Prelimina	ries
	oc

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Modality for Scenario Analysis and Maximum Likelihood Allocation

Takaaki Koike

Department of Statistics and Actuarial Science University of Waterloo

At University of Waterloo joint work with Marius Hofert

May 10, 2020

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion
● 0 000000				
Introduction				

Setup and problems

Notation

- X = (X₁,...,X_d) ~ F_X: static loss random vector on a probability space (Ω, F, ℙ).
- $S = X_1 + \cdots + X_d$: total loss.
- K ∈ ℝ: total capital, typically K = ρ(S) for a risk measure ρ, but not always: adjusted under regulation (Asimit et al., 2019) or even given exogenously (Laeven and Goovaerts, 2004 and Dhaene et al., 2012).

Problems

- Find an allocation (K_1, \cdots, K_d) of K to d units.
- Test reliability of $(K_1, \dots, K_d) =$ stress test of an allocation.

Existing allocation methods

Optimization

• Laeven and Goovaerts (2004) and Dhaene et al. (2012) considered

 $(K_1^*,\ldots,K_d^*) = \operatorname{argmin}\{L_{\boldsymbol{X}}(\boldsymbol{x}) : \boldsymbol{x} \in \mathcal{K}_d(K)\}$

for some loss function $L_{\boldsymbol{X}}$ and a set of allocations

$$\mathcal{K}_d(K) = \{ \boldsymbol{x} \in \mathbb{R}^d : x_1 + \dots + x_d = K \}.$$

Euler method

• Find a confidence level $p \in (0,1)$ such that $K = VaR_p(S)$ and apply the Euler princple, which leads to (what we call) the Euler allocation

$$K_j^* = \mathbb{E}[X_j \mid \{S = K\}] \quad j = 1, \dots, d.$$

Motivations

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

Soundness of risk allocations

Figure: 1.1. K = 35, $(X_1, Y_1) \sim C_{\nu,\rho_1}^t(F, F)$ and $(X_2, Y_2) \sim C_{\nu,\rho_2}^t(F, F)$: exchangeable r.v.s, where F = Par(3, 5), $\nu = 5$, $\rho_1 = 0.8$ and $\rho_2 = -0.8$.

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion
00000000				
Martineton				

Stress test of risk allocations

- Breuer et al. (2009) requires stress scenarios to be severe and plausible.
- Consider a set of scenarios with t > 0 the level of plausibility:

$$L_t(\boldsymbol{X}) := \{ \boldsymbol{x} \in \mathbb{R}^d : f_{\boldsymbol{X}}(\boldsymbol{x}) \ge t \},\$$

which is a level set of X (having a p.d.f. f_X) at t > 0.

• Then the set of most severe scenarios K can cover is

$$L_t(\boldsymbol{X}) \cap \mathcal{K}_d(K) = \{ \boldsymbol{x} \in \mathbb{R}^d : f_{\boldsymbol{X}}(\boldsymbol{x}) \mathbf{1}_{\{\mathbf{1}_d^\top \boldsymbol{x} = K\}} \ge t \}$$
$$= \{ \boldsymbol{x} \in \mathbb{R}^d : f_{\boldsymbol{X} \mid \{S = K\}}(\boldsymbol{x}) \ge t/f_S(K) \}$$
$$= L_{t/f_S(K)}(\boldsymbol{X} \mid \{S = K\}).$$

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion
Questions				

Related questions

Distributional properties of $X \mid \{S = K\}$

- Detect uni/multi-modality of $X \mid \{S = K\}$ from X to assess soundness of a risk allocation and simplicity of a scenario set?
- Unimodality, dependence and tail behavior of X | {S = K} are inherited from those of X?

Mode of $X \mid \{S = K\}$

- The most plausible and severe stress scenario K can cover.
- Searching for (local) modes of $X \mid \{S = K\}$ can be beneficial to evaluate soundness of risk allocations.
- Desirable as a risk allocation?

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion
00000000	000000000000000000000000000000000000000	0000000	00000000000000	
Outline				

Outline

Preliminaries

Density and support.

2 Properties of $X \mid \{S = K\}$

Elliptical case, dependence, tail behavior and modality.

Maximum likelihood allocation

Definition and properties.

Numerical experiments

Simulation and empirical studies.

Sonclusion and future work

Tail dependence, measures of concordance and MCMC methods.

Preliminaries

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Basic properties

Density of $\boldsymbol{X} \mid \{S = K\}$

• We conventionally write

$$f_{\boldsymbol{X}|\{S=K\}}(\boldsymbol{x}) := \frac{f_{\boldsymbol{X}}(\boldsymbol{x})\mathbf{1}_{\{\mathbf{1}_{d}^{\top}\boldsymbol{x}=K\}}}{f_{S}(K)}, \quad \boldsymbol{x} \in \mathbb{R}^{d},$$

but $X | \{S = K\}$ is degenerate and thus does not admit a density on \mathbb{R}^d .

• Instead, we work with $X' \mid \{S = K\}$ where d' = d - 1 and $X' = (X_1, \ldots, X_{d'})$ since it admits a density

$$f_{\boldsymbol{X}'|\{S=K\}}(\boldsymbol{x}') = \frac{f_{(\boldsymbol{X}',S)}(\boldsymbol{x}',K)}{f_S(K)} = \frac{f_{\boldsymbol{X}}(\boldsymbol{x}',K-\mathbf{1}_{d'}^{\top}\boldsymbol{x}')}{f_S(K)}, \quad \boldsymbol{x}' \in \mathbb{R}^{d'},$$

provided \boldsymbol{X} and (\boldsymbol{X}',S) have densities, and

$$X_d \mid \{S = K\} = K - (\mathbf{1}_{d'}^{\top} \mathbf{X}') \mid \{S = K\}.$$

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Basic properties

Support of $\boldsymbol{X} \mid \{S = K\}$

Profit & loss: supp $X = \mathbb{R}^d$

• By
$$f_{{m X}'|\{S=K\}}({m x}') = f_{{m X}}({m x}',K-{m 1}_{d'}^{ op}{m x}')/f_S(K)$$
, we have

$$\operatorname{supp}(\boldsymbol{X}' \mid \{S = K\}) = \mathbb{R}^{d'}.$$

Pure loss: supp $X = \mathbb{R}^d_+$

• X_1, \ldots, X_d cannot exceed K. Consequently, the support of $X' \mid \{S = K\}$ forms a *K*-simplex:

$$\operatorname{supp}(\boldsymbol{X}' \mid \{S = K\}) = \{\boldsymbol{x}' \in \mathbb{R}_+^{d'} : \boldsymbol{1}_{d'}^{\top} \boldsymbol{x}' \leq K\}.$$

Preliminaries

Density and support.

2 Properties of $X \mid \{S = K\}$

Elliptical case, dependence, tail behavior and modality.

Maximum likelihood allocation

Definition and properties.

Output: Numerical experiments

Simulation and empirical studies.

Sonclusion and future work

Tail dependence, measures of concordance and MCMC methods.

Elliptical distributions

Elliptical distributions

Definition 2.1 (Elliptical distribution)

A *d*-dimensional random vector X is said to have an elliptical distribution, denoted by $X \sim \mathcal{E}_d(\mu, \Sigma, \psi)$, if its c.f. is

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu}) \; \psi\left(rac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}
ight)$$

for $\boldsymbol{\mu} \in \mathbb{R}^d$, $\Sigma \in \mathcal{M}^{d \times d}_+$ and $\psi \in \Psi_d$. When $\boldsymbol{X} \sim \mathcal{E}_d(\boldsymbol{\mu}, \Sigma, \psi)$ admits a density, it is of the form

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{c_d}{\sqrt{|\Sigma|}} g\left(\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}); d\right), \quad \boldsymbol{x} \in \mathbb{R}^d,$$

for some normalizing constant $c_d>0$ and a density generator $g(\cdot)=g(\cdot;d).$

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion
	000000000000000000000000000000000000000			
Elliptical distribu	itions			

Elliptical case

Proposition 2.2 (Ellipticality of $X' \mid \{S = K\}$)

If $X \sim \mathcal{E}_d(\mu, \Sigma, \psi)$, then $X' \mid \{S = K\} \sim \mathcal{E}_{d'}(\mu_K, \Sigma_K, \psi_K)$ for some characteristic generator $\psi_K \in \Psi_{d'}$ and

$$\boldsymbol{\mu}_K = \boldsymbol{\mu}' + rac{K - \mu_S}{\sigma_S^2} (\Sigma \mathbf{1}_d)' \quad ext{and} \quad \Sigma_K = \Sigma' - rac{1}{\sigma_S^2} (\Sigma \mathbf{1}_d)' (\Sigma \mathbf{1}_d)'^{ op},$$

where Σ' is the principal submatrix of Σ deleting the *d*th row and column, $\mu_S = \mathbf{1}_d^\top \boldsymbol{\mu}$ and $\sigma_S^2 = \mathbf{1}_d^\top \Sigma \mathbf{1}_d$. Moreover, if \boldsymbol{X} admits a density with density generator g, then so does $\boldsymbol{X}' \mid \{S = K\}$ with

$$g_K(t) = g(t + \Delta_K)$$
 where $\Delta_K = \frac{1}{2} \left(\frac{K - \mu_S}{\sigma_S} \right)^2$

Preliminaries

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Elliptical distributions

Example: Student t distributions

A d-dimensional Student t distribution t_ν(μ, Σ) is an elliptical distribution E_d(μ, Σ, ψ) with density generator

$$g(t;d) = \left(1 + \frac{t}{\nu}\right)^{-\frac{d+\nu}{2}}, \quad t \ge 0,$$

where $\nu \geq 1$ is the degrees of freedom parameter.

• By the previous proposition, we have that

$$\mathbf{X}' \mid \{S = K\} \sim t_{\nu+1}(\boldsymbol{\mu}_K, (\nu + \Delta_K)\boldsymbol{\Sigma}_K/(\nu + 1))$$

since

$$g_K(t) \propto \left(1 + \frac{t}{\nu + \Delta_K}\right)^{-\frac{d+\nu}{2}} \propto \left(1 + \frac{\nu + 1}{\nu + \Delta_K} \frac{t}{\nu + 1}\right)^{-\frac{d'+\nu+1}{2}}$$

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Extremal positive dependent case

Proposition 2.3 ($X' \mid \{S = K\}$ under comonotonicity)

Suppose X has continuous margins F_1, \ldots, F_d and is comonotone, i.e., $X \stackrel{d}{=} (F_1^{-1}(U), \ldots, F_d^{-1}(U))$ for some $U \sim U(0, 1)$. Then

$$\boldsymbol{X} \ | \ \{S = K\} = (F_1^{-1}(u^*), \dots, F_d^{-1}(u^*)) \quad \mathbb{P}\text{-a.s.},$$

where $u^* \in [0,1]$ is the unique solution to $\sum_{j=1}^d F_j^{-1}(u) = K$ as an equation of $u \in [0,1]$.

• An extremal case where positive dependence (comonotonicity) implies unimodality of $X \mid \{S = K\}$ (taking on one point $(F_1^{-1}(u^*), \ldots, F_d^{-1}(u^*))$ with probability 1).

Dependence

Extremal negative dependent case: 1/2

- We construct X s.t. $X \mid \{S = K\}$ is multimodal.
- For X ≥ 0 having a c.d.f. F, suppose that F_{X|{X≤K}} admits a d-complete mix Y = (Y₁,...,Y_d) with center K > 0 (d-CM(K)), that is,

$$Y_j \sim F_{X|\{X \leq K\}}, \quad j = 1, \dots, d \quad \text{and} \quad \mathbf{1}_d^\top \mathbf{Y} = K \text{ a.s.}$$

• For $U \sim U(0,1)$, $Z_1, \ldots, Z_d \stackrel{\text{iid}}{\sim} F_{X|\{X > K\}}$ and Y being a d-CM(K) of $F_{X|\{X \le K\}}$, define

$$X = (X_1, \dots, X_d), \quad X_j = Y_j \mathbf{1}_{\{U \le F(K)\}} + Z_j \mathbf{1}_{\{U > F(K)\}}$$

where \boldsymbol{Y} , U and Z_1, \ldots, Z_d are independent of each other.

Preliminaries 00000000 Dependence Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Extremal negative dependent case: 2/2

• Then $X_j \sim F$ and $\{X_1 + \dots + X_d = K\} = \{U \leq F(K)\}$ since

$$S := X_1 + \dots + X_d = (\mathbf{1}_d^\top \boldsymbol{Y}) \mathbf{1}_{\{U \le F(K)\}} + (\mathbf{1}_d^\top \boldsymbol{Z}) \mathbf{1}_{\{U > F(K)\}},$$

$$\mathbf{1}_d^{ op} oldsymbol{Y} = K$$
 and $\mathbf{1}_d^{ op} oldsymbol{Z} > K$ a.s.

• Consequently,

$$\boldsymbol{X} \mid \{S = K\} = \boldsymbol{X} \mid \{U \leq F(K)\} = \boldsymbol{Y} \ a.s.$$

• $X \mid \{S = K\}$ is multimodal for example when Y is an equally weighted mixture of $Dir(\alpha, \alpha, \beta)$, $Dir(\alpha, \beta, \alpha)$ and $Dir(\beta, \alpha, \alpha)$ distributions with $\alpha = 2$ and $\beta = 10$.

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Dependence in elliptical case

• When
$$oldsymbol{X} \sim \mathcal{E}_d(oldsymbol{\mu}, \Sigma, \psi)$$
, we have

$$\operatorname{Cov}[X_i, X_j \mid \{S = K\}] = \operatorname{Cov}[X_i, X_j] - \frac{1}{\sigma_S^2} (\Sigma \mathbf{1}_d)_i (\Sigma \mathbf{1}_d)_j$$
$$= \operatorname{Cov}[X_i, X_j] - \frac{\operatorname{Cov}[X_i, S] \operatorname{Cov}[X_j, S]}{\sigma_S^2}$$
$$= \sigma_i \sigma_j (\rho_{X_i, X_j} - \rho_{X_i, S} \ \rho_{X_j, S}),$$

where $\sigma_j^2 = \text{Var}(X_j)$ and ρ_{X_i,X_j} is the correlation coefficient of (X_i, X_j) .

• The dependence structure of $X' \mid \{S = K\}$ is typically described in terms of the dependence among X_j and S for $j = 1, \ldots, d'$.

MTP2, MRR2 and TP2-order

Definition 2.4 (MTP2, MRR2 and TP2-order)

Suppose random vectors \boldsymbol{X} and \boldsymbol{Y} have densities $f_{\boldsymbol{X}}$ and $f_{\boldsymbol{Y}}$, resp.

• X is multivariate totally positively ordered of order 2 (MTP2) if

$$f_{\boldsymbol{X}}(\boldsymbol{x})f_{\boldsymbol{X}}(\boldsymbol{y}) \leq f_{\boldsymbol{X}}(\boldsymbol{x}\wedge \boldsymbol{y})f_{\boldsymbol{X}}(\boldsymbol{x}\vee \boldsymbol{y}), \quad \text{for all } \boldsymbol{x}, \; \boldsymbol{y}\in \mathbb{R}^d.$$

② X is said to be multivariate reverse rule of order 2 (MRR2) if

 $f_{\boldsymbol{X}}(\boldsymbol{x})f_{\boldsymbol{X}}(\boldsymbol{y}) \geq f_{\boldsymbol{X}}(\boldsymbol{x} \wedge \boldsymbol{y})f_{\boldsymbol{X}}(\boldsymbol{x} \vee \boldsymbol{y}), \quad \text{for all } \boldsymbol{x}, \ \boldsymbol{y} \in \mathbb{R}^d.$

 $\label{eq: constraint} \begin{tabular}{ll} \bullet & {f Y} \mbox{ is said to be larger than } {f X} \mbox{ in } TP2\mbox{-order, denoted as } \\ {f X} \leq_{tp} {f Y} \mbox{ if } \end{tabular}$

 $f_{\boldsymbol{X}}(\boldsymbol{x})f_{\boldsymbol{Y}}(\boldsymbol{y}) \leq f_{\boldsymbol{X}}(\boldsymbol{x} \wedge \boldsymbol{y})f_{\boldsymbol{Y}}(\boldsymbol{x} \vee \boldsymbol{y}), \quad \text{for all } \boldsymbol{x}, \ \boldsymbol{y} \in \mathbb{R}^d.$

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

Dependence of $\boldsymbol{X} \mid \{S = K\}$

Proposition 2.5 (MTP2, MRR2 and TP2 order of $X' \mid \{S = K\}$)

Suppose (\mathbf{X}', S) and (\mathbf{Y}', T) with $S = \mathbf{1}_d^\top \mathbf{X}$ and $T = \mathbf{1}_d^\top \mathbf{Y}$ have densities $f_{(\mathbf{X}',S)}$ and $f_{(\mathbf{Y}',T)}$, respectively.

• If (\mathbf{X}', S) is MTP2 (MRR2) then $\mathbf{X}' \mid \{S = K\}$ is MTP2 (MRR2).

 $\textbf{ o } \textbf{ If } (\boldsymbol{X}',S) \leq_{tp} (\boldsymbol{Y}',T) \textbf{ then } \boldsymbol{X}' \mid \{S=K\} \leq_{tp} \boldsymbol{Y}' \mid \{T=K\}.$

Implications:

- When $X' \mid \{S = K\}$ is MTP2, then $X' \mid \{S = K\}$ is positively associated, i.e., $\operatorname{Cov}[g(X_i), h(X_j) \mid \{S = K\}] \ge 0 \ \forall g, \ h : \mathbb{R} \to \mathbb{R} : \nearrow$.
- $\mathbf{X}' \mid \{S = K\} \leq_{tp} \mathbf{Y}' \mid \{T = K\} \Rightarrow \mathbf{X}' \mid \{S = K\} \leq_{st} \mathbf{Y} \mid \{T = K\},$ that is, $\mathbb{E}[h(\mathbf{X}') \mid \{S = K\}] \leq \mathbb{E}[h(\mathbf{Y}') \mid \{T = K\}]$ for all bounded and increasing functions $h : \mathbb{R}^{d'} \to \mathbb{R}.$

Regular and rapid variations

Definition 2.6 (Multivariate regular and rapid variations of a density)

Let X be a d-dimensional random vector X with a density f_X .

• X is called multivariate regularly varying with limit function $\lambda : \mathbb{R}^{2d} \to \mathbb{R}_+$ (at ∞ and on the first orthant), denoted by MRV(λ) if

$$\lim_{t\to\infty}\frac{f_{\boldsymbol{X}}(t\boldsymbol{y})}{f_{\boldsymbol{X}}(t\boldsymbol{x})}=:\lambda(\boldsymbol{x},\boldsymbol{y})>0\quad\text{for any}\quad\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^d_+,$$

provided the limit function λ exists.

3 X is called multivariate rapidly varying (at ∞ and on the first orthant), denoted by $\mathsf{MRV}(\infty)$ if,

$$\lim_{t \to \infty} \frac{f_{\boldsymbol{X}}(st\boldsymbol{x})}{f_{\boldsymbol{X}}(t\boldsymbol{x})} = \begin{cases} 0, & s > 1, \\ \infty, & 0 < s < 1, \end{cases} \quad \text{for any} \quad s > 0, \ \boldsymbol{x} \in \mathbb{R}^d_+.$$

Preliminaries 00000000 Tail behavior Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

Tail behavior of $\mathbf{X}' | \{S = K\}$: 1/2

- We focus on the case where $supp\{X\} = \mathbb{R}^d$, and thus $supp\{X' \mid \{S = K\}\} = \mathbb{R}^{d'}$.
- There are $2^{d'}$ orthants to be considered. We consider tail behavior only in the first orthant $\{x' \in \mathbb{R}^{d'} : x_1, \dots, x_{d'} > 0\}$.
- We introduce the auxiliary random vector

$$\tilde{\boldsymbol{X}} = (\boldsymbol{X}', K - X_d),$$

which has margins $\tilde{F}_j = F_j$, j = 1, ..., d' and $\tilde{F}_d(x_d) = \bar{F}_d(K - x_d)$, and the copula \tilde{C} is the distribution function of $(U_1, ..., U_{d'}, 1 - U_d)$ where $U \sim C$ is the copula of X.

Preliminaries 00000000 Tail behavior Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Tail behavior of $X' | \{S = K\}$: 2/2

Proposition 2.7 (MRV of $X' \mid \{S = K\}$)

• Assume that $\tilde{X} = (X', K - X_d)$ is MRV($\tilde{\lambda}$). Then $X' \mid \{S = K\}$ is MRV(λ') with limit function

$$\lambda'(oldsymbol{x}',oldsymbol{y}') = ilde{\lambda}((oldsymbol{x}',oldsymbol{1}_{d'}^ opoldsymbol{x}'),(oldsymbol{y}',oldsymbol{1}_{d'}^ opoldsymbol{y}')), \quad oldsymbol{x}',oldsymbol{y}' \in \mathbb{R}_+^{d'}.$$

2 If \tilde{X} is MRV(∞), then $X' \mid \{S = K\}$ is MRV(∞).

Note:

• See Li (2013), Li and Wu (2013), Li and Hua (2015) and Joe and Li (2019) for how to find the limit function of \tilde{X} given its joint distribution.

Distributional Properties

Tail behavior in elliptical case

Proposition 2.8 (MRV for elliptical distribution)

Assume $X \sim \mathcal{E}_d(\mu, \Sigma, \psi)$ admits a density with density generator g continuous on \mathbb{R}_+ .

() If g is regularly varying in the sense that

$$\lim_{t \to \infty} g(tu)/g(ts) = \lambda_g(s, u), \quad s, u > 0,$$

then $X' \mid \{S = K\}$ is MRV (λ_K) with

$$\lambda_K(\boldsymbol{x}',\boldsymbol{y}') = \lambda_g(\boldsymbol{x'}^{\top} \boldsymbol{\Sigma}_K^{-1} \boldsymbol{x}', \ \boldsymbol{y'}^{\top} \boldsymbol{\Sigma}_K^{-1} \boldsymbol{y}'), \quad \boldsymbol{x}', \ \boldsymbol{y}' \in \mathbb{R}^{d'}.$$

2 $X' \mid \{S = K\}$ is MRV(∞) if g is rapidly varying in the sense that

$$\lim_{t \to \infty} \frac{g(st)}{g(t)} = \begin{cases} 0, & s > 1, \\ \infty, & 0 < s < 1. \end{cases}$$

Examples: Normal and Student t distributions

- **Normal distribution** has a rapidly varying density generator $g(t) = \exp(-t)$, and thus $\mathbf{X}' \mid \{S = K\}$ is MRV(∞).
- <u>Student t distribution</u> with dimension d and d.o.f. $\nu \ge 1$ has the regularly varying density generator with limit function

$$\lim_{t \to \infty} \frac{g(tu)}{g(ts)} = \left(\frac{u}{s}\right)^{-\frac{\nu+d}{2}}, \quad u, s > 0.$$

Therefore, $X' \mid \{S = K\}$ is MRV(λ_K) with

$$\lim_{t \to \infty} \frac{f_{\mathbf{X}'|\{S=K\}}(t\mathbf{y}')}{f_{\mathbf{X}'|\{S=K\}}(t\mathbf{x}')} = \left(\frac{||\Sigma_K^{-\frac{1}{2}}\mathbf{y}'||}{||\Sigma_K^{-\frac{1}{2}}\mathbf{x}'||}\right)^{-(\nu+d)} =: \lambda_K(\mathbf{x}', \mathbf{y}'),$$

where $|| \cdot ||$ is an Euclidean norm on $\mathbb{R}^{d'}$.

Definition of unimodality

The level set of a bounded p.d.f. f on \mathbb{R}^d is:

 $L_t(f) := \{ \boldsymbol{x} \in \mathbb{R}^d : f(\boldsymbol{x}) \ge t \}, \quad t \in (0, \max\{f(\boldsymbol{x}) : \boldsymbol{x} \in \mathbb{R}\}].$

Definition 2.9 (Concepts of unimodality)

• $M(f) = L_{t^*}(f)$, $t^* = \max_{x \in \mathbb{R}^d} f(x)$ is the mode set of f.

- 3 If $L_{t^*}(f) = \{ \boldsymbol{m} \}$ then we call $\boldsymbol{m} \in \mathbb{R}^d$ the mode of f.
- Surthermore, f is said to be weakly unimodal if L_t(f) is connected, star unimodal about the center x₀ ∈ ℝ^d if L_t(f) is star-shaped (*) about x₀ and convex unimodal if L_t(f) is convex, for all 0 < t ≤ t*.</p>

(*) A set $A \subseteq \mathbb{R}^d$ is star-shaped about $x_0 \in A$ if, for any $y \in A$, the line segment from x_0 to y is in A.

Distributional Properties

Unimodality of $X' \mid \{S = K\}$

Note: By definition, convex unimodality implies star unimodality and star unimodality implies weak unimodality.

Proposition 2.10 (Unimodality of $X' \mid \{S = K\}$)

- Suppose X ~ E_d(μ, Σ, ψ) admits a density with density generator g. If g is decreasing on ℝ₊, then f_{X'|{S=K}} is convex unimodal. Furthermore, if the equation g(t) = Δ_K of t ∈ ℝ₊ has a unique solution t^{*}_K, then f_{X'|{S=K}} has the mode m = μ_K.
- **2** If X is convex unimodal, then $X' \mid \{S = K\}$ is convex unimodal.

<u>**Remark**</u>: Unlike convex unimodality, neither weak unimodality nor star unimodality of X imply any unimodality of $X' \mid \{S = K\}$.

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Unimodality not inherited from $oldsymbol{X}$

• A homothetic distribution is defined through its level set by

 $L_t(f_D) = r(t)D := \{sx : 0 \le s \le r(t), x \in D\},\$

for some $r : \mathbb{R}_+ \to \mathbb{R}_+$ and $D \in \mathbb{R}^d$.

- Consider a homothetic distribution with $r(t) = \frac{1}{2\sqrt{3}} \exp(-t/2)$ and $D = ([-2, 2] \times [-1, 1]) \cup ([-1, 1] \times [-2, 2]).$
- r is ↓ and D is star-shaped around (0,0), which implies star-unimodality of X.
- For $t=-2\log(\sqrt{3}/3)\approx 1.098,$ we have

$$r(t) = 1/6$$
 and $L_t(f_D) = D/6$.

• For this t, $L_t(\mathbf{X}' \mid \{S = 1/3\}) = [0, 1/6] \cup [1/3, 1/2]$, which is neither star-shaped nor even connected.

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Joint v.s. marginal unimodality

• Marginal \Rightarrow joint: the following bivariate density

$$f(u,v) = \frac{9}{4} \mathbf{1}_{\left\{(u,v) \in \bigcup_{i=1}^{3} [\frac{i-1}{3}, \frac{i}{3}]^{2}\right\}} + \frac{9}{4} \mathbf{1}_{\left\{(u,v) \in [\frac{1}{3}, \frac{2}{3}]^{2}\right\}}, \quad (u,v) \in [0,1],$$

has the convex unimodal marginal densities

$$f_1(u) = f_2(u) = \frac{3}{4} \mathbf{1}_{\{u \in [0,1]\}} + \frac{3}{4} \mathbf{1}_{\{u \in [\frac{1}{3}, \frac{2}{3}]\}}, \quad u \in [0,1].$$

However,

$$L_{9/4}(f) = [0, 1/3]^2 \cup [1/3, 2/3]^2 \cup [2/3, 1]^2$$

is neither convex nor star-shaped.

• Joint \implies marginal: Example A.3. of Balkema and Nolde (2010)

Takaaki Koike

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

Figures in examples

Figure: 2.11 Star unimodality of $X' | \{S = K\}$ is not inherited from that of X (left), and joint unimodality does not imply marginal unimodality (right).

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

s-concave densities: definition

Definition 2.12 (s-concavity)

For $s\in\mathbb{R},$ a density f on \mathbb{R}^d is called s-concave on a convex set $A\subseteq\mathbb{R}^d$ if

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) \ge \boldsymbol{M}_{\boldsymbol{s}}(f(\boldsymbol{x}), f(\boldsymbol{y}); \theta), \quad \boldsymbol{x}, \boldsymbol{y} \in A, \quad \theta \in (0, 1),$$

where M_s is called the generalized mean defined by

$$M_s(a,b;\theta) = \begin{cases} \{\theta a^s + (1-\theta)b^s\}^{1/s}, & 0 < s < \infty \text{ or } (-\infty < s < 0 \text{ and } ab \neq 0), \\ 0, & -\infty < s < 0 \text{ and } ab = 0, \\ a^\theta b^{1-\theta}, & s = 0, \\ a \wedge b, & s = -\infty, \\ a \vee b, & s = +\infty, \end{cases}$$

for $s \in \mathbb{R}$, $a, b \ge 0$ and $\theta \in (0, 1)$.

s-concave densities: properties and examples

- For $s = -\infty$, s-concavity is also known as quasi-concavity.
- 0-concavity is also known as log-concavity.
- The function $s \mapsto M_s(a, b; \theta)$ is increasing for fixed $(a, b; \theta)$.
- *t*-concavity implies *s*-concavity for s < t.
- Examples of s-concave densities: skew-normal distribution, Dirichlet with certain range of parameters and uniform distribution on a convex set in R^d.

s-concave densities and convex unimodality

- A density f is convex unimodal iff it is $-\infty$ -concave. Thus f is convex unimodal if it is s-concave for some $s \in \mathbb{R}$.
- $X' \mid \{S = K\}$ has an *s*-concave density if X has.
- s-concavity is preserved under marginalization, convolution and weak-limit for certain ranges of s ∈ ℝ.
- Consequently, convex unimodality of $X' \mid \{S = K\}$ can also be preserved under these operations if f_X is *s*-concave.

Preliminaries

Density and support.

2 Properties of $X \mid \{S = K\}$

Elliptical case, dependence, tail behavior and modality.

Maximum likelihood allocation

Definition and properties.

Output: Numerical experiments

Simulation and empirical studies.

Sonclusion and future work

Tail dependence, measures of concordance and MCMC methods.

Maximum likelihood allocation: set up

- Let U_d(K) be the set of all d-dim. r.v.s X such that

 (1) X and (X', S) admit p.d.f.s, and
 (2) x → f_X(x)1_{x∈K_d(K)} has a unique maximum.
- For $X \in U_d(K)$, $X' \mid \{S = K\}$ admits a density $f_{X' \mid \{S = K\}}$ having a unique maximum at its mode.
- We focus on the unique global maximizer of $f_{\mathbf{X}'|\{S=K\}}$ although $\mathcal{U}_d(K)$ contains multimodal random vectors in the sense that the level set $L_t(\mathbf{X}' \mid \{S=K\})$ is not connected for some t > 0 and the density $f_{\mathbf{X}'|\{S=K\}}$ has multiple local maximizers (we call them the local modes of $\mathbf{X}' \mid \{S=K\}$).

Definitions
Preliminaries

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Maximum likelihood allocation: definition

Definition 3.1 (Maximum likelihood allocation)

For K > 0 and $\mathbf{X} \in \mathcal{U}_d(K)$, the maximum likelihood allocation (MLA) on a set $\mathcal{K} \subseteq \mathcal{K}_d(K)$ is defined by

$$\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}] = \operatorname{argmax}\{f_{\boldsymbol{X}}(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{K}\},\$$

provided the function $x \mapsto f_{\mathbf{X}}(x) \mathbf{1}_{\{x \in \mathcal{K}\}}$ has a unique maximum. When $\mathcal{K} = \mathcal{K}_d(K)$, we call it the maximum likelihood allocation.

<u>Note</u>: MLA of K on \mathcal{K} can be equivalently formulated as

$$\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}] = \operatorname{argmax} \{ f_{\boldsymbol{X'}|\{\boldsymbol{S}=\boldsymbol{K}\}}(\boldsymbol{x'}) : (\boldsymbol{x'}, K - \boldsymbol{1}_{d'}^{\top}\boldsymbol{x'}) \in \mathcal{K} \},$$

in terms of $\mathbf{X}' \mid \{S = K\}.$

Properties of MLA

Properties of MLA: 1/2

The following properties (1)-(4) are studied in Maume-Deschamps et al. (2016) for risk allocations derived from optimizations.

Proposition 3.2 (Properties of MLA: 1/2)

Suppose K > 0 and $X \in \mathcal{U}_d(K)$.

(1) Translation invariance: For $\boldsymbol{c} \in \mathbb{R}^d$,

 $\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X} + \boldsymbol{c}; \ \mathcal{K}_{d}(K + \boldsymbol{1}_{d}^{\top}\boldsymbol{c})] = \boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X}; \mathcal{K}_{d}(K)] + \boldsymbol{c}.$

(2) Positive homogeneity: For c > 0,

$$\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{c}\boldsymbol{X};\boldsymbol{\mathcal{K}}_{d}(\boldsymbol{c}\boldsymbol{K})] = \boldsymbol{c}\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\boldsymbol{\mathcal{K}}_{d}(\boldsymbol{K})].$$

Preliminaries

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Properties of MLA

Properties of MLA: 2/2

Proposition 3.3 (Properties of MLA: 2/2)

(3) Symmetry: For $(i, j) \in \{1, ..., d\}$, $i \neq j$, let \tilde{X} be a *d*-dim random vector such that $\tilde{X}_j = X_i$, $\tilde{X}_i = X_j$ and $\tilde{X}_k = X_k$, $k \in \{1, ..., d\} \setminus \{i, j\}$. If $X \stackrel{d}{=} \tilde{X}$, then

$$\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}_{d}(K)]_{\boldsymbol{i}} = \boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}_{d}(K)]_{\boldsymbol{j}}.$$

(4) Continuity: Suppose X_n , $X \in U_d(K)$ have densities f_n and f for n = 1, 2, ..., respectively. If f_n is uniformly continuous and bounded for n = 1, 2, ..., and $X_n \to X$ weakly, then

$$\lim_{n\to\infty} \boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X}_n; \mathcal{K}_d(K)] = \boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X}; \mathcal{K}_d(K)].$$

Preliminaries Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Properties of MLA

Properties of MLA: degenerate case: 1/2

Consider the case

$$X_j = \begin{cases} c_j \in \mathbb{R}, & j \in I \subseteq \{1, \dots, d\}, \\ \mathbf{X}_{-I} := (X_j, j \in \{1, \dots, d\} \backslash I), & \text{admitting a density } f_{\mathbf{X}_{-I}}. \end{cases}$$

• Since, for
$$oldsymbol{c} = (c_j; j \in I) \in \mathbb{R}^{|I|}$$
,

$$(\boldsymbol{X}_{I}, \boldsymbol{X}_{-I}) \mid \{S = K\} \stackrel{\mathrm{d}}{=} (\boldsymbol{c}, \ \boldsymbol{X}_{-I} \mid \{\boldsymbol{1}_{|-I|}^{\top} \boldsymbol{X}_{-I} = K - \boldsymbol{1}_{|I|}^{\top} \boldsymbol{c}\}),$$

any realization \boldsymbol{x} of $\boldsymbol{X} \mid \{S = K\}$ satisfies $\boldsymbol{x}_{I} = \boldsymbol{c}$ and its likelihood is quantified through $f_{\boldsymbol{X}_{-I} \mid \{\mathbf{1}_{|-I|}^{\top} \boldsymbol{X}_{-I} = K - \mathbf{1}_{|I|}^{\top} \boldsymbol{c}\}}(\boldsymbol{x}_{-I})$.

 $\bullet\,$ Thus, we naturally extend the definition of MLA to such a random vector ${\boldsymbol X}$ by

 $\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}_{d}(K)]_{I} = \boldsymbol{c}, \quad \boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}_{d}(K)]_{-I} = \boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X}_{-I};\mathcal{K}_{|-I|}(K-\boldsymbol{1}_{|I|}^{\top}\boldsymbol{c})].$

Properties of MLA

Properties of MLA: degenerate case: 2/2

Following the extended definition of MLA, the following properties hold.

• Riskless asset:

Sure loss $X_j = c_j$ for $c_j \in \mathbb{R}$ is covered by the amount of allocated capital c_j .

• Allocation under comonotonicity:

Suppose X is a comonotone random vector with continuous margins F_1, \ldots, F_d . Then

$$\boldsymbol{K}_{\mathrm{M}}(\boldsymbol{X};\mathcal{K}_{d}(K)) = (F_{1}^{-1}(u^{*}),\ldots,F_{d}^{-1}(u^{*}))$$

where $u^* \in [0,1]$ is the unique solution to $\sum_{j=1}^d F_j^{-1}(u) = K$.

Conclusion 00

Properties of MLA

Suitability of MLA as an allocation

We compare MLA with Euler allocation $\mathbb{E}[\mathbf{X} \mid \{S = K\}]$.

- (+) Both of Euler and MLA possess properties naturally required as a risk allocation (TI, PH, RA).
- (+) Euler and MLA coincide when X is elliptically distributed.
- (+) Searching for the modes of $X' \mid \{S = K\}$ is beneficial to evaluate the soundness of risk allocations and design more flexible allocations.
- (\pm) MLA is robust to severe but little plausible scenarios.
- (-) Estimating modes becomes more difficult than estimating a mean as d gets larger.

Preliminaries

Density and support.

2 Properties of $X \mid \{S = K\}$

Elliptical case, dependence, tail behavior and modality.

Maximum likelihood allocation

Definition and properties.

Output: Numerical experiments

Simulation and empirical studies.

Sonclusion and future work

Tail dependence, measures of concordance and MCMC methods.

Heuristic for simulating $X \mid \{S = K\}$

Monte Carlo (MC) simulation

- The distribution of $X \mid \{S = K\}$ is often intractable.
- Instead, simulate X and extract samples falling in $\{S = K\}$.
- However, $\mathbb{P}(S = K) = 0$ when S admits a density. Thus replace $\{S = K\}$ with $\{K-\delta < S < K+\delta\}$ for a small $\delta > 0$.
- The extracted samples are then standardized via $KX_j / \sum_{j=1}^d X_j$ so that they sum up to K.
- If data from X is available, then we regard the extracted and standardized samples as pseudo samples from X | {S = K}

Preliminaries 00000000	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion
Empirical study				

Empirical study: setting

- **Data**: We consider two portfolios (a) $X_t^{\text{pos}} = (X_{t,1}, X_{t,2}, X_{t,3})$ and (b) $X_t^{\text{neg}} = (X_{t,1}, -X_{t,2}, X_{t,3})$ for daily log-returns of FTSE $X_{t,1}$, S&P 500 $X_{t,2}$ and Dow Jones Index (DJI) $X_{t,3}$ from January 2, 1990 to March 25, 2004 (T = 3712 log-returns).
- **Goal**: Allocate the capital K = 1 based on the conditional loss distribution at time T + 1 given \mathcal{F}_T .
- **Model**: GARCH(1,1) model with empirical copula \hat{C} and skew-*t* innovations.
- <u>Estimation</u>: Based on the pseudo samples (sample size: (a) 354 and (b) 558), estimate Euler and MLA. The function kms of the R package ks was used to estimate the modes.

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Expe
			000000000000000000000000000000000000000

Empirical study

Empirical study: plots

Figure: 4.1 Scatter plots (black dots) of the first two components of the pseudo samples from $X \mid \{S = K\}$, where $\delta = 0.3$ and K = 1.

Empirical study: table

Table: 4.2 Bootstrap estimates and estimated standard errors of the Euler allocation and MLA. The subsample size is N = 3712 and the bootstrap sample size is B = 100.

	V.	Estimator	V.	Sta V.	andard ei Xa	rror Va
	Λ_1	<i>M</i> 2	<u> </u>	Λ_1	<i>M</i> 2	<u> </u>
$\mathbb{E}[\boldsymbol{X}^{pos} \mid \{S = K\}]$	0.378	0.338	0.285	0.019	0.022	0.038
$oldsymbol{K}_{\mathrm{M}}[oldsymbol{X}^{pos};\mathcal{K}_d(K)]$	0.367	0.365	0.268	0.019	0.024	0.041
$\mathbb{E}[\boldsymbol{X}^{neg} \mid \{S = K\}]$	0.345	-0.248	0.903	0.037	0.039	0.015
$oldsymbol{K}_{\mathrm{M}}[oldsymbol{X}^{neg}; \mathcal{K}_d(K)]$	0.371	-0.280	0.909	0.040	0.039	0.013

Conclusion

Simulation study

Simulation study: model description

We consider four models, referred to as (M1), (M2), (M3) and (M4), resp, with d = 3 and having the same margins X₁ ~ Par(2.5, 5), X₂ ~ Par(2.75, 5) and X₃ ~ Par(3, 5) but different t copulas with d.o.f. ν = 5 and dispersion matrices

$$P_{1} = \begin{pmatrix} 1 & 0.8 & 0.5 \\ 0.8 & 1 & 0.8 \\ 0.5 & 0.8 & 1 \end{pmatrix}, P_{2} = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{pmatrix},$$
$$P_{3} = \begin{pmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 0 \\ 0.5 & 0 & 1 \end{pmatrix}, P_{4} = \begin{pmatrix} 1 & -0.5 & 0.5 \\ -0.5 & 1 & -0.5 \\ 0.5 & -0.5 & 1 \end{pmatrix}$$

• K = 40 and $\delta = 1$.

Preliminaries

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

Simulation study

Simulation study: plots

Pre	lim	ina	ries
000	oc	00	00

istributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

Simulation study

Simulation study: tables: 1/2

	Estimator			Sta	indard ei	rror
	X_1	X_2	X_3	X_1	X_2	X_3
(M1) Pareto $+ t$ copula: strong positive dependence						
$\mathbb{E}[\boldsymbol{X} \mid \{S = K\}]$	15.549	13.889	10.562	0.336	0.157	0.288
$\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}_{d}(K)]$	15.849	14.434	9.718	0.482	0.213	0.356
(M2) Pareto $+ t$ copula: positive dependence						
$\mathbb{E}[\boldsymbol{X} \mid \{S = K\}]$	16.228	13.042	10.562	0.399	0.355	0.288
$\boldsymbol{K}_{\mathrm{M}}[\boldsymbol{X};\mathcal{K}_{d}(K)]$	17.689	12.481	9.830	0.759	0.663	0.475

Pre	lim	ina	ries
000	oc	00	oc

Maximum Likelihood Allocations

Numerical Experiments

Conclusion 00

Simulation study

Simulation study: tables: 2/2

	Estimator			Sta	Standard error		
	X_1	X_2	X_3	X_1	X_2	X_3	
(M3) Pareto $+ t$ copula: independence							
$\mathbb{E}[\boldsymbol{X} \mid \{S = K\}]$	17.479	11.368	10.562	0.517	0.530	0.288	
$\boldsymbol{K}_{\mathrm{M},1}[\boldsymbol{X};\mathcal{K}_d(K)]$	25.678	3.107	11.215	1.185	0.278	1.205	
$\boldsymbol{K}_{\mathrm{M},2}[\boldsymbol{X};\mathcal{K}_d(K)]$	2.639	35.275	2.086	0.973	1.306	0.424	
(M4) Pareto $+ t$ copula: negative dependence							
$\mathbb{E}[\mathbf{V} \mid (\mathbf{S} - \mathbf{K})]$	10.062	0 272	10 560	0 556	0.614	0 200	

$\mathbb{E}[\boldsymbol{X} \mid \{S = K\}]$	19.062	9.272	10.562	0.556	0.614	0.288
$oldsymbol{K}_{\mathrm{M},1}[oldsymbol{X};\mathcal{K}_d(K)]$	28.353	0.684	10.962	2.125	1.646	2.154
$\boldsymbol{K}_{\mathrm{M},2}[\boldsymbol{X};\mathcal{K}_d(K)]$	0.710	38.385	0.905	1.719	3.537	2.705

MCMC analysis

Exact Simulation of $X' \mid \{S = K\}$ with MCMC

By repeating (1)–(2) a Markov chain is constructed such that each of X'_1, X'_2, \ldots has a density $f_{X'|\{S=K\}}$.

- (1) From the current state X'_n , simulate a candidate Y'_n from the proposal density $q(\mathbf{X}'_{n}, \cdot)$.
- (2) Accept the candidate, i.e., $X'_{n+1} = Y'_n$, with the acceptance probability $\alpha(\mathbf{X}'_n, \mathbf{Y}'_n)$:

$$\alpha(\boldsymbol{x}',\boldsymbol{y}') = 1 \wedge \frac{q(\boldsymbol{x}',\boldsymbol{y}')f_{\boldsymbol{X}}(\boldsymbol{y}',K-\mathbf{1}_{d'}^{\top}\boldsymbol{y}')}{q(\boldsymbol{y}',\boldsymbol{x}')f_{\boldsymbol{X}}(\boldsymbol{x}',K-\mathbf{1}_{d'}^{\top}\boldsymbol{x}')},$$

and otherwise reject, i.e., $X'_{n+1} = X'_n$.

Performance of MCMC methods

An appropriate choice of q is important depending on distributional properties of $X' \mid \{S = K\}.$

- Support: a candidate outside of $\operatorname{supp}(X' \mid \{S = K\})$ is immediately rejected.
- Tail-heaviness: most standard MCMC methods such as random walk MH, independent MH, Gibbs samplers and the Hamiltonian Monte Carlo method cannot guarantee the theoretical convergence when $X' \mid \{S = K\}$ is heavy-tailed.
- Multimodality: the chain needs to traverse from one mode to another to explore the entire support of $X' \mid \{S = K\}$.

Core-compatible allocations

We compute the Euler allocation and MLA on the (atomic) core:

$$\mathcal{K}_d^{\mathsf{C}}(K;r) = \{ \boldsymbol{x} \in \mathbb{R}^d : \mathbf{1}_d^{\top} \boldsymbol{x} = K, \ \boldsymbol{\lambda}^{\top} \boldsymbol{x} \le r(\boldsymbol{\lambda}), \ \boldsymbol{\lambda} \in \{0,1\}^d \}.$$

- $\lambda = (\lambda_1, \dots, \lambda_d)$ is a participation profile where $\lambda_j = 1/0$ represents the presence/absence of the *j*th entity.
- $r: \{0,1\}^d \to \mathbb{R}$ is called a participation profile function typically determined as $r(\boldsymbol{\lambda}) = \varrho(\boldsymbol{\lambda}^\top \boldsymbol{X})$.
- We call an element of $\mathcal{K}_d^{\mathsf{C}}(K;r)$ a core allocation.
- Interpretation: under the core allocation $\boldsymbol{x} \in \mathcal{K}_d^{\mathsf{C}}(K;r)$, any subportfolio $(\lambda_1 X_1, \ldots, \lambda_d X_d)$ gains benefit of capital reduction from the stand-alone capital $r(\boldsymbol{\lambda})$ to $\boldsymbol{\lambda}^{\top} \boldsymbol{x}$.

MCMC analysis

Core-compatible MLA: setting

- <u>Goal</u>: Calculate the core-compatible versions of Euler allocation $\mathbb{E}[\mathbf{X} \mid {\mathbf{X} \in \mathcal{K}_d^{\mathsf{C}}(K;r)}]$, MLA $\mathbf{K}_{\mathrm{M}}[\mathbf{X}; \mathcal{K}_d^{\mathsf{C}}(K;r)]$ and local modes of $f_{\mathbf{X} \mid {\mathbf{X} \in \mathcal{K}_d^{\mathsf{C}}(K;r)}}$ (if they exist).
- <u>Method</u>: We utilize an MCMC method, especially the Hamiltonian Monte Carlo (HMC) method with reflection to directly simulate $f_{\mathbf{X}'|\{\mathbf{X}\in\mathcal{K}_d^{\mathcal{C}}(K;r)\}}$, because

$$\begin{split} \sup \{ \boldsymbol{X}' \mid \{ \boldsymbol{X} \in \mathcal{K}_d^{\mathsf{C}}(K; r) \} \} \\ &= \bigcap_{\boldsymbol{\lambda} \in \{0, 1\}^d} \{ \boldsymbol{x}' \in \mathbb{R}^{d'} : \boldsymbol{\lambda}^{\top}(\boldsymbol{x}', K - \boldsymbol{1}_{d'}^{\top} \boldsymbol{x}') \leq r(\boldsymbol{\lambda}) \}. \end{split}$$

• In HMC, a candidate is proposed according to the Hamiltonian dynamics, and the chain reflects at the boundaries.

MCMC analysis

Core-compatible MLA: model description

- Let $X \sim t_{\nu}(\mathbf{0}_d, P)$ with d = 3, $\nu = 5$ and $P = (\rho_{ij})$ being a correlation matrix with $\rho_{12} = \rho_{23} = 1/3$ and $\rho_{13} = 2/3$.
- For p = 0.99, we set $r(\boldsymbol{\lambda}) = \operatorname{VaR}_p(\boldsymbol{\lambda}^\top \boldsymbol{X})$ for $\boldsymbol{\lambda} \in \{0, 1\}^3$ and $K = r(\mathbf{1}_3)$.
- For $\delta = 0.001$, we first generate $N_{MC} = 10^6$ samples from \boldsymbol{X} and estimate K and $(r(\boldsymbol{\lambda}), \boldsymbol{\lambda} \in \{0, 1\}^3)$.
- Samples of $X \mid \{X \in \mathcal{K}_d^{\mathsf{C}}(K; r)\}$ are extracted as pseudo MC samples.
- We conduct an MCMC simulation to generate $N_{\text{MCMC}} = 10^4$ samples directly from $\boldsymbol{X} \mid \{\boldsymbol{X} \in \mathcal{K}_d^{\mathsf{C}}(K;r)\}.$
- Hyperparameters of the HMC method are estimated based on the 189 MC samples.

Preliminaries

Distributional Properties

Maximum Likelihood Allocations

Numerical Experiments

Conclusion

MCMC analysis

Core-compatible MLA: plots

Figure: 4.3 (a) The first two components of the MC samples (black) from X and the extracted samples (blue) falling in $\mathcal{K}_d^{\mathsf{C}}(K;r)$. (b) The first 3000 MCMC samples of $X' \mid \{X \in \mathcal{K}_d^{\mathsf{C}}(K;r)\}$.

MCMC analysis

Core-compatible MLA: table

Table: 4.4 MC and MCMC estimates and standard errors of the Euler and maximum likelihood allocations on $\mathcal{K}_d(K)$ and those on $\mathcal{K}_d^{\mathsf{C}}(K;r)$.

	Estimator			St	ror	
	X_1	X_2	X_3	X_1	X_2	X_3
$\hat{\mathbb{E}}^{\mathrm{MC}}[\boldsymbol{X} \mid \{\boldsymbol{X} \in \mathcal{K}_d(K)\}]$	2.865	2.310	2.846	0.026	0.034	0.026
$\hat{\boldsymbol{K}}_{\mathrm{M}}^{\mathrm{MC}}[\boldsymbol{X};\mathcal{K}_{d}(K)]$	2.861	2.366	2.793	-	-	-
$\hat{\mathbb{E}}^{\mathrm{MC}}[\boldsymbol{X} \mid \{\boldsymbol{X} \in \mathcal{K}^{C}_{d}(K; r)\}]$	2.852	2.267	2.903	0.016	0.019	0.016
$\hat{\boldsymbol{K}}_{\mathrm{M}}^{\mathrm{MC}}[\boldsymbol{X}; \mathcal{K}_{d}^{C}(K; r)]$	2.838	2.262	2.920	-	-	-
$\hat{\mathbb{E}}^{\mathrm{MCMC}}[\boldsymbol{X} \mid \{\boldsymbol{X} \in \mathcal{K}_d^{C}(K; r)\}]$	2.876	2.269	2.877	0.002	0.003	0.002
$\hat{\boldsymbol{K}}_{\mathrm{M}}^{\mathrm{MCMC}}[\boldsymbol{X}; \mathcal{K}_{d}^{C}(K; r)]$	2.866	2.283	2.871	-	-	-

Preliminaries

Density and support.

2 Properties of $X \mid \{S = K\}$

Elliptical case, dependence, tail behavior and modality.

Maximum likelihood allocation

Definition and properties.

Output: Numerical experiments

Simulation and empirical studies.

Sonclusion and future work

Tail dependence, measures of concordance and MCMC methods.

Preliminaries	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion ●○
Conclusion				

Conclusion

- Studying $X' | \{S = K\}$, especially its modality is motivated from scenario analysis and assessing soundness of risk allocations.
- Dependence, tail behavior and modality of $X' \mid \{S = K\}$ are inherited from those of X.
- Dependence of \boldsymbol{X} is important for modality of $\boldsymbol{X}' \mid \{S = K\}$.
- The mode of $X' | \{S = K\}$ (MLA) can be used as a risk allocation method.
- Searching for modes of $X' | \{S = K\}$ is beneficial to designing more flexible allocations.

Preliminaries 00000000	Distributional Properties	Maximum Likelihood Allocations	Numerical Experiments	Conclusion ○●
Future work				

Future work

- Further theoretical investigation of the relationship between negative dependence of X and multimodality of X | {S = K}.
- Study the copulas, tail dependence and measures of concordance of X | {S = K} especially without assuming the existence of a density.
- More detailed analysis of efficient simulation approaches of $X \mid \{S = K\}$ with MCMC and possibly other methods.

Thank you for your attention!

References: see Koike and Hofert (2020+). Available at: https://arxiv.org/abs/2005.02950

Website: https://uwaterloo.ca/scholar/tkoike/home

(The paper and this slide are also available here.)