power allocation and device scheduling schemes, as they
have to be solved within the channel coherence time [29].
Therefore, DRL-based approaches have been widely applied
in various wireless network designs.

The DRL-based approach has also been applied for real-
time decision-making in WPCNs. For example, in [30], [31],
and [32], the DRL-based adaptive power control strategies
were investigated for WPCNs, where the EE was maximized
for multi-node networks and relay-assisted networks, respec-
tively. In [33], an online computation offloading strategy was
studied in WPCNs via designing a DRL-based framework,
in which an online deep Q-network (DQN) algorithm was
implemented as a scalable solution. The authors in [34] pro-
posed a data collection strategy to minimize the average AoI
in RF-powered communication systems, where a DQN-based
scheme was designed to find the near optimal solution. Sim-
ilarly, in [35], an AoI-minimization problem was investigated
with the energy involved as a weighted cost. The aforemen-
tioned works show that DRL has great potential in dealing with
mathematically intractable problems for large-scale network
design.

Different from existing works where AoI and EE were often
separately investigated, in future wireless networks, lower AoI
and higher EE are required at the same time. Therefore, how to

improve AoI and EE simultaneously becomes a new challenge.
In this work, we focus on how to enhance the system’s
information timeliness with high EE, which will be a funda-
mental problem for future IIoE network design. However, high
information freshness (i.e., small AoI) depends on frequent
sensing and fast transmitting, and requires excessive energy
consumption [36]. This inherent tradeoff between AoI and
energy consumption makes it non-trivial to solve our focused
problem [37].

In this paper, we consider a wireless powered IIoE network,
where multiple low-power IIoEDs are wirelessly charged
by a hybrid access point (HAP) to transmit their sensing
information to the control nodes (CNs). To enhance AoI with
high EE, a novel metric, i.e., age-energy efficiency (AEE),
is defined to evaluate the contribution of per-unit energy
consumption to the achieved AoI gain. Based on the newly
defined efficient performance metric, the long-term AEE is
maximized by jointly optimizing the IIoEDs scheduling and
the HAP’s transmit power.

The main contributions of this work are summarized as
follows.
• First, a novel performance metric, i.e., AEE, is defined

in this work to characterize the achievable AoI gain per
unit energy consumption. AEE takes both AoI and EE
into account to evaluate the information timeliness and
energy utilization performance of wireless networks.

• Second, to maximize the long-term AEE of the wireless
powered IIoE network, we formulate an optimization
problem by jointly optimizing the scheduling strategy and
the HAP’s transmit power, subject to the battery capacity
constraint, the signal-to-noise-ratio (SNR) threshold con-
straint, the aging threshold constraint, and the transmit
power threshold constraint.

• Third, to efficiently solve the formulated non-convex
problem with discrete and continuous variables, we model
it as a two-stage discrete-time Markov decision process
(MDP) with carefully designed state spaces (including the
normalized AoI, the IIoED’s remaining energy, and the
HAP’s energy consumption), action spaces ( including the
charging or scheduling process, and the HAP’s transmit
power selection), and reward functions for state-action
pairs. Then, we propose a DRL-based approach, where
a dual-layer DQN (DLDQN) algorithm is designed to
improve the accuracy of the learned policy. Specifically,
the outer DQN is designed to find the effective scheduling
strategy, and the inner one is designed to determine the
optimal transmit power.

• Fourth, we theoretically prove that our proposed DLDQN
algorithm has fast convergence speed compared with
conventional optimization methods. This implies that our
proposed algorithm is suitable for enhancing the system
long-term AEE of real-time status update networks, espe-
cially in the highly dynamic wireless environment.

Simulation results show that, our proposed DLDQN-based
algorithm can improve the AEE by at least 25% when the num-
ber of IIoEDs exceeds 50 compared with the benchmarks, such
as the fixed power algorithm, the round robin algorithm, and
the random algorithm. Moreover, with the proposed DLDQN

Authorized licensed use limited to: University of Waterloo. Downloaded on February 19,2024 at 14:27:21 UTC from IEEE Xplore.  Restrictions apply. 



1278 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2024

Fig. 1. Illustration of a wireless powered IIoE network.

algorithm, the system long-term AEE can be improved with
the increase of the number of IIoEDs. In addition, the impacts
of different system parameters (e.g., the distance between
HAP and IIoEDs, the HAP’s transmit power threshold, the
update packet length, the energy buffer size, and the number
of epoches) on the long-term AEE are also discussed and
evaluated.

The remaining of this paper is organized as follows.
In Section II and Section III, we describe the system model
and the problem formulation, respectively. In Section IV,
the modeled two-stage MDP formulation is presented, and
in Section V, the proposed DLDQN algorithm framework is
presented. In Section VI, simulation results are provided,
followed by the conclusion in Section VII.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider a wireless powered IIoE
network consisting of a HAP, a set of IoEDs, and a set of
CNs, where the IIoEDs are denoted by N = {1, 2, . . . , N}
with n representing the n-th IIoED, and the CNs are denoted
by C = {1, 2, . . . , C} with c representing the c-th CN. The
IIoEDs are randomly deployed to sense the surrounding envi-
ronment information (such as image, temperature, humidity
and pressure), and the CNs are deployed as execution nodes
to serve certain applications by making real-time industrial
control decisions (such as fault warning, device scheduling
and smart monitoring) based on the received update sensed
by IIoEDs.

The HAP1 is dedicatedly deployed by service provider to
wirelessly charge the IIoEDs, schedule the IIoEDs according
to CNs’ requests, and broadcast the sensing update pack-
ets to CNs. In real IoE networks, as IIoEDs are generally

1Since the CN desire to collect status update packets from different IIoEDs,
the HAP is deployed and integrated with a central controller to coordinate
the IIoED scheduling and also broadcast the sensing update packets to CNs.
Specifically, it collects the global channel state information (CSI) and the
transmission-related information of IIoED, and hence coordinates the WPT
and the scheduling. To explore the system performance limit, perfect CSI is
assumed in this paper. Compared to imperfect CSI, the performance achieved
by our work can be regarded as an upper bound and used as a guideline to
design the wireless networks.

with relatively small physics sizes, low costs, and large-
scale deployments, we consider that each IIoED is equipped
with a single antenna and employs the “harvest-then-transmit”
protocol to avoid the mutual interference between energy
transfer and information transmission. Moreover, similar to
many existing works [33], [34], we employ the popularly
deployed time division multiple access (TDMA) protocol in
real IoE networks, where only one IIoED is scheduled in each
epoch.2

B. Transmission Model

The transmission protocol is shown in Fig. 2. We consider
one system operation time frame T , which is also the maximal
tolerable response time for all CNs. The time period T is slot-
ted into a sequence of epochs, i.e., K = {1, 2, . . . ,K}, with
equal time interval of t = T

K . At epoch k, either the WPT or
the scheduling process of one IIoED is performed at the HAP.
Note that t is set to be smaller than the wireless channel
coherence time. Hence, at each epoch, the channel coefficient
is regarded as unchanged, while from the current epoch to
the next epoch, the channel coefficient varies independently.
At epoch k, we denote the WPT index by v(k) ∈ {0, 1},
where v(k) = 1 means that the HAP charges IIoEDs via WPT
at epoch k, and v(k) = 0 means that the WPT process does
not occur. The scheduling index is denoted by on(k) ∈ {0, 1}.
When the HAP schedules the sensing update packet generated
by IIoED n at epoch k, on(k) = 1; otherwise, on(k) = 0.
Note that at epoch k, it satisfies that

v(k) +
∑

n∈N
on(k) = 1,∀k ∈ K. (1)

2Although by deploying some advanced multiple access protocols, such
as orthogonal frequency division multiple access (OFDMA), non-orthogonal
multiple access (NOMA), and sub-carrier multiple access (SCMA), the better
system performance may be achieved, such protocols require the IIoEDs to
have high synchronization and decoding capabilities. For instance, OFDMA
requires the IIoEDs to meet strict synchronization requirements. NOMA and
SCMA require the IIoEDs to have strong decoding capabilities, which brings
relatively high hardware requirements to the IIoEDs. Thus, in this work,
we also consider the TDMA protocol due to its simplicity and popularity
for deployment.
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Fig. 2. Illustration of the transmission protocol.

C. EH Model

Consider the case where the HAP performs the WPT
process by broadcasting RF signals at epoch k. Then, IIoEDs
store and accumulate3 the harvested energy from RF-signal in
their energy buffer. Denote the HAP’s transmit power and the
wireless channel coefficient4 between the HAP and the IIoEDs
by PHAP(k) and hn(k), respectively. Via RF-based WPT, the
stored energy in IIoED n’s energy buffer at epoch k is

Ee
n(k) = min

{
ηehPHAP(k)|hn(k)|2t, Meht

}
,∀n ∈ N, k ∈ K,

(2)

where the non-linear EH model [41] is employed. ηeh ∈
(0, 1] and Meh are the energy conservation efficiency and the
saturation threshold of IIoEDs’ EH circuits, respectively. Thus,
at epoch k, the energy accumulated in IIoED n’s energy buffer
is given by

Es
n(k) = min {Er

n(k) + v(k)Ee
n(k), Bn} ,∀n ∈ N, k ∈ K,

(3)

where Er
n(k) is the remaining energy stored in IIoED n’s

energy buffer at the beginning of k, and Bn is the capacity
size of IIoED n’s energy buffer. Generally, IIoED is equipped
with a small energy buffer, such as capacitor, due to its low
cost and small size. In practice, only when Es

n(k) reaches
IIoED n’s trigger threshold, i.e., energy capacity threshold5

Bn, IIoED n is able to be triggered to stop harvesting energy
and wait to be scheduled to generate and deliver its sensing
update packet.6

3For the WPT-based system, if it does not accumulate energy, the system
will not have enough energy to transmit. Therefore, accumulating energy to
enable transmission is the first thing needed to be solved.

4The channel is considered to be reciprocal in the downlink energy transfer
and uplink information delivery [38], [39], [40].

5Although when the accumulated energy reaches the transmit energy,
triggering the scheduling is also a feasible way to run the system, in practice,
whether the transmit energy is enough for delivering a packet is hard to
determine. Moreover, due to the dynamic wireless channel status, deciding
how to transmit based on the channel status at each time epoch will bring
excessive additional overhead of accurate perception of the channel estimation.
In our studied IoE scenarios, the IIoED is with low power consumption and
small size, so they may not have sufficient channel perception capability.
To this end, we employ a simple fixed buffer threshold as the trigger condition
to trigger the scheduling, similar to many existing works [33], [34] in
low-power IoE networks.

6For many passive IoE devices, their sensing energy consumption usually
is much less than the transmission energy consumption. For the case that
the sensing energy consumption cannot be ignored, similar to [42] and [43],
we define the sensing energy consumption as a constant Ea, where Ea is a
static circuit maintenance constant. Then, by putting the constant Ea into the
construction of the system model and the formulation of the problem, our
proposed approach is still applicable.

D. Information Delivery Model

Suppose at epoch k, IIoED n is scheduled, and it will
generate and deliver its sensing update packet to the HAP
within epoch k. The received information signal at the HAP
from IIoED n is expressed as

yn(k) =
√

Pn(k)hn(k)xn(k) + n(k),∀n ∈ N, k ∈ K, (4)

where xn(k) ∈ C with E
{
|xn(k)|2

}
= 1 is the information

symbol sent by IIoED n at epoch k. Pn(k) is the IIoED n’s
transmit power at epoch k. n(k) ∼ CN(0, σ2) represents the
Additive White Gaussian Noise (AWGN) at the HAP with
σ2 being the receiver noise power. Accordingly, at epoch k, the
received signal-to-noise-ratio (SNR) at the HAP from IIoED
n is given by

γn(k) =
Pn(k)|hn(k)|2

σ2
,∀n ∈ N, k ∈ K. (5)

To ensure the success of information decoding, when the HAP
schedules the sensing update packet generated by IIoED n at
epoch k, its received SNR has to surpass the pre-specified
threshold γth. Hence, it satisfies that

γn(k) ≥ γth,∀n ∈ N, k ∈ K. (6)

Correspondingly, at epoch k, the achievable information rate
at the HAP from IIoED n is given by

Rn(k) = W log2 (1 + γn(k)) ,∀n ∈ N, k ∈ K, (7)

where W is the system bandwidth. Let Ln denote the length
of the update packet generated by IIoED n. In order to
successfully deliver the update packet to the HAP from IIoED
n at epoch k, it satisfies that

Rn(k)t ≥ Ln,∀n ∈ N, k ∈ K. (8)

Following (5), (7) and (8), the minimal required energy to
successfully deliver an update packet for IIoED n at epoch k
is given by7

Et
n(k) =

σ2t
(
2

Ln
tW − 1

)
|hn(k)|2

,∀n ∈ N, k ∈ K. (9)

Then, the remaining energy stored in IIoED n’s energy buffer
at the end of k reduces to

Er
n(k) = Bn − Et

n(k),∀n ∈ N, k ∈ K, (10)

and IIoED n is triggered to restart the energy accumulation.

7Note that we consider that the minimal required energy Et
n for transmitting

one update packet is generally less than the pre-determined IIoED n’s energy
capacity threshold Bn, so each transmission is guaranteed to be successful
finished.
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Fig. 3. Illustration of the AoI for IIoED n.

E. AoI Model

To capture the timeliness of the received sensing update
packet, the AoI metric is employed to depict how fresh the
information is. At epoch k, the AoI of the current update
packet generated by IIoED n at epoch k is given by

∆n(k) = k − gn + 1,∀n ∈ N, k ∈ K, (11)

where gn (gn ≤ k) is the generation and delivery time of the
current update packet of IIoED n. For example, at epoch k,
when gn < k, it means that the current update packet of IIoED
n is generated and delivered at epoch gn, and the value of
∆n(k) increases to (k − gn + 1). When gn = k, it means
that the current update packet of IIoED n is generated and
delivered at epoch k, and the value of ∆n(k) reduces to 1.
As shown in Fig. 3, the value of ∆n(k) increases discretely
until the next sensing update packet delivered to the HAP.

To ensure that the information from IIoED n is fresh,
it satisfies that

∆n(k) ≤ ∆̂n,∀n ∈ N, k ∈ K, (12)

where ∆̂n represents the tolerable information aging threshold
from IIoED n. It means that before the AoI of the update
packet generated by IIoED n grows to ∆̂n, the corresponding
packet must be scheduled by the HAP.

We denote the number of requests for IIoED n’s sensing
update packets from all of CNs by Mn. Based on [44], [45],
and [46], Mn is regarded as the weight factor of IIoED n’s
AoI, which means the importance of the IIoED n’s AoI.
Hence, the weighted sum of all IIoEDs’ AoI at epoch k is
given by

∆(k) =
∑

n∈N Mn∆n(k)∑
n∈N Mn

,∀k ∈ K. (13)

F. AEE Model

Similar to the EE defined as the ratio between the achievable
information rate and the required energy, we define the AEE
as the ratio between the achievable AoI gain and its required

energy consumption,8 i.e.,

Φ =
∆̂−∆

E
, (14)

where ∆̂ is the maximum tolerable information aging of the
considered system, ∆ is the system achievable AoI, and their
difference is the achievable AoI gain of the system. E is the
total required energy consumption of the system. As shown
in (14), the system long-term AEE can be improved by increas-
ing the AoI gain and reducing total energy consumption. For
IIoED n, its long-term average AEE over whole K epochs is
expressed as

Φn(PHAP, v, O) =

∑
k∈K

(
∆̂n −∆n(k)

)
K

∑
k∈K on(k)Et

n(k)
,∀n ∈ N. (15)

For the system, its long-term average AEE over whole K
epochs is expressed as

ΦHAP(PHAP, v, O) =

∑
k∈K

∑
n∈N Mn

(
∆̂n −∆n(k)

)
K

∑
n∈N Mn

∑
k∈K v(k)PHAP(k)t

.

(16)

III. PROBLEM FORMULATION

For the considered system, our goal is to maximize its
long-term average AEE. We formulate an optimization prob-
lem by jointly optimizing the IIoED scheduling and the
HAP’s transmit power. Mathematically, the AEE maximization
problem is expressed by

P1 : max
PHAP,v,O

ΦHAP (PHAP, v, O) (17)

s.t. Es
n(k) ≤ Bn,∀n ∈ N, k ∈ K, (17a)

on(k)Et
n(k) ≤ Bn,∀n ∈ N, k ∈ K, (17b)

on(k)γn(k) ≥ γth,∀n ∈ N, k ∈ K, (17c)∑
n∈N

on(k) + v(k)=1,∀n ∈ N, k ∈ K, (17d)

on(k)∈{0, 1}, v(k)∈{0, 1},∀n∈N, k∈K, (17e)

∆n(k) ≤ ∆̂n,∀n ∈ N, k ∈ K, (17f)
0 ≤ v(k)PHAP(k) ≤ P max

HAP,∀k ∈ K, (17g)

where PHAP = [PHAP(1), . . . , PHAP(K)] is the HAP’s transmit
power during T , v = [v(1), . . . , v(K)] is the WPT process
vector at the HAP during T , and O = [o(1), . . . , o(K)]
is the IIoEDs scheduling process vector during T with
o(k) = [o1(k), . . . , oN (k)] being the scheduling index vector
of IIoEDs at epoch k. Constraint (17a) is the energy capacity
threshold constraint, which means that the energy accumulated
in IIoED n’s energy buffer should not exceed its capacity
threshold. Constraint (17b) is the energy causality constraint,
which means that for IIoED n, the energy used for transmitting

8Although the multi-objective optimization may also pursue the AoI
gain maximization and the energy consumption minimization simultaneously,
it cannot effectively and clearly characterize the contribution of per Joule
energy to the AoI gain in a network system. As a matter of fact, reducing
AoI usually requires consuming more energy. Since the wireless system is
energy-constrained, the benefits brought by consuming the same energy under
different system states are also different. By defining AEE, this difference and
changing laws of AoI gain versus energy could be better described.
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update packet should not exceed its stored energy in energy
buffer. Constraints (17c), (17f), and (17g) are the received
SNR from IIoED n, the tolerable information aging for IIoED
n, and the HAP’s transmit power threshold, respectively.
Constraints (17d) and (17e) indicate that the HAP performs
either the WPT process to charge the IIoEDs or the IIoEDs
scheduling process to schedule only one IIoED to deliver its
generated sensing update packet to the HAP at epoch k.

Problem P1 is a non-convex mixed integer programming
problem with high complexity. Specifically, one needs to
search among the (N + 1)K possible choices to find the
best WPT or scheduling strategy {v∗, O∗}, and search among
the optional values to find the optimal HAP’s transmit
power P∗HAP. Due to the large search space, quickly solv-
ing such a combinatorial optimization problem is difficult
to achieve via conventional methods, especially when the
network expands. In view of the fact that the system long-term
AEE usually depends on the time-varying wireless channel,
we model Problem P1 as an MDP in the next section.

IV. MDP FORMULATION

In this section, we reformulate Problem P1 as a MDP.
The state spaces, action spaces, and reward functions of the
formulated MDP are designed as follows.

A. State Spaces

1) State Space for Stage 1: In stage 1, the HAP performs
the WPT or IIoEDs scheduling process action. The state space
includes the state of all IIoEDs, CNs, and the HAP, which is
denoted by four elements. The first element of state space is
the number of requests from CNs for the sensing update packet
generated by IIoED n at epoch k, i.e., {Mn(k)}n∈N,k∈K. The
second element of state space is the normalized AoI of the
sensing update packet generated by IIoED n at epoch k, i.e.,
{∆̃n(k)}n∈N,k∈K, where ∆̃n(k) is given by

∆̃n(k) =
Mn∆n(k)∑

n∈N Mn∆n(k)
,∀n ∈ N, k ∈ K. (18)

The normalized AoI is considered because only the rank of
AoI from different IIoEDs instead of the value of them affects
the IIoEDs scheduling order. The third element of state space
is the remaining energy stored in IIoED n’s energy buffer at
epoch k, i.e., {Er

n(k)}n∈N,k∈K. The fourth element of state
space is the HAP’s total energy consumption at epoch k, i.e.,
{Et

HAP(k)}k∈K.
In a word, the state of all IIoEDs, CNs and the HAP is

denoted by

Sstg1 = {S(1), S(2), . . . S(k), . . . S(K)}, (19)

where the state matrix S(k) at epoch k is given by

S(k)={s1(k), . . . , sn(k), . . . , sN (k), sHAP(k)},∀k ∈ K,
(20)

in which sn(k) = {Mn(k), ∆̃n(k), Er
n(k)}n∈N,k∈K and

sHAP(k) = {Et
HAP(k)}k∈K.

At the beginning of each epoch, the HAP has the exact
knowledge of all IIoEDs’ and CNs’ state information in this
epoch.

2) State Space for Stage 2: When the HAP selects the WPT
process action in stage 1, the transmit power selecting action
needs to be performed in stage 2. The power selection affects
the levels of IIoEDs’ energy buffers at the current state and
the normalized AoIs of the sensing update packets generated
by IIoEDs at the next state. Therefore, in stage 2, the state
space at epoch k includes the normalized AoIs of the sensing
update packet generated by all IIoEDs and the levels of all
IIoEDs’ energy buffers, which is expressed as

Sstg2 =
{
{∆̃n(k)}, {I full

n (k)}
}

,∀n ∈ N, k ∈ K, (21)

where I full
n (k) indicates whether the IIoED n’s energy buffer

is full at epoch k, and is expressed as

I full
n (k) =

{
1, if Er

n(k) = Bn,∀n ∈ N, k ∈ K

0, otherwise, (22)

where I full
n (k) = 1 means that the energy stored in IIoED n’s

energy buffer is full at epoch k. When I full
n (k) = 0, IIoED n

cannot be triggered to generate and be scheduled to deliver an
update packet.

B. Action Spaces

1) Action Space for Stage 1: The action space for stage
1 includes the HAP’s decisions to perform the WPT or IIoEDs
scheduling process. Specifically, the HAP’s action at epoch k
is expressed as

astg1(k) ∈ {0, N},∀k ∈ K. (23)

The space size of astg1(k) at epoch k is N +1. astg1(k) ∈ {N}
means that the HAP performs the IIoEDs scheduling process
action to schedule one IIoED to deliver its sensing update
packet at epoch k, and astg1(k) = 0 means that the HAP
performs the WPT process action.

Based on (18), the normalized AoI of the sensing informa-
tion packet generated by IIoED n at the next state based on
the current action is given by

∆̃n(k + 1) =
Mn

(
∆n(k)× I(n, astg1(k)) + 1

)∑
n∈N Mn (∆n(k)× I(n, astg1(k)) + 1)

, (24)

∀n ∈ N, k ∈ K, where I(·) is a WPT or IIoEDs scheduling
indicator function. When variable n equals to the value of
astg1(k) at epoch k, I(n, astg1(k)) = 0, and it indicates that
the HAP schedules IIoED n; Otherwise, I(n, astg1(k)) = 1,
and the WPT or one of the rest of n − 1 IIoEDs scheduling
process is performed by the HAP. The remaining energy in
IIoED n’s energy buffer at epoch k + 1 based on the current
action is

Er
n(k + 1) =


min{Er

n(k) + Ee
n(k), Bn},

if astg1(k) = 0,∀k ∈ K,
Bn − Et

n(k),
if astg1(k) = n, ∀n ∈ N, k ∈ K.

(25)

The HAP’s energy consumption at epoch k + 1 based on the
current action is given by

Et
HAP(k + 1) =


Et

HAP(k) + PHAP(k)t,
if astg1(k) = 0,∀k ∈ K,

Et
HAP(k),

if astg1(k) = n, ∀n ∈ N, k ∈ K,

(26)
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where Et
HAP(k) is the HAP’s transmission energy consumption

at epoch k.
2) Action Space for Stage 2: The action space for stage 2,

i.e., the HAP’s transmit power selection, at epoch k is

astg2(k) ∈ P HAP, (27)

where P HAP is the power selection space with its size being D.
Here, D means that we equally divide the HAP’s maximum
transmit power into D levels. Hence, the available transmit
power selecting action for charging IIoEDs is given by

P HAP =
[
P max

HAP

D
,
2P max

HAP

D
, . . . , P max

HAP

]
. (28)

C. Reward Functions

1) Reward Function for Stage 1: The reward function for
stage 1 is affected by two factors: (1) the normalized AoI
of the sensing update packet collected by HAP, and (2) the
energy consumption of the HAP and the IIoEDs. Thus, the
corresponding reward function at epoch K is designed as

Rstg1(K) =
1
K

∑
k∈K

∑
n∈N Mn

(˜̂∆n − ∆̃n(k)
)

v(k)PHAP(k)t
∑

n∈N Mn
. (29)

2) Reward Function for Stage 2: The reward function for
stage 2 is designed by considering the tradeoff between AoI
and energy consumption.9 With a larger HAP’s transmit power,
more IIoEDs can be fully charged to be scheduled at the next
epoch, leading to a lower AoI. However, this may also cause
more potential energy wastage due to the limited IIoED energy
buffer capacities. Therefore, the reward function at epoch k for
the transmit power selection is designed as

Rstg2(k) =
∑

n∈N

(
I full
n (k) · ∆̃n(k)− µEw

n (k)
)

,∀k ∈ K,

(30)

where µ is the weight factor,10 and Ew
n (k) is the wasted energy

of IIoED n at epoch k, which is given by

Ew
n (k) = max {PHAP(k)t− Er

n(k + 1), 0} ,∀n ∈ N, k ∈ K.
(31)

D. Transition Probability

The transition probability is the probability that the
system transits from the current state

{
Sstg1(k), Sstg2(k)

}
to the next state

{
Sstg1(k + 1), Sstg2(k + 1)

}
with the

HAP performing action
{
astg1(k), astg2(k)

}
at epoch k.

The transition probability is denoted by Pr
({

Sstg1(k+1),
Sstg2(k+1)

}
|
{
Sstg1(k), Sstg2(k)

}
,{astg1(k), astg2(k)}

)
.

9According to [47], a designer reward function is used to evaluate the
agent, while a separate agent reward function is used to guide agent behavior,
which guarantees that the agent learns to achieve the expected goal. In our
proposed DLDQN algorithm, the reward function for stage 2 is designed
to guide HAP’s behavior directly, which guarantees that the HAP learns to
achieve the maximal system long-term AEE.

10Actually, the weight factor has impact on the tradeoff between the
normalized AoI and the wasted energy. When more attention is paid to the
information freshness, the weight factor should be a small value; otherwise,
when more attention is paid to the energy consumption, the weight factor
should be a large value.

As the transition probability is difficult to acquire in practical
implementation, in the next section, we propose a DRL-based
approach to find the effective scheduling strategy and transmit
power for Problem P1.

V. PROPOSED DLDQN ALGORITHM

In this section, we present our proposed DRL-based
approach, i.e., a DLDQN algorithm, based on the two-stage
MDP to solve Problem P1.

A. Framework of Our Proposed DLDQN

For the considered system, the HAP is regarded as an agent,
and the wireless power IIoE network scenario is regarded
as the environment. We propose a DLDQN algorithm with
a dual-layer11 framework as shown in Fig. 4, where DQNs
are employed for both the WPT or IIoED scheduling process
and the HAP’s transmit power selection. Specifically, in the
outer layer, we utilize a DQN to train the IIoEDs scheduling
strategy, where two DNNs, i.e., the online network and the
target network, are trained with the same structure but dif-
ferent parameters. The online network is trained by updating
the Q-value function that evaluates the expected cumulative
reward after performing the current scheduling action in the
current state. The target network is trained to predict realistic
scheduling action. In the inner layer, we train another DQN
for the HAP’s transmit power selection, where two DNNs
are utilized in a similar way to that in the outer-layer DQN.
For both two DQNs, a mini-batch method is used to sample
the historical experience stored in the Experience Memory
(EM) for updating network parameters. Finally, the WPT or
IIoEDs scheduling process action and HAP’s transmit power
selecting action are made to converge with all constraints listed
in (17a)-(17g) of Problem P1 being satisfied. The designs of
the two DQNs are detailed as follows.

B. Outer-Layer DQN for WPT or IIoEDs Scheduling

The outer-layer DQN is composed of two phases, i.e., the
WPT or IIoEDs scheduling process action generation and
the IIoEDs scheduling strategy update. Specifically, in phase 1,
the generation of the WPT or IIoEDs scheduling process action
relies on the Q-value function learned by a DNN. At epoch k,
the Q-value function in the outer-layer DQN is

Qou(Sstg1(k), astg1(k)|θou(k))=E
[
V ou(k)|Sstg1(k), astg1(k),

{v∗(k), O∗(k)}] ,∀k ∈ K,
(32)

where θou(k) is the parameters of the outer-layer DQN at
epoch k, e.g., the weights of connecting the hidden neurons.
V ou(k) is the discounted cumulative reward of the scheduling
process at epoch k, which is given by

V ou(k) =
∑

i∈N
ζiRstg1 (k + i + 1) ,∀k ∈ K, (33)

11Although single-layer DQN may also solve our considered problem,
as the scheduling strategy and power selection are in a single action space, the
action space is with high dimension and the influence relationship between the
scheduling strategy and power selection is difficult to learn. Hence, we adopt
the double-layer DQN to reduce the dimension of the action space and enhance
the accuracy of the learned policy.
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Fig. 4. Illustration of the framework of our proposed DLDQN algorithm.

where ζ is the discount factor,12 and i is the count indicator.
Besides, {v∗(k), O∗(k)} is the best IIoEDs scheduling strat-
egy at epoch k, which is obtained by maximizing V ou(k) at
the current epoch, i.e.,

{v∗(k), O∗(k)} = arg max
{v(k),O(k)}

E [V ou(k)|{v(k), O(k)}] ,

∀k ∈ K. (34)

Based on the Bellman Optimality Equality in [48], the Q-value
function is updated by

Qou(Sstg1(k), astg1(k)|θou(k)) = Rstg1(k + 1)
+ ζ max

astg1
Q(Sstg1(k), astg1),

∀k ∈ K. (35)

Then, the best IIoED scheduling process action at epoch k is

astg1∗ = arg max
astg1

Q(Sstg1(k), astg1),∀k ∈ K. (36)

Subsequently, in phase 2, a batch of sampled historical expe-
riences, i.e., {Sstg1, astg1, Sstg1(k+1), Rstg1(k+1)}, are drawn
from the EM to train the two DNNs. The parameters of the
online network and those of the target network are updated
from θstg1(k) and θstg1

− (k) to θstg1(k + 1) and θstg1
− (k + 1),

respectively, by minimizing the loss function. The loss func-
tion at epoch k is given by

L(θstg1(k + 1)) = E
[
Rstg1(k) + ζ max

astg1
Q(Sstg1(k + 1), astg1|

θstg1(k))−Q(Sstg1(k), astg1(k)|θstg1(k))
]2

,

∀k ∈ K. (37)

12The discount factor is an intrinsic parameter of DQN, which reflects
the influence weight of the previous experience on the current learning as
the earlier experience has a smaller influence on the current learning. The
smaller the value of the discount factor ζ, the smaller the influence of the
earlier experience on the current learning.

By adopting the stochastic gradient descent approach, the
gradient of the parameter θstg1’s update at epoch k + 1 is
expressed as

∇L(θstg1(k + 1)) = E
[
Rstg1(k) + ζ max

astg1
Q(Sstg1(k + 1),

astg1|θstg1(k))−Q(Sstg1(k), astg1(k)|θstg1(k + 1))
]

×∇Q(Sstg1(k), astg1(k)|θstg1(k + 1)),
∀k ∈ K. (38)

C. Inner-Layer DQN for Transmit Power Selection

Similar to the outer-layer DQN, the inner-layer DQN is also
composed of two phases, i.e., the transmit power selecting
action generation and the transmit power selection update.
Specifically, at epoch k, the Q-value function in phase 1 is

Qin(Sstg2(k), astg2(k)|θin(k)) = E
[
V in(k)|Sstg2(k), astg2(k),

P ∗HAP(k)] ,∀k ∈ K, (39)

where θin(k), V in(k), and P ∗HAP(k) are the inner-layer DQN’s
parameters, the discounted cumulative reward of the transmit
power selection, and the optimal HAP’s transmit power at
epoch k, respectively. V in(k) and P ∗HAP(k) are obtained by
maximizing V in(k) at epoch k and are given by

V in(k) =
∑

i∈N
ζiRstg2 (k + i + 1) ,∀k ∈ K, (40)

and

P ∗HAP(k) = arg max
PHAP(k)

E
[
V in(k)|PHAP(k)

]
,∀k ∈ K, (41)

respectively. Then, the inner DQN’s Q-value function is

Qin(Sstg2(k), astg2(k)|θin(k)) = Rstg2(k + 1)

+ ζ max
astg2

Q(Sstg2(k), astg2),∀k ∈ K, (42)
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Algorithm 1 Our Proposed DLDQN Algorithm
Input: Initial W , T , K, N, C, D, B, L, X , ηeh, Meh,

γth, P max
HAP, ζ, ε, Sstg1, Sstg2, θstg1, θstg1

− , θstg2,
θstg2
− , Episode;

1 for episode = 1 : Episode do
2 for k = 1 : K do
3 Observe state Sstg1(k), and generate action

astg1(k);
4 if astg1(k) ̸= 0 then
5 Execute action astg1(k), obtain reward

Rstg1(k), and go to the next state
Sstg1(k + 1);

6 Store experience
{Sstg1(k), astg1(k), Rstg1(k), Sstg1(k + 1)}
to the EM;

7 Sample a mini-batch H from the EM;
8 Update parameter θstg1(k + 1) according

to (38);
9 Update state Sstg2(k) based on state

Sstg1(k);
10 else
11 Observe state Sstg2(k), and generate action

astg2(k);
12 Execute action astg2(k), obtain reward

Rstg2(k), and go to the next stats
Sstg2(k + 1);

13 Store experience
{Sstg2(k), astg2(k), Rstg2(k), Sstg2(k + 1)}
to the EM;

14 Sample a mini-batch H from the EM;
15 Update parameter θstg2(k + 1) according

to (45);
16 Update state Sstg2(k) based on state

Sstg2(k);
17 if mod(k, X)==0 then
18 Update the target DNN of both the

outer-layer DQN and the inner-layer DQN
by θstg1 → θstg1

− , θstg2 → θstg2
− .

19 Reset state Sstg1 and state Sstg2;

Output: θstg1, θstg1
− , θstg2, θstg2

− .

where the optimal power selecting action at epoch k is

astg2∗ = arg max
astg2

Q(Sstg2(k), astg2),∀k ∈ K. (43)

Subsequently, in phase 2, the parameters of the online network
and those of the target network are updated from θstg2(k) and
θstg2
− (k) to θstg2(k + 1) and θstg2

− (k + 1), respectively. The loss
function and the update gradient of the parameter θstg2 at epoch
k and epoch k + 1 are given by

L(θstg2(k + 1)) = E
[
Rstg2(k) + ζ max

astg2
Q(Sstg2(k + 1), astg2|

θstg2(k))−Q(Sstg2(k), astg2(k)|θstg2(k))
]2

,

∀k ∈ K, (44)

and

∇L(θstg2(k + 1)) = E
[
Rstg2(k) + ζ max

astg2
Q(Sstg2(k + 1),

astg2|θstg2(k))−Q(Sstg2(k), astg2(k)|θstg2(k + 1))
]

×∇Q(Sstg2(k), astg2(k)|θstg2(k + 1)),∀k ∈ K, (45)

respectively.

D. Computational Complexity

To analyze the algorithm complexity, we first summarize
our proposed DLDQN algorithm in Algorithm 1. Particularly,
the training procedure begins with initializing the system
parameters and the network parameters. Then, in lines 1-9
of Algorithm 1, we observe the current state in stage 1 and
use a ε-greedy approach to explore the environment at the
current state, in which case the HAP generates a random
WPT or IIoEDs scheduling process action with probability ε,
whereas an optimized action is selected with probability 1−ε.
In lines 10-16, we observe the current state in stage 2, and
then the HAP performs transmit power selecting action as in
stage 1. As the training goes on, the value of the probability ε
is reduced to make the HAP learn the best action. For the
current state, when the corresponding action is performed,
its reward is obtained and the system transits to the next
state. Meanwhile, the experiences are stored in the EM, and a
mini-batch of historical experiences, i.e., H , are sampled from
EM to train the online network and the target network of both
the outer-layer DQN and the inner-layer DQN. In lines 17-18,
the target network of both the outer-layer DQN and the
inner-layer DQN are updated in every X episodes.

Then, we discuss the computational complexity of our
proposed DLDQN algorithm. For the outer DQN, its training
complexity contains two loops. The outer loop performs one
training episode, and the inner loop performs K scheduling
strategy and updates the parameters of the outer-layer DNNs.
Particularly, the computational complexity of K scheduling
strategy is O(K), and that of updating DNN’s parameters is
O(

∑P
p=1 np−1 · np), in which np is the neural node number

at the layer p of a neural network [49]. With the mini-batch
of experiences being H , the computational complexity of
training the DNNs is O(H ·

∑P
p=1 np−1 · np). Then, the

computational complexity of the outer-layer DQN is given
by O(K + H ·

∑P
p=1 np−1 · np). Similar to the outer-layer

DQN, the computational complexity of the inner-layer DQN
includes performing K power selection and training the inner-
layer DNNs. Therefore, the total computational complexity of
our proposed DLDQN algorithm is summarized as O(K +H ·∑P

p=1 np−1 · np).

VI. SIMULATION RESULTS

In this section, we provide extensive simulation results to
evaluate the effectiveness of our proposed DLDQN algorithm
in terms of the long-term AEE in our considered wireless
powered IIoE network.
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TABLE I
SIMULATION PARAMETERS

A. Simulation Setup

The simulated network scenario is shown in Fig. 1. The
simulation is conducted over a two-dimensional coordinate
plane, in which the HAP is positioned at the original point
(i.e., (0, 0)) and covers a circle of radius 10 m. The IIoEDs and
CNs are randomly positioned at arbitrary points on the plane
within 20 m. The wireless channel coefficients are considered
to follow the Rician fading model, where the power loss factor
is set to be 2 and the Rician factor is set to be 3.5. The
rest of the simulation parameters are listed in Table I. The
simulation experiments are run on Python 3.8 and Tensorflow
1.6.0. To implement our proposed DLDQN algorithm, the
Q-network contains two hidden layers with 256 and 128 neu-
rons, respectively. All simulation parameters described above
do not change unless otherwise specified.

B. Our Proposed Design Vs. Benchmark Designs

To verify the effectiveness of our proposed DLDQN
algorithm, three benchmarks are considered:
• DQN Algorithm: Compared with our proposed DLDQN

algorithm, this algorithm considers performing the WPT
or IIoEDs scheduling process and the transmit power
selection at the common layer. The other settings are the
same as that of our proposed DLDQN algorithm.

• Round Robin Algorithm: Compared with our pro-
posed DLDQN algorithm, this algorithm only considers
optimizing the power selection, but does not consider
optimizing IIoEDs scheduling. The IIoEDs scheduling
strategy is designed as a one-by-one sequential schedul-
ing strategy. Its transmit power selection is the same as
that of our proposed DLDQN algorithm.

Fig. 5. The long-term AEE achieved by different algorithms.

Fig. 6. The long-term AEE achieved by different policies.

• Fixed Power Algorithm: Compared with our pro-
posed DLDQN algorithm, this algorithm only considers
optimizing IIoEDs scheduling, but does not consider
optimizing the power selection. That is, the HAP employs
a fixed transmit power to charge the IIoEDs. Its IIoEDs
scheduling strategy is the same as that of our proposed
DLDQN algorithm.

• Round Robin Algorithm with Fixed Power: Compared
with our proposed DLDQN algorithm, this algorithm
designs the IIoEDs scheduling as a one-by-one sequen-
tial scheduling strategy, and the HAP employs a fixed
transmit power to charge the IIoEDs.

• Random Algorithm: Compared with our proposed
DLDQN algorithm, this algorithm designs the IIoEDs
scheduling and transmit power selection strategies as
random strategies.

Figure 5 shows the achievable long-term AEE versus
episode of our proposed DLDQN algorithm with five bench-
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Fig. 7. The convergence performance of our proposed DLDQN algorithm with different network parameters.

marks. With the increase of episode, the achieved system
long-term AEEs of the four algorithms, i.e., our proposed
DLDQN algorithm, the DQN algorithm, the round robin
algorithm, and the fixed power algorithm, first increase signif-
icantly, and then keep stable with small fluctuations. On the
other hand, the achieved system long-term AEEs of rest two
algorithms, i.e., the round robin algorithm with fixed power
and the random algorithm, fluctuate without increasing. The
long-term AEE obtained by our proposed DLDQN algorithm
outperforms that of the other five benchmarks. For exam-
ple, it can be improved by about 6 times compared with
the random algorithm and can be improved by about 80%
compared with the fixed power algorithm. Besides, it can be
improved by about 25% compared with the DQN algorithm.
The reason is that the single-layer DQN makes joint deci-
sions on all the tightly coupled variables, and the resulting
large decision space makes it hard to improve the policy
accuracy. Moreover, the convergence speed of our proposed
DLDQN algorithm is comparable with that of the DQN
algorithm.

Figure 6 shows the achievable long-term AEE versus differ-
ent policies. From Fig. 6, the achieved system long-term AEE
of our proposed policy outperforms that of the harvest-and-
transmit policy, which exhausts the harvested energy for each
transmission epoch. The reason may be that for the harvest-
and-transmit policy, it consumes more energy to achieve the
same AoI gain as our proposed policy, so the AEE perfor-
mance is degraded.

C. Convergence Performance

Figure 7 shows the impacts of different network parameters
on the convergence performance of our proposed DLDQN
algorithm, including different learning rates, training intervals,
memory sizes, and batch sizes. In Fig. 7(a), a small learning
rate makes our proposed DLDQN algorithm converge with
a relatively slow speed. When the learning rate is larger
than 0.0004, the converge speed is not obviously improved.
In Fig. 7(b), our proposed DLDQN algorithm converges faster
with a shorter training interval. In Fig. 7(c), a relatively small
memory, i.e., 104 in our simulations, brings a fast convergence
performance for our proposed DLDQN algorithm, while a
relatively large memory, i.e., 105 in our simulations, requires
more training data to converge. In Fig. 7(d), a large batch size
leads to a fast convergence speed of our proposed DLDQN
algorithm, because a large size of mini-batch can take the
advantage of more training data. However, a large batch size
costs more time for training. In the following simulations,
by jointly considering the AEE performance, convergence
speed, and computation time, we set the learning rate, training
interval, memory size, and batch size to be 0.0004, 10, 104,
and 256, respectively.

D. The Impact of the Distance Between HAP and IIoEDs on
the Long-Term AEE

Figure 8 shows the long-term AEE versus the distance
between HAP and IIoEDs. To evaluate the impact of this
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Fig. 8. The impact of distance between HAP and IIoEDs on the system long-term AEE.

distance on the system long-term AEE achieved by our
proposed DLDQN algorithm, we simulate three different sce-
narios, where the distances between HAP and IIoEDs are set
to 6 m, 8 m, and 10 m, respectively. In Fig. 8, the long-term
AEE increases with the decrease of the distance between HAP
and IIoEDs. The reason is that when the distance between
HAP and IIoEDs increases, the energy transmission efficiency
from the HAP to the IIoEDs is significantly reduced. Hence,
the HAP requires more time to wirelessly charge the IIoEDs’
energy buffer, which deteriorates the AoI performance and
further degrades the system long-term AEE.

Figure 9 depicts the long-term AEE versus the distance
between HAP and IIoEDs, where the number of IIoEDs are
set to 30 and 40. In Fig. 9, the long-term AEE achieved by
our proposed DLDQN algorithm can be improved by about
20%∼30% compared with the fixed power algorithm. Besides,
with the decrease of the distance between HAP and IIoEDs,
such as from 14 m to 6 m, the improving rate of the achievable
long-term AEE gain with our proposed DLDQN algorithm
increases by about 6%∼8%. It means that when the distance
between HAP and IIoEDs is short, a higher system long-term
AEE gain is achieved by optimizing the HAP’s transmit power.
Moreover, the system long-term AEE can be improved when
the number of IIoEDs increases from 30 to 40.

E. The Impact of the Number of IIoEDs on the Long-Term
AEE

Figure 10 shows the system long-term AEE versus the num-
ber of IIoEDs, where the distance between the HAP and the
IIoEDs is set to 16 m. In Fig. 10, we simulate three scenarios
where the numbers of IIoEDs are 20, 30, and 40, respectively.

Fig. 9. The system long-term AEE versus the distance between HAP
and IIoEDs.

When the number of IIoEDs increases from 20 to 30, the
system long-term AEE achieved by our proposed DLDQN
algorithm increases by about 22%, while when the number
of IIoEDs increases from 30 to 40, the system long-term AEE
decreases by about 2%. This phenomenon means that there
exists an optimal number of IIoEDs to achieve the maximal
long-term AEE with our proposed DLDQN algorithm, which
provides an insightful guidance for practical deployment. With
increasing number of IIoEDs, the EE of the system can be
improved by fully utilizing the broadcast feature of wireless
channels, while the AoI is degraded because more IIoEDs need
to wait for a long time to be scheduled. Therefore, there exists
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Fig. 10. The impact of the number of IIoEDs on the long-term AEE.

a tradeoff between the AoI and the minimal required energy.
Before the number of IIoEDs increases to a certain threshold,
i.e., 30 in our simulation, the EE has a dominant impact on
the long-term AEE, while after the threshold, the AoI has a
greater impact on the long-term AEE compared with EE.

F. The Impact of the Number of Epochs on the Long-Term
AEE

Figure 11 shows the impact of the number of epochs in
each episode on the long-term AEE. With more epochs in
each episode, the convergence speed of our proposed DLDQN
algorithm becomes faster, while its improving rate is deceas-
ing. Besides, when the number of epochs in each episode
is 1000, the system long-term AEE achieved by our proposed
DLDQN algorithm increases by about 5% compared with the
case with 500 epochs. Besides, when the number of epochs in
each episode is larger than 1000, the system long-term AEE
cannot be further improved.

G. The Impact of the Weight Factor in Reward Function on
the Long-Term AEE

Figure 12 shows the impact of the weight factor in reward
function on the long-term AEE. With the increase of the
weight factor µ, the system long-term AEE achieved by our
proposed DLDQN algorithm first increases then decreases,
which means that both AoI and energy consumption have
impacts on the achievable system long-term AEE. When the
weight factor is set to 1.3 in our simulations, it can realize the
maximal system long-term AEE. Besides, when the weight
factor is less than 0.8 or larger than 1.6, the system long-term

Fig. 11. The long-term AEE versus the number of epochs.

AEE achieved by our proposed DLDQN algorithm decreases
obviously.

H. The Impact of the Energy Buffer Capacity on the
Long-Term AEE

Figure 13 shows the impact of the energy buffer capacity
at the IIoEDs on the system long-term AEE. With different
numbers of IIoEDs, the long-term AEE always increases
with a larger energy buffer. Besides, when the number of
IIoEDs is relatively small, i.e., 20 in our simulations, the
system long-term AEE improvement achieved by increasing
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Fig. 12. The long-term AEE versus the weight factor in reward function.

Fig. 13. The long-term AEE versus the energy buffer capacity.

the energy buffer is higher compared with the cases with
30 and 40 IIoEDs.

I. The Impact of the Status Update Packet Length on the
Long-Term AEE

Figure 14 depicts the impact of the status update packet
length, i.e., the information bits of a single status update
packet, on the system long-term AEE, where the length of
a single status update packet is set to 500 bits, 1000 bits,
and 1500 bits, respectively. The long-term AEE significantly
decreases with the increase of the packet length. For example,
as shown in Fig. 14, when the packet length increases from
500 bits to 1000 bits with the number of IIoEDs being 30∼50,
the system long-term AEE achieved by our proposed DLDQN
algorithm is reduced by about 60%. When the packet length
increases from 1000 bits to 1500 bits, the achieved system
long-term AEE is reduced by about 70%∼80%. The reason
is a long update packet requires more energy to transmit,
which results in more time for energy transfer and a reduced
AoI. Moreover, when the number of IIoEDs increases, the

Fig. 14. The long-term AEE versus the update packet length.

Fig. 15. The long-term AEE versus the threshold of HAP’s transmit power.

long-term AEE changes non-obviously, which means that the
update packet length has a dominant impact on the system
long-term AEE compared with the number of IIoEDs.

J. The Impact of the Threshold of HAP’s Transmit Power on
the System Performance

Figure 15 shows the system long-term AEE versus the
threshold of HAP’s transmit power with different distances
between the HAP and the IIoEDs, i.e., 12 m and 14 m,
respectively. In Fig. 15, the system long-term AEE achieved
by our proposed DLDQN algorithm first increases and then
keeps stable, which shows a non-linear trend with the increase
of the threshold of HAP’s transmit power. The reason is
that when the HAP’s transmit power threshold is relatively
small (i.e., 1.5 W when the distance is 12 m and 3 W when
the distance is 14 m in our simulations), the limited HAP
power resource constrains the system long-term AEE. When
the threshold of HAP’s transmit power increases, more power
resources are available, allowing a better long-term AEE in
the considered system.

Authorized licensed use limited to: University of Waterloo. Downloaded on February 19,2024 at 14:27:21 UTC from IEEE Xplore.  Restrictions apply. 



1290 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2024

Fig. 16. The AoI and energy consumption versus the threshold of HAP’s
transmit power.

Fig. 17. The fraction of the wasted energy versus the threshold of HAP’s
transmit power.

Figure 16 shows the system long-term AoI and energy
consumption versus the threshold of HAP’s transmit power,
where the distance between the HAP and the IIoEDs is
10 m. The long-term AoI and energy consumption achieved
by our proposed DLDQN algorithm decreases and increases
with the increase of the threshold of HAP’s transmit power,
respectively, which means that compared with reducing energy
consumption, reducing AoI has a dominant impact on improv-
ing the system long-term AEE.

Figure 17 shows the fraction of the wasted energy ver-
sus the threshold of HAP’s transmit power. It is shown
that the fraction of the wasted energy in the total energy
consumption decreases from about 40% to 36% with the
increase of the threshold of HAP’s transmit power, while
the value of the wasted energy fluctuates around 0.075 J,
which means that with the increase of the threshold of HAP’s
transmit power, the EE is improved by our proposed DLDQN
algorithm, and the system long-term AEE is improved
accordingly.

VII. CONCLUSION

In this paper, we have investigated a long-term AEE
maximization problem in a wireless powered IIoE net-
work. To solve the problem, we modeled it as a two-stage
MDP and then proposed a DLDQN algorithm to find the
effective scheduling strategy and transmit power. Simulation
results demonstrated that our proposed algorithm can achieve
significantly higher system long-term AEE compared with
benchmarks. The proposed DLDQN algorithm is also scalable
in improving the system long-term AEE when the number of
IIoEDs increases. Moreover, we revealed that there exists a
range of the number of IIoEDs, which achieves the maximal
system long-term AEE, and can provide insightful guidance
for the practical network deployment. In future work, we will
investigate the AEE-related resource allocations for applica-
tions with integrated communications, sensing, and computing,
in which the IIoEDs’ sensed information requires integrated
computational processing and communication services.
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