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Digital Twin-Empowered Network Planning
for Multi-Tier Computing
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Abstract—In this paper, we design a resource manage-
ment scheme to support stateful applications, which will
be prevalent in sixth generation (6G) networks. Different
from stateless applications, stateful applications require
context data while executing computing tasks from user
terminals (UTs). Using a multi-tier computing paradigm
with servers deployed at the core network, gateways,
and base stations to support stateful applications, we
aim to optimize long-term resource reservation by jointly
minimizing the usage of computing, storage, and commu-
nication resources and the cost of reconfiguring resource
reservation. The coupling among different resources and
the impact of UT mobility create challenges in resource
management. To address the challenges, we develop
digital twin (DT) empowered network planning with two
elements, i.e., multi-resource reservation and resource
reservation reconfiguration. First, DTs are designed
for collecting UT status data, based on which UTs are
grouped according to their mobility patterns. Second, an
algorithm is proposed to customize resource reservation
for different groups to satisfy their different resource
demands. Last, a Meta-learning-based approach is de-
veloped to reconfigure resource reservation for balancing
the network resource usage and the reconfiguration cost.
Simulation results demonstrate that the proposed DT-
empowered network planning outperforms benchmark
frameworks by using less resources and incurring lower
reconfiguration costs.
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I. INTRODUCTION

The sixth generation (6G) networks are expected to support
a wide range of computing applications[1]. A large por-

tion of these applications are stateful, meaning that context
data is required to execute computing tasks[2,3]. For example,
augmented reality applications require volumetric media ob-
jects or holograms, as the context data, to process video seg-
ments for user terminals (UTs). The prevalent mobile edge
computing (MEC) paradigm provides a solution to support-
ing computing applications with low offloading delay but has
limitations in supporting stateful applications[4]. Specifically,
edge servers close to UTs generally have limited storage ca-
pacity to store all context data of stateful applications. More-
over, even if the context data could be fully stored at an edge
server, limited communication coverage and a relatively small
number of UTs served by the edge server would degrade stor-
age resource utilization.

To address the above limitations, both the industry and
the academia have started looking into the collaboration of
servers[5,6]. Extending from MEC, multi-tier computing in-
tegrates multiple servers deployed at the core network, gate-
ways, access points, and other locations in the network for ex-
ecuting computing tasks from UTs. Servers at different tiers
have diverse features in terms of resource capacity and service
coverage[7]. Specifically, servers deployed at the core network
and gateways have larger service coverage and more abundant
resources than servers deployed at access points. Through co-
ordinating servers at different tiers, multi-tier computing can
exploit different features of servers to support computing ap-
plications, especially the stateful ones, in the era of 6G.

Network planning, as an important part of network man-
agement, can facilitate the coordination of servers at differ-
ent tiers. Network planning consists of resource reservation
and resource reservation reconfiguration[1]. Resource reserva-
tion refers to proactively reserving network resources for sat-
isfying the upcoming resource demands from UTs. Resource
reservation reconfiguration refers to timely updating resource
reservation decisions to adapt to time-varying resource de-
mands and dynamic network environments. Network plan-
ning for supporting stateful applications faces four challenges.
First, the reservation of computing, storage, and communi-
cation resources for stateful applications is tightly coupled,
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yielding existing resource reservation solutions for supporting
stateless applications inapplicable. Second, the requests for
context data may vary across a network, rendering both com-
puting task assignment and storage resource reservation de-
pendent on specific servers and UT mobility patterns. Third,
information regarding individual UT status, e.g., UT mobility,
is unavailable at the time of network planning, yet such UT-
level information can be useful for accurately calculating the
amount of network resources needed for supporting stateful
applications[8]. Fourth, reconfiguring computing and storage
resource reservation for stateful applications in a dynamic net-
work environment yields additional costs due to computing
service interruption, which complicates resource reservation
reconfiguration[9]. Addressing the above challenges is impor-
tant to accurate and adaptive network planning for supporting
stateful applications in 6G.

Recently, the digital twin paradigm has started attracting at-
tention as a potential solution to advancing network manage-
ment for 6G[10]. The concept of digital twins (DTs) originates
from product life-cycle management in industry, where a DT
is a synchronized virtual replica of a physical object[11,12]. For
6G networks, DTs can be introduced to represent individual
UTs. Each DT consists of a UT data profile that describes
the corresponding UT, including the UT’s mobility, service
demands, and quality of service (QoS) satisfaction, and DT
functions for data acquisition, processing, and analysis[10].
The introduction of DTs brings three benefits to network plan-
ning. First, historical data contained in DTs can be used to
predict UT status in the upcoming time interval, which can, in
turn, facilitate customized resource reservation for highly di-
versified UTs and enable fine-grained network planning. Sec-
ond, data indicating the performance of network planning can
be collected based on DTs, which can provide a foundation
for resource reservation reconfiguration in network planning
to adapt to a highly dynamic network environment. Third,
DTs should acquire extensive and well-organized data that
can be used to explore and exploit hidden network character-
istics, thereby facilitating effective data-driven network plan-
ning approaches to enhancing network performance. Due to
the above benefits, DTs can be exploited and designed to im-
prove the granularity, adaptivity, and intelligence of network
planning in 6G.

In this paper, we design a network planning scheme for
supporting a stateful application in the scenario of multi-tier
computing. Our research objective is to find out the min-
imum amount of network resources (including computing,
storage, and communication) needed for supporting the ap-
plication and also balance the resource usage and the cost
of resource reservation reconfiguration in a dynamic network
environment. To achieve this objective, we propose a DT-
empowered network planning framework with the following
two elements: group-based multi-resource reservation and

closed-loop resource reservation reconfiguration. First, we de-
sign DTs for individual UTs to characterize their status and
group them based on their mobility patterns. We propose
an algorithm based on matching theory and particle swarm
optimization to address the coupling relation among com-
puting, storage, and communication in resource reservation.
The proposed method enables customized resource reserva-
tion for satisfying different resource demands of UT groups
with different mobility patterns. Second, we develop a meta-
learning-based approach for resource reservation reconfigura-
tion to cope with the dynamic network environment. The main
contributions of this paper are the followings.
• We propose a novel network planning framework to fa-

cilitate fine-grained resource reservation based on UT data
contained in DTs.
• We address a challenging multi-resource reservation

problem for supporting stateful applications in multi-tier com-
puting.
• We develop an automated closed-loop approach to re-

configure resource reservation in a dynamic network environ-
ment for balancing the network resource usage and the cost of
reconfiguring resource reservation.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related studies. Section III
describes the considered network scenario, the proposed DT-
empowered framework, and the system model. Section IV
formulates the network planning problem for multi-tier com-
puting. Sections V and VI introduce the proposed solutions
for resource reservation and resource reservation reconfigura-
tion, respectively. Section VII presents the simulation results,
followed by the conclusion and future work in section VIII.

II. RELATED WORK

Network resource management is conducted in both short-
term and long-term[1]. Short-term resource allocation in the
operation stage relies on real-time information on individual
UTs, such as UT locations, and targets real-time UT satisfac-
tion. By contrast, long-term resource reservation in the plan-
ning stage is based on aggregated information of UTs, such as
the number of UTs covered by an access point, and focuses
on network performance, such as resource utilization over a
relatively long time period, ranging from several minutes to
hours[13,14].

Most works on real-time resource allocation focus on com-
puting task offloading and service placement, among which
many consider one-tier computing such as cloud computing
or MEC[15-19]. Based on the real-time computing task ar-
rival of each UT, decentralized and centralized communica-
tion and computing resource allocation approaches are pro-
posed to minimize the delay of computing task offloading and
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executing in cloud computing and MEC, respectively[15,16].
Service placement is studied in MEC based on the real-time
UT location and the type of service required by each UT to
maximize the number of UTs that can be severed under each
edge server’s resource capacity[17,18]. Some works focus on
resource allocation for multi-tier computing[20-24]. Comput-
ing resources on fog nodes and the cloud server are allocated
to UTs at different locations to satisfy the delay requirements
of their computing tasks[20]. Li et al. investigate a service
placement approach for cloud and edge computing to sat-
isfy each UT’s computing demands[21]. Given that the same
type of computing tasks can share computing results, Yu et
al. study joint computing task offloading and service place-
ment in multi-tier computing to reduce the delay of execut-
ing computing tasks[22]. Considering space-ground integrated
networks, the authors in Refs. [23,24] investigate how to al-
locate computing and communication resources available at
satellites, terrestrial access points, and UTs to minimize the
delay of executing computing tasks from UTs.

There are less studies on long-term resource reservation for
computing task offloading. Based on the aggregated comput-
ing demands from all access points, a proactive computing
resource reservation approach in MEC is designed to min-
imize the delay of executing computing tasks[25] and maxi-
mize resource utilization in computing task execution[26], re-
spectively. Yin et al. study edge server placement to min-
imize the network resource usage based on statistical com-
puting demands[27]. There are limited works on long-term
resource reservation in multi-tier computing[8,28]. Consider-
ing edge and cloud computing, Zhou et al. propose a com-
puting resource reservation approach to minimize network re-
source usage while satisfying different delay requirements of
two applications[28]. For servers located at different tiers of
space-ground integrated networks, joint communication and
computing resource reservation is studied to minimize the
long-term cost of delay requirement violation and network
reconfiguration[8].

While allocating resources to UTs to satisfy their real-time
computing demands is important, proactively reserving re-
sources on servers is also essential. In this work, we focus
on network planning in the presence of the coupling relation
among computing, storage, and communication resources,
and the impact of UT mobility in long-term resource reser-
vation to support stateful applications. We leverage DTs to
improve the granularity and effectiveness of network planning
as compared to conventional resource reservation.

III. NETWORK SCENARIO AND
SYSTEM MODEL

In this section, we first introduce the considered network
scenario of multi-tier computing. Then, we propose a DT-

S-NAP 1

Core networks

S-BS 1

S-CN

BS coverage

UDTs

BSsNAPs Central 
controllerServer

S-NAPs

S-BS 2

Fig. 1 The considered scenario of multi-tier computing

empowered network planning framework to support stateful
applications and present the corresponding system model.

A. Network Scenario
The considered scenario is shown in Fig. 1. Computing

servers are deployed at different locations, including: (i) base
stations (BSs); (ii) network aggregation points (NAPs), such
as gateways; and (iii) the core network (CN)[4]. Each server
can build one dedicated virtual machine (VM) to execute com-
puting tasks from UTs for the stateful application. The service
coverage area of a server at a BS (S-BS) is the BS’s commu-
nication coverage. The service coverage area of a server at
a NAP (S-NAP) is the union of the communication coverage
of all the BSs connected to it. For example, S-NAP 1 con-
nects to S-BS 1 and S-BS 2, and the communication coverage
area of S-NAP 1 consists of the two green cells as shown in
Fig. 1. The server at the CN (S-CN) can provide computing
service to all UTs in the considered network. The service cov-
erage areas of servers at the same tier of the network do not
overlap. UTs generate computing tasks and offload their com-
puting tasks to a server when located in its service coverage
area. We assume that the computing task generation at all UTs
corresponds to an identical statistical process due to the same
stateful application. The VM at the server then executes the
offloaded computing tasks and sends computing results back
to the UTs. Denote the S-CN by ecn, and let E bs and E nap

denote the set of S-BSs and the set of S-NAPs, respectively.
Let E = E bs ∪E nap ∪{ecn} represent the set of all servers in
the network. Denote the set of BSs by B = {1,2, · · · ,B}, and
let Eb ⊂ E denote the set of servers that include BS b ∈B in
their service coverage areas.

We focus on resource reservation to support stateful appli-
cations, which requires context data for executing computing
tasks. The application uses a fixed set of context data, and
the popularity of different data chunks in this set is different.
Moreover, the popularity of each data chunk can vary at differ-
ent BSs across the network, i.e., the popularity of context data
chunks is location-dependent. Therefore, if a UT moves into
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Tab. 1 List of symbols

Symbols Definition

ak The indicator on whether the resource reservation in time in-
terval k should be reconfigured

cn
e,k The amount of computing resource reserved at server e for

group n in time interval k

f n
b,e,k The load of computing tasks from group n covered by BS b

and assigned to server e in time interval k

f n,i
b,e,k The load of computing tasks requiring chunk i from group n

covered by BS b and assigned to server e in time interval k

ge,k The amount of storage resource reserved at server e in time
interval k

Ie,k The set of chunks stored at server e in time interval k

L The data volume of each chunk of context data

Lre The data volume of remotely accessing context data for each
computing task

mn
e,k The load of computing tasks from group n assigned to server e

in time interval k

ov
k The cost of reconfiguring resource reservation in time interval

k

pi
b,k The request ratio of chunk i in the coverage of BS b in time

interval k

vup
b,e,k , vdown

b,e,k The communication resource usage of uploading and down-
loading, respectively, between server e and BS b in time inter-
val k

vre
n,e,k The communication resource usage of remote access for exe-

cuting computing tasks at server e in time interval k

wc, ws, wo The weights of communication, storage, and communication
resource usage, respectively

xn
b,k , x̃n

b,k The actual and predicted load of computing tasks, respectively,
from group n in the coverage of BS b in time interval k

x̃n
k The spatial task distribution of group n in time interval k

α , β , γ The input data size, computing workload, size of computing
result of each computing task, respectively

∆k The network resource usage during time interval k

ϵc
e,k,ϵ

s
e,k The computing and storage resource usage of server e, respec-

tively, during time interval k

ηb,e The communication resource usage of transmitting a bit data
between BS b and server e

ξ e′
e The communication resource usage of accessing context data

remotely from server e′ to server e

the coverage of a different BS, its requests for context data
may also change, creating a dependence of its resource de-
mand on its mobility. A UT that connects to more BSs within
a time interval is considered to have higher mobility. UTs with
similar mobility patterns can be grouped together in resource
reservation due to their similar need for context data.

The time duration of interest is partitioned into K time in-
tervals of length τ (e.g., 5 to 10 minutes per time interval).
Denote the set of time intervals by K = {1,2, · · · ,K}. A cen-
tral controller in the CN maintains the DTs for UTs and makes
resource reservation decisions proactively for the stateful ap-

Data processing function 

Data collection and storage function

UDTs

UT 4 

UT 2 

UT 1 
UT 3 

UT status

Group A 

Group B 

UT grouping function

UDTs

Central 
controller

Group-based information

Fig. 2 The designed UDTs used for network planning

plication at the beginning of each time interval. We define
vector ϕd,k to represent the mobility pattern of UT d in time
interval k ∈K , where the bth element of ϕd,k represents the
time duration in which UT d is in the coverage of BS b during
the time interval. Tab. 1 lists the important symbols for easy
reference.

B. DT-empowered Network Planning
In this subsection, we present the idea of DT-empowered

network planning with our specific design of DTs, which is a
succession and development of the framework in Ref. [10].
A DT is created for an individual UT, called UDT, which
consists of a UT data profile and UDT functions. As shown
in Fig. 2, UDTs are located at the CN, and UT data pro-
files are maintained and updated by the central controller via
UDT functions. Specifically, each UT data profile is a well-
organized set of UT data. In this work, the data attributes of
each UDT consist of the mobility of the corresponding UT,
including the UT’s location and velocity, as well as the infor-
mation of each computing task from the UT, including con-
text data requirement, input and output data size, computing
workloads, and resource demands. There are three UDT func-
tions used to manage and analyze UT data profiles for network
planning, as follows.
• Data collection and storage function: UT data required

for network planning is collected from individual UTs via BSs
or offered by service providers. Data regarding UT mobility,
e.g., UT locations, can be uploaded by individual UTs period-
ically, as specified in 5G. Data regarding services, e.g., com-
puting workloads and required context data, can be obtained
from service providers or computing servers[4]. The collected
UT data is stored in the corresponding UDTs.
• Data processing function: At the beginning of time in-

terval k, the mobility patterns of each UT in the past T time
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Fig. 3 An illustration of DT-empowered network planning: (a) Workflow; (b) Time line

intervals, i.e., ϕd,k′ , ∀k′ ∈ [k−T,k−1], are obtained based on
the UT data in the corresponding UDT. Then, the historical
mobility patterns are used to predict the mobility pattern of
each UT, i.e., ϕd,k, in the subsequent time interval. Other data
prediction, e.g., spatial task distributions and requested con-
text data, based on historical data in UDTs is also conducted
via this function.
• UT grouping function: UTs are grouped based on their

predicted mobility patterns, i.e., {ϕd,k,∀d}, at the beginning
of each time interval. UTs from the same group have similar
network resource demands for executing computing tasks due
to their similar mobility patterns, allowing for an accurate ap-
proximation of resource demands for UTs from each group.
Based on UT grouping, network resources can be reserved ac-
curately to achieve fine-grained network planning1.

The UDT functions are used to manage and analyze UT
data profiles to empower network planning. However, the
UDT functions do not make network planning decisions but
only provide information for network planning.

Based on UDTs, we propose a novel network planning
framework as shown in Fig. 3, which includes two core el-
ements: group-based resource reservation and closed-loop re-
source reservation reconfiguration.
• Group-based resource reservation: Based on UT group-

ing, we reserve storage and computing resources accurately
to satisfy the resource demands for user equipments (UEs) in
each group in the upcoming time interval. Denote the set of
groups by N = {1,2, · · · ,N}. Let xn

b,k denote the number
of computing tasks generated by the UTs who are associated
with group n and are in the coverage of BS b during time in-
terval k. We refer to matrix xn

k = [xn
b,k]∀b∈B as spatial task

distribution of group n in time interval k. Since it is impos-
sible to know the actual value of xn

k at the beginning of time

1Note that the mechanism of UT grouping, as well as the data attributes
used for grouping, can be customized based on the data contained in UDTs in
different network scenarios. The number of groups depends on the trade-off
between granularity and complexity.

interval k, xn
k is predicted based on historical data contained

in UDTs. We use superscript “∼”, e.g., x̃, to represent the pre-
dicted values of x. Given spatial task distributions, we propose
an algorithm to address the storage and computing resource
reservation problem with highly coupled variables. The detail
of group-based resource reservation is discussed in section V.
• Closed-loop resource reservation reconfiguration: Since

spatial task distributions may change across time intervals,
reconfiguring the reserved resources on servers to adapt to
dynamic computing demands is necessary but yields addi-
tional costs of reconfiguring resource reservation. We design
a closed-loop approach to reconfigure resource reservation re-
configuration for balancing the network resource usage and
the cost of reconfiguring resource reservation, and the time
line is shown in Fig. 3(b). Specifically, at the beginning of
each time interval, the central controller identifies whether to
reconfigure resource reservation with a proposed algorithm. If
the resource reservation needs to be reconfigured for the sub-
sequent time interval, the controller will make a new resource
reservation decision; Otherwise, the controller will keep us-
ing the resource reservation from the previous time interval.
At the end of each time interval, the data regarding network
performance is collected based on UDTs. The detail of closed-
loop resource reservation reconfiguration is discussed in sec-
tion VI.

C. Computing Model

The overall load of computing tasks assigned to each server
during a time interval affects network resource reservation on
the server. Denote the load of computing tasks generated by
UTs from group n in the coverage of BS b and assigned to
server e during time interval k by f n

b,e,k. The relation be-
tween computing task assignment and spatial task distribution
is given by

∑
e∈Eb

f n
b,e,k = x̃n

b,k, ∀b ∈B, n ∈N , k ∈K . (1)
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Let mn
e,k denote the overall load of computing tasks generated

by UTs from group n and assigned to server e during time
interval k,

mn
e,k = ∑

b∈Be

f n
b,e,k, ∀e ∈ E , n ∈N , k ∈K , (2)

where Be denotes the set of BSs within the service cover-
age of server e. In (2), the fine granularity of computing task
assignment reflected through f n

b,e,k helps determine the com-
puting load at each server accurately.

Since we consider one specific stateful application, the
computing tasks for this application are assumed to have (ap-
proximately) the same input data size (in bits), computing
workload (in CPU cycles per bit), and result data size (in
bits)2. Let α , β , and γ denote the average input data size,
the average computing workload, and the average result data
size, respectively. Each server can reserve a certain amount
of computing resource (in CPU cycles per second) for VMs to
execute computing tasks. Let cn

e,k denote the amount of com-
puting resource of server e reserved for group n during time
interval k, and define ck = [cn

e,k]∀e∈E ,n∈N as the computing
resource reservation decision in time interval k. For time in-
terval k, the computing resource reservation should satisfy the
following constraint.

∑
n∈N

cn
e,k ⩽Ce, ∀e ∈ E , k ∈K , (3)

where Ce denotes the maximum computing resource at
server e that can be utilized for the stateful application. We as-
sume that the computing resources on the S-CN, i.e., e = ecn,
is sufficient for executing all computing tasks. The time that
server e takes for executing the computing tasks assigned to it
from group n during time interval k should satisfy the follow-
ing requirement.

mn
e,kαβ

cn
e,k

⩽ τ
p, ∀e ∈ E , n ∈N , k ∈K , (4)

where τp denotes the maximum tolerable computation time3.
Due to (4), computing resource reservation and computing
task assignment for each server are mutually dependent.

Let ϵc
e,k represent the overall computing resource usage for

executing all computing tasks assigned to server e in time

2The proposed framework can be straightforwardly extended to handle the
case of computing tasks with different input data sizes, computing workloads,
and result data sizes by leveraging DTs to collect such information for each
computing task. The problem-solving approach (including the proposed al-
gorithms) remains applicable in such a case.

3We do not consider queuing delay in the planning stage because we do not
assume a particular computing task arrival pattern. For modeling the queueing
delay, the task arrival pattern must be known a priori. However, such a pattern
is usually unavailable in practice, while assuming a particular arrival pattern
can oversimplify the scenario.

interval k, which is computing load-dependent. Based on
Refs. [29,30], we adopt a linear model of computing resource
usage as follows.

ϵc
e,k = ∑

n∈N
ε

c
e mn

e,k, ∀e ∈ E , k ∈K , (5)

where εc
e is the computing resource usage for executing each

computing task at server e.

D. Storage Model and Remote Access
Different from stateless applications, the execution of a

computing task for stateful applications requires the corre-
sponding context data. If the context data is not in the stor-
age of the server, the server should download the context data
from a remote server, thereby yielding additional communica-
tion resource usage. We model the storage and the additional
communication resource usage for the stateful application in
this subsection.

Denote the amount of the reserved storage resource (in bits)
of server e during time interval k and the storage capacity (in
bits) of server e by ge,k and Ge, respectively. The value of ge,k

should satisfy the following constraint.

ge,k ⩽ Ge, ∀e ∈ E \{ecn}, n ∈N , k ∈K . (6)

We assume that the storage resources reserved on the S-CN,
i.e., e = ecn, is sufficient for storing all context data. Define
gk = [ge,k]∀e∈E \{ecn} as the storage resource reservation deci-
sion for all S-NAPs and S-BSs in time interval k. Based on
the model of storage resource usage in Ref. [31], the resource
usage for reserving storage resource at server e in time inter-
val k, denoted by ϵs

e,k, is given by

ϵs
e,k = ε

s
ege,k, ∀e ∈ E ,k ∈K , (7)

where εs
e represents the per bit resource usage for reserving

storage resource at server e.
Let I = {1,2, · · · , I} represent the set of all chunks of con-

text data in the library for the stateful application, where I
denotes the number of chunks in the set I . All chunks of
context data for the stateful application have the same data
structure and thus identical data size (in bits), denoted by L.
Executing each computing task requires one chunk of context
data in the set I [32]. Denote the request ratio of chunk i in
the coverage of BS b in time interval k by pi

b,k, i.e., the load
of computing tasks requesting chunk i ∈ I over the load of
all computing tasks generated in the coverage of BS b in time
interval k. The value of pi

b,k may be different in the coverage
of different BSs and may vary across different time intervals.
Let pk = [pi

b,k]∀b∈B,i∈I denote the chunk request ratio profile
in time interval k, which can be obtained via prediction based
on historical data contained in UDTs[33].
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The overall data volume of all chunks may be much larger
than the storage capacities of S-BSs and S-NAPs. Each S-
BS and S-NAP can only store some chunks of context data
for executing computing tasks prior to the beginning of each
time interval. The S-CN stores all chunks of context data. Let
Ie,k ⊆ I denote the set of chunks stored at server e in time
interval k. Given the amount of reserved storage resource on
server e, i.e., gk, the number of chunks in set Ie,k is |Ie,k| =
⌊ge/L⌋ where ⌊·⌋ represents the floor function.

Since our focus is storage resource reservation, we follow
the hierarchical storage policy in Refs. [34,35] to determine
the set of stored chunks on each S-BS and S-NAP, i.e., Ie,k,
based on the effective request ratio of chunks. Define the ef-
fective request ratio of chunk i for executing the computing
tasks assigned to server e in time interval k as qi

e,k, i.e., the
load of computing tasks requesting chunk i ∈I over the load
of all computing tasks generated in the service coverage of
server e in time interval k. In multi-tier computing, the stored
chunks on S-NAPs and the S-CN may not be requested for ex-
ecuting computing tasks when the chunks are stored on S-BSs
for the sake of reducing communication resource usage. As
a result, the effective request ratio of a chunk for an S-NAP
depends on not only the chunk request ratio profile, i.e., pk,
but also the set of chunks stored on S-BSs and computing task
assignment, which is difficult to determine.

For simplicity, we make two following assumptions to esti-
mate the effective request ratio for each S-NAP. First, S-BS e
located at BS b stores |Ie,k| chunks with largest pi

b,k. Second,
given set Ie,k for any S-BS, the computing tasks requesting a
chunk stored on the S-BS are assigned to the S-BS as much
as possible when not violating the computing resource capac-
ity of the S-BS[35]. Based on the two assumptions, the value
of qi

e,k for an S-BS equals to the request ratio of chunk i in
the coverage of the corresponding BS in time interval k, i.e.,
pi

b,k. The value of qi
e,k(gk,pk) for an S-NAP can be estimated

given gk and pk, which is detailed in Appendix A). Each S-BS
and S-NAP sorts the chunks in a non-increasing order based
on the effective request ratio, i.e., qi

e,k(gk,pk), and stores the
most requested |Ie,k| chunks.

When the chunk required for executing a computing task is
not found in the storage of an S-BS, the S-BS will first attempt
to download the chunk of context data from the S-NAP cover-
ing it and resort to the S-CN in the case that the S-NAP does
not have the chunk of context data either. When the chunk re-
quired for executing a computing task is not found in the stor-
age of an S-NAP, the server will download the context data
from the S-CN. For any server, accessing another server re-
motely and downloading context data from the remote server
yields additional communication resource usage, referred to
as remote access of context data[36].

Denote the data volume (in bits) of remotely accessing con-
text data for each computing task by Lre, the value of which

may be different from the value of L due to headers used by
transmission protocols. Let f n,i

b,e,k denote the number of com-
puting tasks that require chunk i and are generated by group n
in the coverage of BS b and assigned to server e during time
interval k. The relation between f n

b,e,k defined in (1) and f n,i
b,e,k

is f n
b,e,k = ∑I f n,i

b,e,k. Define the computing task assignment

in time interval k as fk = [ f n,i
b,e,k]∀b∈B,∀e∈Eb,n∈N ,i∈Ie,k . For

S-BS e, the communication resource usage for downloading
context data from S-NAP e′ covering S-BS e for executing
computing tasks from group n during time interval k is given
by

vre
n,e,k = Lre

ξ
e′
e ∑

i∈Ie,k∩Ie′,k

∑
b∈Be

f n,i
b,e,k +

Lre
ξ

ecn

e ∑
i∈Ie,k∪Ie′,k

∑
b∈Be

f n,i
b,e,k, ∀e ∈ E bs, (8)

where coefficients ξ e′
e and ξ ecn

e represent the communication
resource usage for downloading per bit context data to S-BS e
from S-NAP e′ and the S-CN, i.e., ecn, respectively. In (8),
the first term represents the communication resource usage for
server e to access the context data remotely from server e′ at
the NAP, and the second term represents the communication
resource usage for server e to access the context data remotely
from S-CN ecn. For S-NAP e, the communication resource us-
age for downloading context data from the S-CN during time
interval k is as follows.

vre
n,e,k = Lre

ξ
ecn

e ∑
i∈Ie,k

∑
b∈Be

f n,i
b,e,k, ∀e ∈ E nap, (9)

where ξ ecn
e denotes the communication resource usage for

downloading per bit context data to S-NAP e from the S-CN,
i.e., ecn.

E. Communication Model
Generally, communication resource usage for uploading

the input data and downloading the result of a computing task
involves two parts: (i) the resource usage for the wireless com-
munication between the UT and the connected BS; and (ii) the
resource usage for the wired communication between the BS
and a server. In the considered scenario, each UT is associ-
ated with only one BS. Regardless of which computer server
deployed in the multi-tier network is selected for executing
the computing task, the resource consumption for the wire-
less communication between the associated BS and the UT
for uploading input data and downloading computing results
is a constant. As a result, the wireless communication does not
affect the solution of the resource reservation problem. Since
S-BSs and BSs are co-located, there is no additional commu-
nication resource usage if any computing task is processed at
an S-BS.

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:38:03 UTC from IEEE Xplore.  Restrictions apply. 



228 Journal of Communications and Information Networks

Denote the maximum communication resource usage of
server e ∈ E nap ∪ {ecn} for uploading input data and down-
loading result data by V up

e and V down
e , respectively. Let ηb,e de-

note the coefficient representing the communication resource
usage for uploading and downloading per bit data between
BS b and server e. The communication resource usage for
uploading input data and downloading computing results be-
tween server e and BS b during time interval k are given by

vup
b,e,k = αηb,e ∑

n∈N
∑

i∈I
f n,i
b,e,k, ∀e ∈ E \{ebs}, b ∈Be, k ∈K ,

(10)
and

vdown
b,e,k = γηb,e ∑

n∈N
∑

i∈I
f n,i
b,e,k, ∀e ∈ E \{ebs}, b ∈Be, k ∈K ,

(11)
respectively.

IV. PROBLEM FORMULATION

We formulate the problem of planning-stage resource reser-
vation for multi-tier computing to support stateful applications
in this section. We aim to find out the minimum amount of
network resources needed for supporting the application while
balancing the resource usage and the cost of reconfiguring re-
source reservation in the presence of network dynamics.

Let rk = [ck,gk,fk] denote the resource reservation deci-
sion, including computing resource reservation, storage re-
source reservation, and computing task assignment, in time
interval k. Variable rk is determined at the beginning of time
interval k. Given rk, the overall network resource usage in
time interval k, denoted by ∆k(rk), can be obtained based on
(5), (7), (10), and (11), as follows.

∆k(rk) = ∑
e∈E

wcϵc
e,k +wsϵs

e,k +wo(vre
e,k + vco

e,k), (12)

where vco
e,k = ∑b∈B (vup

b,e,k + vdown
b,e,k ), and wc, ws, and wo are the

weights of the computing, storage, and communication re-
source usage, respectively. Since the spatial task distribution
may vary across time intervals, even if a resource reservation
decision can minimize instantaneous resource usage in (12)
in time interval k, the same decision may not minimize the
overall network resource usage in the subsequent time inter-
vals. Reconfiguration is required for the resource reservation
to adapt to the dynamic spatial task distribution, while recon-
figuring resource reservation yields additional cost, e.g., the
cost of vertical scaling of VM[9]. Denote by Ov the cost of
reconfiguring resource reservation.

Let ak ∈ {0,1} indicate whether the resource reservation
in time interval k should be reconfigured or not, which is
determined at the beginning of time interval k. If ak = 0,
the controller makes a new resource reservation decision for

time interval k; Otherwise, the controller keeps using the re-
source reservation from time interval k− 1. Define x̃k =

[x̃n
b,k]∀b∈B,n∈N as spatial task distributions of groups, referred

to as group-based spatial task distribution. Let function rk =

ψ(x̃k,pk), representing that the resource reservation decision
is made according to the group-based spatial task distribution
and the chunk request profile in time interval k. The value of
rk, resource reservation in time interval k, evolves as follows.

rk = (1−ak)ψ(x̃k,pk)+akrk−1, ∀k ∈K . (13)

Given the value of ak, the cost of reconfiguring resource reser-
vation in time interval k, denoted by ov

k , is as follows.

ov
k = (1−ak)Ov, ∀k ∈K . (14)

The problem of minimizing the long-term network resource
usage and the cost of reconfiguring resource reservation over
K time intervals, is formulated as follows.

P0: min
a,R

∑
k∈K

∆k(rk)+λov
k

∑b∈B ∑n∈N x̃n
b,k

(15)

s.t. (3), (4), (6) (15a)

∑
b∈Be

vup
b,e,k ⩽V up

e , ∀e ∈ E \E bs, k ∈K , (15b)

∑
b∈Be

vdown
b,e,k ⩽V down

e , ∀e ∈ E \E bs, k ∈K , (15c)

∑
e∈E

vre
n,e,k ⩽V re

n , n ∈N , k ∈K , (15d)

cn
e,k ∈ R+, ∀e ∈ E , n ∈N , k ∈K , (15e)

ge,k ∈ R+, ∀e ∈ E \{ecn}, n ∈N , k ∈K , (15f)

f n,i
b,e,k ∈ N, ∀b ∈B, e ∈ E , n ∈N , k ∈K , (15g)

ak ∈ {0,1}, ∀k ∈K , (15h)

where V re denotes the maximum communication resource us-
age of remote access for one computing task, a = [ak]∀k∈K ,
R= [rk]∀k∈K , and λ is the weight balancing the network re-
source usage and the cost of reconfiguring resource reserva-
tion. R+ represents the set of positive real numbers, and N
represents the set of natural numbers. Constraint (15d) limits
the communication resource usage of remote access averaged
overall computing tasks from each group to be less than V re

n .
The solution of problem P0 provides a lower bound on the re-
sources needed to support the stateful application, taking into
account the resource reservation reconfiguration cost in net-
work planning. If the network resources are sufficient, more
resources can be reserved for the application for better service
quality. In addition, in a practical network supporting multi-
ple applications, statistical multiplexing among resources re-
served for different applications can be implemented for high
resource utilization.

Solving problem P0 is challenging due to the following two
reasons: (i) For each time interval, determining the value of
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rk is a mix-integer optimization problem, and the variables of
fk and gk are mutually dependent; (ii) determining the value
of ak is a sequential decision-making problem, and the de-
cision at any time interval affects the subsequent decisions.
To solve problem P0, we decouple it into two problems. We
propose algorithms for resource reservation in each time in-
terval, which are presented in section V, and a learning-based
approach for reconfiguring resource reservation over multiple
time intervals, which is presented in section VI.

V. GROUP-BASED RESOURCE RESERVATION

In this section, we design an algorithm to enable group-
based resource reservation at each time interval.

When ak = 1, the controller keeps using the resource reser-
vation decision from time interval k−1. For when ak = 0, we
formulate the group-based multi-resource reservation problem
in time interval k, given the predicted spatial task distribu-
tions x̃k, as follows.

P1:min
rk

∆k(rk)

∑b∈B ∑n∈N x̃n
b,k

(16)

s.t. (15a-g). (16a)

Problem P1 is a combinatorial optimization problem, and vari-
ables fk and gk are still coupled. We first address comput-
ing task assignment, i.e., fk, and computing resource reser-
vation, i.e., ck, given a storage resource reservation decision,
i.e., gk. Then, we leverage particle swarm optimization to
find the solution of storage resource reservation. The solution
of problem P1 corresponds to group-specific resource reser-
vation, and the total amount resources to be reserved for all
groups can be calculated accordingly. The reserved resources
can be multiplexed among different groups.

A. Computing Task Assignment and Computing Re-
source Reservation

Since multiple computing tasks can be assigned to the same
server, assigning computing tasks to servers is many-to-one
matching. We first transform the many-to-one matching into a
one-to-one matching. Specifically, several virtual servers are
created to represent each physical server. Denote the number
of virtual servers for S-NAP or S-BS e by Ne. The value of
Ne is the maximum number of computing tasks that can be
assigned to server e while not violating the constraints of re-
source usage, i.e., constraints (3), (15b), and (15c). The num-
ber of virtual servers for physical server e is given by

Ne=

min{⌊ τpCe
αβ
⌋,⌊ V up

e
∑Be vup

b,e,k
⌋,⌊ V down

e
∑Be vdown

b,e,k
⌋}, if e ∈ E nap,

⌊ τpCe
αβ
⌋, if e ∈ E bs,

(17)

where ⌊·⌋ represents the floor function. For an S-NAP, i.e., e∈
E nap, the value of Ne in (17) is the minimum value among the
maximum number of computing tasks that can be executed,
i.e., ⌊ τpCe

αβ
⌋, the maximum number of computing tasks that

can be uploaded, i.e., ⌊ V up
e

∑Be vup
b,e,k
⌋, and the maximum number

of computing tasks that can be downloaded, i.e., ⌊ V down
e

∑Be vdown
b,e,k
⌋;

and for an S-BS, i.e., e ∈ E bs, the value of Ne in (17) is the
maximum number of computing tasks that can be executed,
i.e., ⌊ τpCe

αβ
⌋. We let the number of the corresponding virtual

servers for the S-CN in time interval k be ∑b∈B ∑n∈N x̃n
b,k,

i.e., the load of all computing tasks in time interval k, to guar-
antee that all computing tasks can be processed. Each virtual
server is assigned at most one computing task, and assigning
computing tasks to virtual servers becomes one-to-one match-
ing.

Given the amount of storage resource reserved on S-BSs
and S-NAPs, the sets of stored context data chunks, i.e., Ie,k,
on all S-BSs and S-NAPs are determined based on the hier-
archal storage policy described in section III.D. Denote by
Dn,i

b,e,k the network resource usage, including resource usage
from computing, uplink communication, downlink communi-
cation, and remote access, for executing a computing task that
requests chunk i and is generated by a UT from group n in
the coverage of BS b during time interval k at server e. The
calculation of Dn,i

b,e,k consists of two parts. The first part is the
resource usage from computing, uplink communication, and
downlink communication, which is not related to the sets of
stored chunks, while the second part is the communication re-
source usage from remote access, which depends on the sets
of stored chunks. Denote by Wb,e = wcεc

e +wo(α + γ)ηb,e the
sum of resource usage from computing, uplink communica-
tion, and downlink communication used to execute a comput-
ing task generated in the coverage of BS b at server e. Accord-
ing to the communication resource usage for remote access,
the calculation of Dn,i

b,e,k is categorized into the following four
cases.

Dn,i
b,e,k =
Wb,e +woLreξ e′

e , e ∈ E bs,e′ ∈ E nap, i ∈Ie,k ∩Ie′,k,

Wb,e +woLreξ ecn
e , e ∈ E bs,e′ ∈ E nap, i ∈Ie,k ∪Ie′,k,

Wb,e +woLreξ ecn
e , e ∈ E nap, i ̸∈Ie,k,

Wb,e, otherwise.
(18)

In (18), if chunk i is not stored on S-BS e but stored on S-
NAP e′, i.e., i ∈Ie,k ∩Ie′,k, the communication resource us-
age for S-BS e to remotely access S-NAP e′ for one comput-
ing task is woLreξ e′

e ; If chunk i is not stored on S-BS e or
S-NAP e′, i.e., i ∈ Ie,k ∪Ie′,k, the communication resource
usage for S-BS e to remotely access the S-CN for one comput-
ing task is woLreξ ecn

e ; If chunk i is not stored on S-NAP e, i.e.,

Authorized licensed use limited to: University of Waterloo. Downloaded on November 03,2023 at 14:38:03 UTC from IEEE Xplore.  Restrictions apply. 



230 Journal of Communications and Information Networks

i ̸∈Ie,k, the communication resource usage for S-NAP e to re-
motely access the S-CN for one computing task is woLreξ ecn

e ;
Otherwise, chunk i is stored on server e, and no communica-
tion resource is used for remote access.

Denote the set of virtual servers and the set of computing
tasks by U and T , respectively. Given computing task t ∈T
and virtual server u∈U , we can determine the corresponding
values of (n, i,b) of the computing task and physical server e.
Let D(u,t)

k represent the sum of computing and communica-
tion resource usage for executing computing task t at vir-
tual server u in time interval k, which can be calculated via
(18) based on the corresponding values of (n, i,b) and physi-
cal server e. We introduce variable z(u,t)k ∈ {0,1} to indicate
whether to assign computing task t to virtual server u in time
interval k or not and define zk = [z(u,t)k ]∀u∈U ,t∈T . If comput-

ing task t is assigned to virtual server u, z(u,t)k = 1. Otherwise,

z(u,t)k = 0. Finding the solution of fk in problem P1 can be
transformed into finding the solution of zk, as follows.

P2:min
zk

∑
u∈U

∑
t∈T

D(u,t)
k z(u,t)k (19)

s.t. (15d), (19a)

z(u,t)k ∈ {0,1}, ∀k ∈K . (19b)

We propose a matching-based computing task assignment
(MCLA) algorithm to select a virtual server for each comput-
ing task, as shown in Algorithm 1.

We construct the preference list L server
u,k for virtual server u

in time interval k, which is a vector containing the indexes of
all computing tasks that can be assigned to virtual server u
in time interval k, sorted by the value of D(u,t)

k in a non-
decreasing order. In each iteration, the controller checks the
current preference list for each virtual server and selects the
first computing task in the preference list as the proposal from
the virtual server. After that, the selected computing task is
removed from the virtual server’s preference list. The con-
troller selects a proposal for each computing task to minimize
the objective function in problem P2 while satisfying con-
straint (15d), which is a 0-1 Knapsack problem. Let U not ⊂
U denote the set of virtual servers that are not yet matched.
A dynamic programming approach in Ref. [37] is adopted to
adjust the matching result, i.e., selecting proposals for virtual
servers in the set U not and adjusting the matched proposals for
virtual servers in the set U \U not for minimizing the objec-
tive function in problem P2 while satisfying constraint (15d).
Then, set U not is updated accordingly after each iteration. A
computing task should be re-proposed for each virtual server
in the set U not in the next iteration. The matching process
terminates when all computing tasks in the set T are success-
fully matched. Based on the matching result, i.e., zk, we can
determine the computing task assignment decision, i.e., fk.

Algorithm 1 MCLA algorithm

1 Input: L server
u,k ,∀u ∈U

2 Initialization: U , U not = U , T , j = 0;
3 while |T |= 0 do
4 j = j+1;
5 for u ∈U not do
6 Select the first computing task in preference list L server

u,k as
the proposal from virtual server u;

7 Remove the selected computing task from preference
list L server

u,k ;
8 end
9 Adopt the dynamic programming in Ref. [37] to select

proposals from the new proposals in iteration j and adjust the
matched proposals in iteration j−1 for minimizing the
objective function in (19) while satisfying constraint (15d).

10 Remove the matched virtual servers from U not;
11 Add the unmatched virtual servers to U not;
12 Remove the matched computing tasks from T based on the

matching result in iteration j;
13 end
14 fk ← zk;
15 Output: fk

Given fk, the numbers of computing tasks assigned to the
servers, i.e., mk, are determined based on (2). Then, com-
puting resource reservation in time interval k is determined
according to (3), which is:

ck =
αβ

τp mk, ∀k ∈K . (20)

The time complexity of Algorithm 1 depends on the num-
ber of iterations of the outer loop for matching (Lines 5∼13)
and the time complexity of solving the knapsack problems in
each iteration (Line 9). For the outer loop, the time complex-
ity of solving the matching problem is O(ZXk), where Z =

∑e∈E Ne and Xk = ∑n∈N ∑b∈B xn
b,k denote the number of all

virtual servers and the number of all computing tasks in time
interval k, respectively[38]. In each iteration, we should solve a
knapsack problem to satisfy constraint (15d) for every group.
The time complexity of the adopted dynamic programming
approach for group n is O(V re

n Xn
k ), where Xn

k = ∑b∈B xn
b,k de-

notes the number of all computing tasks from group n in time
interval k[37]. Therefore, the time complexity of Algorithm 1
is O(ZXk ∑n∈N V re

n Xn
k ).

B. Storage Resource Reservation
Determining the amount of storage resources reserved on

S-NAPs and S-BSs is a combinatorial optimization prob-
lem. Therefore, finding the globally optimal solution is
challenging[39]. Evolutionary heuristics, specifically particle
swarm optimization (PSO), is leveraged to achieve the local
optima of the problem. Based on PSO, we propose a resource
reservation (RR) algorithm to solve problem P1. In the pro-
posed RR algorithm, we leverage a number of particles, re-
ferred to as the particle swarm, where the position of each
particle corresponds to the solution of storage resource reser-
vation, i.e., gk. In each iteration, each particle moves within
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Algorithm 2 RR algorithm

1 Input: ς , ς1, ς2, ϕ1, ϕ2, lmax

2 Initialization: l = 0, s(0)y = 0, g(0)
y ∈ F, ∀y ∈ Y ;

3 f
(0)
y ,∀y ∈ Y ← Calculate by Algorithm 1 given g

(0)
y ;

4 ∆̂y,∀y ∈ Y ← Calculate by (12) given c
(0)
y , g(0)

y , and f
(0)
y ;

5 ĝy,∀y ∈ Y ← g
(0)
y ,∀y ∈ Y ;

6 ∆ ∗←min
{

∆̂y,∀y ∈ Y
}

;
7 g∗← ĝy′ where y′ = argminy

{
∆̂y,∀y ∈ Y

}
;

8 while l ⩽ lmax do
9 for y ∈ Y do

10 if constraint (6) is not satisfied then
11 g

(l)
y ← Select a position in F randomly;

12 end
13 f

(l)
y ← Calculate by Algorithm 1 given g

(l)
y ;

14 ∆
(l)
y ← Calculate by (12) given c

(l)
y , g(l)

y , and f
(l)
y ;

15 if ∆
(l)
y < ∆̂y then

16 ĝ, ∆̂y← g
(l)
y ,∆

(l)
y ;

17 end
18 if ∆

(l)
y < ∆ ∗ then

19 g∗,∆ ∗← g
(l)
y ,∆

(l)
y ;

20 end
21 s

(l+1)
y ,g

(l+1)
y ← Update by (21) and (22), respectively;

22 end
23 end
24 f ∗,c∗← Calculate by Algorithm 1 and (20) given g∗, respectively;
25 Output: g∗, f ∗, c∗, ∆ ∗

the solution space while adjusting its position and speed dy-
namically based on Ref. [39]. After repeating such an itera-
tion multiple times, the positions of all particles can converge
to the same position, which is the found solution of storage
resource reservation[40]. Given the storage resource reserva-
tion, the values of fk and ck can be determined based on sec-
tion IV.A.

The detailed procedures of the RR algorithm are introduced
in Algorithm 2. Since the RR algorithm applies to any time in-
terval, we omit subscript “k” in the rest of this subsection. We
define the solution space of the storage resource reservation
problem as F, where the possible solution of fk, i.e., parti-
cles’ positions, should satisfy constraint (6). Denote the set of
particles and the position of particle y in the l th iteration by Y

and g
(l)
y , respectively. Let ĝy and g∗ denote the best position

of particle y and the best position among all particles’ posi-
tions, i.e., the particle swarm’s best position, up to the l th it-
eration, respectively. Accordingly, let ∆

(l)
y , ∆̂y, and ∆ ∗ denote

the value of ∆ in problem P1 given position g
(l)
y , ĝy, and g∗,

respectively. Based on Ref. [40], the speed of particle y ∈ Y

in the l th iteration, denoted by s
(l)
y , evolves as follows.

s
(l)
y = ςs

(l−1)
y + ς1ϕ1

(
ĝy−g

(l−1)
y

)
+ ς2ϕ2

(
g∗−g

(l−1)
y

)
,

(21)
where parameter ς is the weight for each particle to keep its
speed from the previous iteration. Parameters ς1 and ς2 are
cognitive and social coefficients for learning from each parti-

cle’s own best position and the particle swarm’s best position
up to the current iteration, respectively, and both are positive
random variables for exploring the solution space[40]. The po-
sition of particle y, i.e., g(l)y , in the l th iteration is given by

g
(l)
y = g

(l−1)
y +s

(l)
y . (22)

If a particle moves out of the solution space, the particle is
replaced by a new particle with a random position in the so-
lution space F. In this way, the positions of all particles are
guaranteed to satisfy constraint (6).

Algorithm 2 shows the detail of the proposed RR algorithm.
Denote the maximum number of iteration by lmax. Line 2 ini-
tializes all particles with the positions in the solution space F.
Line 3 to Line 4 obtain the value of ∆ in problem P1, i.e., ∆̂y,
given the position of particle y, i.e., g(l)y . Line 5 to Line 7 find
the best solution among all particles based on the value of ∆̂y.
Line 10 to Line 21 update the position of each particle based
on (21) and (22) in each iteration. The outputs of the RR al-
gorithm include the solution of problem P1, i.e., g∗, f∗, and
c∗, and the value of ∆ ∗.

VI. META-LEARNING-BASED RESOURCE
RESERVATION RECONFIGURATION

In the preceding section, we solve the network resource
reservation problem for one-time interval. In this section, we
determine the value of a = [ak]∀k∈K to reconfigure resource
reservation decisions among K time intervals.

We formulate the sub-problem of resource reservation re-
configuration based on problem P0, as follows.

P3:min
a

∑
k∈K

∆k(rk)+λov
k

∑b∈B ∑n∈N x̃n
b,k

(23)

s.t. (15h). (23a)

We define k⋆ as the time interval when the latest resource
reservation was reconfigured up to time interval k. In time in-
terval k⋆, ak⋆ = 0, a j = 1 for j ∈ [k⋆+1, · · · ,k−1] and k⋆ < k.
The relation between k and k⋆ is given by

k⋆ =

{
k, if ak = 0,

k⋆, otherwise.
(24)

Problem P3 is a sequential decision-making problem,
which can be solved by reinforcement learning (RL)-based
methods[23,26]. However, RL-based methods cannot be ap-
plied directly to solve problem P3. Resource reservation re-
configuration is owing to the difference in network status, i.e.,
spatial task distributions and chunk request ratio profiles in
this work, in different time intervals. Identifying the dif-
ference between network status can potentially improve the
learning efficiency of RL-based methods.
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Algorithm 3 MetaR3 approach

1 Input: ρ

2 Initialization: θ, θ̂, ϑ, k⋆, H1, σ̂1
3 for k = 1, · · · ,K do
4 σk ← Obtain σ̂(Hk,Hk⋆ ; θ̂);
5 ak ← Determine by (28);
6 rk ← Determine by (13);
7 ∆k(rk), σ̂k+1 ← Implement rk for time interval k;
8 θ, θ̂, ϑ← Train parameters via (26) and (29);
9 k⋆ ← Update by (24);

10 end
11 Output: a

We propose a meta-learning-based resource reservation re-
configuration (MetaR3) approach to solve problem P3, as
given in Algorithm 3. At the end of each time interval, data
regarding spatial task distributions, chunk request ratio pro-
files, indicator ak and the network performance is collected
and stored based on UDTs. Meta-learning is adopted to cap-
ture the similarity between network status in two-time inter-
vals k and k⋆, and the policy of resource reservation decision
reconfiguration is learned based on the captured similarity by
using RL. Based on the learned policy of resource reservation
decision reconfiguration, the value of ak can be determined.
If ak = 0, resource reservation decision is reconfigured at the
beginning of time interval k.

Two components are underlying the proposed MetaR3 ap-
proach: (i) capturing the similarity between network status
during two different time intervals, and (ii) reconfiguring re-
source reservation in a closed-loop manner, which are pre-
sented in the following two subsections, respectively.

A. Similarity Capture
Denote the network status in time interval k by hk =

[xk,pk]. The value of hk is unavailable at the beginning
of the time interval k. Therefore, we use the data regard-
ing spatial task distributions and chunk request ratio pro-
files in past T ′ time intervals contained in UDTs as the fea-
tures of the network status in time interval k, denoted by
Hk = [hk−T ′ , · · · ,hk−1]. Based on Hk, the value of ak is de-
termined. If ak = 0, Hk can be used to predict the network
status, i.e., hk, for making resource reservation decision. De-
fine the similarity between the network status in different time
intervals k and k′ as σ(Hk,Hk′).

We leverage meta-learning with siamese neural networks
to approximate the value of σ(Hk,Hk′)

[41], as illustrated in
Fig. 4. Let θ and θ̂ denote the parameters of the whole
siamese neural networks and the parameters of the siamese
neural networks without the output layer, respectively. The
inputs of the siamese neural networks are the features of net-
work status, i.e., Hk and Hk′ . The siamese neural networks
have two outputs, i.e., the output of the whole siamese neural
network and the output of the penultimate layer. The output of

Stored 
UDT data

Input layer

Similarity
Shared 

Parameters

Embedding layer

Q networks

Merging layer

Penultimate layer

Output layer

Latent factor
 (Hk,Hk'; )

(Hk,Hk';)

Hk

Hk'

ak

Fig. 4 The proposed MetaR3 approach

the whole siamese neural network represents the value of sim-
ilarity, denoted by σ(Hk,Hk′ ;θ), and the output of the penul-
timate layer represents the latent factors of similarity, denoted
by σ̂(Hk,Hk′ ; θ̂).

Training siamese neural networks should be based on la-
beled data. Define ϱ(Hk,Hk′) ∈ {0,1} as a label of the fea-
tures of network status in two-time intervals k and k′, given by

ϱ(Hk,Hk′) =

{
1, if ∆k (rk)−∆k(rk′)> λOv,

0, otherwise.
(25)

In (25), ∆k(rk) denotes the network resource usage in time in-
terval k if the resource reservation is reconfigured, i.e., ak = 0.
∆k(rk′) denotes the network resource usage in time interval k
if the resource reservation is not reconfigured, i.e., ak = 1,
and the resource reservation decision from time interval k′ is
used, i.e., rk′ . If ∆k(rk)−∆k(rk′) > λOv, the network status
in two-time interval k and k′ are considered to be “similar”;
Otherwise, the network status in the two-time intervals are
considered to be “not similar”. The features of the network
status in any two-time intervals and the corresponding value
of ϱ(Hk,Hk′) are referred to as a labeled data entry. The goal
of training the siamese neural networks is to let σ(Hk,Hk′ ;θ)
approximate label ϱ(Hk,Hk′) by using extensive labeled data
entries. The parameters of the siamese neural networks, i.e.,
θ, are obtained by minimizing the following loss function via
gradient descent[41].

θ∗ = argmin
{θ}

ϱ(Hk,Hk′) log(σ(Hk,Hk′ ;θ)) +

(1−ϱ(Hk,Hk′)) log(1−σ(Hk,Hk′ ;θ)) . (26)

The approximated value of similarity, i.e., σ(Hk,Hk′ ;θ),
can indicate whether the features of network status in two-
time intervals are similar or not. However, its information on
how much a difference between network statuses is insuffi-
cient for reconfiguring resource reservation4. Therefore, we
use the latent factors of similarity, i.e., σ̂(Hk,Hk′ ; θ̂), to de-
termine the value of ak.

4The output layer in the siamese neural networks is used for training the
siamese neural networks.
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B. Closed-loop Resource Reservation Reconfiguration
We leverage deep Q learning with deep neural networks,

named Q networks, to determine the value of ak given the la-
tent factors of similarity. The state and action in time interval k
are σ̂(Hk,Hk⋆ ; θ̂) and ak, respectively. For simplicity, let σ̂k

denote σ̂(Hk,Hk⋆ ; θ̂) in the rest of this section. Define a Q-
value function to represent the discounted long-term resource
usage and cost of making decision ak in state σ̂k, given by

Q(σ̂k,ak) =
K

∑
k=1

ρ
k ∆k +λov

k

∑b∈B ∑n∈N x̃n
b,k

, (27)

where ρ ∈ (0,1) is the discount factor. In state σ̂k, ak can be
determined based on the Q-values as follows.

ak = arg max
a∈{0,1}

Q(σ̂k,a), ∀k ∈K . (28)

The Q network with parameter ϑ is used to approximate the
Q-value function for learning the policy of resource reserva-
tion reconfiguration. The parameters ϑ of the Q networks are
obtained by minimizing the following loss function via gradi-
ent descent[23].

ϑ∗ = argmin
{ϑ}

∣∣∣∣ ∆k +λov
k

∑b∈B ∑n∈N x̃n
b,k

+ρ max
a

Q(σ̂k+1,a;ϑ) −

Q(σ̂k,ak;ϑ)
∣∣∣∣2. (29)

We summarize the workflow of the MetaR3 approach in Al-
gorithm 3. Line 4 to Line 5 determine ak at the beginning of
time interval k based on the predicted network status obtained
from UDTs. Given ak, Line 6 to Line 7 determine and im-
plement the resource reservation decision. At the end of the
time interval, data regarding network performance, actual spa-
tial task distributions, and chunk request ratio profiles is col-
lected and stored in UDTs. Given the stored historical data,
the siamese neural networks and Q networks can be trained to
adapt to dynamic spatial task distribution and chunk request
ratio profile in a closed-loop manner.

VII. PERFORMANCE EVALUATION

A. Simulation Settings
The simulated multi-tier network consists of one S-CN, two

S-NAPs, and four to ten S-BSs. There are 600 UTs with dif-
ferent trajectories. Based on the average time within the cov-
erage of each BS for each UT, these UTs are grouped into two
to four groups. The input data size, computing workload, and
the size of computing results of each computing task are set to
2 MB, 4 Megacycles/s, and 15 MB, respectively[24]. The net-
work resource usage and the resource capacity of servers at
the same tier can be different. The average network resource

Tab. 2 Simulation parameters

Parameter Value Parameter Value

Gbs, Gnap 0.9, 2 Gigacycles/s Cbs, Cnap 0.75, 1.5 GB

ξ
nap
bs , ξ cn

bs 3.5×10−9, 2.5×10−9 ξ cn
nap 6×10−9

εc
bs, εc

nap,εc
cn 1, 1, 1 I 20

εs
bs, εs

nap,εs
cn 0.8, 0.5, 1 L 0.15 GB

ηnap, ηcn 5×10−9, 9×10−9 τp 0.5 s

ws, wc, wo 0.5×10−7, 1, 1 λ 12
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Fig. 5 Convergence performance of the proposed RR algorithm

usage, average resource capacity of servers, and other param-
eters are listed in Tab. 2.

For the siamese neural networks illustrated in Fig. 4, we use
3 fully connected layers with (64, 64, 32) neurons as an em-
bedding layer. The features of network status Hk and Hk′ are
fed to two embedding layers separately, each with the same
structure. The merging layer merges the outputs of the two
embedding layers based on Euclidean distance, followed by
the penultimate layer with 16 neurons and the output layer
with 1 neuron. For the Q networks, we adopt 4 fully connected
layers with 128, 512, 128, 32 neurons, respectively. We adopt
the RMSprop optimizer and the Adam optimizer for training
the siamese neural networks and the Q networks, respectively.

B. Performance of Group-based Resource Reservation
The convergence performance of the proposed RR algo-

rithm for group-based resource reservation is shown in Fig. 5.
Given the same spatial task distribution and configuration of
all servers, we conduct the simulation with 2, 8, and 32 parti-
cles for 30 iterations. The proposed algorithm converges after
10, 14, and 16 iterations, respectively. With more particles,
the algorithm achieves better performance at the cost of com-
putation complexity.

Figs. 6(a) and 6(b) compare the network resource usage per
computing task, versus the load of computing tasks, of the
proposed RR algorithm and the benchmark algorithms. We
adopt four benchmark algorithms: (1) BS-first, which assigns
computing tasks to S-BSs and reserves storage and comput-
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Fig. 6 Network resource usage per computing task under even and uneven
spatial task distributions: (a) Uneven spatial task distribution; (b) Even spatial
task distribution

ing resources on S-BSs first as much as possible, then on S-
NAPs, and last on the S-CN. (2) NAP-first, which assigns
computing tasks to S-NAPs and reserves storage and com-
puting resources on S-NAPs first as much as possible, then
on S-BSs, and last on the S-CN. (3) EA, which assigns com-
puting tasks and reserves storage and computing resources on
S-BS, S-NAP, and S-CN with equal priority. (4) Brute force
(BF), which is an algorithm to find the global optimum. We
have the three following observations. First, for both even and
uneven task distribution, the network resource usage per com-
puting task of the RR algorithm is close to the global optimum
and much lower compared to the benchmark algorithms (ex-
cept the BF algorithm). Second, the network resource usage
per computing task decreases as the load of computing tasks
generated in the network increases. This is because the stor-
age resource usage per task decreases as the load of computing
tasks requesting the same stored chunk increases. Third, the
performance gap between the RR algorithm and the bench-
mark algorithms (except the BF algorithm) under uneven spa-
tial task distribution is larger than under even spatial task dis-
tribution. With uneven spatial task distribution, the optimal
resource reservation may be different for servers at the same

0

0.1

0.2

0.3

0.4

0.5

0.6

D
if

fe
re

nc
e 

in
 r

es
ou

rc
e 

us
ag

e 
pe

r 
ta

sk

4 6 8 10
Number of BSs

1.2

1.4

1.6

1.8

2.0

2.2

R
es

ou
rc

e 
us

ag
e 

pe
r 

ta
sk

1 Group (w/o UDTs)
2 Groups (w/ UDTs)
4 Groups (w/ UDTs)

(a)

0

0.1

0.2

0.3

0.4

0.5

D
if

fe
re

nc
e 

in
 r

es
ou

rc
e 

us
ag

e 
pe

r 
ta

sk

4 6 8 10
Number of BSs

1.2

1.4

1.6

1.8

2.0

R
es

ou
rc

e 
us

ag
e 

pe
r 

ta
sk

1 Group (w/o UDTs)
2 Groups (w/ UDTs)
4 Groups (w/ UDTs)

(b)

Fig. 7 Network resource usage per computing task in heterogeneous and
homogeneous scenarios: (a) Heterogeneous settings; (b) Homogeneous set-
tings

tier. The RR algorithm can differentiate resource reservation
decisions for different servers at the same tier using group-
based spatial task distribution.

Figs. 7(a) and 7(b) show the network resource usage per
computing task versus the number of BSs and the number of
groups in different scenarios. Specifically, the heterogeneous
scenario means that the network resource usage for execut-
ing a computing task and resource capacity of servers at the
same tier are different. The homogeneous scenario means that
the network resource usage for executing a computing task
and resource capacity of servers at the same tier are identical.
The scheme labeled as “1 Group (w/o UDTs)” represents re-
source reservation without UDTs, and the schemes labeled as
“n Groups (w/ UDTs)” represent the proposed RR algorithm
with n groups. We have the following two observations. First,
group-based resource reservation with UDTs outperforms re-
source reservation without UDTs in both homogeneous and
heterogeneous scenarios. Without UDTs, group-based spatial
task distribution is unknown for resource reservation and com-
puting task assignment. As a result, schemes without UDTs
should reserve more resources to satisfy constraint (15d), i.e.,
each group’s communication resource usage for remote ac-
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cess. With more groups, the group-based resource reserva-
tion can achieve better performance at the cost of computa-
tion complexity and data management for UDTs. Second, the
curve with diamond markers represents the performance gap
between 4-group-based resource reservation with UDTs [“4
Group (w/ UDTs)”] and resource reservation without UDTs
[“1 Group (w/o UDTs)”]. In both homogeneous and hetero-
geneous scenarios, the effectiveness of group-based resource
reservation increases with the number of BSs.

C. Performance of Closed-Loop Resource Reservation
Reconfiguration

A training dataset that includes spatial task distributions in
80-time intervals is created. Conducting the simulation for all
80 spatial task distributions in the training dataset are referred
to as one episode. We conduct 10 simulations on the dataset,
and each simulation includes 220 episodes. In Fig. 8(a), the
smooth solid line is the average result over 10 simulations,
while the spikes in the background represent the correspond-
ing variance. Fig. 8(a) shows that the proposed MetaR3 algo-
rithm can converge and find a policy of resource reservation
reconfiguration given a fixed network environment.

In Fig. 8(b), we compare the convergence performance of
the MetaR3 approach with that of a deep Q-Learning (DQN)-
based algorithm, labeled as “DQN”. In DQN, the group-based
spatial task distribution is used as the state to determine the
value of ak. We create two datasets with different spatial task
distributions. One training dataset is used to train the neu-
ral networks in advance, and one evaluation dataset is used to
evaluate the convergence performance of MetaR3. The eval-
uation dataset reveals network status from unknown network
environments. Note that MetaR3 keeps training the siamese
neural networks and the Q networks in unknown network en-
vironment due to the closed-loop reconfiguration of resource
reservation. We observe that MetaR3 achieves lower net-
work resource usage and lower cost of reconfiguring resource
reservation per computing task, and also converges in fewer
episodes in unknown network environment compared with the
DQN algorithm. This is because MetaR3 captures the similar-
ity of network status, instead of learning the variation of net-
work status, to determine ak even though the current network
status is unknown.

Fig. 8(c) shows the performance in the weighted sum of
the network resource usage and the cost of reconfiguring re-
source reservation per computing task versus the average dif-
ference in the load of computing tasks in adjacent two-time
intervals. When the average difference in the load of com-
puting tasks in adjacent two-time intervals increases, spatial
task distribution changes faster. The benchmark algorithm,
labeled as “Myopic”, determines whether to reconfigure re-
source reservation or not in each time interval without consid-
ering the long-term impact. We observe that the performance
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Fig. 8 Performance of MetaR3 in the weighted sum of network resource
usage and cost of reconfiguring resource reservation per computing task: (a)
Convergence performance of MetaR3; (b) Performance comparison between
MetaR3 and DQN; (c) The impact of network dynamics

gaps between MetaR3 and “DQN” and “Myopic” algorithms
increase with the average difference in the load of computing
tasks in adjacent two-time intervals since the similarity cap-
ture features of MetaR3 can reduce the state space for find-
ing a good policy of resource reservation reconfiguration in
dynamic network environments, which improves learning ef-
ficiency.

In Fig. 9, we compare the performance of the proposed
MetaR3 algorithm with that of two popular RL algorithms,
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Fig. 9 Resource usage and cost per computing task of the MetaR3, DDPG,
and DQN-based algorithms

i.e., deep deterministic policy gradient (DDPG)-based (la-
beled as “DDPG” ) and DQN-based algorithms in different
network environments[26,42]. Specifically, we conduct sim-
ulations of the three algorithms with different numbers of
BSs and average the resource usage and cost per comput-
ing task over three independent simulations. We can ob-
serve that the proposed MetaR3 algorithm outperforms the
DDPG- and DQN-based algorithms. This is because both
DDPG- and DQN-based algorithms use network status as
states. When the network status has a large dimensionality
and network environments are highly dynamic, finding the op-
timal resource reservation reconfiguration policy is challeng-
ing for the DDPG and DQN-based algorithms. In contrast,
the proposed MetaR3 algorithm can capture the similarity of
network status in consecutive time intervals. Since the simi-
larity is low-dimensional, using similarities as states has ad-
vantages on finding a proper policy of resource reservation
reconfiguration, particularly in complicated network environ-
ments. Therefore, the proposed MetaR3 algorithm achieves
better network performance than DDPG- and DQN-based al-
gorithms.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have designed DT-empowered network
planning for supporting stateful applications in multi-tier
computing and proposed two approaches to enable group-
based multi-resource reservation and closed-loop resource
reservation reconfiguration. Our study focuses on minimizing
the long-term network resource usage and the cost of recon-
figuring resource reservation. The results have demonstrated
that DT-empowered network planning can support UTs with
diverse characteristics and adapt to dynamic network environ-
ments. In addition, the meta-learning-based approach can ex-
ploit data contained in DTs to facilitate closed-loop network
planning. Overall, we have demonstrated the essential role
that DTs can play in network planning for 6G. In the future,

we will improve the flexibility of DTs by differentiating and
optimizing DTs for various applications or UTs.

APPENDIX

A) Effective Request Ratio for S-NAPs For S-BS e located
at BS b, S-BS e sorts |Ie,k| chunks with the largest values of
pi

b,k in time interval k. Let Ji
e,k denote the order of chunk i

among the chunks with the largest values of pi
b,k in set Ie,k,

and denote by I
(Ji

e,k)

e,k ⊆Ie,k the set of Ji
e,k chunks with largest

values of pi
b,k. We assume that the computing tasks request-

ing any chunk in Ie,k are assigned to the S-BS as much as
possible while not violating the communication and comput-
ing resource capacities. Given different values of ge,k for S-
BS e, the load of computing tasks assigned to S-BS e may
be different. For S-BS e co-located with BS b, the overall

load of computing tasks requiring any chunk in set I
(Ji

e,k)

e,k is

given by ∑
i∈I

(Ji
e,k)

e,k

x̃(i)b,k where x̃(i)b,k = pi
b,k ∑n∈N xn

b,k is the load

of computing tasks requiring chunk i in the coverage of BS b
in time interval k. The load of computing tasks that request
chunk i ∈Ie,k in the coverage of BS b and are not assigned to
S-BS e in time interval k, denoted by Pi

b,e,k, is as follows.

Pi
b,e,k =

0, if ∑
i∈I

(Ji
e,k)

e,k

x̃(i)b,k ⩽ Me,

min

x̃(i)b,k, ∑

i∈I
(Ji,e,k)
e,k

x̃(i)b,k−Me

 , otherwise,

(30)
where Me = ⌊ τpCe

αβ
⌋ is the maximum load of computing tasks

that can be assigned to S-BS e with satisfying the comput-
ing capacity. In (30), if S-BS e has sufficient computing re-
source for executing all computing tasks requiring chunk i,
i.e., ∑

I
(Ji

e,k)

e,k

x̃(i)b,k ⩽ Me, no computing task requiring chunk i

needs to be assigned to an S-NAP or the S-CN. Otherwise, a
certain load of computing tasks requiring chunk i cannot be
processed at S-BS e, which should be assigned to an S-NAP
or the S-CN.

The overall load of computing tasks that request chunk i
and are not assigned to any S-BS e within the service cover-
age of S-NAP e′ in time interval k is given by ∑b∈Be′

Pi
b,e,k.

The effective request ratio of chunk i for S-NAP e′ in time
interval k is as follows.

qi
e′,k =

∑b∈Be′
Pi

b,e,k

∑b∈Be′ ∑N x̃n
b,k

, ∀i ∈I , e′ ∈ E nap, k ∈K . (31)

S-NAP e′ stores |Ie′,k| chunks with the largest values of qi
e′,k.
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On the FaaS track: building stateful distributed applications with
serverless architectures[C]//Proceedings of International Middleware
Conference. New York: ACM, 2019.

[4] European Telecommunications Standards Institute. White paper: MEC
in 5G networks[R]. Sophia Antipolis: ETSI, 2018.

[5] KRÓL M, MASTORAKIS S, ORAN D, et al. Compute first network-
ing: distributed computing meets ICN[C]//Proceedings of ACM Con-
ference on Information-Centric Networking. New York: ACM, 2019.

[6] Internet Engineering Task Force. Framework of compute first network-
ing (CFN)[R]. Fremont: IETF, 2019.

[7] WANG K, CHEN W, LI J, et al. Joint task offloading and caching for
massive MIMO-aided multi-tier computing networks[J]. IEEE Trans-
actions on Communications, 2022, 70(3): 1820-1833.

[8] WU H, CHEN J, ZHOU C, et al. Learning-based joint resource slicing
and scheduling in space-terrestrial integrated vehicular networks[J].
Journal of Communications and Information Networks, 2021, 6(3):
208-223.

[9] HWANG K, SHI Y, BAI X. Scale-out vs. scale-up techniques for cloud
performance and productivity[C]//IEEE International Conference on
Cloud Computing Technology and Science. Piscataway: IEEE Press,
2014.

[10] SHEN X, GAO J, WU W, et al. Holistic network virtualization and per-
vasive network intelligence for 6G[J]. IEEE Communications Surveys
and Tutorials, 2022, 24(1): 1-30.

[11] YU Q, REN J, ZHOU H, et al. A cybertwin-based network architecture
for 6G[C]//6G Wireless Summit. Piscataway: IEEE Press, 2020.

[12] TAO F, ZHANG H, LIU A, et al. Digital twin in industry: state-of-
the-art[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4):
2405-2415.

[13] WANG S, RAN C. Rethinking cellular network planning and optimiza-
tion[J]. IEEE Wireless Communications, 2016, 23(2): 118-125.

[14] LI M, GAO J, ZHOU C, et al. Slicing-based artificial intelligence ser-
vice provisioning on the network edge: balancing AI service perfor-
mance and resource consumption of data management[J]. IEEE Vehic-
ular Technology Magazine, 2021, 16(4): 16-26.

[15] CHEN X. Decentralized computation offloading game for mobile
cloud computing[J]. IEEE Transactions on Parallel and Distributed
Systems, 2015, 26(4): 974-983.

[16] HE H, SHAN H, HUANG A, et al. Edge-aided computing and trans-
mission scheduling for LTE-U-enabled IoT[J]. IEEE Transactions on
Wireless Communications, 2020, 19(12): 7881-7896.

[17] PASTERIS S, WANG S, HERBSTER M, et al. Service place-
ment with provable guarantees in heterogeneous edge computing sys-
tems[C]//IEEE International Conference on Computer Communica-
tions. Piscataway: IEEE Press, 2019.

[18] OUYANG T, ZHOU Z, CHEN X. Follow me at the edge: mobility-
aware dynamic service placement for mobile edge computing[J]. IEEE
Journal on Selected Areas in Communications, 2018, 36(10): 2333-
2345.

[19] KUANG Z, LI L, GAO J, et al. Partial offloading scheduling and
power allocation for mobile edge computing systems[J]. IEEE Inter-
net of Things Journal, 2019, 6(4): 6774-6785.

[20] LERA I, GUERRERO C, JUIZ C. Availability-aware service place-

ment policy in fog computing based on graph partitions[J]. IEEE Inter-
net of Things Journal, 2018, 6(2): 3641-3651.

[21] CHEN L, XU J. Budget-constrained edge service provisioning with
demand estimation via bandit learning[J]. IEEE Journal on Selected
Areas in Communications, 2019, 37(10): 2364-2376.

[22] YU S, LANGAR R, FU X, et al. Computation offloading with data
caching enhancement for mobile edge computing[J]. IEEE Transac-
tions on Vehicular Technology, 2018, 67(11): 11098-11112.

[23] ZHOU C, WU W, HE H, et al. Deep reinforcement learning for delay-
oriented IoT task scheduling in SAGIN[J]. IEEE Transactions on Wire-
less Communications, 2021, 20(2): 911-925.

[24] CHENG N, LYU F, QUAN W, et al. Space/aerial-assisted computing
offloading for IoT applications: a learning-based approach[J]. IEEE
Journal on Selected Areas in Communications, 2019, 37(5): 1117-
1129.

[25] HU S, SHI W, LI G. CEC: a containerized edge computing framework
for dynamic resource provisioning[J]. IEEE Transactions on Mobile
Computing, 2022, Early Access.

[26] ZHANG J, CHEN S, WANG X, et al. Dynamic reservation of edge
servers via deep reinforcement learning for connected vehicles[J].
IEEE Transactions on Mobile Computing, 2022, Early Access.

[27] YIN H, ZHANG X, LIU H, et al. Edge provisioning with flexible
server placement[J]. IEEE Transactions on Parallel and Distributed
Systems, 2016, 28(4): 1031-1045.

[28] ZHOU Z, YU S, CHEN W, et al. CE-IoT: cost-effective cloud-edge
resource provisioning for heterogeneous IoT applications[J]. IEEE In-
ternet of Things Journal, 2020, 7(9): 8600-8614.

[29] DAYARATHNA M, WEN Y, FAN R. Data center energy consumption
modeling: a survey[J]. IEEE Communications Surveys and Tutorials,
2015, 18(1): 732-794.

[30] CHEN L, ZHOU S, XU J. Computation peer offloading for
energy-constrained mobile edge computing in small-cell networks[J].
IEEE/ACM Transactions on Networking, 2018, 26(4): 1619-1632.

[31] RUIZ-ALVAREZ A, HUMPHREY M. A model and decision proce-
dure for data storage in cloud computing[C]//IEEE International Sym-
posium on Cluster, Cloud and Internet Computing. Piscataway: IEEE
Press, 2012.

[32] PARK J, CHOU P, HWANG J. Rate-utility optimized streaming of vol-
umetric media for augmented reality[J]. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2019, 9(1): 149-162.

[33] PASCHOS G S, IOSIFIDIS G, TAO M, et al. The role of caching
in future communication systems and networks[J]. IEEE Journal on
Selected Areas in Communications, 2018, 36(6): 1111-1125.

[34] DAI J, HU Z, LI B, et al. Collaborative hierarchical caching with dy-
namic request routing for massive content distribution[C]//IEEE In-
ternational Conference on Computer Communications. Piscataway:
IEEE Press, 2012.

[35] POULARAKIS K, TASSIULAS L. On the complexity of optimal con-
tent placement in hierarchical caching networks[J]. IEEE Transactions
on Communications, 2016, 64(5): 2092-2103.

[36] ZHANG F, LIU G, FU X, et al. A survey on virtual machine migra-
tion: Challenges, techniques, and open issues[J]. IEEE Communica-
tions Surveys and Tutorials, 2018, 20(2): 1206-1243.

[37] KELLERER H, PFERSCHY U, PISINGER D. Multidimensional
knapsack problems[M]. Berlin: Springer, 2004.
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