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A Motivating Example

An example of compatibility and attainability

Compatibility: Given a 3× 3 matrix

P =

 1 −0.95 0.5
−0.95 1 −0.4

0.5 −0.4 1

 ,

how to check whether P is a correlation matrix?

Attainability: For a correlation matrix P , one can always find a
r.v. X (for e.g., N3(03, P )) s.t. ρ(X) = P .

⇒ P is ρ-compatible and ρ-attainable by Normal
distribution.

What about matrices of pairwise Spearman’s rho, Kendall’s tau
or other pairwise measures of concordance (MOC)?
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Outline

Outline

1 Preliminaries

Definitions of concepts, motivations, and main questions.

2 Correlation-based Measures of Concordance

Axioms of MOC and characterization of correlation-based MOCs.

3 Bounds of Compatible Sets

Upper and lower bounds of compatible set for correlation-based

MOCs.

4 Other Topics and Future Work

Other topics: attainability, extension to block matrices.

Future work: Kendall’s tau compatibility, non-continuous case...etc.
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Definitions

Compatibility problem

Definition 1.1 (κ-compatibility)

For a given d× d matrix R and an R-valued functional κ on a space
of bivariate random vectors, we call R κ-compatible if there exists a
continuous d-random vector X = (X1, . . . , Xd) such that

κd(X) := (κ(Xi, Xj))i,j=1,...,d = R.

Definition 1.2 (κ-compatible set)

A set of all κ-compatible matrices Kd is called a κ-compatible set,
that is,

Kd = {R ∈Md×d : ∃X: a continuous d-r.v. s.t. κd(X) = R}.
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Motivations

Motivations

As κ we consider measures of concordance (MOC), such as
Spearman’s rho ρS and Kendall’s tau τ (we will see later).

Why MOC?

⇒ MOC can capture non-linear dependence while ρ cannot.

Why pairwise?

⇒ analog to correlation matrices; a simple extension from bivariate
to higher dimensions; see also Embrechts et al. (2016).

Why compatibility?

⇒ entries of a pairwise MOC matrix are typically estimated
(possibly from limited data) or exogenously determined by
expert opinion in risk management practice.
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Motivations

Main questions

1 Can we define a class of MOCs whose compatibility is easy to
study?

⇒ We introduce a correlation-based transformed rank measures
of concordance.

2 Can we characterize κ-compatible sets for some paticular κ?

⇒ Positive answers for our proposed class, which includes
Spearman’s rho, Blomqvist’s beta and van der Waerden’s
coefficient as special cases.

⇒ For Kendall’s tau and Gini’s gamma, their characterizations
are left open problems.

Takaaki Koike Compatibility of MOC December 15th, 2019 6 / 22



Preliminaries Correlation-based Measures of Concordance Bounds of Compatible Sets Other Topics and Future Work

Axioms of MOCs

Scarsini’s seven axioms

What functions g1, g2 : R→ R make κg1,g2 a MOC?... where

κg1,g2(X, Y ) = ρ(g1(X), g2(Y )), ρ : correlation.

Definition 2.1 (Axioms for MOC, Scarsini, 1984)

1 Domain: κ(X,Y ) is defined for any continuous random variables X,Y .

2 Symmetry: κ(X,Y ) = κ(Y,X).

3 Coherence: if CX,Y � CX′,Y ′ , then κ(X,Y ) ≤ κ(X ′, Y ′).

4 Range: −1 ≤ κ(X,Y ) ≤ 1.

5 Independence: if X and Y are independent, then κ(X,Y ) = 0.

6 Change of sign: κ(−X,Y ) = −κ(X,Y ).

7 Continuity: limn→∞ κ(Xn, Yn) = κ(X,Y ) if limn→∞Hn = H pointwise
for (Xn, Yn) ∼ Hn and (X,Y ) ∼ H.
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Necessary Conditions

Necessary conditions for g1 and g2

1 Rank-based: κ(X, Y ) must depend only on the copula of
(X, Y ); for (U, V ) := (FX(X), FY (Y )) ∼ CX,Y , redefine

κg1,g2(X, Y ) = ρ
(
g1(U), g2(V )

)
=: κg1,g2(CX,Y ).

2 Monotonicity: g1 and g2 must be both increasing or both
decreasing.

Theorem 2.2 (Monotonicity of g1 and g2)

Let g1 and g2 be two continuous functions. If κg1,g2 is a MOC, then

(g1(x)− g1(y))(g2(x)− g2(y)) ≥ 0 for any x > y in [0, 1]. (1)

Proof: 0 ≤ κg1,g2(Q̃N)− κg1,g2(QN)
N→∞−→ (1) for certain

checkerboard copulas s.t. QN � Q̃N , QN(u, v) = Q̃N(u, v) except
at blocks including (x, x), (x, y), (y, x) and (y, y).
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Transformed Rank Correlations

Transformed rank correlations

W.l.o.g., we can assume g1 and g2 are both increasing.

Furthermore, assume they are left-continuous. Then they are
quantile functions g1 = G−11 and g2 = G−12 for some cdfs G1

and G2.

Definition 2.3 ((G1, G2)–transformed rank correlations)

For two cdfs G1 and G2, (G1, G2)-transformed rank correlation
coefficient is defined by

κG1,G2(U, V ) = ρ
(
G−11 (U), G−12 (V )

)
.

We call the pair (G1, G2) concordance inducing if κG1,G2 is a MOC.
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Examples of the correlation-based MOCs

Examples of κG1,G2

1 Spearman’s rho: Let G1 = G2 = G for G being the cdf of the
uniform distribution on [0, 1]. Then κG1,G2 is called the
Spearman’s rho ρS:

ρS(C) ∝
∫∫

[0,1]2
(C(u, v)− Π(u, v))dudv.

2 Blomqvist’s beta: Let G1 = G2 = G for G being the cdf of
Bern(1/2). Then κG1,G2 yields the Blomqvist’s beta β:

β(C) = 4C(1/2, 1/2)− 1.

3 Van der Waerden’s coefficient: Let G1 = G2 = G for G being
the cdf of N(0, 1). Then κG1,G2 is called the van der Waerden’s
ζ.
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Examples of the correlation-based MOCs

Example of Bernoulli G-functions
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Figure: Plots of minimal (left, (U, V ) ∼W ) and maximal (right,
(U, V ) ∼M) correlation-based MOCs κG1,G2(U, V ) where Gj is the
distribution function of B(1, pj), j = 1, 2. The range axiom is violated
except (p1, p2) = (1/2, 1/2).
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Characterization of Correlation-based MOC

Characterization of κG1,G2

Theorem 2.4 (Characterization of concordance-inducing G)

Let G1 and G2 be cdfs. The (G1, G2)-transformed rank correlation
coefficient κG1,G2 is a MOC if and only if

1 G1 and G2 are of the same type as G, where

2 G is a distribution function of a (i) non-degenerated (ii) radially
symmetric distribution with (iii) finite second moment.

Proof: Key part: the correlation of (X, Y ) = (G−11 (U), G−12 (V ))
attain ±1 at CX,Y = M, W (resp.) if and only if G1 and G2 are of
the same type; see Embrechts et al. (2002).

Remark: If G1, G2 and G are all of the same type, then

κG1,G2(X1, X2) = κG,G(X1, X2) =: κG(X1, X2).
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Properties of Correlation-based MOC

Properties of κG

Proposition 2.5 (Properties of κG)

1 Uniqueness: Let G and G′ be two continuous
concordance-inducing functions. If κG(C) = κG′(C) for all
2-copulas, then G and G′ are of the same type.

2 Linearity: For n ∈ N, let C1, . . . , Cn be 2-copulas and
α1, . . . , αn ≥ 0 such that α1 + · · ·+ αn = 1. Then

κG

( n∑
i=1

αiCi

)
=

n∑
i=1

αiκG(Ci).
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Limitations of Correlation-based MOC

Limitations of κG

Kendall’s tau is a MOC defined by

τ(C) = 4

∫
[0,1]2

C(u, v) dC(u, v)− 1,

but it is not a correlation based MOC since, in general

τ(αC + (1− α)C ′) 6= ατ(C) + (1− α)τ(C ′), α ∈ (0, 1).

κG measures quantify only concordance. It cannot measure the
association among variables. For example,

κG

(
1

2
(M +W )

)
=

1

2
(κG(M) + κG(W )) = 0

= κG(Π) (Π: independent copula).
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Bounds of κG-Compatible Set

Bounds of the compatible set KG
Recall the notation of the κG-compatible set:

KG = {R : d× d matrix : ∃X: a continuous d-r.v. s.t. κG(X) = R}.

Proposition 3.1 (Bounds of KG)

For any concordance inducing G, KG is convex and

PB
d (1/2) ⊆ KG ⊆ Pd,

where Pd is the set of all d× d correlation matrices, and

PB
d (1/2) = {ρ(B) : Bj ∼ Bern(1/2), j = 1, . . . , d}.

Proof: For P = ρ(B) ∈ PB
d (1/2) and U ∼ U(0, 1) independent of

B, we have κG(V ) = P for V = BU + (1−B)(1− U): cont.
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Bounds of κG-Compatible Set

Attainability of the bounds

Figure: The set PB
d (1/2) (left, cut polytope) and Pd (right, elliptope)

when d = 3. d(d− 1)/2 = 3 off-diagonal entries are projected onto the
Euclidean space and each vertex represents a matrix P = cc> where
c = (1, 1, 1), (1,−1, 1), (1, 1,−1) and c = (1,−1,−1) (Tropp, 2018).
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Examples of the Characterizations of Compatible Sets

Proposition 3.2 (Characterizations of some compatible sets)

1 Normal variance mixture: If
√
WZ ∼ G with W ≥ 0,

EW = 1 and Z ∼ N(0, 1), then

KG = Pd.
2 Spearman’s rho: For the ρS-compatible set Sd,

Sd

{
= Pd d ≤ 9,

⊂Pd d ≥ 12.

3 Blomqvist’s beta: For the β-compatible set Bd, we have

Bd = PB
d (1/2) = conv{cc> : c ∈ {±1}d}.

Remark: (2) is shown in Devroye & Letac (2015) and Wang et al.
(2018), and (3) is in Devroye & Letac (2015).
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Other topics

Other Topics

In the paper Hofert and Koike (2019) we also investigated...

the attainability problem, that concerns whether, for a given
d× d matrix R, we can construct a random vector X s.t.
κG(X) = R, and

compatibility and attainability for block matrices and
hierarchical matrices to solve the problem that checking
compatibility and attainability is challenging for
high-dimensional matrices.
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Future work

Future work

Compatibility for Kendall’s τ : Is Td = PB
d (1/2)?

Compatibility for Gini’s γ and generalized Blomqvist’s β:

γ(C) = 4

∫
[0,1]2

(M(u, v) +W (u, v)) dC(u, v)− 2.

Comparison among MOCs, which is the best to be used?

MOC for non-continuous margins: modified distributional
transform (Rüschendorf, 2009) uniquely determines a MOC but
it forms an interval due to arbitrariness of modification.

Compatibility for measures of association, such as maximum
mean discrepancy (MMD) s.t. MMD(C) = 0⇔ C = Π.
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Compatibilities of other measures

Future work I: Kendall’s tau compatibility

Conjecture: Td=PBd (1/2) for the Kendall’s τ -compatible set.

Td⊆PBd (1/2) is true for all d ≥ 2.

T3=PB3 (1/2) (Joe, 1996).

Is Td⊇PBd (1/2) for all d > 3?

Td may not be convex.

All the vertices of PBd (1/2) are attainable by τ .

Constructive approach?

Takaaki Koike Compatibility of MOC December 15th, 2019 20 / 22



Preliminaries Correlation-based Measures of Concordance Bounds of Compatible Sets Other Topics and Future Work

Compatibilities of other measures

Future work II: Gini’s γ compatibility

Edwards et al. (2005) proposed the class of MOC

κµ(C) ∝
∫∫

Cdµ,

where µ is a D4-invariant measure on [0, 1]2, i.e.,

µ(A) = µ(σ(A)), A ∈ B(0, 1)2,

for σ: compositions of transpositions and partial reflections.

κG corresponds to µ = λG,G: pushforward Lebesgue measure by
G⊗G.

Gini’s gamma is a special case when µ = (M +W )/2.
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Compatibilities of other measures

Future work III: Generalized Blomqvist’s β

Consider an easier case, for p ∈ (0, 1),

µp = δp,p + δp,1−p + δ1−p,p + δ1−p,1−p,

which leads to the generalized Blomqvist’s beta βp.

Its pairwise matrix admits the representation:

βp(C) =
1

2d

∑
i∈{0,1}d

ρip+(1−i)(1−p)(C),

where ρp(C) is a pairwise correlation matrix of a joint
distribution with margins Bern(p1), . . . ,Bern(pd) and a copula
C.

Takaaki Koike Compatibility of MOC December 15th, 2019 22 / 22



Preliminaries Correlation-based Measures of Concordance Bounds of Compatible Sets Other Topics and Future Work

Thank you for your attention!

References: see Hofert and Koike (2019).

Website: https://uwaterloo.ca/scholar/tkoike/home

(The paper and this slide are also available here.)
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