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Motivation of the study

MOCs and related questions

Pearson’s linear correlation coefficient ρ does not possess
desirable properties for measuring dependence (Embrechts et
al., 2002).

Alternatively, measures of concordance (MOCs) are widely used
to quantify dependence in terms of a single number.

Examples: Spearman’s rho ρS, Blomqvist’s beta β and
Kendall’s tau τ .

(Q1) Why are they popular?

(Q2) How to compare MOCs? Which one is best to use?
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Motivation of the study

Why are ρS, β and τ popular?

(A1) They often admit explicit forms for elliptical and Archimedean
copulas.

Ex: β(CGa
ρ ) = τ(CGa

ρ ) = 2
π arcsin(ρ) for ρ ∈ [−1, 1].

(A2) Because of (A1), they can be used to estimate parameters of
these copulas by method-of-moment-like estimators.

Ex: Estimate τ by τ̂ from data, and find ρ ∈ [−1, 1] such that
τ̂ = 2

π arcsin(ρ).

However, benefit of these features is limited in practice since these
copulas may not always be realistic.

Takaaki Koike Comparison of MOCs July 11, 2020 3 / 39



Preliminaries Comparison of asymptotic variances Comparison with Kendall’s tau Simulation study

Motivation of the study

Interpretability as transformed correlation: 1/2

ρS, β and τ admit the forms:

ρS(C) = 12E[UV ]− 3 = ρ(U, V ),

β(C) = 4C(1/2, 1/2)− 1 = ρ(1{U>1/2},1{V >1/2}),

τ(C) = 4

∫
(0,1)2

C(u, v) dC(u, v)− 1 = ρ(1{U>Ũ},1{V >Ṽ }),

where (U, V ) and (Ũ , Ṽ ) are independent copies from C. So they
are popular partly because...

(A3) They are easy to interpret and explain!
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Motivation of the study

Interpretability as transformed correlation: 2/2

This interpretability still holds for (g1, g2)-transformed rank
correlation coefficients

κg1,g2(C) = ρ(g1(U), g2(V )) for some g1, g2 : [0, 1]→ R.

Ex: g1 = g2 = G−1 with G being...

- Bern(1/2) ⇒ Blomqvist’s beta / median correlation coefficient

- Unif(0, 1) ⇒ Spearman’s rho

- N(0, 1) ⇒ van der Waerden’s coefficient / normal score
correlation

We answer which g1 and g2 to use in terms of ease of
estimation / asymptotic variance.
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Literature review

Literature review

Comparing MOCs in terms of

- estimation and robustness (by numerical experiments); De
Winter et al. (2016).

- influence function; Croux and Dehon (2010), Boudt et al.
(2012), Borroni and Cifarelli (2017) and Raymaekers and
Rousseeuw (2019).

- power in tests of independence; Bhuchongkul (1964), Behnen
(1971), Behnen (1972), Luigi Conti and Nikitin(1999), Rodel
and Kossler (2004) and Genest and Verret (2005).

- tractability; Schmid and Schmidt (2007).
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Outline

Outline

1 Preliminaries (cont’d)

Copulas, MOCs and transformed rank correlations.

2 Comparison of asymptotic variances

Canonical estimators, optimal shifts, theoretical results for
Fréchet copulas and optimality of Blomqvist’s beta.

3 Comparison with Kendall’s tau

Asymptotic variance for Kendall’s tau, its optimality,
standardization by sample size.

4 Simulation study

Investigation of asymptotic variances for various copulas and
MOCs.
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Copulas, MOCs and transformed rank correlations

Notation on copulas

- C2: the set of all bivariate copulas.

- C � C ′: C ′ ∈ C2 is more concordant than C ∈ C2 if
C(u, v) ≤ C ′(u, v) for all (u, v) ∈ [0, 1]2.

- Π(u, v) = uv: independence copula, M(u, v) = min(u, v):
comonotonic copula and W (u, v) = max(u+ v − 1, 0):
countermonotonic copula such that W � C �M , ∀C ∈ C2.

- For κ : C2 → R, we identify κ(C) for C ∈ C2 with κ(U, V ) for a
random vector (U, V ) ∼ C.

- C̄(u, v) = P(U > u, V > v) for (u, v) ∈ [0, 1] and (U, V ) ∼ C:
the survival function of C.
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Copulas, MOCs and transformed rank correlations

Axioms of MOCs

Definition 1.1 (Axioms for measures of concordance)

A map κ : C2 → R is called a measure of concordance if it satisfies
the followings axioms.

1 Domain: κ(C) is defined for any C ∈ C2.

2 Symmetry: κ(V, U) = κ(U, V ) for any (U, V ) ∼ C ∈ C2.

3 Monotonicity: If C � C ′ for C,C ′ ∈ C2, then κ(C) ≤ κ(C ′).

4 Range: −1 ≤ κ(C) ≤ 1 and κ(C)± 1 are attainable.

5 Independence: κ(Π) = 0 for the independence copula Π ∈ C2.

6 Change of sign: κ(U, 1− V ) = −κ(U, V ).

7 Continuity: If Cn → C pointwise for Cn, C ∈ C2, n ∈ N, then
limn→∞ κ(Cn) = κ(C).
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Copulas, MOCs and transformed rank correlations

Transformed rank correlation coefficients

Consider a class of maps on C2 written as

κg1,g2(U, V ) = ρ(g1(U), g2(V )) for g1, g2 : [0, 1]→ R.

Hofert and Koike (2019) showed that κg1,g2 is MOC only if g1

and g2 are monotone with each other (w.l.o.g., increasing).

Assuming left-continuity, g1 and g2 are quantiles g1 = G−1
1 and

g2 = G−1
2 of some cdfs G1, G2 : R→ [0, 1].

Define the set of concordance-inducing functions by

G = {G : R→ [0, 1] : nondegenerate radially symmetric cdfs

with finite second moment.}.
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Copulas, MOCs and transformed rank correlations

Properties of κ

Proposition 1.2 (Basic properties of κG−1
1 ,G−1

2
)

1 For cdfs G1 and G2, κG−1
1 ,G−1

2
is a measure of concordance i.f.f.

G1, G2 are of the same type with some G ∈ G.

2 κG−1
1 ,G−1

2
= κG−1,G−1 =: κG (call it the G-transformed rank

correlation coefficient).

3 κG is invariant under location-scale transforms of G, that is,
κGµ,σ(C) = κG(C) where Gµ,σ(x) = G

(
x−µ
σ

)
, µ ∈ R, σ > 0.

4 κG is linear, that is, κG(α1C1 +α2C2) = α1κG(C1) +α2κG(C2)
for C1, C2 ∈ C2 and α1, α2 ≥ 0 s.t. α1 + α2 = 1.

Remark: Kendall’s tau is not included in this class since it is not
linear.
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1 Preliminaries (cont’d)

Copulas, MOCs and transformed rank correlations.

2 Comparison of asymptotic variances

Canonical estimators, optimal shifts, theoretical results for
Fréchet copulas and optimality of Blomqvist’s beta.

3 Comparison with Kendall’s tau

Asymptotic variance for Kendall’s tau, its optimality,
standardization by sample size.

4 Simulation study

Investigation of asymptotic variances for various copulas and
MOCs.
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Canonical estimators

Canonical estimator of κG

Assume that EG[X] = 0 and VarG(X) = 1.

Define a canonical estimator of κG

κ̂G =
1

n

n∑
i=1

G−1(Ui)G
−1(Vi),

where (U1, V1), . . . , (Un, Vn)
iid∼ C.

Then the CLT
√
n {κ̂G − κG(C)} d−→ N(0, σ2

G(C)) holds,
where

σ2
G(C) = Var(G−1(U)G−1(V ))

and G ∈ G4 with

G4 = {G ∈ G : EG[X] = 0, VarG(X) = 1 and EG[X4] <∞}.
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Canonical estimators

Optimal asymptotic variances: 1/2

For H ⊆ G4 and D ⊆ C2, consider

σ2
G(D) = infC∈Dσ

2
G(C), σ2

G(D) = supC∈Dσ
2
G(C),

and the optimal best and worst asymptotic variances and their
attainers defined by

σ2
∗(H,D) = inf

G∈H
σ2
G(D), G∗(H,D) = arginf

G∈H
σ2
G(D),

σ2
∗(H,D) = inf

G∈H
σ2
G(D), G∗(H,D) = arginf

G∈H
σ2
G(D),

respectively.

Typically H = G4 but can be limited to continuous functions or
those with bounded supports.
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Canonical estimators

Optimal asymptotic variances: 2/2

Interpretation: G∗(H,D) and G∗(H,D) are the best choices
of G to accurately estimate κG if one believes that D is the set
of copulas which one wants to quantify and compare in terms
of their concordance.

Does there exist G ∈ G∗(H,D) ∩G∗(H,D)?

Reflection invariance: By radial symmetry of G ∈ G4,
C 7→ σ2

G(C) is reflection invariant in the sense that

σ2
G(U, V ) = σ2

G(1− U, V ) = σ2
G(U, 1− V )

= σ2
G(1− U, 1− V ).
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Optimal location shifts

Optimal location shifts of G: 1/3

κG is location-scale invariant but its canonical estimator is not.

Let G0 ∈ G4 be s.t. EG0 [X] = 0 and VarG0(X) = 1, and let
Gµ,σ(x) = G0

(
x−µ
σ

)
where µ ∈ R and σ > 0.

For known µ and σ, the canonical estimator of κGµ,σ is

κ̂Gµ,σ =
1

n

n∑
i=1

G−1
µ,σ(Ui)G

−1
µ,σ(Vi)

σ2
−
(µ
σ

)2

.

By the CLT, it has the asymptotic variance

σ2
Gµ,σ(C) = Var

(
G−1
µ,σ(U)G−1

µ,σ(V )

σ2

)
.
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Optimal location shifts

Optimal location shifts of G: 2/3

W.l.o.g, one can take σ = 1 since G−1
µ,σ(u) = G−1

µ/σ,1(u).

Consider Gµ(x) = G0(x− µ) where µ ∈ R. Then

σ2
Gµ(C) = Var(G−1

µ (U)G−1
µ (V )) = Var(X0Y0 + µ(X0 + Y0))

where X0 = G−1
0 (U), Y0 = G−1

0 (V ) and (U, V ) ∼ C.

Provided C 6= W , σ2
Gµ

(C) is minimized when

µ = µ∗ = µ∗(G0, C) = −Cov(X0Y0, X0 + Y0)

Var(X0 + Y0)
.

We call µ∗ an optimal shift of G0 ∈ G4 under C ∈ C2.
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Optimal location shifts

Optimal location shifts of G: 3/3

Proposition 2.1 (Sufficient condition for µ∗ = 0)

For C ∈ C2 and G0 ∈ G4 with mean zero and variance one,
µ∗(G0, C) = 0 holds if C is radially symmetric, that is,

(U, V )
d
= (1− U, 1− V ) for (U, V ) ∼ C.

µ∗ = 0 if C is M , W , Π, a Gaussian copula, t copula or their
mixtures.

µ∗ 6= 0 if C is a Clayton or Gumbel copula. Nevertheless, we
will see that, even in this case, σ2

Gµ∗
(C) and σ2

G0
(C) are very

close.

In the following we focus on the case µ = 0.
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Asymptotic variances for Fréchet copulas

Asymptotic variances for fundamental copulas

Proposition 2.2 (Asymptotic variances for fundamental copulas)

1 Suppose D = {Π}. Then, for any H ⊆ G4,

σ2
∗(H, {Π}) = σ2

∗(H, {Π}) = 1,

G∗(H, {Π}) = G∗(H, {Π}) = H.

2 Suppose D = {M}, {W} or {M,W}. Then, for H ⊆ G4,

σ2
∗(H,D) = σ2

∗(H,D) = infG∈HVarG(X2),

G∗(H,D) = G∗(H,D) = arginfG∈HVarG(X2).

Proof: Use σ2
G(C) = Var(XY ) = Cov(X2, Y 2) + 1− Cov(X, Y )2.
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Asymptotic variances for Fréchet copulas

Ordering MOCs for fundamental copulas

Let HN, HUnif and HBern be singletons of normal, uniform and
Bernoulli distributions with mean zero and variance one, respectively.

Proposition 2.3 (Orders of MOCs for fundamental copulas)

For DF = {Π,M,W}, it holds that

σ2
∗(HBern, {M,W}) < σ2

∗(HUnif , {M,W}) < σ2
∗(HN, {M,W}),

σ2
∗(HBern, {M,W}) < σ2

∗(HUnif , {M,W}) < σ2
∗(HN, {M,W}).

σ2
∗(HBern,DF) < σ2

∗(HUnif ,DF) < σ2
∗(HN,DF),

σ2
∗(HBern,DF) = σ2

∗(HUnif ,DF) < σ2
∗(HN,DF).

Proof: VarGN
(X2) = 2, VarGUnif

(X2) = 0.8 and VarGBern
(X2) = 0.
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Asymptotic variances for Fréchet copulas

Fréchet copulas

A bivariate Fréchet copula is defined by

CF
p = pMM + pΠΠ + pWW, p = (pM , pΠ, pW ) ∈ ∆3,

where ∆3 = {(p1, p2, p3) ∈ R3
+ : p1 + p2 + p3 = 1}.

Let CF = {CF
p : p ∈ ∆3}.

Fréchet copulas can be applied in insurance and finance, and
for approximating bivariate copulas (Yang et. al, 2006).

κG(CF
p ) can take any value in [−1, 1] for any G ∈ G;

κG(CF
p ) = pMκG(M) + pΠκG(Π) + pWκG(W )

= pM − pW ∈ [−1, 1].
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Asymptotic variances for Fréchet copulas

Asymptotic variances for Fréchet copulas

Proposition 2.4 (Asymptotic variances for Fréchet copulas)

For G ∈ G4, we have that

σ2
G(CF) = 1 + VarG(X2) and σ2

G(CF) = 1 ∧ VarG(X2)

with the maximum and minimum attained, respectively, by

Cmax =

{
M+W

2
if VarG(X2) > 0,

pM+W
2

+ (1− p)Π for any p ∈ [0, 1] if VarG(X2) = 0,

Cmin =


M,W if 0 ≤ VarG(X2) < 1,

M,W,Π if VarG(X2) = 1,

Π if 1 < VarG(X2).
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Asymptotic variances for Fréchet copulas

Optimal asymptotic variances for Fréchet copulas

Corollary 2.5 (Optimal asymptotic variances for Fréchet copulas)

For H ⊆ G4 and D = CF, it holds that

σ2
∗(H, CF) = 1 + inf

G∈H
VarG(X2),

σ2
∗(H, CF) = 1 ∧ inf

G∈H
VarG(X2),

G∗(H, CF) = arginf
G∈H

VarG(X2),

G∗(H, CF) =

{
arginfG∈HVarG(X2), if infG∈HVarG(X2) < 1,

H, if infG∈HVarG(X2) ≥ 1.

Remark: Again VarG(X2) determines the order. The upper bound
increases but the lower bound is unchanged.
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Asymptotic variances for Fréchet copulas

Proof of Prop 2.4 and Cor 2.5

For CF
p ∈ CF with p = (pM , pΠ, pW ) ∈ ∆3 and v = VarG(X2),

σ2
G(CF

p ) = (pM + pW )v + 1− (pM − pW )2 =: f(pM , pW ).

Taking (pM , pW ) = (p− r, r) where 0 ≤ r ≤ p ≤ 1,

f(p− r, r) = −4
(
r − p

2

)2

+ pv + 1 (parabolic cylinder).

⇒ optimize over 0 ≤ r ≤ p ≤ 1.

Remark: (Restrictions of CF) One can consider D = CF
k,k

(G) where

CF
k,k

(G) = {C ∈ CF : k ≤ κG(C) ≤ k}, −1 ≤ k ≤ k ≤ 1.

Then the problem reduces to optimizing f(pM , pW ) subject to
0 ≤ pM , pW , pM + pW ≤ 1 and k ≤ pM − pW ≤ k.
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Optimality of Blomqvist’s beta

Asymptotic variance for Blomqvist’s beta

Let p(C) = C(1/2, 1/2) + C̄(1/2, 1/2) for C ∈ C2. C is called
balanced if p(C) = 1/2, imbalanced if p(C) 6= 1/2, totally positively
imbalanced (TPI) if p(C) = 1 and totally negatively imbalanced
(TNI) if p(C) = 0.

Proposition 2.6 (Asymptotic variance for Blomqvist’s beta)

For any D ⊆ C2, we have that

0 ≤ σ2
∗(HBern,D) ≤ σ2

∗(HBern,D) = 1.

The upper bound is attained i.f.f. D contains a balanced copula, and
the lower bound is attained i.f.f. D contains a TPI or TNI copula.

Proof: By calculation, σ2
GBern

(C) = 4p(C)(1− p(C)).
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Optimality of Blomqvist’s beta

Optimality of Blomqvist’s beta

Corollary 2.7 (Optimality of Blomqvist’s beta)

Consider D ⊆ C2 and HBern ⊆ H for H ⊆ G4. If Π ∈ D, then

σ2
∗(H,D) = 1 and HBern ⊆ G∗(H,D).

If D includes at least one TPI or TNI copula, then

σ2
∗(H,D) = 0 and HBern ⊆ G∗(H,D).

Proof: For any G ∈ G4, 1 = σ2
G(Π) ≤ supC∈D σ

2
G(C) for σ2

∗(H,D),
and 0 ≤ infC∈D σ

2
G(C) for σ2

∗(H,D).

Remark: Blomqvist’s beta attains the optimum when D is, for e.g.,
C2, C�2 = {C ∈ C2 : C � Π} or C�2 = {C ∈ C2 : C � Π}.
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Optimality of Blomqvist’s beta

Non-uniqueness of the optimality of β

G ∈ G∗(H,D)⇔ there exists C ∈ D s.t. σ2
G(C) = 0

⇔ G−1(U)G−1(V )
a.s.
= ∃ a ∈ R and (U, V ) ∼ ∃ C ∈ D.

Proposition 2.8 (Necessary conditions on G ∈ G∗(H,D))

Let G ∈ G∗(H,D). Then C ∈ D and a ∈ R above satisfy the
followings.

(C1) If P(X = 0) > 0 for X ∼ G, then a = 0 and P(X = 0) ≥ 1/2.

(C2) If P(X = 0) = 0, then a 6= 0 and the copula C is either TPI or
TNI with 0 < a ≤ 1 if C is TPI and −1 ≤ a < 0 if C is TNI.
Moreover, the distribution function G+(x) = 2G(x)− 1, x > 0
satisfies EG+ [Z] ≥ |a|1/2, Z ∼ G+, and

G+(x) = 1−G+ (|a|/x−) , x > 0.
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Optimality of Blomqvist’s beta

Examples of G ∈ G∗(H,D)
Consider X+ ∼ G+ where

(C1) X+ =

{
0 w.p. 1/2,

U ∼ Unif(0,
√

6) w.p. 1/2,
(C2) X+ =


√

1−
√

2/2 w.p. 1/2,

1/
√

2−
√

2 w.p. 1/2,

and four shuffles of M copulas

0
0

1

1

0
0

1

1

0
0

1

1

0
0

1

1

(i) (ii) (iii) (iv)

Then (C1) + (i), (ii), (iii) and (C2) + (iv) attain σ2
G(C) = 0.
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Optimality of Blomqvist’s beta

Discussion on G ∈ G∗(H,D)

Much less is known for G ∈ G∗(H,D) compared to G∗(H,D).

Assuming that Π ∈ D and HBern ⊆ H, we have that

G ∈ G∗(H,D) ⇔ σ2
G(C) ≤ 1 for all C ∈ D

⇔ Cov(X2, Y 2) ≤ Cov(X, Y )2 (= κG(C)2).

If M or W is in D, then

VarG(X2) ≤ 1

is a sufficient condition for G ∈ G∗(H,D).
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1 Preliminaries (cont’d)

Copulas, MOCs and transformed rank correlations.

2 Comparison of asymptotic variances

Canonical estimators, optimal shifts, theoretical results for
Fréchet copulas and optimality of Blomqvist’s beta.

3 Comparison with Kendall’s tau

Asymptotic variance for Kendall’s tau, its optimality,
standardization by sample size.

4 Simulation study

Investigation of asymptotic variances for various copulas and
MOCs.
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Asymptotic variance of Kendall’s tau

Canonical estimator of τ

For (U, V ), (Ũ , Ṽ )
iid∼ C, Kendall’s tau admits

τ(C) = ρ(g(U, Ũ), g(V, Ṽ )) where g(l,m) =

{
1 if l ≤ m,
−1 if l > m.

The canonical estimator of τ(C) is defined by

τ̂ =
1

n

n∑
i=1

g(Ui, Ũi)g(Vi, Ṽi) where (Ui, Vi), (Ũi, Ṽi), i = 1, . . . , n,
iid∼ C.

By the CLT, τ̂ satisfies the asymptotic normality

√
n {τ̂ − τ(C)} d−→ N(0, σ2

τ (C)) where σ2
τ (C) = Var(g(U, Ũ)g(V, Ṽ )).
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Asymptotic variance of Kendall’s tau

Asymptotic variances of τ

Proposition 3.1 (Asymptotic variances of τ)

1 For all C ∈ C2, it holds that 0 ≤ σ2
τ (C) ≤ 1.

2 For a given C ∈ C2, σ2
τ (C) = 1 i.f.f. τ(C) = 0, which holds, for

example, when C = Π or C = (M +W )/2. More generally,
σ2
τ (C) = 1 if C satisfies (U, 1− V )

d
= (U, V ) or

(1− U, V )
d
= (U, V ) for (U, V ) ∼ C.

3 For a given C ∈ C2, σ2
τ (C) = 0 i.f.f. τ(C) = 1 or −1, i.e.,

C = M or W , resp.

Proof: σ2
τ (C) = 4pτ (C)(1− pτ (C)) where pτ (C) = 1

2
(τ(C) + 1).

Remark: Attainers of σ2
τ (C) = 0 are characterized but those of

σ2
τ (C) = 1 are not.

Takaaki Koike Comparison of MOCs July 11, 2020 30 / 39



Preliminaries Comparison of asymptotic variances Comparison with Kendall’s tau Simulation study

Optimality of Kendall’s tau

Optimality of Kendall’s tau

For D ⊆ C2, define

σ2
τ (D) = infC∈Dσ

2
τ (C) and σ2

τ (D) = supC∈Dσ
2
τ (C).

Proposition 3.2 (Optimality of τ)

1 Suppose HBern ⊆ H and Π ∈ D. Then σ2
τ (D) = σ2

∗(H,D) = 1.

2 Suppose HBern ⊆ H, and M ∈ D or W ∈ D. Then
σ2
τ (D) = σ2

∗(H,D) = 0.

Considering the drawback of β that it depends only on the local
value C(1/2, 1/2), Kendall’s tau can be a good alternative of β.

Takaaki Koike Comparison of MOCs July 11, 2020 31 / 39



Preliminaries Comparison of asymptotic variances Comparison with Kendall’s tau Simulation study

Optimality of Kendall’s tau

Characterization of the attainers of σ2
τ (CF)

Characterization of attainers of σ2
τ (D) is in general not known but is

known when D = CF.

Proposition 3.3 (Characterization of copulas attaining σ2
τ (CF))

A Fréchet copula C = CF
(pM ,pΠ,pW ) ∈ CF attains σ2

τ (CF) = 1 i.f.f.

pM = pW ∈ [0, 1/2]. Equivalently,

C = p
M +W

2
+ (1− p)Π, p ∈ [0, 1].

Proof: Solve τ(CF
(pM ,pΠ,pW )) = (pM − pW )(pM + pW + 2)/3 = 0.
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Standardization by sample size

Standardization by sample size

τ̂ requires twice more samples than κ̂G for G ∈ G4.

If only n i.i.d. samples are given, then

Var(κ̂G) =
σ2
G(C)

n
and Var(τ̂) =

σ2
τ (C)

n/2
=

2σ2
τ (C)

n
.

Thus σ2
G(C) should be compared with σ2?

τ (C) = 2σ2
τ (C).

Optimality of τ in terms of the worst asymptotic variance is
valid with this modification since

σ2?
τ (D) = 2σ2

τ (D) = 0 = σ2
∗(G4,D).

That of the best asymptotic variance becomes invalid since

σ2?
τ (D) = 2σ2

τ (D) = 2 > 1 = σ2
∗(G4,D).

Takaaki Koike Comparison of MOCs July 11, 2020 33 / 39



Preliminaries Comparison of asymptotic variances Comparison with Kendall’s tau Simulation study

1 Preliminaries (cont’d)

Copulas, MOCs and transformed rank correlations.

2 Comparison of asymptotic variances

Canonical estimators, optimal shifts, theoretical results for
Fréchet copulas and optimality of Blomqvist’s beta.

3 Comparison with Kendall’s tau

Asymptotic variance for Kendall’s tau, its optimality,
standardization by sample size.

4 Simulation study

Investigation of asymptotic variances for various copulas and
MOCs.
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Description of the study

Simulation study

1 Set

ρ = −0.99 + 1.98
k

49
, k = 0, 1, . . . , 49,

ν = 5 and θ = 2ρ/(1− ρ) (so that τ(CCl
θ ) = ρ) in C = CGa

ρ

(Gauss), Ct
ρ,ν (t) and CCl

θ (Clayton).

2 For each C, simulate (U1, V1), . . . , (Un, Vn)
iid∼ C, n = 105.

3 Estimate σ2
G(C) and σ2

τ (C) by the sample variances of
G−1(Ui)G

−1(Vi), i = 1, . . . , n, and of
g(Ui, Ui+n/2)g(Vi, Vi+n/2), i = 1, . . . , n/2, where G is a
standardized, and optimally shifted Bernoulli, uniform, normal,
t(10) and Beta(0.5, 0.5) distribution function.
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Results and discussion
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Figure: Standardized (solid) and optimally shifted (dotted) σ2
G(C) for C = CGa

ρ , Ctρ,ν and

CCl
θ . The black dotted lines are y = 1, VarG(X2) and VarG(X2) + 1.
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Results and discussion

Discussion: 1/2

Shapes of the curves: The curves of σ2
G(C) against

ρ ∈ [−1, 1] are symmetric around ρ = 0, convex when
VarG(X2) > 1 and concave when VarG(X2) < 1.

Upper and lower bounds: For all the cases of G, the upper
and lower bounds are 1 ∨ VarG(X2) and 1 ∧ VarG(X2), resp.
The upper bound 1 + VarG(X2) is not attained except for the
case where VarG(X2) = 0 (Blomqvist and Kendall)

Choices of G: Smaller VarG(X2) is more preferable. Normal
(van der Waerden) is better than t and Beta(0.5, 0.5)
outperforms uniform (Spearman).
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Results and discussion

Discussion: 2/2

Blomqvist’s beta and Kendall’s tau: The curves seem to
coincide for all choices of C. Some theoretical results are
known:

β(CGa
ρ ) = τ(CGa

ρ ) = β(Ct
ρ,ν) = τ(Ct

ρ,ν) =
2

π
arcsin(ρ),

σ2
GBern

(C) = 1− β2(C) (Schmid and Schmidt, 2007).

Strength of dependence and model of copula: The
strength of dependence affects σ2

G(C). Among the models of C
with the same strength of dependence, differences of σ2

G(C) are
small.

Effect of optimal shifts: As theoretically shown, σ2
G(C) is not

reduced by the optimal shift of G when C = CGa
ρ or Ct

ρ,ν . Even
when the copula is CCl

θ , only a small reduction was observed.
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Concluding remarks

We proposed a framework for comparing transformed rank
correlations in terms of the asymptotic variances σ2

G(C) of their
canonical estimators.

Blomqvist’s beta β was shown to be optimal.

Kendall’s tau is also optimal if not standardized by sample size.

The curve of σ2
G(C) against the strength of dependence is

typically symmetric convex or concave.

Smaller VarG(X2) is more preferable.

Normal (van der Waerden’s coefficient) is better than t. Beta
(0.5, 0.5) is more preferable than uniform (Spearman’s rho).
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Future work

Comparison of κG to Gini’s gamma and other MOCs.

Parametric classes of G (e.g., Beta(α, α)).

Optimal G and σ2
G(C) for more practical choices of D (e.g.,

Dε(C∗) = {C ∈ C2 : d(C,C∗) ≤ ε}).

Comparison of multivariate MOCs and matrices of pairwise
MOCs.

Comparison based on pseudo-samples (when the margins are
unknown and estimated non-parametrically).

Effect of optimal shifts.
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Thank you for your attention!

References: see Koike and Hofert (2020+).
Available at: https://arxiv.org/abs/2006.13975

Website: https://uwaterloo.ca/scholar/tkoike/home

(The paper and these slides are also available here.)
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Appendix I: Alternative estimators of Kendall’s tau

Consider

τ̂z =
1

n

n∑
i=1

g(Ui, Ui+1)g(Vi, Vi+1), (Ui, Vi)
iid∼ C.

The Markov chain CLT holds with the asymptotic variance

σ2z
τ (C) = Var(g(U1, U2)g(V1, V2))

+ Cov(g(U1, U2)g(V1, V2), g(U2, U3)g(V2, V3)).

σ2z
τ (C) can be directly compared to σ2

G(C) as n+1
n
→ 1.

σ2z
τ (D) = 0 = σ2

∗(G4,D) if M ∈ D or W ∈ D.

σ2z
τ (C) ≤ σ2?

τ (D) = 2 so τ̂z is not worse than τ̂ .
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Appendix II: A class of discrete G functions

Let Gm,z,p ∈ G take −zm, . . . ,−z1, 0, z1, . . . , zm ∈ R with
probs pm, . . . , p1, p0, p1, . . . , pm ∈ R+ s.t.

∑m
i=1 piz

2
i = 1/2.

Then κGm,z,p(C) and σ2
Gm,z,p

(C) admits

κGm,z,p (C) =
∑

(i,j)∈{−m,...,m}
zizjVC(Ii × Ij),

σ2
Gm,z,p

(C) =
∑

(i,j)∈{−m,...,m}
z2
i z

2
jVC(Ii × Ij)−

 ∑
(i,j)∈{−m,...,m}

zizjVC(Ii × Ij)

2

,

where z−i = −zi, p+ = p1 + · · ·+ pm,

I−i = [p+ −
i∑

j=1

pj , p+ −
i−1∑
j=1

pj ], I0 = [p+, p+ + p0],

Ii = [p+ + p0 +

i−1∑
j=1

pj , p+ + p0 +
i∑

j=1

pj ], i = 1, . . . ,m.
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Appendix III: Joint distribution of (X2, Y 2)

By radial symmetry of G,

G[2](x) = P(X2 ≤ x) = 2G(
√
x)− 1, x ≥ 0.

Suppose G is continuous. Then the copula of (X2, Y 2) is

C [2](u, v) =
∑

ϕ∈{ι,ν1,ν2,ν1◦ν2}

C̄ϕ

(
1

2
,

1

2

)
Cϕ,(1/2,1/2)

(
u+ 1

2
,
v + 1

2

)
,

where ν1(C)(u, v) = v − C(1− u, v), ν2(C)(u, v) = u− C(u, 1− v),

Cϕ,(1/2,1/2)(u, v) = P (Uϕ ≤ u, Vϕ ≤ v | Uϕ > 1/2, Vϕ > 1/2) ,

(Uϕ, Vϕ) ∼ Cϕ = ϕ(C).

Examples: M [2] = W [2] = M and Π[2] = Π.
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Appendix IV: Linearity of C 7→ σ2
G(C)

Suppose G ∈ G4 is continuous. For p ∈ [0, 1] and C,C ′ ∈ C2,

C̃ [2]
p = pC [2] + (1− p)C ′[2]

where C̃p = pC + (1− p)C ′.

This yields the following proposition.

Proposition (Linearity of σ2
G(C))

For any G ∈ G4 and k ∈ [−1, 1], the map C 7→ σ2
G(C) is linear on

CG(k) = {C ∈ C2 : κG(C) = k}, that is,

σ2
G(pC + (1− p)C ′) = pσ2

G(C) + (1− p)σ2
G(C ′)

for p ∈ [0, 1] and C,C ′ ∈ C2 s.t. κG(C) = κG(C ′) = k.

Takaaki Koike Comparison of MOCs July 11, 2020 39 / 39


	Preliminaries
	Motivation of the study
	Literature review
	Outline
	Copulas, MOCs and transformed rank correlations

	Comparison of asymptotic variances
	Canonical estimators
	Optimal location shifts
	Asymptotic variances for Fréchet copulas
	Optimality of Blomqvist's beta
	Optimality of Blomqvist's beta

	Comparison with Kendall's tau
	Asymptotic variance of Kendall's tau
	Optimality of Kendall's tau
	Standardization by sample size

	Simulation study
	Description of the study
	Results and discussion


