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Abstract—While network slicing has become a prevalent
approach to service differentiation, radio access network (RAN)
slicing remains challenging due to the need of substantial adap-
tivity and flexibility to cope with the highly dynamic network
environment in RANs. In this paper, we develop a slicing-based
resource management framework for a two-tier RAN to support
multiple services with different quality of service (QoS) require-
ments. The developed framework focuses on base station (BS)
service coverage (SC) and interference management for multiple
slices, each of which corresponds to a service. New designs are
introduced in the spatial, temporal, and slice dimensions to cope
with spatiotemporal variations in data traffic, balance adaptivity
and overhead of resource management, and enhance flexibility
in service differentiation. Based on the proposed framework, an
energy efficiency maximization problem is formulated, and an
artificial intelligence (AI)-assisted approach is proposed to solve
the problem. Specifically, a deep unsupervised learning-assisted
algorithm is proposed for searching the optimal SC of the BSs, and
an optimization-based analytical solution is found for managing
interference among BSs. Simulation results under different data
traffic distributions demonstrate that our proposed slicing-based
resource management framework, empowered by the AI-assisted
approach, outperforms the benchmark frameworks and achieves
a close-to-optimal performance in energy efficiency.

Index Terms—RAN slicing, service coverage management,
interference management, deep unsupervised learning.

I. INTRODUCTION

S INCE the 3rd Generation Partnership Project
(3GPP) Release 18 for the advanced fifth generation

communication network (5G-advanced) in 2021, academia
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have commenced their efforts on the development and deploy-
ment of next-generation wireless networks (NGWNs) [1].
NGWNs are anticipated to support a diverse set of disruptive
new services such as extended reality (XR) and haptic com-
munications [2]. As a result, the research and standardization
efforts for NGWNs must address new challenges. First,
services in NGWNs will have unprecedentedly stringent
quality of service (QoS) requirements since a massive amount
of data must be transmitted over networks with extremely
low delay and ultra-high reliability [3], [4]. Second, the QoS
requirements of services in NGWNs will become highly
diverse. Meeting the stringent and diverse QoS requirements
to support new services in NGWNs calls for advanced
networking and communication techniques [5], [6].

Network slicing, as a key innovation in the fifth
generation (5G), can support multiple coexisting virtual
networks, i.e., slices, on the same physical network infrastruc-
ture [7]. Due to the advantages in QoS guarantee and service
differentiation, network slicing lays a foundation for efficient
resource management and will continue playing an impor-
tant role in NGWNs. Some pioneering works have envisioned
advanced slicing-based resource management for services in
NGWNs with diverse and stringent QoS requirements [8], [9].
In these works, slicing-based resource management can be
categorized into two stages, i.e., planning stage and oper-
ation stage. The planning stage focuses on network-wide
configuration and proactive network resource reservation for
different services, while the operation stage focuses on user-
level service provisioning and real-time network resource
allocation [10]. A planning period, referred to as the plan-
ning window, can be minutes or hours in length, whereas a
network operation period, referred to as the operation window,
is generally milliseconds in length. While planning and oper-
ation stages have different focuses, both play indispensable
roles in slicing-based resource managements as they jointly
determine QoS satisfaction [11], [12]. However, existing lit-
erature and 3GPP standards pay much more attention to the
operation stage than to the planning stage.

Compared to the operation stage, slicing-based resource
management in the planning stage faces unique challenges.
First, real-time information on individual users is unavail-
able at the beginning of the planning stage when resources
are reserved. Consequently, existing slicing-based resource
management schemes in the planning stage rely on coarse-
grained information such as the aggregated data traffic over a
planning window, which may result in an inaccurate estima-
tion of service demands and thus degrade network resource
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utilization [13]. Second, user mobility and time-varying
user behaviors result in significant spatiotemporal variations
in service demands, which pose a challenge of balancing
adaptivity and overhead in the planning stage of slicing-based
resource management [14]. Third, differentiating services and
satisfying their diverse and stringent QoS requirements further
complicate the decision making on network-wide configura-
tions and proactive resource reservation [7].

Following 5G standardization in Releases 15 to 17 as well
as commercial 5G deployment, a large number of works
have studied slicing-based resource management for supporting
diverse services in core networks [3]. Nevertheless, slicing-
based resource management for radio access networks (RANs)
is still in its infancy [15], [16]. Ensuring service differentiation
among multiple slices in RANs is more challenging than in core
networks, and the reason is two-fold. First, interference occurs
among the data transmissions of different base stations (BSs)
within each slice since spectrum reuse takes place among the
BSs for improving the spectrum multiplexing gain [9]. Such
intra-slice interference causes challenges in accurately estimat-
ing the required amount of resources for each slice, thereby
adversely affecting their QoS satisfaction [17]. Furthermore,
inter-slice interference may occur and result in tightly coupled
management (such as coverage management) among differ-
ent slices in RANs, which hinders efficient slice isolation in
RANs [18]. Therefore, slicing-based resource management for
RANs that can address the aforementioned challenges needs
to be further investigated in NGWNs.

In this paper, we investigate slicing-based resource man-
agement for a two-tier RAN, i.e., a single macro-cell in
the first tier and multiple small cells in the second tier,
to improve resource utilization and achieve service differ-
entiation. Specifically, creating a slice for each service, we
determine the service coverage (SC) of BSs for each slice
and manage inter-slice and intra-slice interference to sup-
port slices with different signal-to-interference-plus-noise ratio
(SINR) requirements. Our research objective is to maximize
the network energy efficiency by determining the SC and
downlink transmission power of BSs for all slices while sat-
isfying their SINR requirements. We propose a RAN slicing
framework and formulate an optimization problem based on
the proposed framework. Then, we develop an approach to
solve the problem for obtaining the optimal solution of SC
management (SCM) and interference management (IM). The
main contributions of this paper are as follows:

• We develop a novel RAN slicing framework with three
designs for the spatial, temporal, and slice dimensions.
The proposed grid-based planning and dual time-scale
planning can adapt to spatiotemporal variations in data
traffic, and the proposed flexible binary slice zooming
can enhance the flexibility of service differentiation for
satisfying different QoS requirements in a RAN.

• We propose an effective artificial intelligence (AI)-
assisted approach to address the challenging RAN slicing
problem. By integrating a deep unsupervised learning
technique and an optimization-based analytical solu-
tion, the proposed approach can cope with the coupling
between SCM and IM to balance the adaptivity and
overhead of slicing-based resource management.

The remainder of this paper is organized as follows.
Section II provides an overview of related studies. Section III
describes the network scenario and proposed RAN slicing
framework. Section IV presents the system model and problem
formulation. Section V introduces the developed AI-assisted
approach. Section VI presents the simulation results, followed
by the conclusion in Section VII. A list of main symbols is
given in Table I.

II. RELATED WORK

Slicing-based resource management for core networks has
attracted significant attention since 5G due to its advan-
tage in service differentiation, while research on slicing-based
resource management for RANs is still at a nascent stage [3].
Existing works on slicing-based resource management for
RANs can be categorized as either a single-stage approach or
a two-stage approach (i.e., with planning and operation stages
as mentioned in Section I).

In single-stage approaches, a centralized controller, e.g., a
software-defined networking (SDN) controller, is responsi-
ble for managing resources in a RAN for each individual
user terminal (UT) in each slice [17], [19], [20], [21], [22],
[23], [24]. In a single-BS scenario, Korrai et al. focused on
the physical-layer RAN slicing and investigated customized
physical-layer configurations for UTs in different slices [19],
while Yang et al. concentrated on the data link layer and
proposed a resource block (RB) scheduling scheme for UTs
of enhanced mobile broadband (eMBB) and ultra-reliable
and low latency communications (URLLC) slices to satisfy
their different latency and reliability requirements [21]. In a
multiple-BS scenario, authors in [20] proposed an orthogonal
RB allocation scheme for UTs in different slices from the per-
spective of fairness in data rates of UTs. Moreover, with the
consideration of inter-slice and intra-slice interference, a few
works presented RB allocation schemes for UTs in different
slices to improve their performance in terms of latency, data
rate, and RB usage [17], [22], [23], [24]. While single-stage
approaches can support service differentiation, their adaptivity
is restricted owing to the lack of proactive resource reservation,
which poses a challenge to QoS guarantee in highly dynamic
network environments [25].

To tackle this problem, lots of researchers recently con-
centrate on two-stage approaches [7], [9]. Specifically, a
centralized controller proactively reserves network resources
for slices according to the service demand of each slice
in a large time scale, i.e., planning window, whereas each
slice allocates the reserved resources to individual UTs based
on their real-time status in a short time scale, i.e., opera-
tion window. Compared with one-stage approaches, two-stage
approaches are capable of achieving high adaptivity by proac-
tively configuring slices and reserving resources in dynamic
network environments and offer great flexibility due to having
two time scales for different resource management deci-
sions [7], [26]. Focusing on the planning stage, a few existing
works investigated proactive resource reservation in RAN slic-
ing by statistically modeling the service demand of each
slice [26], [27], [28], [29], e.g., Poisson process-based data
packet arrival. Considering vehicular networks with eMBB,
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TABLE I
LIST OF MAIN SYMBOLS

URLLC, and massive machine-type communication (mMTC)
services, the authors of [27] and [28] proposed two orthogonal
radio resource reservation schemes, respectively. Taking into
account inter-slice interference, some researchers presented
spectrum slicing schemes, e.g., [26], [29], and the authors
of [30] analyzed the trade-off between spectrum utilization and
inter-slice interference. In addition, joint planning-stage and
operation-stage radio resource slicing was studied in various
network scenarios, including one-tier [31], [32], two-tier [33],
and drone-based RANs [34], where radio resource reservation
among slices in the planning stage was conducted based on AI-
driven prediction [31], [32] or statistical modeling [33], [34]
of the data traffic load in each slice. Existing research on two-
stage approaches mainly concentrated on resource reservation
for RANs, while SC management for multiple slices with dif-
ferent QoS requirements remains an open issue. Moreover,
the existing two-stage approaches rely on coarse-grained
information, such as aggregated data traffic within the SC area
of a BS, which may degrade network resource utilization.

Different from the existing two-stage approaches, we pro-
pose a novel RAN slicing framework for both resource
reservation and SC management in the planning stage. With
joint resource reservation and SC management, we target
fine-grained and flexible resource management for achieving
service differentiation in spatiotemporally dynamic network
environments.

III. NETWORK SCENARIO AND RAN
SLICING FRAMEWORK

In this section, we introduce the considered network
scenario and present the proposed RAN slicing framework.

Fig. 1. The physical network scenario.

A. Network Scenario

Consider a two-tier RAN with one macro BS (MBS) in
the first tier and M small BSs (SBSs) in the second tier. We
show the physical network scenario of the considered two-
tier RAN in Fig. 1. All the BSs use the same radio spectrum
pool, and each BS orthogonally reserves RBs for downlink
transmissions within its coverage area [35]. Using network
slicing, N slices (corresponding to N services with different
SINR requirements) are created on top of the physical network,
and the radio spectrum resource of each BS is shared by all
slices. For each slice, the MBS and all SBSs jointly support
the corresponding service across the network to ensure that
the service is accessible anywhere within the network cover-
age area. Meanwhile, given any slice, the SC of different SBSs
(representing the spatial coverage of these SBSs for the cor-
responding service) are non-overlapping with each other for
mitigating intra-slice interference. Any UT within the SC of an
BS is associated to that BS, and each BS solely serves all UTs
within its SC for the corresponding service. UTs not within
the SC of any SBS are associated to the MBS. A centralized
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Fig. 2. Grid-based and dual time-scale planning (shown for one slice).

controller located at the MBS determines the SC and total
transmission power for each slice at each BS in the planning
stage, corresponding to SCM and IM. Then, in the subsequent
operation stage, each BS allocates radio resources, such as
RBs and transmission power, to individual UTs within its SC
for downlink transmissions.

B. RAN Slicing Framework

For the considered scenario, we focus on the planning stage
and propose a RAN slicing framework to achieve fine-grained
and flexible SCM and IM for services with different SINR
requirements. The proposed framework consists of three
schemes: 1) grid-based planning in the spatial dimension;
2) dual-time scale planning in the temporal dimension; and
3) flexible binary slice zooming in the slice dimension.

1) Grid-Based Planning: To cope with the uneven spa-
tial distribution of data traffic loads, we propose grid-based
planning in the spatial dimension, where the illustration of
grid-based planning for one slice is shown in Fig. 2(a).
Specifically, the whole network coverage is divided into I
hexagon areas, named grids, with an identical grid diameter,
denoted by r.1 We assume that each BS is at the center of a
grid, and the SC radius of each SBS corresponds to the num-
ber of layers of grids within its SC. For each slice, the SC
of the MBS includes all the grids that are not in the SC of
any SBS. In the example shown in Fig. 2(a), the SC radius of
the SBS is 3. The total downlink transmission power for each
grid within the SC of a BS can be different.

The benefit of grid-based planning is two-fold. First, the
downlink transmissions for UTs within different grids may
experience different interference. Customizing the total trans-
mission power for each grid can help mitigate inter-slice and
intra-slice interference and thus improve network energy effi-
ciency. Second, adjusting the SC of each SBS in the units of
grids is beneficial for balancing data traffic loads among BSs
in a fine-grained manner.

1In addition to hexagons, some other shapes of grids are also applicable to
the proposed grid-based planning.

Fig. 3. Flexible binary slice zooming (shown for two slices).

2) Dual Time-Scale Planning: To adapt to the temporal
variations of data traffic loads, we propose the scheme of dual
time-scale planning, where the illustration of dual time-scale
planning for one slice is shown in Fig. 2(b). Each planning
window is divided into T (T > 1) time intervals with uni-
form length. The SC of the SBSs is updated at the beginning of
each planning window and remains constant till the beginning
of the next planning window. By contrast, the total downlink
transmission power of the BSs for individual grids is updated
at the beginning of each time interval in the planning window
if needed.

Dual time-scale planning provides great flexibility in dif-
ferentiating the time scales of SCM and IM based on the
difference in the amount of resource management overhead,
i.e., signaling overhead and computation complexity. First,
the short planning window for SCM leads to frequent UT
association changing during network operations and thus high
signaling overhead. Second, SCM has a higher computation
complexity than IM since adjusting the SC of BSs results in the
update of total transmission power of BSs for individual grids.
Dual-time scale planning helps properly balance the adap-
tivity of resource management and the resource management
overhead.

3) Flexible Binary Slice Zooming: To provide the flexibil-
ity in service differentiation, we propose a novel scheme called
flexible binary slice zooming in the slice dimension, including
the following two elements. The proposed scheme for two
slices is illustrated in Fig. 3.

• Differentiated IM and SCM across slices: For IM, the
transmission power reserved by each BS for each grid
can be different across slices. For SCM, the SC of each
SBS can also be different across slices. Specifically, the
SC of each SBS for any slice is binary, i.e., either full-
size or reduced-size shown in Fig. 3, neither of which can
exceed the maximum physical coverage area of the SBS.
We refer to the gap between the full-size and the reduced-
size SC of each SBS as a ring-shaped area surrounding
the SBS.2

• Partially non-orthogonal RB reservation among BSs: All
the BSs use the same radio spectrum pool except in the

2All SC of an SBS may be identical, i.e., either all SC is reduced-size or
all SC is full-size. In this case, there is no ring-shaped area surrounding the
SBS.
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Fig. 4. Virtual slice separation at SBS 1.

following case: each SBS and the MBS reserve different
sets of RBs for downlink transmissions within the ring-
shaped area surrounding the SBS if such an area exists.
The partially non-orthogonal RB reservation avoids the
interference between the downlink transmissions of each
SBS and the MBS within the ring-shaped areas. We
highlight the partially non-orthogonal RB reservation for
downlink transmissions using red arrows in Fig. 3, which
is explained in Section IV-A.

The proposed flexible binary slice zooming has two benefits
in facilitating service differentiation in RANs. First, differen-
tiating the downlink transmission power for different slices
achieves fine-grained IM in the slice dimension, and thus helps
satisfy the diverse and stringent SINR requirements of slices.
Second, by customizing the SC of each BS for different slices,
the proposed flexible binary slice zooming scheme is more
flexible in adapting to the different spatial distributions of
data traffic loads than conventional cell-based SCM that uses
identical SC for all services.

Based on the aforementioned three schemes, the proposed
RAN slicing framework provides great flexibility in enabling
isolated SCM and IM for multiple slices, and improves
granularity and adaptivity in adapting to the spatiotemporal
variations of data traffic loads in RANs.

C. Operation Stage Consideration

The real-time allocation of RBs for individual UTs in the
operation stage impacts the interference and thus the SINR of
each UT. As a result, making decisions on SCM and IM with
the consideration of operation-stage RB allocation is neces-
sary. However, it is impossible to know the future UT-level
information, e.g., the locations and data traffic loads of UTs,
at the beginning of each planning window, and how RBs will
be allocated to individual UTs in the subsequent planning win-
dow. To overcome this issue, we adopt virtual slice separation
to reserve RBs for multiple slices in the planning stage with
RB multiplexing in the operation stage. Specifically, only the
number of RBs reserved for each slice is determined in the
planning stage rather than the specific set of RBs. An example
of virtual slice separation is shown in Fig. 4. Fig. 4(a) shows
the numbers of RBs reserved to slices A and B by virtual slice
separation, and Fig. 4(b) shows the specific sets of RBs that
can be flexibly allocated to individual UTs in the operation
stage based on the real-time network environment.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model for
SCM and IM based on the proposed RAN slicing framework.
Then, we formulate an optimization problem to maximize the
network energy efficiency.

Denote the set of BSs by M = {0, 1, . . . ,M }, and
let m = 0 and m ∈ M\{0} be the indexes of the MBS
and M SBSs, respectively. Define the sets of slices, grids, and
time intervals as N = {1, 2, . . . ,N }, I = {1, 2, . . . , I }, and
T = {1, 2, . . . ,T}, respectively.

A. Model of SCM

We model the SC of BSs in the proposed RAN slicing
framework. Denote the SC radius of SBS m for slice n by
lm,n . We assume that the maximum physical coverage radius
of all SBSs are identical, denoted by Lmax, and define the set
of possible SC radius for any slice as L = {1, 2, . . . ,Lmax}.
With flexible binary slice zooming, we determine the full-
size or reduced-size SC radiuses of SBS m, denoted by
l fm ∈ L and l rm ∈ L, respectively, where l fm ≥ l rm . To
indicate whether the SC of SBS m for slice n is full-size or
reduced-size, we introduce a binary variable am,n ∈ {0, 1}.
Accordingly, lf = [l fm ]∀m∈M\{0}, lr = [l rm ]∀m∈M\{0}, and
a = [am,n ]∀m∈M\{0},n∈N are the variables that determine
the SC of BSs during a planning window. The SC radius of
SBS m ∈M\{0} for slice n ∈ N is represented as follows:

lm,n =

{
l fm , if am,n = 1;
l rm , if am,n = 0.

(1)

Let dm,i denote the distance between BS m and the center
of grid i. We define the set of grids within the SC of SBS m
for slice n and the set of grids within the ring-shaped area
surrounding SBS m as Im,n = {i |dm,i ≤ lm,n , i ∈ I}
and Rm = {i |l rm ≤ dm,i ≤ l fm , i ∈ I}, respectively. We
define the set of grids within the SC of the MBS for slice n
as I0,n = {i |i ∈ I\Im,n ,m ∈ M\{0}}, i.e., for any slice,
grids that are not within the SC of any SBS are covered by
the MBS.

SCM should consider the spatial distribution of downlink
data traffic loads. Denote the amount of downlink data traf-
fic loads (in bits) of all UTs within grid i in time interval t
for slice n by w t

i ,n . Let vectors wt
n = [w t

i ,n ]∀i∈I and W =

[w t
i ,n ]∀i∈I,n∈N ,t∈T be the data traffic distribution (DTD) of

slice n in time interval t and the DTD vector of all slices
over a planning window, respectively. The DTD vector W is
assumed to be known a prior through prediction [36]. The
required number of RBs for each BS depends on the data
traffic load within the SC of the BS. Let ηn represent the
average number of RBs required to support each bit of the
downlink data traffic in slice n.3 To ensure that the number of
RBs reserved for the downlink data traffic within the SC of
any BS does not exceed the total number of RBs of each BS
during a planning window, denoted by C, the condition

3The value of ηn can be estimated according to the data rate requirement
of slice n and the long-term performance of RB scheduling in the operation
stage [37].
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∑
t∈T

∑
n∈N

∑
i∈Im,n

ηnw
t
i ,n ≤ C , ∀m ∈M\{0}, (2)

for each SBS and the condition

∑
t∈T

∑
m∈M\{0}

∑
n∈N

ηn

⎛
⎝∑

i∈I
w t
i ,n −

∑
i∈Im,n

w t
i ,n

⎞
⎠ ≤ C , (3)

for the MBS should be satisfied in SCM.
SCM affects the interference among downlink transmissions

of different BSs due to frequency reuse. As the result of par-
tially non-orthogonal RB reservation in flexible binary slice
zooming, there are two cases in which downlink transmissions
do not interfere with each other: i) between downlink trans-
missions of the same BS, e.g., communication links 3 and 4
in Fig. 3 (shown as the red arrows with circled numbers 3
and 4 in the figure); and ii) between downlink transmissions
of the SBSs and the MBS within a ring-shaped area, e.g., com-
munication links 1 and 2 for the two UTs in the ring-shaped
area R1 in Fig. 3 (shown as the red arrows with circled num-
bers 1 and 2). To achieve non-orthogonal RB reservation as
mentioned in Section III-B, the following condition must be
satisfied in SCM:∑

t∈T

∑
n∈N

∑
i∈Rm

w t
i ,nηn ≤ C , ∀m ∈M\{0}. (4)

Constraint (4) ensures that, if a ring-shaped area surrounding
an SBS exists, the SBS and the MBS have sufficient RBs for
orthogonal RB reservation in the ring-shaped area.

Other than the aforementioned two cases, there exists the
interference between downlink transmissions of different BSs.
We introduce term bti ,n,i ′,n ′ ∈ {0, 1} to indicate whether the
downlink transmission to grid i for slice n is interfered by the
downlink transmission to grid i ′ for slice n ′ in time interval t
or not, given by:

bti ,n,i ′,n ′ =⎧⎪⎪⎨
⎪⎪⎩

0, if i ∈ Im,n , i
′ ∈ Rm , am,n = 1, am,n ′ = 0;

0, if i ∈ Rm , i
′ ∈ Im,n ′ , am,n = 0, am,n ′ = 1;

0, if mi ,n = mi ′,n ′ , ∀mi ,n ,mi ′,n ′ ∈M;
1, otherwise,

(5)

where m ∈ M\{0}, and mi ,n = {m|i ∈ Im,n ,m ∈ M}
denotes the BS that covers grid i in its SC of slice n. The
first and second cases in (5) represent no interference between
the downlink transmission of the SBSs and the MBS within
the ring-shaped areas. The third case in (5) represents no
interference between the downlink transmissions within grid i
for slice n and that within gird i ′ for slice n ′ if they are
from the same BS, i.e., mi ,n = mi ′,n ′ . Otherwise, the down-
link transmission within a grid interferes with the downlink
transmission within other grids.

B. Model of IM

We model IM based on virtual slice separation mentioned in
Section III-C. Denote the total downlink transmission power
summarized over all RBs reserved for downlink transmissions
in grid i for slice n in time interval t by pti ,n . Define the
IM decision in time interval t and in a planning window

as pt = [pti ,n ]∀i∈I,n∈N and p = [pti ,n ]∀i∈I,n∈N ,t∈T ,
respectively.

We assume that the maximum downlink transmission power
of SBSs are the same, and denote the maximum down-
link transmission power of the SBSs and the MBS by pSBS
and pMBS, respectively. The following constraint should be
satisfied in IM to ensure that the total downlink transmission
power of each BS over all slices cannot exceed the maximum
downlink transmission power of the BS:

∑
n∈N

∑
i∈Im,n

pti ,n ≤
{

pMBS, m = 0;
pSBS, m ∈M\{0}. (6)

Next, we model the interference between downlink trans-
missions of different BSs. The exact interference depends on
real-time RB scheduling during the operation stage and is
unknown a priori in the planning stage. We define param-
eter θti ,n,i ′,n ′ ∈ [0, 1] to represent the likeliness that the
downlink transmission to grid i for slice n is interfered by
the downlink transmission to grid i ′ for slice n ′ in time
interval t and model the planning-stage interference statis-
tically [30], [38].4 The SCM decisions of the BSs covering
grid i and i ′ for slice n and n ′ can affect the data traffic loads
of the BSs and thus the value of θti ,n,i ′,n ′ . Given θti ,n,i ′,n ′ ,
the total interference to the downlink transmission of BS mi ,n

to grid i, denoted by I ti ,n , is expressed as follows:

I ti ,n =
∑
n ′∈N

∑
i ′∈I

bti ,n,i ′,n ′θti ,n,i ′,n ′pti ′,n ′hti ,n,i ′,n ′ (7)

where hti ,n,i ′,n ′ denotes the average channel gain of the down-
link transmission of BS mi ′,n ′ to grid i for slice n in time
interval t.

The SINR of the downlink transmission of BS mi ,n to grid i
for slice n in time interval t, denoted by γti ,n , can be modeled
as follows:

γti ,n =
p̄ti ,nh

t
i ,n,i ,n

N0 + I ti ,n
, ∀i ∈ I,n ∈ N , t ∈ T , (8)

where p̄ti ,n = pti ,n/(w
t
i ,nηn) represents the average transmis-

sion power on a single RB for downlink transmissions in
slice n within grid i in time interval t, and N0 denotes the
noise power. IM should satisfy the SINR requirement of each
slice, as follows:

γti ,n ≥ ργmin
n , ∀i ∈ Im,n , (9)

where γmin
n denotes the minimum SINR required by slice n,

and ρ is a constant used for flexibly scaling the minimum
required SINR level [16].5

4The value of parameter θt
i,n,i′,n′ can be obtained empirically when the

DTD W, RB scheduling policy in the operation stage, and RB reservation
policy in the planning stage are given [26].

5The SINR in the planning stage, i.e., γti,n is a reference value over the
duration of a time interval, which may not represent the exact SINR level
in the operation stage. Thus, we allow a feedback mechanism to change the
SINR requirements of slices in the planning stage by adjusting weight ρ based
on the real-time power control, RB allocation, and instantaneous SINR in the
operation stage.
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C. Problem Formulation

In this subsection, we formulate an energy efficiency
maximization problem based on the proposed RAN slicing
framework. Denote the energy consumption of BS m for
serving slice n in time interval t by E t

m,n , given by:

E t
m,n = τP t

m,n , ∀m ∈M,n ∈ N , t ∈ T , (10)

where τ denotes the duration of each time interval. The energy
efficiency (measured in the unit of bit/RB/J) of all BSs for
serving slice n during a planning window, denoted by ξn , is
as follows:

ξn =
wn

EnCn
, ∀n ∈ N , (11)

where En =
∑

t∈T
∑

m∈M E t
m,n is the total energy con-

sumption of all BSs in all time intervals of a planning
window, wn =

∑
t∈T

∑
m∈M

∑
i∈Im,n

w t
i ,n represents the

total downlink traffic data loads in the planning window, and
Cn =

∑
t∈T

∑
m∈M

∑
i∈Im,n

w t
i ,nηn is the total number of

RBs reserved in the planning window.
The slicing-based resource management problem with the

objective of network energy efficiency maximization is formu-
lated as follows:

P1: max
{p,lf ,lr,a}

∑
n∈N

λnξn (12a)

s.t. (2), (3), (4), (6), (9), (12b)

Dm,m ′ ≥ l fm + l fm ′ , ∀m �= m ′, m,m ′ ∈M\{0},
(12c)

pti ,n > 0, ∀pti ,n ∈ R, (12d)

l fm ≥ l rm , ∀l rm , l fm ∈ L,m ∈M\{0}, (12e)

am,n ∈ {0, 1}, ∀m ∈M,n ∈ N , (12f)

where λn denotes the weight for balancing the energy effi-
ciency for different slices. In Problem P1, the optimization
variables include IM decision p and SCM decisions lf , lr,
and a. Constraint (12c) ensures that the SC of SBSs does not
overlap, in which term Dm,m ′ denotes the physical distance
between SBSs m and m ′. Constraint (12d) guarantees that
the downlink transmission power is positive. Constraints (12e)
and (12f) ensure that the selection of the SC of each SBS
for each slice is binary and does not exceed the maximum
physical coverage of the SBS. Problem P1 is a combinato-
rial optimization problem, which is difficult to be solved by
conventional optimization methods due to two reasons [39].
First, a large number of variables need to be determined.
Specifically, the variables for transmission power and SCM
are with the dimensions of N × I × T and N × M ,
respectively. Second, the transmission power and SCM deci-
sions are coupled. To solve this problem, we propose an
unsupervised-learning-assisted solution in the next section.

V. UNSUPERVISED-LEARNING-ASSISTED SOLUTION

We decouple Problem P1 into two sub-problems and solve
them in two steps. In the first step, we design an unsupervised-
learning-assisted approach to determine the SC of the SBSs.
In the second step, given a solution to the SCM sub-problem,

we derive the closed-form solution to the IM sub-problem
in each time interval. We first discuss the solution to IM in
Section V-A, followed by the solution to SCM in Sections V-B
and V-C.

A. Optimal Solution of IM

Given the settings of the SC of all SBSs, i.e., lf , lr, a, we
formulate the problem of IM in time interval t as follows:

P2: max
{pt}

∑
n∈N

λnξn (13a)

s.t. (6), (9), (12d). (13b)

The solution of pt in Problem P2 depends on the DTDs of all
slices in time interval t. In Theorem 1, we provide the closed-
form optimal solution of pt in time interval t. Theorem 1 can
be applied to all time intervals of a planning window since
IM in different time intervals is independent.

Theorem 1: Define δti ,n,i ′,n ′ = bti ,n,i ′,n ′θti ,n,i ′,n ′hti ,n,i ′,n ′ .
The optimal solution to Problem P2, i.e., pt∗, is given by (14),
as shown at bottom of the next page, where

Ωt
n,n ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δt1,n,1,n ′ · δt1,n,i ′,n ′ · δt1,n,I ,n ′
...

...
...

δti ,n,1,n ′ · δti ,n,i ′,n ′ · δti ,n,I ,n ′
...

...
...

δtI ,n,1,n ′ · δtI ,n,i ′,n ′ · δtI ,n,I ,n ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
I×I

, (15)

and

Ĥt = diag

(
ht1,1

w t
1,1η1

, . . . ,
hti ,n

w t
i ,nηn

, . . . ,
htI ,N

w t
I ,N ηN

)
. (16)

Proof: See the Appendix.

B. Local Optimum SC Search

Given the solution to IM, determining the SC of all
BSs for all slices in Problem P1 remains a combinatorial
optimization problem. To solve this problem, we propose an
unsupervised-learning-assisted approach. The basic idea is to
first iteratively find a locally optimal solution to SCM and
then use a deep unsupervised learning technique to refine the
locally optimal solution obtained by the iterative algorithm. We
detail the designed iterative algorithm and the unsupervised-
learning-assisted algorithm in this subsection and Section V-C,
respectively.

We present the local optimum SC search (LOSCS) algo-
rithm, which iteratively updates the SC of each SBS, searching
one SBS at a time, until no further energy efficiency improve-
ment can be achieved by updating the SC of any SBS. Denote
the objective function in Problem P1 and the value of the
objective function by Δ(lf , lr, a, p) and Δ, respectively. The
algorithm is detailed in Algorithm 1. Let setMs ⊂M include
the SBSs that have not been involved in the iterative search yet.
Line 2 initializes set Ms =M\{0} and the SC of all SBSs,
i.e., lf , lr, and a, and randomly selects an SBS, i.e., SBS m,
to start searching. Given the initialized SC of SBSs, line 3
and line 4 obtain the optimal solution of IM, i.e., p, and the
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Algorithm 1: LOSCS Algorithm

1 Input: W
2 Initialize: Randomly select m ∈M\{0}, and set
Ms =M\{0}, lf , lr, a;

3 Obtain p by Theorem 1 given W, lf , lr, and a;
4 Calculate Δ(lf , lr, a, p) given W;
5 while Ms �= ∅ do
6 for l̂m ∈ Sm do
7 Obtain l̂f , l̂r, â by updating the SC of SBS m

with l̂m ;
8 if Constraints (2), (3), (4) are not satisfied then
9 Continue;

10 else
11 Obtain p̂ by Theorem 1 given W, l̂f , l̂r,

and â;
12 Calculate Δ′(̂lf , l̂r, â, p̂) given W;
13 if Δ′ > Δ then
14 Δ ← Δ′;
15 lf , lr, a, p ← l̂f , l̂r, â, p̂;
16 Ms ← M\{0};
17 else
18 Continue;
19 end
20 end
21 end
22 Ms ← Ms\{m};
23 Randomly select m ∈Ms;
24 end
25 Output: lf , lr, a, p, and Δ

corresponding value of the objective function in Problem P1,
i.e., Δ. Line 5 to Line 21 search SCM solution for an SBS,
corresponding to one iteration. Denote the SC of SBS m for
the slices by vector lm = [lm,n ]∀n∈N which can be obtained
by (1). We introduce Sm to represent the set that includes
all possible combinations of the SC of SBS m for all slices,
i.e., all possible values of vector lm when they satisfy con-
straints (12c) and (12e). During each iteration, we only search
the SC of SBS m for all slices from set Sm while keeping
the SC of other SBSs fixed. If an SC combination yielding a
larger value of Δ, is found, the currently best SCM solution
is updated, and set Ms will be reset to the set of all SBSs;
Otherwise, no change will be made. At the end of an iteration,
another SBS is randomly selected from set Ms for the next
iteration, and the set Ms is updated. All iterations stop if the
set Ms is an empty set, which means that a solution with a

larger value of Δ cannot be found by adjusting the SC of any
SBS. The output of Algorithm 1 is an SCM solution with the
corresponding optimal solution of IM given by (14).

The computation complexity of Algorithm 1 is O((L2
max −

Lmax)
N 2(M−1)N I 3N 3T ), where the computation complex-

ity of IM in each time interval is O(I 3N 3), and the
computation complexity of SCM in each planning window
is O((L2

max−Lmax)
N 2(M−1)N ). Since the performance of the

SCM solution found by Algorithm 1 depends on the initial set-
tings, we design an unsupervised-learning-assisted SC search
(ULSCS) algorithm next to reduce the computation complex-
ity of planning-stage resource management while enhancing
the performance of the LOSCS algorithm by finding proper
initial settings.

C. Unsupervised-Learning-Assisted SC Search

In each planning window, the SCM solution is related to
the spatiotemporal service demands of all slices. The amount
of downlink data traffic in each grid is continuous, whereas
variables of SCM are discrete. As a result, similar W in dif-
ferent planning windows may lead to the same optimal SCM
solution. Thus, we propose a data-driven approach to utilize
historical solutions for refining the SCM solution obtained
by Algorithm 1 in each planning window. The proposed
approach consists of two components: feature extraction and
solution refinement. First, we leverage an auto-encoder, a deep
unsupervised learning technique, to extract the implicit and
low-dimensional features of W in a planning window. Second,
by comparing the extracted features of W in the historical
and the subsequent planning window, we select some histori-
cal solutions to use as the initial settings of Algorithm 1. The
network energy efficiency, i.e., Δ, is non-decreasing over the
iterations of Algorithm 1. As a result, choosing a historical
SCM solution as the initial settings results in a relatively high
performance compared to Algorithm 1, and the worst-case
network energy efficiency equals that obtained by Algorithm 1.

1) Feature Extraction: Considering that the value of W
may vary across planning windows, we name the matrix W
in a planning window as a DTD instance. The selection
of a solution from a historical planning window is based
on whether or not the DTD instance in the historical plan-
ning window is similar to that in the upcoming planning
window. However, due to the high dimensionality of DTD
instances, comparing every element in the two DTD instances
is time-consuming. Therefore, reducing the dimensionality
of DTD instances while retaining their essential information
is important to the comparison. We utilize the deep auto-
encoder technique to obtain a low-dimension representation

pt∗ = ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
Ĥt − ρ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γmin
1 Ωt

1,1 · · · γmin
1 Ωt

1,n ′ · · · γmin
1 Ωt

1,N
...

. . . · · · . . .
...

γmin
n Ωt

n,1 · · · γmin
n Ωt

n,n ′ · · · γmin
n Ωt

n,N
...

. . . · · · . . .
...

γmin
N Ωt

N ,1 · · · γmin
N Ωt

N ,n ′ · · · γmin
N Ωt

N ,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
IN×IN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1⎡
⎢⎢⎢⎢⎢⎢⎣

γmin
1 N0
...

γmin
n N0
...

γmin
N N0

⎤
⎥⎥⎥⎥⎥⎥⎦
IN×1

, (14)
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Fig. 5. The designed DNN architecture of the auto-encoder.

of a DTD instance, named latent features. Fig. 5 shows our
design of deep neural networks (DNNs) for implementing the
auto-encoder. The DNNs include two main parts: an encoder
and a decoder. The encoder is a non-linear mapping func-
tion from a high dimensional space to a low dimensional
space, i.e., extracting latent features from a DTD instance,
and the decoder is a non-linear mapping function from a low
dimensional space to a high dimensional space, i.e., recon-
structing a DTD instance based on the latent features. Both
parts are implemented by DNNs, and the DNN architecture
of the decoder mirrors that of the encoder. In the training
phase, the DNNs of both the encoder and the decoder are
trained with the goal of minimizing the difference between
the input and the reconstructed DTD instances. In the infer-
ence phase, only the DNN of the encoder is used for feature
extraction [40].

Denote the extracted latent features from a DTD instance
by O, and the sets of all possible values of W and O by W
and O, respectively. We define the encoder as the func-
tion ψ :W → O and the decoder as the function ψ′ : O →W .
Let vectors ϑ and ϑ ′ denote the parameters of DNNs of
the encoder and the decoder, respectively. According to the
designed DNN architecture for the auto-encoder, W and O
satisfy the following relations: O = ψ(W;ϑ) and Ŵ =
ψ′(O;ϑ ′), where Ŵ denotes the reconstructed DTD instance
from the latent features O. To extract the latent features
without neglecting useful information, the input and the recon-
structed DTD instances should be as similar as possible.
Therefore, the optimal values of parameters ϑ and ϑ ′, denoted
by ϑ∗ and ϑ ′

∗, are obtained by the following equation:
{
ϑ∗,ϑ ′

∗
}
= arg min

{ϑ,ϑ ′}
F
(
W, Ŵ

)

= arg min
{ϑ,ϑ ′}

F
(
W, ψ′(O;ϑ ′))

= arg min
{ϑ,ϑ ′}

F
(
W, ψ′(ψ(W;ϑ);ϑ ′)), (17)

where F (W, Ŵ) is the cross-entropy loss function [40]. The
optimal values of parameters, i.e., ϑ∗ and ϑ ′∗ are obtained
by using the gradient descent method to minimize the loss
function F (W, Ŵ). The data regarding DTD instances in the
set Υ are utilized to train the DNNs and obtain the optimal
parameters offline.

2) Solution Refinement: Using the extracted latent features
of DTD instances, we define the similarity of two DTD
instances in different planning windows, i.e., W and W′, as
follows:

Algorithm 2: ULSCS Algorithm

1 Input: ϑ∗, W, |Υre|, and Υ
2 Calculate the similarity between W and each DTD

instance, i.e., W′, contained in Υ by (18);
3 Υre ← Select data records containing the |Υre| most

similar DTD instances from set Υ;
4 Obtain Δ, lf , lr, a, p by Algorithm 1, given W;
5 for υ ∈ Υre do
6 Obtain lref , lrer , are from data record υ;
7 Obtain Δ′, l′f , l

′
r, a

′, p′ by Algorithm 1 given W and
the initial settings of lref , lrer , and are;

8 if Δ′ > Δ then
9 Δ, lf , lr, a, p ← Δ′, l′f , l

′
r, a

′, p′;
10 else
11 Continue;
12 end
13 end
14 Create a data record υ′ containing W, lf , lr, a, and p;
15 Add υ′ to Υ;
16 Output: lf , lr, a, p, and Δ

D
(
W,W′) = ψ(W;ϑ∗)ψ

(
W′;ϑ∗

)
‖ψ(W;ϑ∗)‖‖ψ(W′;ϑ∗)‖

=
O ·O′

‖O‖‖O′‖ , (18)

where O = ψ(W;ϑ∗) and O′ = ψ(W′;ϑ∗) denote the latent
features of DTD instances W and W′ given the well-trained
DNN of the encoder with parameter ϑ∗, respectively.

Algorithm 2 presents the procedure for refining the solu-
tions obtained by Algorithm 1. We refer to the collection of
information on the DTD instance, i.e., W, and the correspond-
ing solution obtained by Algorithm 1, i.e., lf , lr, a, and p, in a
planning window as a data record, denoted by υ. Denote the set
of data records and the number of data records in the set by Υ
and |Υ|, respectively. The value of |Υ| can be determined by
balancing the computation complexity and the performance of
the ULSCS algorithm. Using (18), Line 2 calculates the sim-
ilarity between the DTD instance in the upcoming planning
window, i.e., W, and each DTD instance in the set Υ. Based
on the calculated similarities, a set of data records containing
the |Υre| most similar DTD instances, denoted by Υre ⊆ Υ,
is selected. Line 4 obtains the solution to Problem P1, i.e., lf ,
lr, a, and p, and the corresponding performance Δ by call-
ing Algorithm 1. From Lines 6 to 12, each historical SCM
solution in the set Υre, i.e., lref , Lre

r , and are, is used in the ini-
tialization step (Line 2) of Algorithm 1, and the corresponding
performance Δ′ and solution l′f , l

′
r, a

′, p′ are obtained. If Δ′ >
Δ, the solution to Problem P1 is updated as l′f , l′r, a′, p′;
Otherwise, the solution to Problem P1 remains lf , lr, a, and p.
As a result, the performance of Algorithm 2 is either better
than or equal to that of Algorithm 1. When all historical SCM
solutions in the set Υre have been utilized, lines 14 and 15
create a new data record containing the DTD instances and
the corresponding solution, i.e., lf , lr, a, and p, and add the
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data record to the set Υ, which can be useful in subsequent
planning windows.

By using deep unsupervised learning, Algorithm 2 can
reduce the computation complexity of planning-stage resource
management of Algorithm 1 when the set Υ contains exten-
sive historical data records. The computation complexity of the
Algorithm 2 is O(|Υ|OXI 3N 3) for selecting the best solution
to Problem P2 from set Υ, where O represents the dimen-
sionality of latent feature O, X =

∑J−1
j=1 BjBj+1 denotes

the computation complexity of the inference of the encoder
(i.e., DNN ψ) with J layers, and Bj represents the number of
neurons in layer j. Similar to the scheme used for experience
replay in reinforcement learning [41], [42], we fix the maxi-
mum number of data records in the set Υ, i.e., |Υ|, and keep
the newly collected data records in Υ. As a result, by collect-
ing and using new data records, Algorithm 2 can enhance the
performance of Algorithm 1 while avoiding high computation
complexity.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the simulation settings.
Then, we evaluate the performance of the proposed RAN
slicing framework with the proposed AI-assisted approach.

A. Simulation Settings

The maximum SC and the antenna height of all SBSs are
set to identical. The SC radius of the MBS and the maximum
SC radius of each SBS are set to 1,500 m and 850 m, respec-
tively. The carrier frequency of each BS is set to 1,500 MHz.
The total available bandwidth of each BS and the sub-carrier
spacing are set to 100 MHz and 30 kHz, respectively. Based
on the COST 231-Hata Model in 3GPP standard [16], the aver-
age channel gain of downlink transmission within grid i for
slice n in time interval t, i.e., hti ,n,i ′,n ′ , is approximated as the
following equation:

hti ,n = 46.55 + 33.81× log(f c
m )− 13.82× log(Hm )

+ ((44.9− 6.55× log(Hm)))× log
(
dmi,n ,i

)
, (19)

where dmi,n ,i is the distance (in kilometers) between BS mi ,n

and the center of grid i, f c
m is the carrier frequency (in MHz)

of BS m, Hm is the antenna height (in meters) of BS m,
and HMBS and HSBS represent the antenna heights of the MBS
and each SBS, respectively. UTs within the network coverage
area in a time interval are distributed according to a Poisson
point distribution (PPP). The rates of the PPP are the same
across all time intervals within each planning window but dif-
ferent across planning windows. For each UT, its downlink
data traffic load follows a Poisson process during each plan-
ning window. The mean values of downlink data traffic loads
are different among UTs. We randomize the mean downlink
data traffic load for each UT during a planning window within
the interval of [0.1, 1.5]Mbits. Other simulation parameters are
listed in Table II.

The implementation of the DNNs for the auto-encoder is as
follows. The DNN of the encoder contains 3 convolutional
layers with channel sizes of 32, 64, and 128 respectively.

TABLE II
SIMULATION PARAMETERS

The kernel size is set as (3, 3) for both convolutional layers,
respectively. Each convolutional layer is followed by a max-
pooling layer with pool size (2, 2). Two fully-connected layers
are then added with 512 and 64 neurons, followed by the out-
put layer. The DNN architecture of the decoder is the reverse
of that of the encoder. We adopt the Adam optimizer to train
the DNNs. There are 8,000 different DTD instances used for
the DNN training.

We compare the proposed RAN slicing framework with
the following two benchmark schemes for IM and SCM,
respectively:

• Cell-based IM: The downlink transmission power of each
BS is the same for all grids within the SC of the BS;

• Cell zooming (CZ): The SC of each SBS is the same for
all slices.

B. Performance of Grid-Based IM

In this subsection, we investigate the performance of the
proposed grid-based IM in a simple network scenario with
1 MBS, 1 SBS, and 1 slice.

In Fig. 6(a), we compare the performance of transmis-
sion power obtained by the proposed grid-based IM with
that obtained by cell-based IM. We average the transmission
power of all grids within the SC of each BS for compari-
son. To satisfy the SINR requirement of the slice, the average
transmission power of the MBS decreases, and the average
transmission power of the SBS increases with the SC radius
of the SBS for both grid-based and cell-based IM. This is
because the number of grids covered by the MBS and the SBS
decreases and increases, respectively. However, the MBS and
SBS can achieve lower transmission power with grid-based
IM compared to cell-based IM since the proposed grid-based
IM can differentiate the transmission power based on their dif-
ferent locations. In addition, the slopes of all curves can vary
with the SC radius of the SBS. This is because the uneven
spatial distribution of data traffic loads results in non-uniform
increments of data traffic loads for both the SBS and the MBS.

As shown in Fig. 6(b), we compare the performance of
the two schemes in total transmission power and network
energy efficiency. We observe that the proposed grid-based
IM achieves higher network energy efficiency and lower total
transmission power. The reason is that the proposed grid-based
IM has a higher spatial granularity. Thus, the transmission
power for each grid can be individually optimized to mitigate
the interference among BSs in accordance with the DTD and
the BS locations.

Next, we examine the impact of the spatial granularity on
the network energy efficiency of grid-based IM. Fig. 7 shows
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Fig. 6. Comparison between the proposed grid-based IM and cell-based IM.

Fig. 7. The impact of spatial granularity on IM.

the total transmission power of the MBS and the SBS of grid-
based IM with different grid diameters, i.e., different values
of r. From this figure, we can make three observations. First,
similar to case in Fig. 6, the total transmission power of the

Fig. 8. The DTDs of two slices in a time interval.

MBS of grid-based IM increases with the SC radius of the
SBS, while the total transmission power of the SBS of grid-
based IM decreases with the SC radius of the SBS. Second,
with grid-based IM, the total transmission power of each BS
decreases with the grid diameter. This is because, when the
grid diameter is smaller, the network can be divided into
more grids and IM can be more fine-grained to suit the spe-
cific DTD. Third, if the grid diameter is sufficiently small
(e.g., below 150 m), the effect of further decreasing the grid
diameter on the total transmission power diminishes. This is
because the total transmission power of each BS must exceed
a threshold to satisfy the SINR requirement of each slice given
a DTD.

C. Performance of Slicing-Based Resource Management

In this subsection, we examine the performance of the
proposed RAN slicing framework in a network scenario with
1 MBS, 1 to 8 SBSs, and 2 slices. The DTDs of the two
slices are different in a planning window. The DTDs of the
two slices in a time interval is shown in Fig. 8.

Considering the network scenario with 1 MBS, 8 SBSs, and
2 slices, we compare the performance of the proposed schemes
with benchmark schemes as shown in Fig. 9. In Fig. 9(a), we
compare the network energy efficiency of the proposed flex-
ible binary slice zooming plus grid-based IM (abbreviated as
“SZ+ Grid-based IM”) with that of two benchmark schemes,
named “CZ + Cell-based IM” and “CZ+ Grid-based IM”,
averaged over 20 DTD instances. Three observations can be
made from this figure. First, the network energy efficiency
of all schemes increases with the number of SBSs. This is
because, more SBSs can cover more grids, and the downlink
transmissions within the grids from SBSs have a higher chan-
nel gain than that from the MBS, thereby improving network
energy efficiency. Second, the proposed scheme outperforms
the benchmark schemes in network energy efficiency in the
cases with different number of SBSs. The reason is that the
proposed scheme achieves fine-grained IM and SCM in time,
space, and slices dimensions based on the different SINR
requirements and DTDs of slices. Third, by comparing the
“CZ + Cell-based IM” scheme with the “CZ + Grid-based
IM” scheme, the performance advantage, i.e., the improvement
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Fig. 9. Performance comparison between the proposed schemes and benchmark schemes.

Fig. 10. The performance of the developed RAN slicing framework in different network scenarios.

(in percentage) of the proposed “SZ+ Grid-based IM” scheme
compared to the “CZ+ Grid-based IM” scheme, increases
with the number of SBSs. This is because, as more SBSs are
deployed, the proposed scheme has more SC options avail-
able for selection, resulting in better interference management
among BSs. Therefore, the percentage improvement compared
to other schemes increases with the number of SBSs.

In Fig. 9(b), we show the temporal variations in network
energy efficiency of the proposed scheme across multiple plan-
ning windows. The Poisson data arrival rate averaged over
all UTs in each slice varies across planning windows, and,
accordingly, the network energy efficiency of the proposed
scheme temporally varies. Meanwhile, we can observe that the
proposed scheme outperforms that of the “CZ + Grid-based
IM” scheme in each planning window due to the high adap-
tivity of the proposed scheme in coping with spatiotemporal
network dynamics. Fig. 9(c) shows the cumulative distribution
function of the network energy efficiency of the three schemes
over the 40 different DTD instances in the same case. We
can observe from Fig. 9(c) that the proposed schemes achieve
higher network energy efficiency than the benchmark schemes
for most DTD instances.

In Fig. 10, we show the performance of the developed RAN
slicing framework in different network scenarios. Considering

the network with 1 MBS, 4 SBSs, and the grid diameter of
150 m, we show the network energy efficiency versus the num-
ber of slices and the total available bandwidth of each BS in
Fig. 10(a) and Fig. 10(b), respectively. A box plot represent-
ing the range of network energy efficiency over 10 independent
simulation runs is shown in Fig. 10(a), in which the number
of slices is set from 2 to 6, and the overall data traffic load of
all slices is fixed in each simulation run. We can make the fol-
lowing two observations. First, the network energy efficiency
of the developed scheme increases with the number of slices.
This is because, for the same DTD, the number of decision
variables of IM and SCM in the developed scheme increases
with the number of slices, thereby improving the granularity of
slicing-based resource management. As a result, the developed
scheme can achieve higher energy efficiency by balancing the
overall data traffic load across BSs due to the refined granular-
ity in the slice dimension. Second, the effect of increasing the
number of slices on the network energy efficiency diminishes
when the number of slices increases since it becomes more
difficult for IM and SCM to satisfy the SINR requirement of
each slice.

In Fig. 10(b), varying the total bandwidth of each BS from
10 MHz to 100 MHz, we present the box plot of network
energy efficiency over 10 independent simulation runs for
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Fig. 11. Network energy efficiency comparison between the LOSCS and
ULSCS algorithms.

each bandwidth setting. We can observe that network energy
efficiency increases with the total available bandwidth of
each BS. This is because, for the same data traffic load
of each BS, increasing the total bandwidth of each BS
can reduce the likeliness of the planning-stage interference
among BSs (as discussed in Section IV-B). Consequently, the
required transmission power to satisfy the SINR requirement
of each slice is reduced, thereby improving the network energy
efficiency.

D. Performance of the ULSCS Algorithm

In this subsection, we evaluate the energy efficiency
performance of the proposed ULSCS algorithm and the
LOSCS algorithm as well as the impact of the number of
data records i.e., |Υ|, and the number of selected data records,
i.e., |Υre|. We consider a network with 8 SBSs, 1 MBS, and
2 slices.

In Fig. 11, we compare the energy efficiency performance
of the ULSCS and LOSCS algorithms for 100 cases with dif-
ferent DTD instances. The network energy efficiency achieved
by the ULSCS algorithm is higher than that achieved by
the LOSCS algorithm in all cases. The ULSCS algorithm
selects some historical solutions to use as the initial set-
tings of the LOSCS algorithm, which results in relatively high
performance compared to the LOSCS algorithm. The worst-
case network energy efficiency of the ULSCS algorithm equals
that obtained by the LOSCS Algorithm.

In Fig. 12(a), we evaluate the network energy efficiency
of the ULSCS algorithm, averaged over 40 DTD instances,
given different number of data records, i.e., different val-
ues of |Υ|. Two observations can be made in Fig. 12(a).
First, the performance gap between the ULSCS algorithm
and the LOSCS algorithm increases when more data records
are used. This is because having more data records in Υ
can improve the performance of DNN training and pro-
vide a large number of historical DTD instances for solu-
tion refinement. Second, the performance of the ULSCS
algorithm can approach the optimum global value, espe-
cially when a large value of |Υ| is used. Moreover, we

Fig. 12. Network energy efficiency given different values of |Υ| and |Υre|,
respectively.

examine the impact of the number of selected data records,
i.e., different values of |Υre|, in Fig. 12(b). The performance
gap between the ULSCS algorithm and the LOSCS algo-
rithm increases with the number of selected data records,
and performance of the ULSCS algorithm can approach
the global optimum when a larger number of selected his-
torical solutions are used for solution refinement. This is
because more data records in |Υre| result in more similar
DTD instances being selected as the initial settings in the
ULSCS algorithm, and thus benefit achieving global opti-
mum. Consequently, Fig. 12 demonstrates the potential of the
AI-assisted approach to address the slicing-based resource
management problems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have designed a RAN slicing frame-
work for a two-tier RAN to determine the SC and trans-
mission power of BSs. The proposed framework introduces
customized SC for different services and improves the granu-
larity of IM to suit service demands in the spatial, temporal,
and slice dimensions. Based on the framework, a network
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. (26)

energy efficiency maximization problem has been formu-
lated, which takes into account the inter-slice and intra-slice
interference and diverse QoS requirements of slices. The
proposed AI-assisted approach decouples the problem into two
sub-problems and solve them by incorporating deep unsuper-
vised learning with optimization methods. The results have
demonstrated the effectiveness of the proposed RAN slicing
framework in improving energy efficiency, and the efficiency
of the developed AI-assisted approach. The proposed frame-
work and approach extend the advantages of slicing-based
resource management towards supporting diverse services in
RANs. In the future, we will investigate slicing-based resource
management considering the coupling between the planning
and operation stages.

APPENDIX

PROOF OF THEOREM 1

Let Δt denote the network energy efficiency in time interval
t ∈ T and define

ςtn =
∑

m∈M

∑
i∈Im,n

τpti ,n , n ∈ N , (20)

and

χtn =

∑
m∈M

∑
i∈Im,n

w t
i ,n∑

m∈M
∑

i∈Im,n
w t
i ,nηn

, n ∈ N . (21)

The network energy efficiency in time interval t is given by:

Δt =
∑
n∈N

λnχ
t
n

ςtn
. (22)

The Hessian matrix of the network energy efficiency Δt can
be written as the following block matrix:

∇2Δt =
∂2Δt

∂pt
x ,y∂p

t
x ′,y′

=

⎡
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1 0
. . .
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. . .

0 At
N
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IN×IN

, (23)

where block At
n for any n ∈ N is given by:

At
n =

2λnχ
t
nτ

2

(ςtn )
3

⎡
⎢⎢⎢⎣
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎤
⎥⎥⎥⎦
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(24)

If constraint (12d) is satisfied, ςtn is positive. In this
case, the first-order leading principal minor of the Hessian
matrix, i.e., 2λnχt

nτ
2

(ςtn )
3 , is nonnegative. Meanwhile, all the

other leading principal minors equal 0. As a result, the
Hessian matrix is positive semidefinite when constraint (12d)
is satisfied. Thus, when ∀pti ,n > 0, the function Δt is
convex.

Function Δt increases with the decrease of allocated trans-
mission power for all grids, while the allocated transmis-
sion power for all grids should satisfy the SINR constraints
in (9). Consequently, due to the convexity of function Δt ,
the IM solution must exist on the boundary of the feasible
domain. Thus, the optimal IM solution should satisfy (9) with
equality, i.e.,

p̄ti ,nh
t
i ,n,i ,n

N0 + I ti ,n
= ργmin

n . (25)

Define Ĥt and Ωt
n,n ′ in (16) and (15), respectively. We

rewrite (25) into the matrix format as (26), as shown at top of
the page. Therefore, the optimal downlink transmission power
in time interval t can be derived in closed-form as (14).
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