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Abstract—Task offloading decision making plays a key role in
enabling mobile-edge computing (MEC) technologies in Internet
of Things (IoT). However, it meets the significant challenges
arising from the stochastic dynamics of task queueing in the
application layer and coupled wireless interference in the physical
layer in a distributed multiagent network without any centralized
communication and computing coordination. In this article, we
investigate the distributed task offloading optimization problem
with consideration of the upper layer queueing dynamics and
the lower-layer coupled wireless interference. We first propose a
new optimization model that aims at maximizing the expected
offloading rate of multiple agents by optimizing their offloading
thresholds. Then, we transform the problem into a game-theoretic
formulation, which further leads to the design of a distributed
best-response (DBR) iterative optimization framework. The exis-
tence of Nash equilibrium strategies in the game-theoretic model
has been analyzed. For the individual optimization of each agent’s
threshold policy, we further propose a programming scheme by
transforming a constrained threshold optimization into an uncon-
strained Lagrangian optimization (ULO). The individual ULO is
integrated into the DBR framework to enable agents to cooper-
ate and converge to a global optimum in a distributed manner.
Finally, simulation results are provided to validate the proposed
method and demonstrate its significant advantage over other
existing distributed methods. The numerical results also show
that the proposed method can achieve comparable performance
to a centralized optimization method.
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I. INTRODUCTION

TREMENDOUS increases in the deployment of Internet-
of-Things (IoT) devices and a wide range of emerging

applications and services, such as connected autonomous
driving, high-fidelity live multimedia, real-time social virtual
reality and industry automation, etc., have boosted the need
of higher data rates in wireless communication networks and
more computing and storage capacities. This trend leads to
a rapid development of many envisioned information com-
munication and networking architectures, such as the new
radio access networks in 5G [1], the software-defined vehic-
ular networks [2], [3] and the space-air-ground integrated
networks [4], etc., and has also spawned a new comput-
ing paradigm, termed mobile-edge computing (MEC) [5], [6].
Specifically, a MEC network enables mobile end-users
and IoT devices with constrained computation and storage
resources to offload their computation-intensive tasks to the
close-proximity network edge which can provide advanced
computing power to serve the resources-hungry users. In com-
parison to the traditional cloud computing, MEC deploys
cloud computing resources at the edge of the network, which
is in close proximity to the end users, and thus avoids
a high service latency caused by a long data transmission
distance between the end users and the remote centralized
cloud servers. Therefore, MEC is promising for many exist-
ing and envisioned mobile applications that usually require
low-latency and high-reliability communication and massive
computing capacities. Currently, MEC has attracted much
attention from both academia and industry communities [7].
To practically realize MEC for various IoT applications and
services, task/computation offloading is one of the most
important enabling technologies and has been extensively
investigated from different system perspectives including 5G-
enabled multiple access [8]–[10], unmanned aerial vehicles
(UAVs)-aided communications [11], [12], space-air-ground
integration [13], [14] and connected vehicles [15]–[17], etc.
In particular, many efforts have been already dedicated to
addressing the issue of joint optimization of communication
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and computing in MEC [5], [18], the goals of which range
from the energy-efficiency maximization to the system-wide
reliability optimization [9], [11], [15], [19].

In general, computation tasks generated by the application
layer of end users can form a data queue, which involves the
dynamic and stochastic processes of traffic arrivals, packet
service and waiting in each user’s buffer. The queueing
dynamics of computation tasks, which is an exogenous factor
in the network, can significantly affect the users’ offloading
decisions and the overall MEC performance. However, while
most task offloading paradigms focus on the modeling, con-
trol and optimization with consideration of the dynamics of
communication or/and computing in a specific MEC scenario,
existing offloading approaches usually simplify or even ignore
the impact of the queueing dynamics due to the increased com-
plexity and stochastic nature of the queueing system, which
will introduce additional challenges to the formulation and
analysis of MEC. Clearly, in order to make offloading deci-
sions effectively in MEC, the end users, who can be named
as decision-making agents, must not only capture the dynam-
ics of their communication and computing environment, but
also the queueing dynamics of their own upper layer tasks. It
remains to be an open question of how to bring the networked
queueing dynamics into the offloading process and thus to
design more practical decision-making strategies and achieve
cross-layer optimization.

On the other hand, while a large number of task offload-
ing frameworks have been developed for optimizing MEC
performance with different objectives, a common limitation
is the reliance on the deployment and availability of a system-
level control or centralized management infrastructure for
achieving the global optimization or coordinating resource
allocation, as shown in the existing work [3], [9], [10], [13],
[14], [20]. On the contrary, distributed optimization paradigms
are more appealing and promising to deal with the increased
complexity in large-scale networked systems, especially in
ad hoc multiagent settings, such as infrastructureless wire-
less sensor networks (WSNs), vehicular ad hoc networks
(VANETs), flying ad hoc networks, etc. To this end, sev-
eral distributed approaches for task offloading in MEC have
been proposed, such as [8], [17], and [21]–[23], among which
the game-theoretical tools are widely exploited to model the
competitive interactions of distributed agents contending for
the limited communication resources and Nash equilibrium-
specified strategies are usually adopted as the system solutions.
The distributed decision-making paradigms based on game
theory can explicitly characterize the interaction dynamics
of the competitive individuals’ decision-making behaviors in
the source-constrained system. In spite of this progress, the
stochastic dynamics of potential power interference incurred
by multiple individuals simultaneously competing to access
the same available spectrum has not been fully captured
from the communication perspective and incorporated in the
game-theoretical models. Indeed, in most previous work, such
as [3], [8]–[10], [13], [14], [17], and [20]–[23], a static chan-
nel model based on a constant signal-to-noise ratio (SNR)
or signal-to-interference-plus-noise ratio (SINR) is widely
adopted to describe the wireless transmission dynamics.

However, the communication interference is inherently related
to multiple agents’ offloading strategies and can also be ran-
dom due to the fading in the physical-layer channel. This
fact results in the strong coupling of the physical-layer com-
munication dynamics and the upper layer decision-making
behaviors, which makes the distributed optimization design
and analysis of multiagent task offloading complicated and
challenging.

Another challenge may arise when the coupled interac-
tions of multiple agents are considered in the system model.
That is, unfortunately, the optimization objective functions
of most actual connected systems in the field of MEC are
neither convex nor concave [11], [17]. Even though some
researchers have investigated and successfully solved task
offloading problems for some specific objectives by formu-
lating them as convex optimization problems, such as the
work [21], it is theoretically difficult or even impossible to
search the global optimum of a nonconvex or a nonconcave
objective function in a high-dimension problem domain. In
the situation, it is important to design an efficient search
mechanism with low complexity to obtain a suboptimal
solution.

A. Motivation and Contributions

In a distributed multiagent edge computing scenario where
multiple agents compete to access the limited common
spectrum when the centralized coordination is not avail-
able, physical-layer concurrent interference among the agents
should be properly considered. Each agent needs to determine
whether to buffer each arrival task from the application layer
or to offload it to the network edge for the remote comput-
ing immediately. Thus, the offloading decision of each agent
can influence all the others: on the one side, when an agent
chooses to offload the task, it can create wireless commu-
nication interference to others. Multiple agents’ concurrent
interferences are coupled and can potentially increase the
physical-layer transmission error rate of the agents and the sig-
nal frame scheduling delay. On the other side, when the
agent decides to enqueue the task, it will increase the occu-
pancy of its buffer and the queueing delay in the buffer,
which potentially leads to a high packet dropping probabil-
ity because of exceeding a maximum allowed sojourn time
(i.e., a delay deadline) and the buffer capacity. The result-
ing coupling in the agents’ decision-making behaviors, the
physical-layer interference, and the application-layer queueing
dynamics can make the modeling and distributed optimization
design of multiagent computation offloading a complicated and
challenging issue, which, however, is remained to be explored
at full length. Therefore, in this article, we aim at address-
ing the distributed offloading decision-making optimization of
multiple agents competing to access limited spectral resources.
Specifically, we jointly bring the queueing dynamics of the
agents’ tasks and the physical-layer coupled communica-
tion interference into the multiagent decision-making process,
which leads to a cross-layer optimization design. More impor-
tantly, we model the effects of the buffer capacity and the

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:29:46 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: DISTRIBUTED TASK OFFLOADING OPTIMIZATION WITH QUEUEING DYNAMICS 12313

sojourn time limit1 of the agents’ tasks in the queueing system
and the effects of the physical-layer coupled interference from
the probabilistic perspective, and then incorporate such effects
into the offloading decision-making formulation.

To be specific, we propose to optimize the offloading deci-
sion thresholds of agents in a distributed manner by maximiz-
ing the expected successful offloading rate of agents’ tasks. For
this goal, we combine the game-theoretical analysis with con-
strained nonlinear optimization theory. From the perspective of
game theory, we show the existence of at least a mixed-strategy
Nash equilibrium rather than a pure-strategy Nash equilibrium
in our system model, which does not require the convexity or
concavity of the problem. This is different from most of exist-
ing game-theoretical approaches (as aforementioned) that need
to well define a distributed convex or concave problem so as
to guarantee the existence of a pure-strategy Nash equilibrium.
This further motivates us to develop a distributed multiagent
iterative framework based on the best response mechanism. To
deal with the individual optimization at each iteration, we fur-
ther propose an unconstrained Lagrangian optimization (ULO)
algorithm by transforming the individual optimization into an
augmented Lagrangian subproblem, which has the advantage
in unconstrained programming. The best response method is
combined with the proposed ULO scheme to enable collabo-
rative optimization of the entire system performance via the
iterative optimization of individual utilities in a distributed
fashion.

The main contributions of this article are summarized as
follows.

1) From the communication perspective, we first formu-
late the system optimization of task offloading in a
MEC network as a multiagent decision-making problem,
wherein each agent aims at determining an optimal
offloading threshold to maximize its expected successful
offloading rate. That is, when the received signal enve-
lope at an agent’s destination (i.e., an edge node) over a
selected frequency channel exceeds the optimal offload-
ing threshold, which indicates that the condition of the
physical-layer channel is good enough, the agent decides
to offload its task to the edge node for remote execu-
tion, otherwise it would buffer the task in a queue or
forward it to its central processing unit (CPU) for local
execution. We jointly consider the effects of the limited
buffer capacity and the patience of the task with waiting
for offloading, and thus model the task loss probability
due to buffer overflow and queueing delay. We also cap-
ture the queueing dynamics, which is incorporated into
the offloading decision-making behaviors of the agents.

1In queueing theory [24], a sojourn time limit is defined as a time thresh-
old, which can be used to characterize the patience of an entity waiting for
service and thus is related to the Quality-of-Service (QoS) requirement. In
our considered context here, a task is admitted to the queueing system if the
buffer queue is not full (i.e., the buffer is not fully occupied), otherwise it
is dropped by the buffer and transferred to the processing unit for the local
execution. When the task joins the buffer queue, it is served immediately (i.e.,
offloaded to the network edge for the remote execution) or needs to wait for its
service. In this situation, if the sojourn time (waiting time plus service time)
of this task exceeds its tolerant time threshold, this task will be dropped for
the location execution rather than being offloaded for the remote execution.

2) We formulate a probabilistic model to approximately
capture the joint distribution of the stochastic coupling
transmission interference of the multiple agents contend-
ing in the same channel, which is connected to their
offloading decisions. This model well captures the com-
plex interaction dynamics of these agents, showing that
the offloading decision of each agent relies on other peer
agents via the proposed interference function.

3) We propose to transform the constrained individ-
ual offloading optimization into an unconstrained
optimization with an augmented Lagrangian function.
Based on this, we develop a distributed best response
method in combination with a proposed ULO scheme, in
which each agent only needs to optimize its own utility
with its own offloading decision. This distributed ULO-
based best response method can induce the agents to
collaborate with each other via decision feedback and
iteratively maximize the global system performance.

4) We conduct extensive numerical experiments to evaluate
the effectiveness and advantages of our proposed dis-
tributed method. Specifically, we compare our proposed
method with state-of-the-art distributed algorithms (i.e.,
a distributed dual-decomposition algorithm and a dis-
tributed stochastic learning-based algorithm), the dis-
tributed aggressive policy-based algorithm and the
centralized optimization algorithm. The results show
that our distributed method can well approximate the
global optimum and also outperform other comparative
methods.

B. Mathematical Notation

In this article, boldface uppercase letters like X and bold-
face lowercase letters x are used to represent matrices and
vectors, respectively. All vectors are understood as column
vectors when without additional specific statements. Sets are
denoted by calligraphic letters like K. The sets of nonnegative
real numbers and of nonnegative integers are denoted by R+
and Z+, respectively. Besides, R++ and Z++ denote the sets
of positive real numbers and positive integers, respectively.
The kth row and lth column element of a matrix X is denoted
by [X]k,l, while the kth component of a vector x is denoted by
[x]k. The transpose of a matrix X and a vector x is denoted by
XT and xT, respectively. diag{x1, x2, . . . , xn} denotes a n × n
diagonal matrix whose diagonal components are x1, x2, . . ., xn.
col{x1, x2, . . . , xn} represents a column vector with n compo-
nents. Vectorized functions are denoted by boldface symbols,
such as f(x) and F(x). Throughout this article, the inner prod-
uct of two (column) vectors, x and y, is given as xTy. The
Euclidean norm of a vector x is represented by ‖x‖2 or ‖x‖
for the sake of simplicity, i.e., letting ‖x‖ = √

xTx.

C. Paper Organization

The remainder of this article is organized as follows. In
Section II, the related work is reviewed. In Section III, the
system model and the primal optimization formulation are
described. The distributed optimization method for the offload-
ing decision making of the multiple agents is proposed in
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details in Section IV. Section V comparatively evaluates the
performance of the proposed methods. We conclude this work
in Section VI.

II. RELATED WORK

MEC has received much attention from both academia
and industry due to many emerging IoT applications and
services [5], [6], especially in the 5G era [7], [18]. Among
various topics in the field of MEC, task/computation offload-
ing plays a key role in enabling the system deployment for
different application scenarios. There exist a significant num-
ber of studies focusing on the offloading decision making for
a single user, such as [11], [12], [15], [16], and [25]. To
be specific, Zhang et al. [25] have proposed an enumeration
search algorithm for a single user to solve an optimal task
offloading solution as well as a Lagrangian relaxation-based
aggregated cost (LARAC) algorithm to solve a suboptimal
solution with lower complexity under stochastic channels.
In [15], the coupling reliability of vehicular communication
and computing is explored and the authors propose an optimal
task offloading method for a vehicular user to determine a
reliability-optimal computing mode. Zhou et al. [16] also
focused on a vehicular user, in which the offloading decision-
making problem was formulated as a stochastic optimization
problem and a stochastic dynamic programming method has
been developed. Besides, many researchers also introduce
MEC into other envisioned connected systems, such as aerial-
ground integrated networks where vehicular networks and
UAVs-aided flying ad hoc networks are connected to pro-
vide a large communication coverage and a high system
capacity [26], [27]. Jeong et al. [11] jointly addressed the
task offloading problem and the path planning problem of
a single UAV by exploiting successive convex approxima-
tion techniques. Similarly, Zhou et al. [12] have derived
closed-form expressions to obtain optimal CPU frequencies,
offloading time and transmission power. It can be seen that
many successful models and solutions have been designed and
well validated in existing literature as mentioned above for
scenario-specified task offloading problems. However, these
solutions, in essence, focus on the decision-making behavior of
a single entity (e.g., a mobile device [25], a vehicle [15], [16]
or a UAV [11], [12]) and do not target more complex cases
in self-organized multiuser settings, where interacting users’
decisions are coupled with and affect each other’s.

With the advancements of software-defined networks
(SDNs) and multiaccess technologies, there are many research
efforts that have been made to deal with MEC-related
problems in SDN-based or/and multiaccess scenarios, such
as [3], [9], [10], and [20]. Specifically, in [3], a cen-
tralized resource management framework is designed based
on SDNs, which enables a tier-1 cloud-computing server
and several tier-2 MEC servers to collaboratively pro-
cess the application task of a connected autonomous vehi-
cle (CAV). Alameddine et al. [10] jointly considered
task offloading and scheduling problem, which combines
three NP-hardness (nondeterministic polynomial-time hard-
ness) subproblems, and proposes a Logic-Based Benders
Decomposition method. Chen and Hao [9] also formulated the

task offloading problem in a SDN-based ultradense network
as a mixed-integer nonlinear program, which is NP-hardness.
To obtain a suboptimal solution, the authors propose a decom-
position method to transform this original problem into two
subproblems [9]. Different from the efforts aforementioned,
the work [20] studies the resource management with the
goal of enhancing the secrecy against eavesdropping attacks
in nonorthogonal multiaccess assisted computation offloading
scenarios. In the above literature, diverse system models are
usually established from a holistic design perspective and thus
require centralized infrastructure, such as an SDN controller.

In addition, many researchers are currently engaged in
applying artificial neural networks-based supervised learning
and reinforcement learning theories to address some com-
plex task offloading issues, such as the studies in [14], [28],
and [29]. For example, Cheng et al. [14] presented the com-
putation offloading problem in a space-air-ground integrated
network as a Markov decision process and then propose
a deep reinforcement learning approach for a UAV-user to
learn an optimal policy for gaining a minimum long-term
comprehensive cost (i.e., including delay, energy and server
usage costs). To minimize the long-term delay of a task, [29]
designs two reinforcement learning methods, including a
Q-learning method and a deep reinforcement learning method,
to obtain the optimal policies for computation offloading
and resource allocation in a vehicle edge-computing network.
Heydari et al. [28] also applied a deep reinforcement learning
approach to make task offloading decisions with the goal of
minimizing the task drop rate and the execution delay. From
the methodological perspective, the reinforcement learning-
based solutions can provide the advantages over traditional
optimization techniques (e.g., convex optimization) in self-
organization, evolvability and adaptability. However, these
approaches rely on the fundamental assumption on stationary
and Markovian environments, while the observation of any sin-
gle decision maker in a multiuser context may be dynamic and
nonstationary due to the interactions among different users’
decision-making behaviors.

Due to the constraint on the communication and com-
puting resources, selfish users’ decision-making behaviors
may be competitive. As thus, game-theoretical approaches are
widely adopted in current literature to model and analyze the
decision-making processes in task offloading. Zhao et al. [17]
decomposed an original problem of joint task offloading and
resource allocation into two subproblems, among which a
potential game is formulated for obtaining distributed Nash-
equilibrium offloading strategies. Cao and Cai [22] also study
the multiuser offloading decision-making problem and develop
an exact potential game model, for which they propose a
stochastic learning-based distributed algorithm to get a pure
Nash equilibrium solution. Based on the theory of potential
game, Zheng et al. [23] have presented a weighted poten-
tial game to capture the dynamics of multiuser computation
offloading environment, in which users can be active or inac-
tive and the channels can vary randomly. Besides, a multiagent
stochastic learning algorithm has been proposed to learn a
Nash equilibrium solution for these users [23]. Different from
these potential game models above, the work [8] presents a
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player-specific congestion game formulation for multiuser task
offloading and provides a decentralized algorithm to converge
to Nash equilibrium strategies. It can be summarized from the
literature that game theory is really a powerful mathemati-
cal tool for designing distributed decision-making paradigms
and dealing with the complexity in the interactions of multiple
agents. Nevertheless, the implementation of a game-theoretical
approach usually requires a well-defined individual utility
function (e.g., the formulation satisfying the potential game
property in [17], [22], and [23]), such that the game model
can theoretically guarantee the existence of at least a Nash
equilibrium point. Indeed, it is still an open and challenging
issue to prove the existence of a pure Nash equilibrium point
and obtain a Nash-equilibrium solution for a general game
formulation.

Another direction in current existing literature is dedicated
to applying convex optimization techniques, such as the widely
used dual decomposition [21] and Lyapunov optimization [19],
[30]–[33], to directly solve the optimization of multiuser task
offloading. In [21], the Lagrangian dual-decomposition method
has been used to address the energy-efficiency optimization
problem of computation offloading and scheduling, which
can lead to a distributed algorithm. Nevertheless, although
the proposed algorithm in [21] aims at reducing the appli-
cation completion time, it does not take into account the
potential delay resulting from queueing the application task
in the local buffer. It can be recognized that some other works
like [19], [30]–[33] have considered the queueing dynamics
of tasks in each mobile device and incorporated the queue
delay, which is assumed to be proportional to the average
queue length, into their system models. Their solutions are
developed by invoking the Lyapunov optimization for different
long-term optimization objectives, such as the minimization
of the execution delay and the task dropping cost [19],
the energy consumption minimization [30], the latency and
reliability-constrained transmit power minimization [32], and
the energy-delay tradeoff [31], [33]. In addition, some com-
binatorial optimization and heuristic designs have also been
developed in the current literature. For instance, Gai et al. [34]
have proposed an optimization algorithm based on dynamic
programming, which takes into account the energy cost for
selecting cloudlet and its computing service performance.
In [35], a task assignment model and a scheduling table gen-
eration algorithm have been proposed based on the theory
of directed acyclic graphs with the goal of improving the
overall energy efficiency in heterogeneous cloud computing.
To jointly optimize the energy cost and time consumption in
heterogeneous fog computing scenarios, [36] has proposed a
heuristic algorithm by combining graph theory with a hill-
climbing search scheme. However, how the interaction of
end users’ offloading decisions and the physical-layer coupled
interference can influence the long-term optimization objective
remains unexplored in these existing works.

In this article, our approach also takes into consideration
the queueing dynamics of the computation tasks and fur-
ther captures the impacts of the task buffer capacity and
the tolerant sojourn time in the queueing network, which
is quite different from the queueing models in the existing

Fig. 1. Exemplary application scenario, where a D2D-based IoT system
is considered for the sake of demonstration on the usage of our proposed
methodological framework. In this scenario, diverse IoT devices are equipped
with D2D communications. Each source agent can offload its computation to
a destination in close proximity to itself via a D2D link or just perform local
computing. Each offloading session is abstracted by a source-destination pair
and each agent’s destination is reachable via one hop. The multiple offload-
ing sessions share the common spectrum provided by an eNodeB node as a
licensed provider. In our proposed model, the common spectrum available for
computation offloading is divided into a set of frequency channels, whereas
the time horizon is discretized into a series of time slots. In each time slot,
each agent can decide to either offload its computation to its destination by
selecting a frequency channel from the available spectrum set when the chan-
nel quality is higher than an optimal threshold, or keep silent and enqueue
the arrival task in its local buffer. It is remarked that such a paradigm is suffi-
ciently general to support a variety of wireless communication and networking
systems (besides the scenario shown here).

literature mentioned above. Moreover, our optimization for-
mulation explicitly characterizes the coupling dynamics of
distributed users’ interactions and connects the upper layer
offloading decisions with the physical-layer communication
dynamics, which have not been fully explored in the aforemen-
tioned works based on convex optimization, game theory or
modern reinforcement learning. To the best of our knowledge,
this work is the first to establish a distributed optimization
paradigm in multiagent networks by coupling of the queueing
dynamics-aware offloading decisions.

III. SYSTEM MODEL

We consider such a general MEC scenario as illustrated
in Fig. 1, where there are multiple traffic sessions with each
denoting a task offloading connection between two agents, i.e.,
a source and its corresponding destination, and these offload-
ing sessions share the same spectrum. We denote the sets of
these offloading sessions and their shared frequency channels
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by I = {1, 2, . . . , N} and F = {1, 2, . . . , M}, respectively.
The task offloading is divided into a series of discrete time
slots, and the duration of each time slot is denoted by �τ

seconds. We consider that the source agent of each offloading
session can either offload an application task from its upper
layer to a network edge for remote computation in each time
slot with a selected physical-layer frequency, f ∈ F , or keep
silent in this time slot and push this arrival task into a first-
in-first-out (FIFO) queue buffer. It can be seen that such a
proposed model is general and thus can be adapted to many
types of wireless networks, such as wireless ad hoc networks,
cellular systems with multiuser wireless interferences, device-
to-device (D2D) communication networks in the envisioned
5G systems, etc.

Besides, we design a threshold-based offloading decision-
making policy for each agent. More specifically, for any source
agent of the offloading session i ∈ I, its offloading threshold is
represented as a decision variable xi ∈ R+. When the agent’s
selected channel, f ∈ F , has a good communication condition
in which the channel gain (i.e., the received signal envelope)
is higher than the threshold xi, it decides to offload an arrival
application task for the remote execution; Otherwise, it will
enqueue this task in its limited buffer if the channel quality
is bad. The agent can adapt (optimally configure) its offload-
ing decision xi in order to maximize its expected successfully
offloading rate. In the considered scenario, a larger value of an
agent’s offloading threshold xi can reduce the opportunity of
task offloading and thus lose the benefit gained from the edge
computing, while, on the contrary, a smaller value of xi can
lead to a higher probability of task offloading, which increases
the intensity of physical-layer channel contention and wireless
interferences in the multiagent environment. The packet loss
rate can be increased with the communication concurrence
when the spectrum resource is limited, which further results
in a worse offloading performance. At this point, it is a key
and fundamental issue to optimize the joint offloading policies
of all the agents, x � (xi)i∈I , to realize an optimal tradeoff
between task offloading and task queueing.

A. Dynamics of Wireless Channels and Task Offloading

For any source agent i ∈ I, we also let its destination
be represented by i for the sake of simplicity. The transmit
power of this agent is denoted by pi and the nonsingular path
loss coefficient is ai,i, which is related to the relative distance
between the agent i and its corresponding destination, di,i,
i.e., ai,i = (1 + dα

i,i)
−1/2 where α denotes the path loss fac-

tor. We also denote the received signal envelope at a selected
channel frequency f ∈ F by hf

i,i. Hence, the transmission
channel gain for the offloading session associated with the
agent i can be expressed as gf

i,i = ai,ih
f
i,i. Moreover, we con-

sider that the fading characteristics of the wireless channel
follows the Nakagami distribution with the fading parameter,
mi,i, and the average received power in the fading envelope,
ωi,i. Note that the Nakagami distribution has been widely
adopted to properly capture the stochastic dynamics of the
wireless channel in various communication systems, such as
vehicular networks [37], [38], UAV-aided networks [30], [39],

aerial-ground integrated networks [40], [41], and many other
mobile radio systems [42], [43], due to its high paramet-
ric scalability and good fitting performance.2 To be specific,
the probability density function (PDF) of the received signal
envelope associated with the agent i is expressed as

f
hf

i,i

(
x; mi,i, ωi,i

) = 2m
mi,i
i,i x2mi,i−1

�
(
mi,i
)
ω

mi,i
i,i

exp

(
−mi,i

ωi,i
x2
)

(1)

for all x ≥ 0 and f ∈ F , where the fading parameter mi,i

is usually ranging within [0.5, 5] and �(mi,i) is the Gamma
function, i.e., �(mi,i) = ∫∞

0 smi,i−1e−sds. According to (1), we
can further derive the closed-form expression for the cumu-
lative density function (CDF) of the squared signal envelope,
(hf

i,i)
2, as follows:

Pr

{(
hf

i,i

)2 ≤ x

}
=

γ
(

mi,i,
mi,i
ωi,i

x
)

�
(
mi,i
) (2)

where the function γ (·, ·) is the lower incomplete Gamma
function, i.e., γ (m, s) = ∫ s

0 tm−1e−tdt.
Now, we consider the threshold-based offloading policy in

which the agent i can always choose the best channel that
has the highest channel transmission gain for its task offload-
ing, i.e., with the frequency f ∗ = arg maxf ∈F {gf

i,i}. Given the
offloading threshold xi ∈ R+, for any f ∈ F , we can get the
probability that hf

i,i does not exceed the threshold xi as follows:

Pr
{

hf
i,i ≤ xi

}
= Pr

{
(hf

i,i)
2 ≤ x2

i

}
=

γ
(

mi,i,
mi,i
ωi,i

x2
i

)

�
(
mi,i
) . (3)

Accordingly, the agent i decides to offload its task at the
frequency f ∗ if the selected channel satisfies hf ∗

i,i > xi. At
this point, the probability of task offloading for i, denoted
by μi(xi), can be formulated as μi(xi) = Pr{hf ∗

i,i > xi} =
1 − Pr{hf ∗

i,i ≤ xi} = 1 − Pr{hf
i,i ≤ xi, f = 1, 2, . . . , M}, i.e.,

μi(xi) = 1 −
M∏

f =1

Pr
{

hf
i,i ≤ xi

}
= 1 −

⎡

⎣
γ
(

mi,i,
mi,i
ωi,i

x2
i

)

�
(
mi,i
)

⎤

⎦

M

(4)

where M is the cardinality of the set F . It can be seen from (4)
that the offloading decision of the agent is coupled with the
stochastic dynamics of the wireless channel.

B. Dynamics of Task Queueing

We let the number of time slots the agent takes for offload-
ing a packet-level task be ξi ∈ Z+. ξi obviously follows the
geometric distribution, the PDF of which is:

Pr{ξi = n} = (1 − μi(xi))
n−1μi(xi), n ∈ Z+. (5)

Furthermore, since the expected geometric distribution above
is E[ξi] = 1/μi(xi), to make the system model mathemati-
cally tractable, we can use an exponential distribution with

2In fact, the Nakagami distribution can be reduced to a Rayleigh distribution
or a Ricean distribution, but it gives more scalable control over the extent of
the channel fading. This is the main reason that we adopt it in this work.
Nevertheless, the methodology developed in this article can be also extended
to other fading channels.
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Fig. 2. Comparison between the actual probability distribution of ξi and the
exponential distribution approximation.

the parameter μi(xi) to approximate the geometric distribu-
tion [44]. That is

Pr{ξi = n} ≈ μi(xi) exp(−μi(xi)n). (6)

Therefore, the offloading rate per unit time can be given as
φi(xi) = μi(xi)/�τ , which represents the service rate of the
agent i’s queue buffer. We compare the actual probability dis-
tribution of ξi with its approximation based on (6) in Fig. 2.
Furthermore, we also evaluate the Kullback–Leibler (KL)
divergence, DKL(Pactual‖Papprox), between both the actual and
the approximated probability distributions Pactual and Papprox in
Fig. 3. Note that the KL divergence is a well-known measure
characterizing the difference between two probability distri-
butions from the perspective of information theory, and a KL
divergence of 0 indicates that two probability distributions are
identical. As can be seen, the KL divergence metric is only
about 0.13 on average under different test cases, which is suf-
ficiently small. In Fig. 3, the KL divergence metric even in
the worst-performance case is smaller than 1. Combining the
results in Figs. 2 and 3, we can confirm that the exponen-
tial distribution can approximate the actual distribution with a
sufficiently good precision.

Now, we consider the capacity of the agent i’s queue buffer
to be Ki, and that the packet-level task flow coming from the
upper layer of any agent i ∈ I follows a Poisson process
with an average arrival rate λi. Hence, the queueing dynam-
ics of tasks at i can be captured by an M/M/1/Ki queue
model. From the viewpoint of queueing theory, the offload-
ing decision-related parameter ρi(xi) = λi/φi(xi) represents
the traffic intensity. Let Qi be the number of tasks presented
in the queue. The probability that there are k (0 ≤ k ≤ Ki)
tasks presented in the queue buffer in the equilibrium state
when a new task arrives can be calculated by

Pr{Qi = k} = (1 − ρi(xi))(ρi(xi))
k

1 − (ρi(xi))
Ki+1

(7)

where k = 0, 1, . . . , Ki.
Besides, we denote by Tk+1 the sojourn time (i.e., the sum

of both the waiting time and the service time) of the (k +1)th

Fig. 3. Test results on the KL divergence between the probability distributions
of the time slot number ξi obtained by the actual model and its approximated
model, respectively.

arrival task when there already exist k tasks waiting in its front,
k = 0, 1, . . . , Ki − 1. The tolerant maximum sojourn time of
the task at i is denoted by βi. Thus, we can use Pr{Tk+1 <

βi|Qi = k} to denote the probability that the sojourn time of
the (k+1)th incoming task is shorter than the threshold under
the condition that k tasks are presented in the queue, which is
given as follows [24]:

Pr{Tk+1 < βi|Qi = k} = 1 − e−φi(xi)βi

k∑

v=0

(φi(xi)βi)
v

v!
(8)

for k = 0, 1, . . . , Ki − 1. Following (8), we can also have
Pr{Tk+1 ≥ βi|Qi = k} = 1 − Pr{Tk+1 < βi|Qi = k}.

Based on (7) and (8), we can further derive the probability
that a new incoming task is removed from the queue (for the
local execution rather than the remote execution) as follows:

qi(xi) = Pr{Qi = Ki} +
Ki−1∑

k=0

Pr{Qi = k}Pr{Tk+1 ≥ βi|Qi = k}

= (1 − ρi(xi))(ρi(xi))
Ki

1 − (ρi(xi))
Ki+1

+
Ki−1∑

k=0

(1 − ρi(xi))(ρi(xi))
k

1 − (ρi(xi))
Ki+1

(

e−φi(xi)βi

k∑

v=0

(φi(xi)βi)
v

v!

)

.

(9)

It is remarked that the maximum allowed queueing delay βi

can be treated as the Quality-of-Service (QoS)-related aggre-
gate delay requirement of the agent i’s upper layer application
task. In the queue model, we impose a constraint on the traffic
intensity, i.e., ρi(xi) ≤ ρupper where ρupper < 1 is a specified
upper bound of the traffic intensity, in order to guarantee the
stability of the queue. According to the definition of ρi(xi),
this constraint is equivalent to satisfy

C(xi) � μi(xi) − λi�τ

ρupper
≥ 0. (10)

Note that μi(xi) is a monotonically decreasing function with
respect to xi in the domain R+. C(xi) is also a monotonically
decreasing function with respect to xi in the domain R+. Thus,
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C(xi) ≥ 0 leads to an upper bound on the offloading decision
of i, xi, i.e., xi ≤ xupper

i , where xupper
i is given by solving the

following equation:

xupper
i = argx∈R+{C(x) = 0}. (11)

C. Dynamics of Coupled Wireless Interference

In the considered multiagent wireless network, the offload-
ing decisions of the agents can heavily rely on the physical-
layer performance. A significant metric for the physical-layer
link performance is the SINR. Let the profile of the offloading
decisions of the agents in I except agent i be x−i � (xj)j∈I\{i},
and the background noise power at the destination of each
agent be σ 2

0 . The resulting SINR of agent i’s offloading session
over the wireless channel at frequency f ∈ F can be

SINRf
i (x−i) =

pia2
i,i

(
hf

i,i

)2

σ 2
0 +∑j∈I\{i} pja2

j,i

(
hf

j,i

)2
yf

j

(
xj
) (12)

where pj is the transmit power of agent j, aj,i is the path loss
coefficient associated with the interference link from j to the
destination of i, and hf

j,i is the interference signal envelope at

the same frequency f . yf
j (xj) is a binary variable depending

on the offloading decision of agent j, which is equal to 1 if j
decides to offload its task via the frequency channel f and 0
otherwise. Namely, we have

yf
j

(
xj
) =

{
1, hf

j,j > xj

0, hf
j,j ≤ xj.

(13)

For simplicity, we rewrite the coupled interference incurred
by the other agents to agent i’s offloading session as

If
i (x−i) =

∑

j∈I\{i}
pja

2
j,i

(
hf

j,i

)2
yf

j

(
xj
)
. (14)

As shown in (12) and (14), when many agents decide to
offload their tasks to their destinations via the same channel,
the coupled interference If

i (x−i) will increase, which reduces
the SINR, SINRf

i (x−i), of agent i’s offloading link and then
makes i’s offloading rate degrade. At this point, the individ-
ual offloading decisions are connected to the physical-layer
communication dynamics and coupled with each other.

Another observation from (14) is that If
i (x−i) is a com-

pound random variable due to the fact that it depends on
multiple stochastic processes, such as the stochastic fading
of the interference link between each j and i, hf

j,i, and the j’s

own offloading link, hf
j,j. It is impossible to mathematically

derive an exact closed-form expression for the distribution of
If
i (x−i). Nonetheless, noticing that the squared random vari-

able, (hf
j,i)

2, follows a Gamma distribution as shown in (2) and

that yf
j (xj) is a random binary variable as shown in (13), the

value of If
i (x−i) is the weighted summation of multiple inde-

pendent random variables following the Gamma distribution.
Thus, we can propose to approximate the PDF of If

i (x−i) based
on a Gamma distribution function. Let E[If

i (x−i)] be the first-
order moment of If

i (x−i) and Var[If
i (x−i)] be its second-order

moment. In statistics theory, we can have the relationship

Var
[
If
i (x−i)

]
= E

[(
If
i (x−i) − E

[
If
i (x−i)

])2
]

= E

[(
If
i (x−i)

)2
]

−
(
E

[
If
i (x−i)

])2
. (15)

According to the definition of the first-order moment, we
derive E[If

i (x−i)] as follows:

E

[
If
i (x−i)

]
=
∑

j∈I\{i}
pja

2
j,iE

[(
hf

j,i

)2
yf

j (xj)

]

=
∑

j∈I\{i}
pja

2
j,i

μj(xj)

M

∫ ∞

0
x2f

hf
j,i

(
x; mj,i, ωj,i

)
dx.

(16)

Due to the fact that for any two agents j1, j2 ∈ I\{i} and
j1 �= j2, hf

j1,i
, hf

j2,i
, yf

j1
(xj1) and yf

j2
(xj2) are independent, we

can see

E

[(
hf

j1,i

)2
yf

j1

(
xj1

)(
hf

j2,i

)2
yf

j2

(
xj2

)
]

= μj1

(
xj1

)
μj2

(
xj2

)

M2
Ej1 Ej2

(17)

where for simplicity Ej (∀j ∈ I) represents

Ej �
∫ ∞

0
x2f

hf
j,i

(
x; mj,i, ωj,i

)
dx. (18)

Additionally, for any j ∈ I, we can have

Aj � E

[(
hf

j,i

)4
]

=
∫ ∞

0
x4f

hf
j,i

(
x; mj,i, ωj,i

)
dx. (19)

Combining the above results can further lead to

E

[(
If
i (x−i)

)2
]

=
∑

j∈I\{i}
p2

j a4
j,i

μj
(
xj
)

M
Aj

+
∑

j1 �=j2∈I\{i}
pj1 pj2 a2

j1,ia
2
j2,i

μj1

(
xj1

)
μj2

(
xj2

)

M2
Ej1 Ej2 .

(20)

Now, combining (15), (16), and (20) can yield the closed-form
expression for the second-order moment Var[If

i (x−i)].
Using the first-order and the second-order moments of

If
i (x−i), we can estimate the shape and the scale parameters

for the Gamma distribution, respectively. Specifically, let the
shape parameter be ki(x−i) and the scale parameter be θi(x−i),
which inherently depends on the offloading decision profile of
the other agents except i, x−i. We can have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ki(x−i) =
(
E

[
If
i (x−i)

])2

Var
[
If
i (x−i)

]

θi(x−i) = Var
[
If
i (x−i)

]

E

[
If
i (x−i)

] .

(21)

The PDF of If
i (x−i) is then expressed as

f
If
i (x−i)

(x; ki(x−i), θi(x−i)) =
xki(x−i)−1 exp

(
− x

θi(x−i)

)

θi(x−i)
k(x−i)�(ki(x−i))

(22)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Comparison of Monte Carlo simulations and model-based approximation on the coupled interference distribution. (a) Agent 1. (b) Agent 2. (c) Agent 3.
(d) Agent 4. (e) Agent 5. (f) Agent 6. (g) Agent 7. (h) Agent 8. (i) Agent 9. (j) Agent 10.

where �(ki(x−i)) is the Gamma function as follows:

�(ki(x−i)) =
∫ ∞

0
ski(x−i)−1e−sds. (23)

Now, we conduct extensive Monte Carlo simulations to ver-
ify the PDF of the coupled interference function If

i (x−i) based
on the model (22), in which a region of 300 m × 300 m with
10 uniformly distributed is set up. The total available chan-
nel number M is set to 5. The path loss factor α is fixed at
3.0, the transmit power of each agent pi is set to 23 dBm,
and the noise power σ 2

0 is −96 dBm. In addition, the aver-
age received power ωi is normalized to 1, while the fading
parameter mi,i or mi,j is considered to depend on the dis-
tance between the transmitter and the corresponding receiver
according to the real-world measurement in [37]. The 10 000
Monte Carlo simulations are performed and the simulation-
based PDF of the coupled interference received at each agent’s
destination is compared with the model-based result in Fig. 4.
Besides, we also provide the results on the KL divergence
DKL(Psimulation‖Pmodel) between the probability distributions
Psimulation and Pmodel obtained by the simulation and the the-
oretical model, respectively, in Fig. 5. From Fig. 5, it is seen
that the KL divergence is only about 0.23 on average and the
worst-case metric is still smaller than 1. The small KL diver-
gence indicates that the theoretical distribution approximates
the actual observation well. From both Figs. 4 and 5, we can
conclude that the proposed theoretical model based on (22) is
able to appropriately capture the actual distribution of the cou-
pled interference, which makes the system optimization and
analysis tractable.

Next, using the theoretical model (22), we further derive the
upper CDF of the coupled interference If

i (x−i) as follows:

gi(x, x−i) � Pr
{

If
i (x−i) > x

}
= 1 −

γ
(

ki(x−i),
x

θi(x−i)

)

�(ki(x−i))
.

(24)

Given a minimum SINR threshold γ0 required for a trans-
mission link to correctly receive an offloaded packet, the task

Fig. 5. Test results on the KL divergence between the probability distributions
of the coupled interference obtained by Monte Carlo simulations and model-
based approximation, respectively.

loss probability due to the packet error for agent i is

pi(xi, x−i) � Pr
{

SINRf
i (x−i)y

f
i (xi) < γ0

}

= Pr

⎧
⎪⎨

⎪⎩

pia2
i,i

(
hf

i,i

)2
yf

i (xi)

γ0
− σ 2

0 < If
i (x−i)

⎫
⎪⎬

⎪⎭
. (25)

Combining (1) and (24), we can derive the joint CDF of hf
i,i

and If
i (x−i), which results in the closed-form expression for

pi(xi, x−i) as follows:

pi(xi, x−i) =
∫ ∞

xi

f
hf

i,i

(
x; mi,i, ωi,i

)
gi

(
pia2

i,ix
2

γ0
− σ 2

0 , x−i

)

dx.

(26)

From (26), we can see that the decision-making behaviors of
the agents interact with each other via the coupled wireless
interference function.

In addition, note that [(pia2
i,ix

2)/(γ0)] −σ 2
0 ≥ 0 in (26). We

can obtain a lower bound on the offloading decision of agent
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i, xlower
i , as follows:

xi ≥ xlower
i =

√√√√γ0σ
2
0

pia2
i,i

. (27)

D. Global Optimization Model for Task Offloading

Taking into account the queueing dynamics and the cou-
pled wireless interference among the interactive agents, we
can derive the expected successful offloading rate (i.e., the
expected offloading throughput successfully completed by the
agent), Ri(xi, x−i), of any agent i ∈ I as follows:

Ri(xi, x−i) = λi
[
1 − qi(xi) − (1 − qi(xi))pi(xi, x−i)

]
(28)

where the offloading decision xi is within [xlower
i , xupper

i ]. Let
Xi denote the bound constraint on each offloading decision
xi, i.e., Xi � [xlower

i , xupper
i ]. The feasible space for the deci-

sion profile of all the agents is denoted by X �
∏N

i Xi. We
formulate an optimization model for maximizing the global
expected successful offloading rates of the agents as follows:

P: max
x

J(x) =
N∑

i=1

Ri(xi, x−i)

s.t.

{
x = (xi)i∈I
x ∈ X .

(29)

We remark from (29) that the system model jointly takes
into account the coupled impacts of the physical-layer trans-
mission error rate and the upper layer packet loss probability,
which allows a QoS-oriented optimization design to be real-
ized for the agents. The box constraints in the optimization
model are also proposed according to the queueing dynamics
and the coupling interference condition, such that a nonempty
feasible solution space can be guaranteed.

IV. DISTRIBUTED TASK OFFLOADING OPTIMIZATION

In this section, we transform the original system model (29)
into a game-theoretic formulation in order to develop a dis-
tributed low-complexity multiagent algorithm. The key idea is
to enable agents to self-organize the allocation of the avail-
able spectral resource without the assistance of a centralized
control by exploiting the game-theoretic approach. We first
analyze the structural properties of the primal problem from
the game-theoretical perspective and then propose a distributed
best response algorithm for task offloading optimization of
the agents, in which an augmented Lagrangian optimization is
proposed and embedded to solve the individual optimization
problem of each agent.

A. Game-Theoretical Model and Nash Equilibrium Analysis

From the game-theoretical sense, the original problem
can be easily modeled as the following individual utility
maximization problem, i.e., a normal game formulation, which
is naturally suitable for the distributed computation:

G1: max
xi∈Xi

Ri(xi, x−i) ∀i ∈ I. (30)

However, it is difficult to directly analyze the game-theoretical
properties from G1 due to the fact that the individual objective
function (i.e., its individual utility function) is highly nonlin-
ear, and neither nonconvex nor nonconcave with respect to the
continuous individual decision xi and the joint decisions x−i.
To address this challenge, we transform our analysis viewpoint
from the threshold-based optimization to the strategy-based
optimization. That is, we note that each agent can only take
two different decision actions, i.e., to offload or not offload its
task in a time slot. Thus, rather than treating the thresholds xi

(i ∈ I) as the decision variables to be optimized, we consider
to optimize the strategy of each agent, i.e., the selection proba-
bility distribution over the finite decision actions of each agent.
In fact, from (4), the probability of agent i deciding to offload
a task can be denoted by μi, and the probability of deciding
not to offload a task is 1 − μi. Once an optimal offloading
probability μ∗

i can be obtained, an optimal threshold x∗
i can

also be uniquely determined by solving the univariate equation
x∗

i = argxi
{μ∗

i − μi(xi) = 0}. Therefore, denoting the policy
of agent i by πi � (μi, 1−μi), we can equivalently transform
G1 to another game formulation G2

G2: max
πi∈[0,1]2

Ri(πi,π−i) ∀i ∈ I (31)

where Ri(πi,π−i) is the counterpart of Ri(xi, x−i) and it
denotes the expected successfully offloading rate of agent i
with respect to its own decision policy πi when given the pol-
icy profile of the other agents π−i, i.e., π−i = ∏

j∈I\{i} πj.
Based on G2, we obtain the following results.

Lemma 1 (Existence of Mixed Strategy): For any finite
game, there exists at least a mixed-strategy Nash equilibrium.

Proof: This lemma follows John Forbes Nash’s famous
theory, in which every finite game must have at least a (mixed-
strategy) Nash equilibrium while not all the games have pure-
strategy Nash equilibria.

Lemma 2: For the finite game G2, there do not exist pure-
strategy Nash equilibria.

Proof: We prove this lemma by contradiction as follows.
First, we assume that there exists at least a pure-strategy Nash
equilibrium. According to the definition of a pure-strategy
Nash equilibrium, it must hold in the pure-strategy Nash equi-
librium that μi ∈ {0, 1} for all i ∈ I. Thus, we can observe
two situations.

1) If at least an agent, for instance i ∈ I, sets μi = 0 in
the pure-strategy Nash equilibrium, indicating that this
agent decides not to offload its task at all, its received
utility is then zero, i.e., Ri(πi,π−i) = 0. This means that
agent i cannot get any benefit from the game. But, in
fact, it can get a nonzero utility Ri(πi,π−i) as long as it
unilaterally changes its action, i.e., deciding to offload
tasks. At this point, the system does not reach the Nash
equilibrium, which is contrary to the assumption.

2) Otherwise, all the agents can only set their offloading
probabilities to 1 in the pure-strategy Nash equilibrium,
i.e., μi = 1 for all i ∈ I. This indicates that all the agents
decide to transmit all the time. In such a situation, the
multiagent system will have the worst communication
performance because the wireless coupled interference
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is the most intensive. Namely, the interference If
i (x−i)

attains its maximum level for each i. In this state, as
long as a small fraction of the agents change to keep
silent at certain time slots, i.e., deciding not to trans-
mit, the agents can improve its offloading performance.
Thus, this state is not a Nash equilibrium, which is also
contrary to the assumption.

To sum up, the contradiction always exists in the pure-
strategy Nash equilibrium. Therefore, the game G2 cannot have
a pure-strategy Nash equilibrium.

Theorem 1: For the finite game G2, there must exist at least
a Nash equilibrium and all its Nash equilibria can only be
mixed-strategy.

Proof: The theorem follows Lemmas 1 and 2.

B. Distributed Best-Response Iterative Framework

In game theory, a Nash equilibrium point is always in
coincidence with the fixed point of a best-response mapping.
Based on this fact and Theorem 1, we can design a dis-
tributed best-response (DBR) iterative framework to compute
the mixed-strategy Nash equilibrium solution. Namely, con-
sidering the connection between G1 and G2, we are allowed to
solve a specific point x∗ corresponding to the mixed-strategy
Nash equilibrium π∗ by the best response method. We denote
by k ∈ Z+ the iteration. Let x∗

i [k] be the optimal offloading
decision of agent i and x∗−i[k] the optimal offloading decision
profile of the others at iteration k. The maximum iteration
number of agent i is specified as maxIteri. The proposed DBR
framework is detailed in Algorithm 1. To be specific, to com-
pute the best response, each agent i first needs to estimate the
statistics on the physical-layer interference, i.e., the parameters
ki(x∗−i) and θi(x∗−i), which are related to the others’ deci-
sions x∗−i. Importantly, this can be realized locally without
any information exchange among the global agents. In reality,
each agent i can track the physical-layer interference experi-
enced in a series of successive time slots and then estimate
the statistics parameters by using the interference measures.
In this manner, the agents only need to solve their individ-
ual optimization locally as in Algorithm 1. Thus, they are
enabled to make offloading decisions in a parallel and sepa-
rate manner and collaborate with each other. In addition, Fig. 1
shows how each source agent can make offloading decisions
based on our proposed method in a distributed manner in an
exemplary application scenario with D2D communications. In
Fig. 1, the source agents compute their own optimal thresh-
olds for offloading decision making in parallel based on an
embedded ULO scheme, which is detailed in the following
section.

C. Individual Offloading Optimization Scheme

As shown in Algorithm 1, it is important to obtain an
optimal offloading decision x∗

i [k] at each k for each agent
i ∈ I. To address the local optimization problem (32) regard-
ing its nonlinearity and nonconvexity, we aim at developing
a local optimization scheme. Specifically, for any i ∈ I, we
first transform the bound constraint xi ∈ Xi to two inequalities
bi,1(xi) = xi − xlower

i ≥ 0 and bi,2(xi) = xupper
i − xi ≥ 0 and let

Algorithm 1: DBR Framework for Multiagent Offloading
Optimization

/* Initialization */
1 Set iteration k = 0 and uniformly and randomly select

x∗
i [k] ∈ Xi for all i ∈ I.
/* Loop for iterations by each agent

i ∈ I */
2 while k ≤ maxIteri for each i ∈ I do

/* Sense the channel quality */
3 Estimate ki(x∗−i[k]) and θi(x∗−i[k]) via tracking the

experienced interference locally.
/* Do best response */

4 Solve the optimal individual decision x∗
i [k + 1]

x∗
i [k + 1] ∈ arg max

xi∈Xi

{
Ri(xi, x∗−i[k])

}
. (32)

/* Update iteration */
5 set k = k + 1.

bi(xi) = [bi,1(xi), bi,2(xi)]T. Then, we can derive the following
result.

Theorem 2: For any i ∈ I, let x∗
i is an optimal point for

the following unconstrained optimization problem G3. x∗
i is

also an optimal point for the individual offloading optimization
problem G1 in (30)

G3 : min
xi,wi

: φi(xi, wi, σi) (33)

where wi represents wi = [wi,1, wi,2]T, which are the
Lagrangian multipliers; σi ∈ R+ is a sufficiently large real
parameter; φi(xi, wi, σi) is defined as

φi(xi, wi, σi) � −Ri(xi, x−i) + 1

2σi

2∑

l=1

(
g2

i,l

(
xi, wi,l, σi

)− w2
i,l

)
.

(34)

The auxiliary function gi,l(xi, wi,l, σi) (l = 1, 2) is given by

gi,l
(
xi, wi,l, σi

) = max
{
0, wi,l − σibi,l(xi)

}
. (35)

Proof: To prove the theorem, we construct the aug-
mented Lagrange function. To achieve this, we first trans-
form the problem G1 into the following equality-constrained
minimization problem by introducing two auxiliary variables
yi,l ∈ R, l = 1, 2:

min
xi,yi

: −Ri(xi, x−i)

s.t. bi,l(xi) − y2
i,l = 0, l = 1, 2. (36)

From the optimization above, we can construct the augmented
Lagrangian function with the multipliers wi and the penalty
parameter σi as follows:

L(xi, yi, wi, σi
) = −Ri(xi, x−i) −

2∑

l=1

wi,l

(
bi,l(xi) − y2

i,l

)

+ σi

2

2∑

l=1

(
bi,l(xi) − y2

i,l

)2
(37)
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where yi = [yi,1, yi,2]T. Using this augmented Lagrangian
function, the problem in (36) can be equivalent to an uncon-
strained optimization with additional decision variables yi

min
xi,yi

: L(xi, yi, wi, σi
)
. (38)

Next, we are allowed to solve (38) with respect to yi for
obtaining the optimal y∗

i . Specifically, we can rearrange the
augmented Lagrangian function L(xi, yi, wi, σi) as

L(xi, yi, wi, σi
) = −Ri(xi, x−i)

+
2∑

l=1

{
σi

2

[
y2

i,l − 1

σi

(
σibi,l(xi) − wi,l

)]2

−w2
i,l

2σi

}

. (39)

From this result above, we can find that when fixing xi, wi, σi,
the augmented Lagrangian function can attain its minimum
value in two situations with respect to yi

y2
i,l =

{
(σibi,l(xi)−wi,l)

σi
, if σibi,l(xi) − wi,l ≥ 0

0, if σibi,l(xi) − wi,l < 0.
(40)

Combining (39) and (40) then results in the new objective
function as given in (34). As thus, the theorem is proven.

In addition, substituting (40) into the equality constraint
in (36) can get

hi,l
(
xi, wi,l

) = bi,l(xi) − y2
i,l = min

(
wi,l

σi
, bi,l(xi)

)
(41)

for l = 1, 2. Thus, we can define

hi(xi, wi) = [
hi,1(xi, i, 1), hi,2

(
xi, wi,2

)]T (42)

for simplicity. Now, based on Theorem 2, we propose an ULO
scheme to obtain the individual optimal decision x∗

i [k + 1] for
each i ∈ I, which is embedded in the DBR framework in
Algorithm 1. Let a tolerant error be ε > 0, two constants be
r > 1 and η ∈ (0, 1). The iteration for solving G3 is indexed
by k′ ∈ Z+. The ULO scheme is summarized in Algorithm 2.

D. Complexity Analysis

This section is devoted to the complexity analysis on the
proposed DBR algorithm (Algorithm 1) with the individual
constrained nonlinear optimization (Algorithm 2) in the worst
case. As can be seen, thanks to the distributed computation
paradigm, the most computational cost is incurred only by per-
forming Algorithm 2 locally and independently at each agent.
For Algorithm 2, let the upper bound of the Lagrangian penalty
parameter σi for any agent i ∈ I be σ

upper
i , i.e., σi ≤ σ

upper
i for

all k′, and the initial penalty is denoted by σ
(0)
i . Thus, the num-

ber of iterations, denoted by Nσi , such that the penalty under
the update σ

(k′+1)
i = rσ (k′)

i as in Algorithm 2 is bounded above

by σ
(Nσi )

i = rNσi σ
(0)
i ≤ σ

upper
i , i.e.,

Nσi ≤
log2

(
σ

upper
i

σ
(0)
i

)

log2(r)
. (43)

Algorithm 2: ULO for Individual Offloading Optimization
Input: The previous offloading decision x∗

i [k].
Output: The current offloading decision x∗

i [k + 1].
/* Initialization */

1 Set x(0)
i = x∗

i [k] and initialize an estimate on w(1)
i .

2 Set k′ = 1 and set a while-loop flag FLAG = TRUE.
/* While loop for iterations by each agent

*/
3 while FLAG is TRUE do

/* Solve the unconstrained optimization
*/

4 Solve x(k′)
i = argmin φi(xi, w(k′)

i , σi) with initialization at

the previous point x(k′−1)
i .

/* Check the stopping condition */

5 if ‖hi(x
(k′)
i , w(k′)

i )‖ ≤ ε then
6 Set FLAG = FALSE.

/* Adapt the penalty parameter */

7 if
‖hi(x

(k′)
i ,w(k′)

i )‖
‖hi(x

(k′−1)
i ,w(k′−1)

i )‖
≥ η then

8 Update σi = rσi.

/* Update the Lagrangian multipliers */

9 Update w(k′+1)
i,l = gi,l(x

(k′)
i , w(k′)

i,l , σi) for l = 1, 2.
10 Set k′ = k′ + 1.

11 Return x∗
i [k + 1] = x(k′)

i .

Indeed, the right term of (43) is also the bound
for the number of iterations at which the condition
[‖hi(x

(k′)
i , w(k′)

i )‖/‖hi(x
(k′−1)
i , w(k′−1)

i )‖] ≥ η does hold.
Similarly, due to the continuity of bi(xi), the compact-

ness of the closed domain Xi of xi, and the bound-
edness of the Lagrangian multipliers wi, there exists an
upper bound for ‖hi(x

(k′)
i , w(k′)

i )‖ for all k′. Let such an
upper bound be εupper. Therefore, if Algorithm 2 per-
forms at least Nε consecutive iterations during which
[‖hi(x

(k′)
i , w(k′)

i )‖/‖hi(x
(k′−1)
i , w(k′−1)

i )‖] ≥ η dose not
hold, i.e.,

∥∥∥hi

(
x(

N′
ε)

i , w(N′
ε)

i

)∥∥∥ ≤ ηNε

∥∥∥hi

(
x(0)

i , w(0)
i

)∥∥∥ ≤ ε (44)

the upper bound of Nε can be derived by

Nε ≤
log2

(
ε∥

∥
∥hi

(
x(0)

i ,w(0)
i

)∥∥
∥

)

log2(η)
≤ log2

(
ε

εupper

)

log2(η)
. (45)

Combining the results of (43) and (45), we can obtain the
complexity of Algorithm 2 for convergence in the worst case
as follows:

O

⎛

⎜⎜
⎝

log2

(
σ

upper
i

σ
(0)
i

)

log2(r)
× log2

(
ε

εupper

)

log2(η)

⎞

⎟⎟
⎠. (46)

In addition, Algorithm 2 involves solving an unconstrained
nonconvex univariate optimization (33). Hence, we can let
cε−χ be the upper bound of the number of iterations and evalu-
ations that are needed by a specific unconstrained optimization
algorithm to obtain an ε-precision on the first-order optimality
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condition of (33) at each k′, i.e., ‖�xiφi(xi, w(k′)
i , σi)‖ ≤ ε. The

parameters c and χ depend on the adopted algorithm and the
characteristics of the targeted problem. For example, as shown
in [45], the steepest descent method usually requires O(ε−2)

iterations for solving an unconstrained nonconvex optimization
with ε-precision, while the complexity bound of the cubically
regularized Newton methods can be O(ε−3/2). Hence, based
on (46) and recalling the given maximum number of iterations
in Algorithm 1, maxIteri, the worst-case complexity bound
of each agent i’s optimization computation in Algorithm 1 is
approximated by

O

⎛

⎜⎜
⎝maxIteri × cε−χ ×

log2

(
σ

upper
i

σ
(0)
i

)

log2(r)
× log2

(
ε

εupper

)

log2(η)

⎞

⎟⎟
⎠. (47)

From (46) and (47), it is seen that the complexity bounds
mainly depend on the optimality tolerance ε. Moreover, notic-
ing that log2(ε

−1) ≤ ε−1 for ε ∈ (0, 1), (47) is also bounded
above by O(Cε−(χ+1)) where C is related to the other algorith-
mic parameters except ε in (47). The above results indicate that
the algorithm is approximately of the polynomial complexity
with respect to the optimality precision ε.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
distributed offloading optimization and compare it with several
other representative methods by simulation experiments.

A. Simulation Setup

For the sake of implementing a consistent comparison,
we consider a computation offloading scenario with size of
300 m×300 m, where multiple pairs of source agents and their
destinations are uniformly distributed. The offloading distance
between the source and the destination is randomly selected
from the range [10, 100] (m). The average received power ωi

for each agent i is normalized to 1, while the fading chan-
nel parameters mi,i or mj,i are considered to depend on the
link distance as from [37]. The numerical results are obtained
with setting α = 3.0, pi = 23 dBm, and σ 2

0 = −96 dBm.
The SINR threshold is set to a typical value as γ0 = 10,
the traffic intensity constraint is ρupper = 0.9, and the unit
time slot is �τ = 5 ms. The algorithm related parameters
are set by maxIteri = 20, ε = 10−4, η = 0.5, r = 10,
σ

(0)
i = 3.0, and the Lagrangian multipliers are initialized as

w(0)
i = [0, 0]T. It is remarked that the subproblem (33) is an

univariate unconstrained optimization which can be efficiently
solved by using many existing numerical optimization algo-
rithms like Newton’s methods. All the simulation experiments
are carried out on a 2.2-GHz Intel Core i7-8750H CPU with
8-GB RAM. The other system model parameters, such as the
number of the source agents N, the available channel num-
ber M, the task arrival rate λi, the sojourn time threshold βi,
and the queue capacity Ki, will be varied to simulate different
scenario conditions for performance comparison.

Besides, we would like to compare our DBR method,
denoted by “DBR,” with a centralized global optimization

Fig. 6. Evolution of the individual expected successful offloading rate
Ri(xi, x−i) for each agent i.

method based on swarm intelligence, i.e., the centralized
particle swarm optimization method (PSO), and with other
three distributed methods, including the distributed stochas-
tic learning method (DSL), the distributed dual-decomposition
method (DDD), and the distributed aggressive policy-based
method (DAP). To be specific, we implement the central-
ized global PSO as a performance benchmark to solve the
primal system model P given in (29). The DSL and the
DDD are two well-known representative solutions, which are
based on two different methodologies, i.e., game theory and
dual optimization theory, respectively. They have been widely
adopted in the field of computation offloading as in [21]–[23].
The agents with the DSL use their individual expected offload-
ing rate as a reinforcement signal to learn the probabilities
of properly selecting the offloading action and the keeping-
silent action and then make offloading decisions according
to the action selection probabilities in a distributed manner.
With the DDD, the primal problem P is transformed into a
dual optimization formulation that is further solved by using a
distributed subgradient-descent algorithm. With the aggressive
policy-based method, the agents decide to offload their tasks
all the time.

B. Global Convergence and Optimality

To demonstrate the validity of the proposed method in
terms of convergence and optimality, we perform the simu-
lation experiment with N = 10, M = 10, λi = 100 packets/s,
βi = 50 ms, and Ki = 20 for all i. In Fig. 6, the individual
expected successful offloading rate Ri(xi, x−i) of each agent i
is shown varying with the individual iteration. As observed,
the agents can converge to a steady state by only performing
a few iterations, which is a Nash equilibrium since no one can
improve its individual performance by unilaterally changing its
offloading decision. Moreover, we compare our method with
the centralized PSO method in term of the decision-making
evolution in Fig. 7. From this figure, it can be seen that the
proposed DBR can well approximately converge to the deci-
sion solution in the steady state as obtained by the centralized
PSO. Besides, Fig. 7 also shows that our method only requires
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Fig. 7. Evolution of the individual offloading decision xi.

Fig. 8. Evolution of the global performance.

a fewer number of individual iterations than the centralized
optimization. The main reason is that the centralized PSO
needs to search the solution space in a stochastic optimization
manner in an early iteration stage to avoid converging to a
local minimum. In Fig. 8, we compare the global performance
of our proposed method with the centralized PSO. Fig. 8
illustrates that the final system-wide performance achieved by
our method is about 879.167 packets/s, which is quite closed
to the global optimal performance (about 879.988 packets/s)
achieved by the centralized PSO while our method can con-
verge more faster than the centralized PSO. Additionally, we
also carry out the other methods in this experiment and Fig. 9
compares the global performance of these different methods.
It can be seen that the global performance of our method is
the closest to the global optimality provided by the centralized
PSO and our method can achieve about 27.29% and 27.56%
improvement over the DSL and the DDD methods, respec-
tively. The DAP method has the worst performance since it can
incur sever wireless coupled interferences among the agents.

C. Global Performance Comparison

In the section, we compare our method with the central-
ized PSO and the other three distributed methods, i.e., DSL,

Fig. 9. Performance comparison among different methods.

DDD, and DAP, under different situations to demonstrate the
advantage of our method from a comprehensive perspective.

1) Social Welfare Comparison: For the comparison of
the social welfare under different methods, we first present
the performance metric reflecting the social welfare in the
multiagent computation offloading network. According to
game theory, the social welfare of players is defined as the
overall net benefit gained by the players from a game, which
can be formulated as the difference between the total pay-
offs received by the players and the total cost incurred in
their game [46], [47]. In our targeted scenario, the individ-
ual payoff utility is directly related to the benefit gained by
each agent from the offloading game, i.e., his expected suc-
cessful task offloading rate Ri(xi, x−i), and the load demand
from the application layer, i.e., his average task arrival rate
λi. Let Ui(xi, x−i) be the agent i’s payoff utility. Thus, we
formulate Ui(xi, x−i) by

Ui(xi, x−i) = Ri(xi, x−i)

λi
, i = 1, . . . , N. (48)

On the other side, according to [46] and [47], the incurred
cost of each agent in the offloading game can be formulated
as a quadratic function of his power consumption. Denote the
agent i’s transmission power by Pi, and the coefficients of the
quadratic cost function by ci,1, ci,2, ci,3. The individual cost
function can be expressed as follows [46], [47]:

Ui(xi, x−i) = Ci(Pi) = ci,1P2
i + ci,2Pi + ci,3. (49)

By combining the above individual payoff (48) and the indi-
vidual cost (49), the overall social welfare of the multiagent
network, denoted by SW, is represented as

SW =
∑

i∈I
Ui(xi, x−i) −

∑

i∈I
Ci(Pi). (50)

We set the transmission power Pi = 23 dBm, the average
task arrival rate λi = 100 packets/s, and the cost coefficients
ci,1 = ci,2 = ci,3 = 10−3 for all i ∈ I for the sake of
performance comparison. The social welfare results obtained
by different methods under different numbers of agents are
shown in Fig. 10. As can be seen, the social welfare metric
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Fig. 10. Social welfare comparison under different agent numbers.

Fig. 11. Performance comparison under different agent numbers.

is decreased along with increasing the agent number, which is
due to the fact that more agents result in severer resource com-
petition and higher communication interference. However, our
proposed method, DBR, can still achieve a comparable social
welfare with the centralized optimization, PSO. The average
social welfare gap between our DBR result and the central-
ized optimization result is about 0.0981%. More importantly,
our method can significantly outperform the other distributed
methods, DSL, DDD and DAP. Specifically, the average social
welfare obtained by our method is about 69.49%, 37.58%, and
109.30% higher than that of DSL, DDD, and DAP methods,
respectively.

2) Impact of Agent Number: For performance comparison,
we first vary the number of the agents N from 3 to 29 while the
other parameters are fixed as in Section V-B. In this situation,
Fig. 11 shows the variation of the global performance of dif-
ferent methods under different agent numbers. As can be seen,
the global performance, i.e., the sum of the overall individual
expected successful offloading rate, can increase along with
increasing the number of the agents in both the proposed DBR
and the centralized PSO methods. Besides, our distributed
method can achieve the performance very closed to that of the
centralized PSO. The performance gap between the DBR and

Fig. 12. Performance comparison under different task arrival rates.

the centralized PSO is about 0.0969% on average. On the other
side, the other distributed methods including DSL, DDD and
DAP perform worse than DBR. In particular, the performance
of DDD and DAP slightly degrades when the agent number
increases from 21 to 29. The main reason is that increasing
the number of agents will potentially promote the intensity of
channel contention and wireless interference since the chan-
nel resource is limited. The proposed DBR can coordinate the
decision-making behaviors of the agents in a distributed man-
ner and thus can achieve higher global performance, while
the other distributed methods cannot deal with the increased
interference well and results in a larger performance loss.

3) Impact of Task Arrival Rate: To show the impact of
the task arrival rate λi on the system performance, we let λi

increase from 10 packets/s to 170 packets/s with an increasing
step of 20, and then fix the agent number N = 10. The other
parameters are set the same as in Section V-B. The results
of different methods are compared in Fig. 12, which demon-
strates that increasing λi can increase the global objective
function value J(x). However, when λi exceeds 140 packets/s,
the system performance will slightly degrade, since the amount
of arriving packets that are lost due to the lack of enough queue
space will increase. Fig. 12 also illustrates that our method can
approximate the global optimal performance of the centralized
PSO very well, while there exists a much greater performance
gap between each of the other distributed methods, i.e., DSL,
DDD, and DAP, and the centralized method. Specifically, DBR
improves the global expected successful offloading rate by
about 42.80% and 27.58% on average when compared to DSL
and DDD, respectively.

4) Impact of Channel Number: In Fig. 13, we compare the
proposed DBR with the other methods under different num-
bers of channels. In this situation, M is set to [1, 3, 5, 7, 9, 10],
respectively, while let N = 10 and λi = 100 packets/s for all
i. As can be seen, the number of available channels increases
can promote the global system performance since the avail-
able spectrum resource increases. The wireless interference
and channel contention can be relieved to improve the success-
ful offloading rate. By comparison, the global performance of
DBR is higher than that of DSL, DDD, and DAP by about
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Fig. 13. Performance comparison under different channel numbers.

Fig. 14. Performance comparison under different sojourn thresholds in the
queue.

44.87%, 25.51%, and 61.29% on average, respectively. The
performance gap between DBR and the centralized PSO is
about 0.1068% on average. This fact implies that our proposed
method can perform better than DSL, DDD, and DAP in the
offloading network no matter with sufficient or insufficient
spectrum.

5) Impact of Maximum Sojourn Time: The different meth-
ods are also compared under different queueing dynamics
situations where the sojourn time threshold βi is varied from
5 ms to 100 ms in Fig. 14. The channel number is fixed
at M = 5, and the other parameters are set according to
Section V-C4. In Fig. 14, a larger value of βi, usually imply-
ing a higher patience for waiting in the queue, will reduce the
probability that an new incoming task is removed from the
offloading queue and delivered for the local computation rather
than for the remote edge computation. With different βi, our
method can outperform the other three distributed methods,
DSL, DDD, and DAP, by the global performance improvement
of about 48.81%, 41.33%, and 62.10% on average, respec-
tively. Additionally, the performance gap between our method
and the centralized PSO is about 0.0839% on average.

Fig. 15. Performance comparison under different buffer capacities.

6) Impact of Buffer Capacity: In Fig. 15, we finally com-
pare our method with the other methods under different buffer
capacities Ki. The parameter Ki increases from 5 to 100, and
we set βi = 50 ms, while the other parameters are fixed as
in Section V-C5. It is shown from Fig. 15 that the capac-
ity of the buffer will have a slight impact on the offloading
performance when Ki > 20. The main reason is that a larger
buffer can cache more tasks to mitigate the transmission col-
lision in the same channel. In fact, when the capacity of
the queueing system approaches a sufficiently large level,
e.g., being infinity, the system can approximately boil down
to an M/M/1/∞ queueing model. In such a situation, the
probability of the actual sojourn time exceeding the given
threshold, qi(xi), will be approximately a simple exponential
function that only depends on the sojourn time threshold βi,
the offloading rate φi(xi), and the task arrival rate λi, i.e.,
qi(xi) → exp(−(φi(xi) − λi)βi) with Ki → ∞. Therefore,
the global system performance will be approximately steady
with increasing the buffer capacity Ki as shown in Fig. 15.
Nevertheless, our proposed method can achieve comparable
global optimality when compared to the centralized PSO.
The performance gap between our method and the central-
ized PSO is about 0.0952% on average. Besides, our method
can outperform the other three distributed methods, the global
performance of which is higher than DSL, DDD, and DAP by
about 42.64%, 27.83%, and 64.78% on average, respectively.

VI. CONCLUSION AND FUTURE WORK

In this article, we have investigated the task offloading
optimization of a multiagent interference-coupled and queue-
aware network. We formulate the problem as a distributed
offloading threshold optimization model to maximize the
expected successful offloading rate of the agents under a set of
bound constraints, which takes into consideration the coupled
wireless interference in the physical layer and the queueing
dynamics in the application layer. Stochastic models have been
proposed to capture these effects. To address the distributed
optimization problem, we have presented a game-theoretic
analysis and then developed a DBR frame with the integration
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of an individual programming scheme. We have theoretically
transformed the constrained nonlinear optimization of each
agent into an ULO model such that we can propose the
individual programming scheme, which enables the agents
to locally and independently optimize their objective func-
tions. Additionally, the agents can cooperate via decision
feedback, such that they can approach the global system opti-
mum. Finally, we conduct a series of simulation experiments
to validate the effectiveness of our proposed method and
demonstrate that our method can achieve comparable global
performance compared to the centralized PSO optimization
method and significantly outperform the other distributed
methods including the distributed stochastic learning, the
distributed dual-decomposition, and the aggressive policy-
based methods. We are currently developing a CAV testbed
which allows the implementation of the proposed distributed
algorithm to enhance vehicular computation offloading via
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications. As the future work, we expect to model and
incorporate the energy-efficiency and computing-reliability
optimization into the distributed offloading decision-making
model, and extend the interference-coupled queue-aware edge
computing network to heterogeneous systems.
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