Introduction	

Correlation-based Measures of Concordance

Compatibility for κ_G 000 Future Work 00

Compatibility of matrices for correlation-based measures of concordance

Takaaki Koike

<tkoike@uwaterloo.ca> Department of Statistics and Actuarial Science University of Waterloo

This is a part of our paper Hofert and Koike (2019) jointly worked with my supervisor Marius Hofert.

February 8th, 2019

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
●○○		000	00
An example			

A motivating example

• Given a 3×3 matrix

$$P = \begin{pmatrix} 1 & -0.95 & 0.5 \\ -0.95 & 1 & -0.4 \\ 0.5 & -0.4 & 1 \end{pmatrix},$$

how to check whether P is a correlation matrix?

- For a correlation matrix P, one can always find a r.v. X (for e.g., N(0, P)) s.t. ρ(X) = P.
- What about matrices of pairwise Spearman's rho, Kendall's tau... or other pairwise measures of concordance (MOC)?

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
000			
Definition of compatibil	ity		

Definitions

Definition 1.1 (κ -compatibility)

For a given $d \times d$ matrix R and a bivariate MOC

 $\kappa:(X,Y)\mapsto [-1,1],$

R is called κ -compatible if there exists a continuous d-random vector $\mathbf{X} = (X_1, \dots, X_d)$ such that

$$\kappa_d(\boldsymbol{X}) := (\kappa(X_i, X_j))_{i,j=1,\dots,d} = R.$$

Definition 1.2 (κ -compatible set)

A set of all κ -compatible matrices is called a κ -compatible set.

Takaaki Koike

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
○○●		000	00
The questions			

Our main questions

- Does there exist a class of MOCs whose compatibility is easy to study?
 - ⇒ We introduce a correlation-based transformed rank measures of concordance.
- Can we characterize κ-compatible sets for some paticular κ, such as Spearman's rho and Kendall's tau?
 - ⇒ Positive answers for Spearman's rho, Blomqvist's beta and van der Waerden's coefficient.
 - ⇒ For Kendall's tau and Gini's gamma, their characterizations are left open problems.

Introduction 000 Correlation-based Measures of Concordance

Compatibility for κ_G 000

Scarsini's seven axioms for measures of concordance

For ρ : Pearson's linear correlation and two functions g_1, g_2 , consider the bivariate measure

$$\kappa_{g_1,g_2}(X_1,X_2) = \rho(g_1(X_1),g_2(X_2)).$$

Definition 2.1 (Seven axioms for MOC; Scarsini, 1984)

- **Domain**: $\kappa(X, Y)$ is defined for any continuous random variables X, Y.
- **2** Symmetry: $\kappa(X, Y) = \kappa(Y, X)$.
- **3** Coherence: if $C_{X,Y} \preceq C_{X',Y'}$, then $\kappa(X,Y) \leq \kappa(X',Y')$.
- **Independence**: if X and Y are independent, then $\kappa(X, Y) = 0$.
- **()** Change of sign: $\kappa(-X,Y) = -\kappa(X,Y)$.
- **Continuity**: $\lim_{n\to\infty} \kappa(X_n, Y_n) = \kappa(X, Y)$ if $\lim_{n\to\infty} H_n = H$ pointwise for $(X_n, Y_n) \sim H_n$ and $(X, Y) \sim H$.

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
	00000		
Admissibility of the g-fu	nctions		

What are admissible g_1, g_2 ?

• The seven axioms imply that (c.f. Scarsini, 1984)

$$\kappa(X_1, X_2) = \kappa(f_1(X_1), f_2(X_2))$$

for any f_1, f_2 : strictly increasing (or decreasing) functions.

 $\Rightarrow \kappa(X_1, X_2) \text{ is forced to be independent of the marginal} \\ \text{distributions of } X_1, X_2 \text{ but be dependent only on the} \\ \text{copula of } (X_1, X_2), \text{ which is the joint distribution of} \end{cases}$

$$(U_1, U_2) := (F_1(X_1), F_2(X_2)) \sim C_{X_1, X_2}.$$

• Therefore, we consider the following form of κ_{g_1,g_2} ;

$$\kappa_{g_1,g_2}(X_1,X_2) = \rho(g_1(F_1(X_1)),g_2(F_2(X_2)))$$

= $\rho(g_1(U_1),g_2(U_2)) =: \kappa_{g_1,g_2}(C_{X_1,X_2}).$

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
	00000		
Admissibility of the	a-functions		

• For κ_{g_1,g_2} to satisfy the coherence axiom, we want

$$C_{X,Y} \preceq C_{X',Y'} \Rightarrow C_{g_1(X),g_2(Y)} \preceq C_{g_1(X'),g_2(Y')}$$

since its (RHS) implies $\kappa_{g_1,g_2}(X,Y) \leq \kappa_{g_1,g_2}(X',Y')$ by coherence of ρ .

Theorem 2.1 (Monotonicity of g_1 and g_2)

Let g_1,g_2 be two continuous functions. If κ_{g_1,g_2} satisfies the seven axioms, then

$$(g_1(x) - g_1(y))(g_2(x) - g_2(y)) \ge 0$$
 for any $x > y \in [0, 1]$.

• Without the loss of generality, we can assume g_1, g_2 are both increasing functions by invariance of ρ under linear transform.

Takaaki Koike

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
	000000		
Admissibility of the g-fu	nctions		

• Under the assumption of left-continuity of g_1, g_2 , they are quantiles of some distribution functions. Consequently, we consider the following class:

Definition 2.2 $((G_1, G_2)$ -transformed rank correlations)

For two distribution functions G_1 and G_2 , (G_1, G_2) -transformed rank correlation coefficient is defined by

$$\kappa_{G_1,G_2}(X_1,X_2) = \rho(G_1^{-1}(F_1(X_1)),G_2^{-1}(F_2(X_2))),$$

where G_j^{-1} is a generalized inverses of G_j for j = 1, 2. We call the pair (G_1, G_2) concordance inducing if κ_{G_1,G_2} is a measure of concordance (i.e., κ_{G_1,G_2} satisfies the seven Scarsini's axioms).

Introduction 000	Correlation-based Measures of Concordance	Compatibility for κ_G 000	Future Work 00
Examples of the co	rrelation-based MOCs		
	c.		

Examples of κ_{G_1,G_2}

Spearman's rho: Let $G_1 = G_2 = G$ for G being the cdf of the uniform distribution on [0, 1]. Then κ_{G_1, G_2} is called the Spearman's rho ρ_S :

$$\rho_S(C) \propto \iint_{[0,1]^2} (C(u,v) - \Pi(u,v)) \mathrm{d}u \mathrm{d}v.$$

Blomqvist's beta: Let G₁ = G₂ = G for G being the cdf of Bern(1/2). Then κ_{G1,G2} yields the Blomqvist's beta β:

$$\beta(C) = 4C(1/2, 1/2) - 1.$$

Van der Waerden's coefficient: Let G₁ = G₂ = G for G being the cdf of N(0,1). Then κ_{G1,G2} is called the van der Waerden's ζ.

Compatibility for κ_G 000 Future Work 00

Characterization of concordance-inducing functions

Theorem 2.2 (Characterization of concordance-inducing G)

Let G_1 and G_2 be distribution functions. The (G_1, G_2) -transformed rank correlation coefficient κ_{G_1,G_2} is a measure of concordance if and only if

- G_1 and G_2 are of the same type with G, where
- G is a distribution function of a (i) non-degenerated (ii) radially symmetric distribution with (iii) finite second moment.

<u>Remark</u>: If G_1, G_2, G are all of the same type, then

$$\kappa_{G_1,G_2}(X_1,X_2) = \kappa_{G,G}(X_1,X_2) =: \kappa_G(X_1,X_2),$$

by invariance of ρ under location-scale transform. Therefore, w.l.o.g., we can assume $G_1=G_2=G.$

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
		000	

Properties of the compatible set \mathcal{K}_G

• Recall the notation of the κ_G -compatible set:

 $\mathcal{K}_G = \{ R \in \mathcal{M}^{d \times d} : \exists \mathbf{X}: \text{ a continuous } d\text{-r.v. s.t. } \kappa_G(\mathbf{X}) = R \}.$

Proposition 3.1 (Properties of \mathcal{K}_G)

- **O Convexity**: \mathcal{K}_G is convex,
- **Bounds**: For any concordance inducing G, we have

 $\mathcal{P}_d^{\mathsf{B}}(1/2) \subseteq \mathcal{K}_G \subseteq \mathcal{P}_d,$

where \mathcal{P}_d is the set of all $d \times d$ correlation matrices, and $\mathcal{P}_d^{\mathsf{B}}(1/2)$ is the symmetric Bernoulli compatible set:

 $\mathcal{P}_d^{\mathsf{B}}(1/2) = \{ \rho(\mathbf{B}) : B_j \sim \text{Bern}(1/2), \ j = 1, \dots, d \}.$

Properties of κ_{C}

Introduction 000 Correlation-based Measures of Concordance

Compatibility for κ_G $\odot \bullet \odot$ Future Work 00

Examples of the characterizations of compatible sets

We summarize the results of Devroye & Letac (2015), Huber & Maric (2017), Wang et al. (2018), and Hofert & Koike (2019):

Proposition 3.2 (Characterizations of some compatible sets)

• Normal variance mixture: If $\sqrt{WZ} \sim G$ with $W \geq 0$, $\mathbb{E}W = 1$ and $Z \sim N(0, 1)$, then

$$\mathcal{K}_G = \mathcal{P}_d.$$

2 Spearman's rho: For the ρ_{s} -compatible set S_{d} ,

$$\mathcal{S}_d \begin{cases} = \mathcal{P}_d & d \le 9, \\ \subset \mathcal{P}_d & d \ge 12 \text{ (strictly).} \end{cases}$$

3 Blomqvist's beta: For the β -compatible set \mathcal{B}_d , we have

$$\mathcal{B}_{I} = \mathcal{P}^{\mathsf{B}}(1/2) = \operatorname{conv}\{\mathbf{c}\mathbf{c}^{\mathsf{T}} : \mathbf{c} \in \{\pm 1\}^{d}\}$$

Takaaki Koike

Compatibility of MOCs

February 8th, 2019 12 / 15

Introduction 000	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work 00
Figures of the boun	ds		
	\wedge		

Figure: The set $\mathcal{P}_d^{\mathsf{B}}(1/2)$ (left) and \mathcal{P}_d (right) when d = 3. d(d-1)/2 = 3 off-diagonal entries are projected onto the Euclidean space (The figure is retrieved from Tropp, 2018).

000 Future work	000000	000	00
Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work

Other topics and future work

- Attainability: $R \in \mathcal{K}_G$ is κ_G -attainable if one can simulate a r.v. X s.t. $k_G(X) = R$.
 - $\Rightarrow \underline{\mathbf{Thm}}: \text{ If } R \in \mathcal{P}_d^{\mathsf{B}}(1/2), \text{ then it is } \kappa_G\text{-attainable for any} \\ G (\text{Hofert & Koike, 2019}).$
- Dimension reduction for block matrices: When a given matrix has a block/hierarchical structure, then the compatibility and attainability problems can be reduced to lower dimensional.

The main open problem:

• Kendall/Gini-compatibility: Their compatible sets might lose convexity. We only know $\mathcal{T}_d \subseteq \mathcal{P}_d^B(1/2)$ and they are equal when d = 3.

Introduction	Correlation-based Measures of Concordance	Compatibility for κ_G	Future Work
000		000	⊙●
Future ments			

Compatibility of wider classes of MOCs

Edwards et al. (2005) proposed the class of MOC

$$\kappa_{\mu}(C) \propto \iint C \mathrm{d}\mu$$

where μ is a $D_4\text{-invariant}$ measure on $[0,1]^2\text{, i.e.,}$

$$\mu(A) = \mu(\sigma(A)), \ A \in \mathfrak{B}(0,1)^2,$$

for σ : 90° & 180° rotations.

- κ_G corresponds to $\mu = \lambda_{G,G}$: pushforward Lebesgue measure by $G \otimes G$.
- Gini's gamma is $\mu = (M + W)/2$.
- Kendall's tau is excluded since it corresponds to $\mu = C$.

Introduction 000	Correlation-based Measures of Concordance	Compatibility for κ_G 000	Future Work 00

References I

- 1. Devroye, L. and Letac, G. (2015), Copulas with prescribed correlation matrix, *In Memoriam Marc Yor-Seminaire de Probabilites XLVII, Springer*, 585-601.
- 2. Edwards, H., Mikusinski, P. and Taylor, M. (2005). Measures of concordance determined by D_4 -invariant measures on $(0,1)^2$, *Proceedings of the American Mathematical Society*, **133**(5), 1505-1513.
- 3. Hofert, M. and Koike, T. (2019). Compatibility and attainability of matrices of correlation-based measures of concordance. *arXiv preprint arXiv:1810.07126*.

Introduction 000	Correlation-based Measures of Concordance	Compatibility for κ_G 000	Future Work 00

References I

- 4. Huber, M. and Maric, N. (2017), Bernoulli Correlations and Cut Polytopes, *arXiv preprint arXiv:1706.06182*.
- Scarsini, M. (1984), On measures of concordance, Stochastica, 8(3), 201218.
- Tropp, J. A. (2018). Simplicial faces of the set of correlation matrices. *Discrete & Computational Geometry*, **60**(2), 512-529.
- Wang, B., Wang, R. and Wang, Y. (2018), Compatible Matrices of Spearmans Rank Correlation, http://arxiv.org/abs/1810.03477 (10/15/2018).