Preliminaries	Correlation-based	Measures	Con

Other Topics and Future Work

Compatibility and attainability of matrices of correlation-based measures of concordance

cordance

Takaaki Koike

Department of Statistics and Actuarial Science University of Waterloo

CMStatistics 2019 Session EO286 Dependence measures, B0223 joint work with Marius Hofert

December 15th, 2019

	d Measures	of	Concordance	
00000 0000000				

Other Topics and Future Work

A Motivating Example

An example of compatibility and attainability

• Compatibility: Given a 3×3 matrix

$$P = \begin{pmatrix} 1 & -0.95 & 0.5 \\ -0.95 & 1 & -0.4 \\ 0.5 & -0.4 & 1 \end{pmatrix},$$

how to check whether P is a correlation matrix?

• Attainability: For a correlation matrix P, one can always find a r.v. X (for e.g., $N_3(\mathbf{0}_3, P)$) s.t. $\rho(\mathbf{X}) = P$.

$\Rightarrow P \text{ is } \rho\text{-compatible and } \rho\text{-attainable by Normal} \\ \text{distribution.}$

• What about matrices of pairwise Spearman's rho, Kendall's tau or other pairwise measures of concordance (MOC)?

Takaaki Koike

Compatibility of MOC

Preliminaries	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work
00000			
Outline			

Outline

Preliminaries

Definitions of concepts, motivations, and main questions.

2 Correlation-based Measures of Concordance

Axioms of MOC and characterization of correlation-based MOCs.

Bounds of Compatible Sets

Upper and lower bounds of compatible set for correlation-based MOCs.

Other Topics and Future Work

Other topics: attainability, extension to block matrices. Future work: Kendall's tau compatibility, non-continuous case...etc.

Preliminaries ○○●○○	Correlation-based Measures of Concordance
Definitions	

Other Topics and Future Work

Compatibility problem

Definition 1.1 (κ -compatibility)

For a given $d \times d$ matrix R and an \mathbb{R} -valued functional κ on a space of bivariate random vectors, we call R κ -compatible if there exists a continuous d-random vector $\mathbf{X} = (X_1, \ldots, X_d)$ such that

$$\kappa_d(\boldsymbol{X}) := (\kappa(X_i, X_j))_{i,j=1,\dots,d} = R.$$

Definition 1.2 (κ -compatible set)

A set of all κ -compatible matrices \mathcal{K}_d is called a κ -compatible set, that is,

$$\mathcal{K}_d = \{ R \in \mathcal{M}^{d \times d} : \exists \mathbf{X}: \text{ a continuous } d\text{-r.v. s.t. } \kappa_d(\mathbf{X}) = R \}.$$

Preliminaries	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work
00000			
Motivations			

Motivations

As κ we consider measures of concordance (MOC), such as Spearman's rho $\rho_{\rm S}$ and Kendall's tau τ (we will see later).

Why MOC?

 \Rightarrow MOC can capture non-linear dependence while ρ cannot.

Why pairwise?

 \Rightarrow analog to correlation matrices; a simple extension from bivariate to higher dimensions; see also Embrechts et al. (2016).

Why compatibility?

⇒ entries of a pairwise MOC matrix are typically estimated (possibly from limited data) or exogenously determined by expert opinion in risk management practice.

Preliminaries	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work
00000			
Motivations			

Main questions

- Can we define a class of MOCs whose compatibility is easy to study?
 - \Rightarrow We introduce a correlation-based transformed rank measures of concordance.
- 2 Can we characterize κ -compatible sets for some paticular κ ?
 - ⇒ Positive answers for our proposed class, which includes Spearman's rho, Blomqvist's beta and van der Waerden's coefficient as special cases.
 - ⇒ For Kendall's tau and Gini's gamma, their characterizations are left open problems.

Other Topics and Future Work

Scarsini's seven axioms

What functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ make κ_{g_1,g_2} a MOC?... where $\kappa_{g_1,g_2}(X,Y) = \rho(q_1(X), q_2(Y)), \quad \rho : \text{ correlation.}$

Definition 2.1 (Axioms for MOC, Scarsini, 1984)

Domain: $\kappa(X,Y)$ is defined for any continuous random variables X,Y.

2 Symmetry:
$$\kappa(X, Y) = \kappa(Y, X)$$
.

- **③** Coherence: if $C_{X,Y} \preceq C_{X',Y'}$, then $\kappa(X,Y) \leq \kappa(X',Y')$.
- **Independence**: if X and Y are independent, then $\kappa(X, Y) = 0$.
- **6** Change of sign: $\kappa(-X, Y) = -\kappa(X, Y)$.
- **Continuity**: $\lim_{n\to\infty} \kappa(X_n, Y_n) = \kappa(X, Y)$ if $\lim_{n\to\infty} H_n = H$ pointwise for $(X_n, Y_n) \sim H_n$ and $(X, Y) \sim H$.

Preliminaries

Correlation-based Measures of Concordance

Bounds of Compatible Sets

Other Topics and Future Work

Necessary Conditions

Necessary conditions for g_1 and g_2

• **Rank-based**: $\kappa(X, Y)$ must depend only on the copula of (X, Y); for $(U, V) := (F_X(X), F_Y(Y)) \sim C_{X,Y}$, redefine $\kappa_{q_1,q_2}(X,Y) = \rho(g_1(U), g_2(V)) =: \kappa_{q_1,q_2}(C_{X,Y}).$

Omega Monotonicity: g_1 and g_2 must be both increasing or both decreasing.

Theorem 2.2 (Monotonicity of g_1 and g_2)

Let g_1 and g_2 be two continuous functions. If κ_{g_1,g_2} is a MOC, then $(g_1(x) - g_1(y))(g_2(x) - g_2(y)) \ge 0$ for any x > y in [0, 1]. (1)

<u>Proof</u>: $0 \le \kappa_{g_1,g_2}(\tilde{Q}_N) - \kappa_{g_1,g_2}(Q_N) \xrightarrow{N \to \infty} (1)$ for certain checkerboard copulas s.t. $Q_N \preceq \tilde{Q}_N$, $Q_N(u,v) = \tilde{Q}_N(u,v)$ except at blocks including (x, x), (x, y), (y, x) and (y, y).

Takaaki Koike

Prelimin	aries

Correlation-based Measures of Concordance $\circ \circ \circ \circ \circ \circ \circ \circ$

Bounds of Compatible Sets

Other Topics and Future Work

Transformed Rank Correlations

Transformed rank correlations

- W.I.o.g., we can assume g_1 and g_2 are both increasing.
- Furthermore, assume they are left-continuous. Then they are quantile functions $g_1 = G_1^{-1}$ and $g_2 = G_2^{-1}$ for some cdfs G_1 and G_2 .

Definition 2.3 ((G_1, G_2) -transformed rank correlations)

For two cdfs G_1 and $G_2\mbox{, }(G_1,G_2)\mbox{-transformed rank correlation}$ coefficient is defined by

$$\kappa_{G_1,G_2}(U,V) = \rho(G_1^{-1}(U),G_2^{-1}(V)).$$

We call the pair (G_1, G_2) concordance inducing if κ_{G_1,G_2} is a MOC.

Preliminaries	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work
	000000		
Examples of the	correlation-based MOCs		

Examples of κ_{G_1,G_2}

Spearman's rho: Let G₁ = G₂ = G for G being the cdf of the uniform distribution on [0, 1]. Then κ_{G1,G2} is called the Spearman's rho ρ_S:

$$\rho_S(C) \propto \iint_{[0,1]^2} (C(u,v) - \Pi(u,v)) \mathrm{d}u \mathrm{d}v.$$

2 Blomqvist's beta: Let $G_1 = G_2 = G$ for G being the cdf of Bern(1/2). Then κ_{G_1,G_2} yields the Blomqvist's beta β :

$$\beta(C) = 4C(1/2, 1/2) - 1.$$

Van der Waerden's coefficient: Let G₁ = G₂ = G for G being the cdf of N(0, 1). Then κ_{G1,G2} is called the van der Waerden's ζ. Preliminaries 00000 Correlation-based Measures of Concordance

Bounds of Compatible Sets

Other Topics and Future Work

Examples of the correlation-based MOCs

Example of Bernoulli G-functions

Figure: Plots of minimal (left, $(U, V) \sim W$) and maximal (right, $(U, V) \sim M$) correlation-based MOCs $\kappa_{G_1,G_2}(U, V)$ where G_j is the distribution function of $B(1, p_j)$, j = 1, 2. The range axiom is violated except $(p_1, p_2) = (1/2, 1/2)$.

Preliminaries Correlation-based Measures of Concordance

Bounds of Compatible Sets

Other Topics and Future Work

Characterization of Correlation-based MOC

Characterization of κ_{G_1,G_2}

Theorem 2.4 (Characterization of concordance-inducing G)

Let G_1 and G_2 be cdfs. The (G_1,G_2) -transformed rank correlation coefficient κ_{G_1,G_2} is a MOC if and only if

- G_1 and G_2 are of the same type as G, where
- G is a distribution function of a (i) non-degenerated (ii) radially symmetric distribution with (iii) finite second moment.

<u>Proof</u>: Key part: the correlation of $(X, Y) = (G_1^{-1}(U), G_2^{-1}(V))$ attain ± 1 at $C_{X,Y} = M$, W (resp.) if and only if G_1 and G_2 are of the same type; see Embrechts et al. (2002).

<u>Remark</u>: If G_1, G_2 and G are all of the same type, then

$$\kappa_{G_1,G_2}(X_1,X_2) = \kappa_{G,G}(X_1,X_2) =: \kappa_G(X_1,X_2).$$

Preliminaries	Correlation-based Measures of Concordance
	00000000

Other Topics and Future Work

Properties of Correlation-based MOC

Properties of κ_G

Proposition 2.5 (Properties of κ_G)

- Uniqueness: Let G and G' be two continuous concordance-inducing functions. If κ_G(C) = κ_{G'}(C) for all 2-copulas, then G and G' are of the same type.
- 2 Linearity: For $n \in \mathbb{N}$, let C_1, \ldots, C_n be 2-copulas and $\alpha_1, \ldots, \alpha_n \geq 0$ such that $\alpha_1 + \cdots + \alpha_n = 1$. Then

$$\kappa_G\bigg(\sum_{i=1}^n \alpha_i C_i\bigg) = \sum_{i=1}^n \alpha_i \kappa_G(C_i).$$

Preliminaries	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work
	0000000		
Limitations of Co	orrelation-based MOC		

Limitations of κ_G

• Kendall's tau is a MOC defined by

$$\tau(C) = 4 \int_{[0,1]^2} C(u,v) \,\mathrm{d}C(u,v) - 1,$$

but it is not a correlation based MOC since, in general

$$\tau(\alpha C + (1 - \alpha)C') \neq \alpha \tau(C) + (1 - \alpha)\tau(C'), \quad \alpha \in (0, 1).$$

 κ_G measures quantify only concordance. It cannot measure the association among variables. For example,

$$\begin{split} \kappa_G\left(\frac{1}{2}(M+W)\right) &= \frac{1}{2}(\kappa_G(M) + \kappa_G(W)) = 0\\ &= \kappa_G(\Pi) \quad (\Pi: \text{ independent copula}). \end{split}$$

Preliminaries	Correlation-based	Measures	Concordance	

Bounds of Compatible Sets $\bullet \circ \circ$

Other Topics and Future Work

Bounds of κ_G -Compatible Set

Bounds of the compatible set \mathcal{K}_G

Recall the notation of the κ_G -compatible set:

 $\mathcal{K}_G = \{ R : d \times d \text{ matrix} : \exists \mathbf{X}: \text{ a continuous } d\text{-r.v. s.t. } \kappa_G(\mathbf{X}) = R \}.$

Proposition 3.1 (Bounds of \mathcal{K}_G)

For any concordance inducing G, \mathcal{K}_G is convex and

 $\mathcal{P}_d^{\mathsf{B}}(1/2) \subseteq \mathcal{K}_G \subseteq \mathcal{P}_d,$

where \mathcal{P}_d is the set of all $d \times d$ correlation matrices, and

$$\mathcal{P}_d^{\mathsf{B}}(1/2) = \{\rho(\mathbf{B}) : B_j \sim \text{Bern}(1/2), \ j = 1, \dots, d\}.$$

<u>**Proof**</u>: For $P = \rho(\mathbf{B}) \in \mathcal{P}_d^{\mathsf{B}}(1/2)$ and $U \sim \mathrm{U}(0,1)$ independent of \mathbf{B} , we have $\kappa_G(\mathbf{V}) = P$ for $\mathbf{V} = \mathbf{B}U + (\mathbf{1} - \mathbf{B})(1 - U)$: cont.

Preliminaries	Correlation-based	Measures of	of Concordance

Bounds of Compatible Sets $\circ \bullet \circ$

Other Topics and Future Work

Bounds of κ_G -Compatible Set

Attainability of the bounds

Figure: The set $\mathcal{P}_d^{\mathsf{B}}(1/2)$ (left, cut polytope) and \mathcal{P}_d (right, elliptope) when d = 3. d(d-1)/2 = 3 off-diagonal entries are projected onto the Euclidean space and each vertex represents a matrix $P = cc^{\top}$ where c = (1, 1, 1), (1, -1, 1), (1, 1, -1) and c = (1, -1, -1) (Tropp, 2018).

Preliminaries Correlation-based Measures of Concordance

Bounds of Compatible Sets $\circ \circ \circ$

Other Topics and Future Work

Examples of the Characterizations of Compatible Sets

Proposition 3.2 (Characterizations of some compatible sets)

• Normal variance mixture: If $\sqrt{WZ} \sim G$ with $W \geq 0$, $\mathbb{E}W = 1$ and $Z \sim N(0, 1)$, then

$$\mathcal{K}_G = \mathcal{P}_d.$$

2 Spearman's rho: For the ρ_{S} -compatible set S_d ,

$$S_d \begin{cases} = \mathcal{P}_d & d \le 9, \\ \subset \mathcal{P}_d & d \ge 12. \end{cases}$$

3 Blomqvist's beta: For the β -compatible set \mathcal{B}_d , we have

$$\mathcal{B}_d = \mathcal{P}_d^{\mathsf{B}}(1/2) = \operatorname{conv}\{\boldsymbol{c}\boldsymbol{c}^{\top} : \boldsymbol{c} \in \{\pm 1\}^d\}$$

<u>Remark</u>: (2) is shown in Devroye & Letac (2015) and Wang et al. (2018), and (3) is in Devroye & Letac (2015).

Takaaki Koike

Compatibility of MOC

17 / 22

Preliminaries 00000	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work ●0000
Other topics			

Other Topics

In the paper Hofert and Koike (2019) we also investigated...

- the attainability problem, that concerns whether, for a given $d \times d$ matrix R, we can construct a random vector X s.t. $\kappa_G(X) = R$, and
- compatibility and attainability for block matrices and hierarchical matrices to solve the problem that checking compatibility and attainability is challenging for high-dimensional matrices.

Preliminaries 00000	Correlation-based Measures of Concordance	Bounds of Compatible Sets	Other Topics and Future Work ○●○○○
Future work			

Future work

- Compatibility for Kendall's τ : Is $\mathcal{T}_d = \mathcal{P}_d^{\mathsf{B}}(1/2)$?
- Compatibility for Gini's γ and generalized Blomqvist's β :

$$\gamma(C) = 4 \int_{[0,1]^2} (M(u,v) + W(u,v)) \, \mathrm{d}C(u,v) - 2.$$

- Comparison among MOCs, which is the best to be used?
- MOC for non-continuous margins: modified distributional transform (Rüschendorf, 2009) uniquely determines a MOC but it forms an interval due to arbitrariness of modification.
- Compatibility for measures of association, such as maximum mean discrepancy (MMD) s.t. $MMD(C) = 0 \Leftrightarrow C = \Pi$.

Preliminaries	Correlation-based	Measures	Concordance	

Other Topics and Future Work $\circ \circ \bullet \circ \circ$

Compatibilities of other measures

Future work I: Kendall's tau compatibility

<u>Conjecture</u>: $\mathcal{T}_d = \mathcal{P}_d^B(1/2)$ for the Kendall's τ -compatible set.

- $\mathcal{T}_d \subseteq \mathcal{P}_d^B(1/2)$ is true for all $d \ge 2$.
- $T_3 = \mathcal{P}_3^B(1/2)$ (Joe, 1996).
- Is $\mathcal{T}_d \supseteq \mathcal{P}_d^B(1/2)$ for all d > 3?
 - \mathcal{T}_d may not be convex.
 - All the vertices of $\mathcal{P}^B_d(1/2)$ are attainable by τ .
 - Constructive approach?

Preliminaries	Correlation-based	Measures	Concordance	

Bounds of Compatible Sets $_{\rm OOO}$

Other Topics and Future Work $\circ \circ \circ \circ \circ$

Compatibilities of other measures

Future work II: Gini's γ compatibility

Edwards et al. (2005) proposed the class of MOC

$$\kappa_{\mu}(C) \propto \iint C \mathrm{d}\mu,$$

where μ is a D_4 -invariant measure on $[0, 1]^2$, i.e.,

$$\mu(A) = \mu(\sigma(A)), \ A \in \mathfrak{B}(0,1)^2,$$

for σ : compositions of transpositions and partial reflections.

- κ_G corresponds to $\mu = \lambda_{G,G}$: pushforward Lebesgue measure by $G \otimes G$.
- Gini's gamma is a special case when $\mu = (M + W)/2$.

Preliminaries	Correlation-based	Measures	Concordance	

Other Topics and Future Work $\circ \circ \circ \circ \bullet$

Compatibilities of other measures

Future work III: Generalized Blomqvist's β

• Consider an easier case, for $p \in (0,1)$,

$$\mu_p = \delta_{p,p} + \delta_{p,1-p} + \delta_{1-p,p} + \delta_{1-p,1-p},$$

which leads to the generalized Blomqvist's beta β_p .

• Its pairwise matrix admits the representation:

$$\beta_p(C) = \frac{1}{2^d} \sum_{i \in \{0,1\}^d} \rho_{ip+(1-i)(1-p)}(C),$$

where $\rho_{p}(C)$ is a pairwise correlation matrix of a joint distribution with margins $\text{Bern}(p_1), \ldots, \text{Bern}(p_d)$ and a copula C.

Preliminaries	Correlation-based	Measures	of	Concordance

Thank you for your attention!

References: see Hofert and Koike (2019).

Website: https://uwaterloo.ca/scholar/tkoike/home

(The paper and this slide are also available here.)