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Preface

The Internet of Things (IoT) is revolutionizing the world and impacting the daily
lives of billions of people. Supporting use cases for households, manufacturers,
transportation, agriculture, healthcare, and much more, IoT carries many potentials
and expectations for prospering human society. Technologically, we are at an early
stage of IoT development, aiming at connecting tens of billions of devices to make
homes, communities, factories, farms, and everywhere else smart and automated.
Tremendous efforts are necessary to advance IoT research and development.

Two cornerstones of IoT are data collection/exchange and data analysis. The
former demands connectivity solutions, while the latter requires computing solu-
tions. Due to the broad scope of IoT and the drastically different characteristics
and requirements of IoT use cases, no “one-size-fits-all” design can meet the
expectations of all use cases. Therefore, customizing connectivity or computing
solutions for specific use cases is challenging yet essential. There are many system
features and performance measures to consider in the customization, such as
connection link density, resource overhead, transmission and computation delay,
service reliability, energy efficiency, and device mobility, and making proper trade-
offs among them is critical.

Accounting for all performance metrics and making optimal trade-offs can yield
high complexity. Correspondingly, artificial intelligence (AI) solutions, such as
neural networks and reinforcement learning, can become useful. Powered by AI
methods, connectivity or computing solutions can learn from experience to handle
the complexity, assuming that sufficient data are available for training. Specifically,
AI can play various roles in IoT, including data traffic load prediction, access
control, and computation task scheduling, to name a few.

In this book, we focus on connectivity and edge computing in IoT and present
our designs for four representative IoT use cases, i.e., smart factory, rural IoT,
Internet of vehicles, and mobile virtual reality. We thoroughly review the existing
research in this field, including many works published in recent years. Then, through
innovative designs, we demonstrate the necessity and potential of customizing
solutions based on the use cases. In addition, we exploit AI methods to empower our
solutions. The four research works included in this book serve a collective objective:
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enabling on-demand data collection and/or analysis for IoT use cases, especially in
resource-limited IoT systems. We hope that this book will inspire further research
on connectivity and edge computing in the field of IoT.

Milwaukee, WI, USA Jie Gao

Waterloo, ON, Canada Mushu Li

Waterloo, ON, Canada Weihua Zhuang

July 2021
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Chapter 1
Introduction

In this chapter, we first provide an overview of the Internet of Things from the
perspectives of connected devices, use cases, deployment efforts, and technical
advancement. Then, connectivity and edge computing in IoT are introduced,
respectively, focusing on the requirements, available options, and challenges. The
role of artificial intelligence in IoT and challenges in developing AI-based solutions
are also discussed. Last, we present the scope and organization of this book.

1.1 The Era of Internet of Things

We are entering the era of the Internet of Things (IoT). Targeting to connect
billions of devices, such as wearables, appliances, and industrial actuators, and a
variety of systems, such as sensor networks, transportation management centers,
and power grids, IoT has become a major driver worldwide for innovations in
both business and technology development. The global IoT market size in 2020
is estimated to be approximately 309 billions in USD, and the forecast for 2021
and 2028 is 831 billions and 1855 billions, respectively, with an annual growth
rate of 25.4% between 2021 and 2028 [1]. Meanwhile, the number of networked
devices is expected to increase from around 20 billions in 2020 to almost 30 billions
in 2023, with almost 15 billion machine-to-machine (M2M) connections in 2023
[2]. Moreover, it is predicted that platforms connecting devices, cloud servers, and
application providers will harvest comparable revenue from emerging IoT use cases
and from traditional information technology (IT) use cases by 2023 [3].

IoT is a broad concept that covers a wide range of use cases. In manufacturing
industries, IoT solutions can improve asset management, optimize supply chains,
and enable factory automation [4]. In agriculture, IoT platforms can facilitate plant
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2 1 Introduction

status monitoring, and pest and disease control [5]. In urban management, IoT
techniques can enable smart cities by integrating smart street lighting, intelligent
traffic control, fire and pollution detection, etc., to promote safe, comfortable,
and energy-efficient living conditions [6]. In healthcare, IoT applications can
support remote in-home health monitoring for proactive and preventive diagnosis
interventions [7]. In the airline business, IoT platforms can reduce fuel costs and
service disruption and thereby improve customer experience [8]. Other promising
IoT applications include crude oil production, wildfire detection, search and rescue,
smart campus, augmented shopping, and so on [9–13].

Many countries and regions have started IoT programs or pilot projects. For
example, the IoT European Large-Scale Pilots Programme has been promoting
partnerships across Europe since 2016 and conducting various IoT projects with
a total budget of e100 millions, including ACTIVAGE (for elderly smart living),
AUTOPILOT (for automated driving), IoF2020 (for the Internet of food and farm)
[14]. In the United States, New York City published its IoT strategy in March
2021 with an objective to create an IoT ecosystem for consumer, industry, and
government use cases [15], while other cities, such as Las Vegas, are on course to
become smart cities [16]. In China, the number of licensed IoT connections has
reached 600 millions by 2018, and a major focus of future IoT development is
intelligent manufacturing [17]. In addition to the above programs or pilot projects,
many industry leaders have invested in and developed IoT platforms, examples of
which include Amazon Web Services, Microsoft Azure IoT Platform, IBM Watson
IoT Platform, and Siemens MindSphere [18].

Besides various investment from governments and industries, technology
advancement in device hardware, software, communications, cloud/edge
computing, artificial intelligence (AI), etc., have been propelling the development
and deployment of IoT. Improvement in hardware enables the production of
IoT devices with smaller sizes and lower costs [19]. Improvements in software
allow IoT devices and platforms to become more secure, reliable, and energy-
efficient [20, 21]. Advancement in communication technologies enables a massive
scale of connections required for realizing IoT as well as new communication
paradigms, such as M2M communications [22, 23]. Modern cloud and edge
computing technologies provide versatile paradigms of data processing for IoT
applications, allowing on-demand computing service provisioning through task
offloading [24]. Lastly, advances in AI techniques render intelligent and automated
connectivity and computing solutions in IoT [25].

This book focuses on the connectivity and computing aspects of IoT, with a
particular focus on use case-specific designs and AI-based solutions. The rest of
this chapter will discuss the basics of connectivity, edge computing, and the role of
AI in IoT.
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1.2 Connectivity in IoT

Connectivity is the foundation of IoT as it enables data collection from or exchange
among networked IoT devices. Different network topology, connectivity require-
ments, and connectivity options may apply in IoT, depending on the application.

Regarding network operation, IoT applications can be implemented in a dis-
tributed, a decentralized, or a centralized manner. Examples of distributed IoT
applications include distributed sensing and communication in autonomous driv-
ing [26] and plant monitoring for predictive maintenance in manufacturing [27],
which require a low response time and need to process collected data locally.
Examples of decentralized IoT applications include localization [28] and edge com-
puting [29], which leverage infrastructure and resources on network edge to serve
end users without relying on cloud servers. Additionally, many IoT applications
adopt a client-server mode and exploit centralized cloud computing platforms, such
as the enterprise platforms mentioned in Sect. 1.1. Examples of such applications
are metropolitan-area intelligent transportation system planning [30] and large-scale
supervisory control and data acquisition [31], which rely on extensive computing
and storage resources provided by data centers.

Regarding connectivity requirements, IoT applications may require high connec-
tion density, low communication delay, long communication range, high transmis-
sion rate, or combinations of those. In a smart city scenario, 30,000 connections
per square kilometer (km2) may be needed just for connecting household water,
electricity, and gas meters, which send messages with intervals between 30 min
and 24 h [32]. Such connections are delay-tolerant and usually have a short range,
e.g., 15 meters (m). In a factory automation setting, process state monitoring may
involve 10,000 devices per km2 [33]. Such connections span factory plants with
a typical size around 300 m × 300 m × 50 m, and the delay tolerance is on the
level of 50 milliseconds (ms). In internet of vehicles (IoV), a vehicle may need to
simultaneously communicate with hundreds of other vehicles [34]. The connections
for such communications can be transient, and the delay tolerance can be very strict,
e.g., 10 ms for road safety applications.

Regarding connectivity options, various wireless communication standards and
techniques are available for IoT. The three use cases of the fifth generation (5G)
cellular networks, i.e., enhanced mobile broadband (eMBB), ultra-reliable low-
latency communications (URLLC), and massive machine-type communications
(mMTC), aim at providing support for various IoT applications [35]. Meanwhile,
802.11ax, or Wi-Fi 6, has enhanced support for IoT and is suitable for smart home
applications [36]. In addition, a few low-power wide-area (LPWA) technologies
and standards, such as Long-Term Evolution for Machine-Type Communications
(LTE-M), Long Range (LoRa), Narrowband IoT (NB-IoT), support cost-effective
long-range communications and are suitable for applications such as smart logistics
and environment or wild-life monitoring [37]. In the future, IoT devices may also
be connected via satellites.
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Given the varieties of IoT applications and their connectivity requirements,
finding optimal connectivity solutions is challenging, and such challenge is aggran-
dized when considering network heterogeneity, device mobility, network resource
limitations, cost-effectiveness, and scalability. As a result, despite various potential
options as mentioned above, customized designs are necessary for providing the best
support to specific applications due to their unique characteristics and requirements.
In Chap. 2, we will customize a connectivity solution for industrial IoT and
demonstrate the potential of such customized designs for connecting IoT devices.
In Chaps. 3 and 4, we will present connectivity solutions related to computing task
offloading and result delivery in edge computing.

1.3 Edge Computing in IoT

Most IoT applications require not only data collection or exchange but also data
analysis. As a result, they demand a computing paradigm and related resources. The
data processing may happen on end user devices (such as sensors or vehicles), edge
facilities (such as local network controllers), or cloud computing servers (such as
Amazon Elastic Compute Cloud).

On-device processing is feasible for devices such as smartphones and vehicles,
which have the hardware, software, and other resources for on-board comput-
ing [38]. Meanwhile, a significant portion of IoT devices, such as sensors and
parking meters, are low-cost devices with limited processing power, storage, or
battery [39]. With no or minimum on-device processing capability, such devices
may resort to cloud computing and leverage resources in a cloud for data process-
ing [40]. The cloud computing paradigm enables a variety of IoT applications and
is especially suitable for applications running in a client-server mode. However,
cloud computing requires devices to upload the data for processing to a cloud server,
which can cause excessive traffic loads for the IoT networks when a massive number
of devices rely on cloud computing. In addition, the round-trip communication,
i.e., data uploading and computing result delivery, can cause a large delay that is
unacceptable for applications such as autonomous driving and industrial robot arm
control [41]. To reduce network traffic load and delay, edge computing has emerged
as a solution, in which computing resources are deployed outside of the cloud and
close to end users on network edge [42]. Such a computing paradigm is known as
mobile edge computing or multi-access edge computing (MEC).

With the advent of edge computing, applications that require low-delay com-
puting can leverage computing servers on the network edge [43]. This creates
new opportunities for both IoT service providers and network operators. In smart
healthcare, data collected by smartphones or wearable devices can be processed
at an edge server for health monitoring applications such as gait analysis and fall
risk assessment [44]. In smart cities, videos captured by cameras can be processed
at edge servers for surveillance and event recognition [45, 46]. In autonomous
driving, vehicles can upload data collected by cameras, radars, and other sensors
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to edge servers and enhance road safety via data analysis such as object recognition
and tracking. In addition, many applications in various domains that leverage edge
computing are emerging [47].

On the other hand, edge computing renders IoT networks more complex. New
challenges arise, which often involve the synergy of computing and connectivity.
For example, edge computing servers can be deployed at the access points (APs) of
femtocells (e.g., home networks), small cells, and macrocells, and each deployment
option has its own pros and cons [48]. In addition, the joint scheduling of
transmission and computing tasks becomes critical for supporting applications with
stringent delay requirements [49]. In highly dynamic networks such as vehicular
networks, computing service migration or collaborative computing can be necessary
for handling device mobility [50]. In Chaps. 3–5, we present edge computing
solutions in representative IoT scenarios, such as IoV, and discuss various issues
related to edge computing, such as task scheduling, content caching, collaborative
computing, and computing result delivery.

1.4 AI in IoT

The world has witnessed a rapid advancement of AI in the past decade, with
many successful real-world applications, especially in the field of natural language
processing and computer vision [51]. Such success inspires the investigation on
potential applications of AI in IoT, and many ideas have emerged for various use
cases, such as mining, healthcare, and transportation [52, 53].

Incorporating of AI in IoT is natural. First, involving a massive number of
devices, diverse applications, and spatiotemporally-variant service demands, IoT
networks are complex and dynamic. AI potentially offers a viable alternative
approach to managing IoT networks with the desired scalability and adaptability,
while satisfying diverse and often stringent application requirements. Second, the
effectiveness of AI relies on abundant data, e.g., for training neural networks, while
a massive number of IoT devices can generate or provide a massive amount of data
to fuel AI. Last, AI methods are suitable for data analysis in many IoT applications,
such as health monitoring and fault pattern identification in smart grids [54].

AI can play a multifarious role in IoT, in terms of both the connectivity and the
edge computing. Specifically, AI can be used for network traffic load prediction
to facilitate IoT network planning [55]. AI can also be adopted in medium access
control (MAC) to enhance IoT network throughput or fairness [56]. In addition,
AI can be applied to handle computing task scheduling [57], offloading [58],
and migration [59] for effective edge computing with minimum computing delay,
balanced computing load distribution, or adaptivity to network dynamics.

Despite a tremendous potential of AI in empowering various IoT applications,
many challenges exist in AI-based solutions for IoT. Specifically, choosing appro-
priate AI methods for considered IoT applications, while taking practicality into
account, is essential yet challenging. Moreover, AI functionality deployment, com-
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munication overhead, data processing delay, and scalability of AI-based solutions,
among other possible issues, all need to be accounted for. In Chaps. 2, 4, and 5,
we develop AI-based connectivity and edge computing solutions in representative
IoT scenarios, including learning assisted scheduling, collaborative computing, and
content distribution. These solutions demonstrate the potentials and advantages of
incorporating AI into various IoT applications.

1.5 Scope and Organization of This Book

In this book, we focus on the connectivity and edge computing aspects of IoT. We
develop customized designs and AI-based solutions for connectivity and/or edge
computing in representative IoT use cases, including smart factory, rural IoT, IoV,
and mobile virtual reality (VR).

In Chap. 2, we investigate MAC for an industrial IoT network. Considering a
local area network with high device density, short packets, and stringent delay and
reliability requirements, we tailor a MAC protocol for smart factory applications
and design a neural network to assist the scheduling of transmission opportunities
for industrial IoT devices.

In Chap. 3, we investigate unmanned aerial vehicle (UAV) assisted edge com-
puting for rural IoT applications such as in smart agriculture or forest monitoring.
Using a UAV to provide connectivity and computing service to IoT devices, we
develop a solution to jointly optimize the connectivity, through determining the UAV
trajectory and device transmit power, and the edge computing, through properly
allocating computing load between the UAV and the devices.

In Chap. 4, we investigate edge computing for delay-sensitive applications
in IoV to improve the safety or driving experience of drivers. To address the
challenge of high vehicle mobility, we adopt collaborative edge computing to reduce
computing delay and improve computing service reliability for vehicles and develop
a deep reinforcement learning assisted approach to find the optimal computing task
offloading and computing result delivery policy.

In Chap. 5, we investigate edge-assisted content caching and distribution for
mobile VR video streaming, which requires edge computing to render some VR
videos. To improve the viewer’s quality of experience (QoE), we design a scheme to
cache video content and reduce frame missing in VR video streaming, and develop
a deep reinforcement learning based scheme for scheduling VR content delivery to
viewers.

In Chap. 6, we conclude this book and briefly discuss further research directions
in connectivity and edge computing in IoT.
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Chapter 2
Industrial Internet of Things: Smart
Factory

In this chapter, we investigate the smart factory use case in the scenario of
industrial IoT, focusing on the connectivity aspect. First, through reviewing the
connectivity requirements and related standards, we illustrate the insufficiency of
existing techniques in meeting the expectations of smart factories and the necessity
of tailoring connectivity solutions. Then, we design a novel medium access control
protocol, which features grant-free distributed channel access, to support high
device density and low communication latency with low communication overhead.
We further propose a deep neural network-assisted centralized approach to configure
the protocol parameters and schedule transmission opportunities for all devices.
Combining the customized protocol and the AI-assisted scheduling, our design
demonstrates promising potentials for smart factories by simultaneously enabling
massive connections and millisecond-level delay for high priority devices.

2.1 Industrial IoT Networks

Industrial Internet of Things (IIoT) utilizes connected devices, including sensors,
actuators, and controllers to automate data collection and analysis for increasing
productivity, reducing energy consumption, and improving safety and reliability in
various industries, such as manufacturing, construction, warehouses, and oil rigs
and refineries [1, 2]. As one of the most promising technology domains, IIoT is
envisioned to reshape industries around the world, e.g., creating “factories of the
future”. As a result, IIoT related research and development are attracting widespread
attention, and the global IIoT market is expected to reach 263.4 billions in US
dollars by 2027 [3].
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Industrial communication networks will play a crucial role in the upcoming
IIoT [4]. As in the general IoT, machine-type communication (MTC) is a primary
enabler of IIoT networks. Features of MTC that are recognized by the 3rd
Generation Partnership Project (3GPP) include the following [5]:

• Small packet transmission: MTC devices usually transmit and receive small
amounts of data, e.g., 1 kilobyte (KB) data size;

• Time controlled access: MTC devices may tolerate communicating in predefined
time intervals to avoid signaling overhead;

• Low mobility: MTC devices either remain at the same location or move
infrequently within a limited area;

• Monitoring: the network should be able to detect events such as the loss of
connectivity, change of location, and communication failure;

• Group-based features: the network should support the grouping of MTC devices
and the association of devices to groups.

Besides the above features mentioned by 3GPP, additional features of MTC have
been identified in the literature [6]:

• Uplink-dominated transmissions: The uplink traffic can be caused by a vast
number of sensors sending data to an AP;

• Low data rate: Typical data rate for MTC ranges from 100 kilobits per second
(kbps) to 10 megabits per second (mbps);

• Sporadic transmissions: Packet inter-arrival time at each device may range from
several milliseconds to several minutes [7];

• Low-complexity devices: MTC devices are usually cost-constrained and may not
support complex on-board processing.

Compared with the general IoT, IIoT has some unique characteristics. First,
connectivity in IIoT is usually structured, featuring centralized network manage-
ment [8]. Second, IIoT scenarios generally involve densely deployed devices in
a relatively limited area. For example, process monitoring in IIoT may involve
10, 000 devices per km2 [9]. Third, certain IIoT applications are mission-critical
and have extremely stringent quality of service (QoS) requirements. For example,
the communication latency tolerance for machine tool motion control can be
less than 0.5 ms [10]. The combination of the above characteristics poses a
significant challenge for supporting MTC in IIoT. Specifically, within a limited
geographical area, such as a factory, a communication network may need to support
a massive number of devices and, simultaneously, satisfy exceptionally strict QoS
requirements for some devices.

Existing standards, including LTE-M, NB-IoT, IEEE 802.11ah, and 5G new
radio (NR), are not sufficient for supporting MTC in IIoT networks. For example,
LTE-M and NB-IoT, both targeting low-power wide-area communications, are more
concerned with radio spectrum usage and power consumption than communication
delay. As for 5G NR, the delay threshold to support 106 connections per km2 is set to
10 s in the link-level simulations conducted by 3GPP, while a low packet arrival rate,
i.e., 1 packet per 2 h per device, is used [11]. More details on these standards will
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be given in Sect. 2.2.2. To address the challenge in simultaneously supporting high
device density and satisfying stringent QoS requirements, various solutions have
been proposed for different layers in the network protocol stack. At the physical
layer, utilizing spectrum resources beyond 30GHz or adopting nonorthogonal
multiple access (NOMA) can provide support for a high device density. However,
physical layer solutions have limitations in terms of transceiver hardware and
signal processing complexities, cost-effectiveness, and signaling overhead. At the
link layer, new MAC designs and enhancements have been proposed for cellular
networks and wireless local area networks, which we will discuss in detail in
Sect. 2.2.4.

While the existing studies provide important insights, further research on
customized MAC protocols is necessary for smart factories and, in particular, for
applications such as factory automation and process control. In the rest of this
chapter, we present the communication requirements of the smart factory use
case, review the related solutions, tailor a MAC design for smart factories, and
demonstrate the performance of our design.

2.2 Connectivity Requirements of Smart Factory

In a smart factory, various devices are connected in order to collect, share, and ana-
lyze data for improving the productivity and safety of manufacturing while reducing
costs. The smart factory use case involves many applications, most of which require
a fast and reliable communication network. In this section, we introduce application-
specific requirements, review existing standards, and summarize recent research
efforts on enabling smart factories.

2.2.1 Application-Specific Requirements

Different applications have different connectivity requirements. Table 2.1 shows
some representative applications and their requirements [10]. In the table, “cycle
time” refers to the transmission interval in periodic communication, which is usually
larger than the acceptable communication delay. In addition to the applications in
this table, more information on application-specific connectivity requirements can
be found in Annex E of 3GPP TR 22.804 [12].

Table 2.1 shows that the smart factory use case features a wide range of
applications and encompasses a variety of devices such as mobile robots, milling
machines, and automated guided vehicles. Accordingly, an IIoT network will need
to simultaneously support different applications and their performance require-
ments. For example, cooperative motion control for mobile robots has a cycle time
of 1 ms and thus a stringent communication delay tolerance, while the number of
mobile robots in a network is limited. By contrast, process automation or monitoring
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Table 2.1 Representative applications and connectivity requirements [10]

Applications Cycle time Typical area Number of devices

Motion Control
Printing machine <2 ms 100 m × 100 m × 30 m >100

Machine tool <0.5 ms 15 m × 15 m × 3 m ∼20

Packaging
machine

<1 ms 10 m × 5 m × 3 m ∼50

Mobile robots
Cooperative
motion control

1 ms <1 km2 100

Video-operated
remote control

10–100 ms <1 km2 100

Mobile control
panels with safety
functions

Assembly robots/
milling machines

4–8 ms 10 m × 10 m 4

Mobile cranes 12 ms 40 m × 60 m 2

Process automation/monitoring >50 ms 104 devices per km2

has a cycle time of 50 ms or more and thus a relatively less stringent communication
delay tolerance, while the number of devices to be connected is large. Therefore, an
industrial network must achieve the following targets:

• Connecting a large number of devices with assorted types;
• Satisfying different performance requirements, some of which can be highly

stringent, for different devices and applications.

From the above two targets, we can see that future industrial networks need to
simultaneously support URLLC and mMTC. Next, we review existing standards
and recent research efforts related to IIoT.

2.2.2 Related Standards

In recent years, new standards for supporting MTC have been emerging. Existing
standards for MTC can be categorized into two groups: cellular-based and non-
cellular-based standards. The most representative examples of the former are NB-
IoT, LTE-M, and 5G NR, while the most representative examples of the latter are
IEEE 802.11ah and proprietary standards such as LoRa. Among these protocols,
IEEE 802.11ah is a wireless local area network (WLAN) standard, and the others
are wide-area network standards.

NB-IoT debuted in 3GPP Release 13 and can support up to 106 connections
per km2 [13] or 5 × 104 connections per cell [14] with a low data rate (160 kbps
or less) using a 180 kHz channel bandwidth. Moreover, NB-IoT devices can save
device battery power by remaining in low-power mode in-between transmissions.
However, the cost for energy efficiency is a large delay. The typical delay of NB-
IoT is larger than 1 second (s) and sometimes as large as 10 s, which is unacceptable
for many IIoT applications. Compared with NB-IoT, the delay performance of LTE-
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M is better but still far from meeting the expectation of IIoT. The LTE-M uses a
much larger bandwidth, i.e., 5 MHz as opposed to 180 kHz, and supports a much
higher data rate, up to 7 Mbps. The reported connection density of LTE-M varies
in the range from 104 [14] to 8.5 × 104 connections per cell [15].1 While the delay
performance of LTE-M is better than that of NB-IoT, it is still larger than 100 ms
under low network load and can easily increase to 1 s or more under high network
load [16].

5G NR can support either massive connections or millisecond-level delay.
However, 3GPP Release 15 lists “Critical Communications (CC) and URLLC”
and “massive Internet of Things (mIoT)” as two separate service aspects [17].
Consequently, link-level simulations conducted by 3GPP demonstrate that 5G NR
can satisfy the URLLC performance requirement of 1 ms delay or the mMTC
performance requirement of 106 connections per km2, but not at the same time.
Specifically, the delay threshold for NR to support 106 connections per km2 is set
to 10 s in the above evaluation, while the packet arrival rate is 1 packet per 2 h
per device [11], which is much lower than the cycle times in Table 2.1. Note that
3GPP Release 16 improves support for IoT through enhancements in scheduling
and network reference time synchronization. Nevertheless, more improvement is
necessary for simultaneously achieving high density and low latency [18].

Using a bandwidth from 125 kHz to 500 kHz, the propriety standard LoRa
could achieve a theoretical transmission range of 10 km. However, the probability
of successful transmission at the first attempt is below 0.2 when 1000 devices are
connected [19]. Such reliability performance can be unacceptable for many smart
factory applications. Moreover, the delay of LoRa is no less than 1 s if 100 or more
devices are connected and can easily surpass 10 s with further increased connection
density [20].2 The high delay and low reliability limit the use of LoRa in the smart
factory use case.

IEEE 802.11ah can support a less than 10 ms delay but only under a low load
condition [21]. For example, 802.11ah is suitable for infrequent transmission with a
packet inter-arrival duration of no less than 30 s. When 500 devices are connected
to the AP, the delay becomes approximately 300 ms even under the relatively long
packet inter-arrival time of 180 s [22]. Recent works propose improvements of
IEEE 802.11ah, yet the improvement is mostly seen in the throughput rather than
in the delay [23, 24]. The lack of guarantee on a millisecond-level delay limits the
suitability of IEEE 802.11ah for smart factories.

In summary, the insufficiency of existing standards for supporting MTC in dense
industrial networks is clear. None of the existing standards can simultaneously
support massive connections and guarantee a millisecond-level access delay, which

1 The upper limit is calculated based on data in [15] as follows: 357,000 devices per 1.08 MHz
multiplied by 5 MHz and then divided by 21 cells.
2 In practice, connection density can be higher than device density due to dual-connectivity or
multi-connectivity. We use “connection density” and “device density” interchangeably since multi-
connectivity is not a focus of this book.
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is needed for the smart factory use case. Therefore, there is an urgent need for
developing and standardizing solutions that can meet the needs of the smart factory
use case.

2.2.3 Potential Non-Link-Layer Solutions

To address the challenge of supporting high device density and stringent QoS
requirements, various solutions have been proposed.

In cellular networks, network densification and network slicing allow networks
to support high user density and satisfy stringent QoS requirements. In addition
to supporting high connection density, network densification can reduce link access
delay [25]. However, there is a limitation on the density of APs due to the increasing
cost, and interference and the diminishing performance gain as the network densi-
fies [26]. Network slicing enables flexible service provision for coexisting services
with different QoS requirements [27]. As a result, it can potentially contribute to
simultaneously supporting mMTC and URLLC in IIoT scenarios. However, the
complexity for network slicing can be high due to the need for frequent resource
reservation and orchestration [28]. For industrial networks, especially medium or
small industrial networks, network densificatoin or network slicing may not be an
ideal solution.

Emerging physical-layer techniques, such as millimeter-wave (mmWave) com-
munication and NOMA, could also contribute to supporting the smart factory use
case. Extending the available radio spectrum to the mmWave range could help
support high connection density. However, equipping every sensor, actuator, and
other devices with hardware for mmWave communications can yield a high cost,
which may hinder the practical deployment of smart factories. Some research works
have proposed NOMA solutions for mMTC, such as compressed sensing based
multi-user detection [6], coded tandem spreading [29], and block sparsity and block
precoding [30]. Such solutions usually require either advanced signal processing,
which increases algorithm and hardware complexity, or availability of transmitter
side information at receivers, which results in signaling overhead [6, 31].

2.2.4 Link-Layer Solutions: Recent Research Efforts

Different from physical-layer solutions, link-layer solutions can be flexible as they
can be implemented through software. In addition, link-layer solutions can be cost-
effective and customized based on the application QoS requirements. As a result,
link-layer solutions have tremendous potential for supporting the smart factory use
case. Existing studies on link-layer solutions can be categorized into solutions for
cellular networks, solutions for WLANs, and hybrid solutions.



2.2 Connectivity Requirements of Smart Factory 17

For cellular networks, the bottleneck is the contention-based random access
channel (RACH) procedure for connection setup. Specifically, a network can be
congested when a massive number of devices try to establish connections around
the same time [32]. In 3GPP release 15, the design of early data transmission (EDT)
replaces a standard four-step RACH procedure with a two-step procedure [17].
In existing research works, prioritization and grouping have been a focus of
refining the RACH procedure, and different ideas have appeared. Devices can be
grouped, e.g., based on their delay requirements, to limit the collision probability.
Groups contend with each other to make access attempts, while either one [33] or
multiple groups [34] can be active at a given instant. Alternatively, devices can be
grouped and later redistributed into different groups after encountering an initial
collision [35]. Access class barring [36], extended access class barring [37], and
their derivatives [38–40], as distributed coordinate mechanisms, have also gained
popularity and attracted much attention in the literature. After the connection
setup stage, scalable transmission time intervals (TTI) [41, 42], and preemption
of scheduled low-priority transmissions [43] for high-priority devices can be
used for reducing access delay. Overall, most solutions represent refinements of
existing protocol designs, e.g., refining the RACH procedure. These solutions often
make a trade-off between different performance metrics, e.g., delay and collision
probability, while simultaneously improving performance over several metrics is
necessary for the smart factory use case. Moreover, the above solutions are grant-
based, which causes unnecessary overhead and delay, while grant-free access is
preferred [44].

For WLANs, improvements over 802.11ah are the focus of many works on
MAC design. The key mechanism in 802.11ah is the restricted access window
(RAW), which groups devices and allows channel access for different groups
in different time durations. Existing MAC solutions for LAN focus on refining
RAW. For example, one category of works optimizes the RAW window size based
on the group size [45, 46], dynamically changing the window size according to
failed transmission attempts [47], or allocating RAW slots based on group QoS
requirements [48]. Another category of works improves the grouping method for
RAW according to geographical device distribution [49], traffic volume [50], data
rate [23], or potential hidden terminal relationship among nodes [51]. Besides the
above two categories, other efforts to improve RAW include periodical RAW for
periodic traffic scheduling [52]. Compared with cellular-based solutions, WLAN-
based solutions have the advantage of grant-free access and lower overhead, while
the disadvantage is lower reliability due to inevitable collisions in data transmission.
Consequently, the connection density that can be supported by WLAN-based
solutions is generally smaller than that can be supported by cellular-based solutions,
while the collision probability and delay can be high in the case of a large number
of devices [53].

Moreover, there are hybrid solutions that combine or switch between grant-based
access in cellular and grant-free contention-based random access in WLAN. For
example, a MAC solution that splits data traffic volume between the two radio access
technologies is proposed in [54] for heterogeneous networks in which both cellular
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and WLAN APs are available. Another example is switching between time-division
multiple access (TDMA) and distributed coordination function (DCF), depending
on the data traffic load [55]. Additionally, hybrid MAC that implements carrier-
sense multiple access (CSMA) and TDMA in different stages of data transmission
exists in the literature [56]. These solutions, however, are not customized for smart
factories.

2.3 Protocol Design for Smart Factory

In this section, we introduce our protocol design for the smart factory use case in
IIoT [57]. We begin with introducing the considered network scenario and then
present the elements of our protocol design one by one.

2.3.1 Networking Scenario

Consider a fully connected network with one AP covering a limited geographical
area, e.g., a manufacturing facility.3 A large number of devices such as sensors,
actuators, and controllers are densely deployed in the area. The devices are
categorized into three types, i.e., high-priority (HP) devices, regular-priority (RP)
devices, and low-priority (LP) devices. An illustration of the considered scenario is
given in Fig. 2.1.

The overall number of devices and the set of devices are denoted by D and D,
respectively. The number and set of HP, RP, and LP devices are denoted by DH

and DH, DR and DR, and DL and DL, respectively. Without loss of generality, we
assume that the devices are indexed such that the first till the DHth devices are the
HP devices, the next DR devices are the RP devices, and the last DL devices are the
LP devices.

Communication Characteristics. The communication characteristics include:

• Short data packets—The length of physical-layer packets is normally in the range
between several bytes to several hundred bytes [58];

• Uplink-dominated transmission—A significant portion of the data traffic is
attributed to sensor readings or device status reports [6].

QoS Requirements The considered QoS metrics are delay, from the instant of
packet arrival to the instant of successful packet transmission, and packet trans-
mission collision probability. Different types of devices have different QoS require-
ments. Specifically, the maximum tolerable delay and packet collision probability
for HP, RP, and LP devices are denoted by δH and ρH, δR and ρR, and δL and ρL

3 The target area is assumed to be less than 1 km2.
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Fig. 2.1 An illustration of the networking scenario

respectively, where δH < δR < δL and ρH < ρR < ρL. The value of δH is assumed
to be small such as on the millisecond level.

Device Packet Arrivals For practicality, we do not assume a specific traffic model.
However, we consider the following data packet arrival properties:

• The packet arrival statistics at each device are constant during a relatively long
period with respect to packet inter-arrival time. The packet arrival rate of device
i in the considered time duration is denoted by λi ;

• The packet arrival rate is relatively low so that 1/λi is much larger than δH for
any i. This is in accordance with the sporadic transmission characteristic of MTC,
where the packet inter-arrival time can range from tens of milliseconds to several
minutes [7];

• For tractability, we assume that the transmission time for data packets is identical
and equal to Tx.

Given the networking scenario, we aim to develop a MAC solution with the
following features:

(1) Accommodating a large number of devices on a single channel with a single
AP;

(2) Satisfying the differentiated QoS requirements for each type of devices;
(3) Keeping control overhead as low as possible;
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(4) Exploring the role of machine learning, specifically in device transmission
scheduling.

Our MAC protocol design is based on time-slotted channel access, which suits short
packets. Tailored for the considered networking scenario, our protocol comprises the
following elements:

• Mini-slot based carrier sensing (MsCS);
• Synchronization carrier sensing (SyncCS);
• Differentiated assignment cycles;
• Superimposed mini-slot assignment (SMsA).

The first two elements target at improving channel utilization efficiency through
implicit distributed coordination, the third targets at providing differentiated QoS
for different device types, and the last targets at increasing the number of supported
devices.

2.3.2 Mini-Slot Based Carrier Sensing (MsCS)

Time is partitioned into frames, and each frame is partitioned into ns slots, as shown
in Fig. 2.2. A slot begins with nm mini-slots, each of length Tm, followed by a
duration of length Tx. Accordingly, the length of a slot, denoted by Ts, depends
on the number of mini-slots and is equal to nm × Tm + Tx.

Given the high device density and sporadic transmission pattern, each slot is
assigned to multiple devices, in order to achieve high channel utilization efficiency
via reducing idle slots. Different devices associated with a slot are assigned different
mini-slots of the slot. Different from existing designs with mini-slots, where mini-
slots are used for transmitting packets [59, 60] or jamming signals [61], the
mini-slots in our protocol are very short, e.g., less than 10 microseconds (µs) and
are used for channel sensing instead of sending reservation requests or data packets.
In the proposed protocol, the minimum time unit for transmitting a packet is a slot,
and each slot accommodates at most one successful packet transmission. Clearly,
without proper coordination, transmission collisions may happen when multiple
devices are assigned to the same slot.

The purpose of using mini-slots is to enable channel sensing for collision-free
distributed channel access. When the AP assigns a slot to a device, it also specifies
a mini-slot for the device. Suppose that device i is assigned mini-slot m of slot l.
Then, the following rules are used in the proposed protocol:

• If device i has a packet to transmit and m = 1, it starts transmitting right away
when slot l begins;

• If device i has a packet to transmit and m > 1, it needs to sense the channel
during mini-slot m − 1 of slot l and starts transmitting from mini-slot m of slot l

only if the channel is sensed idle. Otherwise, it will skip this slot and wait for the
next transmission opportunity;
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Fig. 2.2 An illustration of the frame, slot, and mini-slot structure

• If device i does not have a packet to send, it simply stays idle in the corresponding
slot.

The first two cases are illustrated in Fig. 2.3.
With MsCS, different mini-slots correspond to different transmission priorities.

Specifically, a mini-slot with a larger index corresponds to a lower transmission
priority. Therefore, mini-slots with small indexes can be used to accommodate HP
devices. Via MsCS, a device makes sure that none of the devices with higher priority
is using the channel before accessing the channel. As a result, the devices can avoid
packet collision while sharing the same slot. Note that the MsCS is fully distributed
and does not require any control message exchange, given the assignment of slots
and mini-slots to devices by the AP. The cost for avoiding collision is the overhead
of using mini-slots for sensing. Specifically, the ratio of usable packet transmission
duration over slot length is Tx/Ts.
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Fig. 2.3 An illustration of the MsCS: (a) Devices assigned to the first mini-slot of any slot starts
transmission immediately when the slot begins, without sensing the channel; (b) devices assigned
to mini-slot m(> 1) must sense the channel during the (m− 1)th mini-slot, and starts transmission
at the beginning of the mth mini-slot if the channel is sensed to be idle

For MsCS to work, the following conditions should be satisfied:

• The mini-slot length, Tm, must be longer than the maximum propagation delay
across the network coverage area;4

4 A possible choice for mini-slot length is 9µs, which follows from the DCF slot time in
IEEE 802.11ac.
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• The overall length of all mini-slots, i.e., nmTm, should be less than the packet
transmission duration Tx. This is for ensuring that each slot accommodates at
most one transmission;5

• The aggregated packet arrival rate of all devices assigned the same slot must be
less than 1 per frame.

2.3.3 Synchronization Sensing (SyncCS)

Even though MsCS improves channel utilization efficiency, as a result of multiple
devices sharing each slot, none of the devices may have a packet to transmit in a slot.
Increasing the number of mini-slots in each slot can reduce the slot idle probability.
However, it may violate the delay requirements for devices assigned high-index
mini-slots or the aforementioned condition that nmTm ≤ Tx.

Alternatively, if idle slots can be identified and avoided, the channel utilization
efficiency can be further improved, and so will the resulting QoS. To achieve this,
the following rules of SyncCS are used in the proposed protocol:

• All devices in D sense the channel in the last mini-slot, i.e., mini-slot nm, of
everyone slot. The exceptions are: (i) any device that is transmitting and (ii) the
device that is assigned mini-slot nm;6

• If the last mini-slot is idle, the rest of the current slot is skipped and the next slot
starts immediately after this last mini-slot;

• If the last mini-slot is busy, the next slot starts after the current slot ends.

The above rules are illustrated in Fig. 2.4, and the rationale is explained as follows.
Given the condition that nmTm < Tx as mentioned in Sect. 2.3.1, no device is
or will be transmitting in a slot if the last mini-slot of that slot is idle. Therefore,
upon sensing an idle last mini-slot, all devices know that the rest of the slot can be
skipped and the next slot can start after this mini-slot. The SyncCS allows devices to
synchronize slots even though the length of a slot is no longer fixed. With SyncCS,
a busy slot has the full length of nm × Tm + Tx, while an idle slot has the reduced
length of nm × Tm.

The SyncCS has two main differences from the MsCS:

• In SyncCS, devices must perform sensing regardless of whether they have a
packet to transmit or not (with exceptions as mentioned above);

• In SyncCS, all devices, not just the devices assigned to the slot, need to sense the
channel in each slot.

5 In an extreme case when a device assigned a low-index mini-slot transmits a very short packet, it
is possible that a device assigned a high-index mini-slot senses channel idle and transmits a packet
in the same slot. This extreme case is ignored in the protocol design and performance analysis.
6 The device assigned mini-slot nm knows whether the slot is idle or not from sensing the channel
during mini-slot nm − 1 as mandated by the MsCS.
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Fig. 2.4 An illustration of the syncCS: (a) when the last mini-slot of a slot is sensed idle, the
remaining transmission duration of this slot is skipped, and the next slot starts right after the last
mini-slot of this slot; (b) when the last mini-slot of a slot is sensed busy, the next slot starts after
the entire duration of this slot

Similar to the MsCS, SyncCS is fully distributed and does not require any control
message exchange. The cost for further improving channel utilization efficiency via
SyncCS is the extra channel sensing. In addition, accurate time synchronization is
required among all devices. Without SyncCS, a device can be in the sleep mode
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for most of the time in a frame and only wake up before its assigned mini-slot for
MsCS if it has a packet to transmit. With SyncCS, each device needs to perform
sensing in each slot and re-synchronize once for each idle slot. In the IIoT scenario
under consideration, it is possible that energy consumption of devices is less of a
concern (e.g., as compared with sensors deployed in remote areas such as in forests);
Otherwise, the design element of SyncCS can be omitted in the proposed protocol.7

2.3.4 Differentiated Assignment Cycles

Using the slot structure in Fig. 2.2, the delay for a device depends on the frame
length if each device has at most one transmission opportunity in each frame.
However, one transmission opportunity in each frame for every device does
not provide sufficient flexibility to support differentiated QoS. Particularly, the
maximum delay threshold of HP devices, i.e., δH, can be much smaller than that
of RP/LP devices. To address this problem, we extend the frame in Fig. 2.2 to
differentiated assignment cycles. Specifically, each HP, RP, and LP assignment cycle
consists of rH, rR, and rL slots, respectively, where rH < rR < rL. Each HP, RP,
or LP device is assigned one mini-slot of one slot in each HP, RP, or LP assignment
cycle, respectively. Thus, an HP/RP/LP cycle serves as a frame for the HP/RP/LP
devices, respectively. In the case when all devices have the same priority, the HP, RP,
and LP cycles become identical and reduce to a standard frame. The differentiated
assignment cycles are illustrated in Fig. 2.5, in which different color patterns in the
mini-slots represent different assigned devices. In the illustration, rL is a multiple
of rR, and rR is a multiple of rH.8 The HP devices assigned to the same slot in any
different HP assignment cycles are identical, as shown by the two illustrated slots at
the top of Fig. 2.5, while the RP or LP devices assigned to the two slots are different.

With differentiated assignment cycles, it becomes possible to achieve the strin-
gent delay requirement of HP devices, by setting rH small, and at the same time
support a large number of devices, by using a large rR and/or rL. Note that similar
idea of differentiated cycles can be found in existing works such as [62], where two
different cycle lengths are used for realtime and non-realtime traffic, respectively.
With a different slot structure and three different cycle lengths, we adopt the same
essential idea here. This is because, for scheduling based channel access, achieving
lower delay translates to more frequently scheduled transmission opportunities. This
naturally leads to differentiated cycles for different device or traffic types.

7 Alternatively, the AP may broadcast frame synchronization beacons. In such case, when a device
has a packet to send, it can wake up and synchronize to the next frame. It may remain awake and
synchronized to each slot until the packet is transmitted.
8 While rL does not have to be a multiple of rR or rH in theory, the overall device assignment cycle
is the lowest common multiple of rH, rR, and rL. Limiting the lowest common multiple to be rR

itself can reduce the complexity of device assignment by the AP.
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2.3.5 Superimposed Mini-slot Assignment (SMsA)

The proposed MAC protocol aims to support a high device density. The MsCS
and SyncCS contribute to the solution by improving channel utilization efficiency,
along with differentiated assignment cycles with a large rR and/or rL. In addition, if
devices can share a mini-slot, beyond only sharing a slot, the capacity of the network
in terms of the number of supported devices can be significantly improved, at the
cost of nonzero packet transmission collision probabilities.

The final element in our proposed protocol, i.e., SMsA, allows the assignment of
one mini-slot to multiple devices, provided that packet transmissions associated with
such assignment can be properly scheduled as not to violate the QoS requirements of
the devices. For the simplicity of presentation, we limit the SMsA to devices of the
same type, i.e., an HP device can share a mini-slot only with other HP devices. With
SMsA, a mini-slot in Fig. 2.5 may no longer be assigned to a device exclusively.

Transmission collision may happen among devices sharing a mini-slot, and the
collision probability depends on the following factors:

• The device packet arrival rates;
• The number of mini-slots and the mini-slot assignment;

Fig. 2.5 An illustration of differentiated assignment cycles
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• The HP, RP, and LP assignment cycle lengths.

While the device packet arrival rates are not controllable, the collision probability
may be reduced by properly determining the last two factors (to be studied in
Sect. 2.5).

We do not consider collision resolution here. However, a design element for
collision detection can be added to our proposed MAC protocol. The following is
an example. If two or more devices assigned the same mini-slot simultaneously
start sending packets to the AP, the AP will detect the collision. As soon as the AP
detects the collision, it will start broadcasting a collision beacon that fills the rest of
the current slot. On the device side, the sending devices will switch to sensing mode
to check for a collision beacon after transmitting their packets. If a beacon is sensed,
the device knows that a packet collision happened during its transmission and may
decide to re-transmit the packet in another slot.

2.3.6 Downlink Control

The AP broadcasts the mini-slot and slot assignment to devices via downlink control
messages. Based on the assumption of stationary traffic statistics in a relative long
duration,9 the assignment does not need to be updated frequently. The AP may either
broadcast the entire assignment in one downlink control message or breakdown the
assignment information into multiple messages.

Consider an example of 10 mini-slots per slot (i.e., nm = 10) and 200 slots per
LP assignment cycle (i.e., rL = 200). In such case, 2 bytes is more than sufficient
to represent the slot and mini-slot assignment for each device. For 1000 devices,
the assignment message payload size is no more than 2 kilobytes (kB). For a slot
length of 200 µs, an LP assignment cycle is about 40 ms in length. Even if the
traffic statistics change as frequently as once in every 5 minutes, the 2 kB downlink
assignment message is needed just once in every 7500 LP assignment cycles or,
equivalently, 1.5 × 106 slots.

As downlink control messages are infrequent in comparison with the dominating
uplink messages, we neglect the impact of downlink control messages while
analyzing the performance of the proposed protocol.

The core of MAC protocol design is to coordinate transmissions from
devices, while prioritizing and device grouping are two important aspects

(continued)

9 The stationary duration, if denoted by Tst, should satisfy Tst � rLTs.
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of coordination. There are various approaches for prioritizing, such as using
both contention-based and contention-free access in a MAC protocol [63].
Similarly, there are many grouping approaches, such as limiting contention
to devices generating packets around the same instant [64]. In our proposed
MAC protocol, the utilization of mini-slots is inherently capable of both
prioritizing and grouping. Meanwhile, the differentiated assignment cycles
further strengthen the design’s capability in prioritizing, while the SMsA
further strengthens its capability in grouping.

2.4 Performance Analysis

In this section, we present performance analysis of the proposed MAC protocol,
focusing on the MsCS, SyncCS, and SMsA. Note that the proposed MAC protocol
works under the following conditions:

• The expected number of packet arrivals summarized over all devices sharing a
slot is less than 1 per frame;10

• The average packet arrival interval of any device is larger than the maximum
tolerable packet delay of that device.

In practice, some devices can have a high packet arrival rate that violates the above
conditions. In such case, more than one slot can be assigned to such a device in the
corresponding assignment cycle so that the expected number of packet arrivals of
the device per scheduled slot is less than one. In the subsequent analysis, we simply
assume that the number of packet arrivals for any device is less than one per its
assignment cycle.

Without assuming a specific traffic model, we focus on the first-order statistic.
The expected number of packet arrivals at device i in a frame is given by λiTf,
where Tf denotes the length of a frame. Denote the set of all HP, RP, and LP
devices assigned to slot l by Dl . Denote the delay of device i, averaged over
packet transmissions while the traffic is stationary, by τi . The aforementioned two
conditions correspond to the following equations:

∑

i∈Dl

λiTf ≤ 1,∀l, (2.1a)

1

λi

≥ τi,∀i. (2.1b)

10 This condition applies to the case without differentiated assignment cycles. In the case with
differentiated assignment cycles, the condition is different.
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2.4.1 Delay Performance with No Buffer

We investigate the impact of mini-slots in the case without SMsA, given the slot
assignment and device packet transmission probabilities (estimated from the packet
arrival rates). Starting from a simplified scenario, the analysis here is based on the
following assumptions:

• The condition in (2.1a) is satisfied;
• A packet not in transmission is dropped when a new packet is generated. The

scenario where devices have buffers is analyzed in Sect. 2.4.2;
• All devices are of the same type and priority. Consequently, the three assignment

cycles reduce to a unified frame with ns slots;
• The SyncCS is not adopted. The analysis of SyncCS is given in Sect. 2.4.4.

We focus on the delay analysis since collision probability is zero without SMsA.
Let τ0 denote the base delay, defined as the time duration from the packet arrival
instant till the first assigned mini-slot. Under the aforementioned assumptions, the
average base delay is equal to nsTs/2 for all devices, as each device has one assigned
mini-slot in each frame. The overall delay is the base delay plus the access delay
(AD), i.e., the duration from the first assigned mini-slot since the packet arrival till
the end of the packet transmission. Since the average base delay is a constant here,
we focus on finding the average AD.

Denote the device assigned the mth mini-slot of the lth slot by dm,l . Denote by
τm,l the average access delay counted in frames (AD-F), i.e., the number of logical
frames since device dm,l’s packet arrival till device dm,l’s packet transmission.11

Different from a physical frame, a logical frame counted in the AD-F for device
dm,l is the duration from slot l of one physical frame to slot l of the next physical
frame. Therefore, a logical frame has the same length as a physical frame, but
different starting and ending points for different devices. Accordingly, the arrival
and transmission of a packet can happen within one logical frame, and the resulting
AD-F is 1 in such case.12 Note that AD-F τm,l corresponds to a duration slightly
longer than the AD defined in the preceding paragraph. This is because the AD
ends when a packet transmission is completed, while the AD-F counts the entire
frame into the delay, including the duration after device dm,l’s packet transmission.
Accordingly, the AD of device dm,l can be obtained from the AD-F by calculating
(τm,l − 1) × Tf + Tx, where the frame length Tf is equal to nsTs.

11 When packet re-transmission is considered, the definition of AD-F should be changed to “the
number of logical frames since packet arrival till successful packet transmission”. Meanwhile, the
“packet arrival rate” in our analysis should be replaced by “packet transmission rate” as a packet
may need re-transmission(s).
12 In the rest of this chapter, we do not distinguish physical and logical frames and refer to both as
“frame” since they are equal in length.
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Since any device assigned the first mini-slot of any slot can transmit right away
without sensing when the slot begins, we have

τ1,l = 1,∀l. (2.2)

For devices assigned the subsequent mini-slots, the AD-F can be found using the
following result.

Theorem 2.1 For any integer m such that 1 ≤ m ≤ nm − 1, the following relation
between the AD-F of device dm+1,l and device dm,l holds:

τm+1,l = 1

1 − γm,l − Tfλ
′
m,l

(
− (1 − γm,l)Tfλ

′
m,l

2
τ 2
m,l

+(1−γm,l+Tfλ
′
m,l

)
τm,l − Tfλ

′
m,l(1+γm,l)

2

)
(2.3)

where

λ′
m,l = λm,l(

1 + Tfλm,l(τm,l − 1/2)
) (2.4)

represents the effective packet arrival rate of device dm,l excluding dropped packets
due to packet replacement (as there is no buffer), and

γm,l = Tf

m∑

r=1

λ′
r,l (2.5)

represents the expected overall number of packet arrivals in a frame for devices d1,l

till dm,l (excluding replaced packets).

The proof of the above theorem can be found in [57]. Using the fact that τ1,l is
equal to 1 for any l, (2.3) can be used to obtain the AD-F for devices assigned to all
subsequent mini-slots in a slot recursively.

2.4.2 Delay Performance with Buffer

Now consider the case when each device has a buffer. Recall that different mini-
slots correspond to different transmission priorities. In the proposed protocol, any
proper slot and mini-slot assignment ensures that the expected number of packets in
the buffer of device dm,l is less than one, for any m < nm and any l. The reason is
that, if the expected number of buffered packet at dm,l is larger than or equal to one,
devices assigned mini-slots m + 1, . . . , nm of slot l have almost no opportunity to
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transmit. As a result, we neglect the case when there are more than one packet in a
buffer and use the following approximation. Specifically, at any instant, a device is
in one of three states:

• no packet;
• one packet, transmitting or waiting for channel access;
• two packets, one transmitting or waiting for channel access and the other arriving

and going into the buffer.

Accordingly, for any given device, there is either no packet or one packet transmit-
ting or waiting for channel access when a new packet arrives.

Denote by τ b
m,l the average AD-F of device dm,l in the case with buffer, the

following result is in order.

Theorem 2.2 In the case with buffers, for any integer m such that 1 ≤ m ≤ nm −1,
the relation between the AD-F of device dm+1,l and device dm,l is given by

τ b
m+1,l =

1−γ b
m,l

1−γ b
m+1,l

(
1

1−γ b
m,l−Tfλm,l

(
− (1−γ b

m,l)Tfλm,l

2

·
(
τ b
m,l

)2+(1−γ b
m,l+Tfλm,l)τ

b
m,l−

Tfλm,l(1+γ b
m,l)

2

)
− 1

)
+1

where

γ b
m,l = Tf

m∑

r=1

λr,l (2.6)

represents the expected overall number of packet arrivals in a frame for devices d1,l

till dm,l .

The proof of the above theorem can be found in [57].

2.4.3 Slot Idle Probability

A slot is idle if none of its associated devices transmits. Under stationary packet
arrival statistics, the expected slot idle probability of MsCS can be obtained. In the
case with and without buffer, the slot idle probability is approximately given by

ηb
l = 1 −

nm∑

m=1

λm,lTf (2.7a)
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ηl = 1 −
nm∑

m=1

λ′
m,lTf (2.7b)

respectively, where λ′
m,l is given in (2.4). Note that the right-hand side of either of

the two equations above is non-negative when the condition (2.1a) is satisfied, i.e.,
when the slot is not overloaded. The above approximation of slot idle probability
also assumes a negligible packet collision probability, i.e., the expected number of
transmitted packets and the expected number of packet arrivals (that cause no packet
replacement) are equal in any slot.

Define the throughput of slot l as the expected number of packets transmitted in
the slot. The slot throughput equals 1 −ηb

l and 1 −ηl for the cases with and without
buffers, respectively.

2.4.4 Impact of SyncCS

As SyncCS results in two possible lengths for each slot, i.e., the full and the reduced
lengths, the frame length becomes a random variable. Denote the expected frame
length with SyncCS in the case with and without buffer by T

e,b
f and T e

f , respectively.
Denote n′

s as the number of busy slots out of the ns slots in a frame. In the case
without buffer, it follows that

T e
f = nsnmTm + n′

sTx. (2.8)

Since there is no collision,

T e
f

∑

l

∑

m

λ′
m,l = n′

s (2.9)

because the expected number of packet transmissions should equal the expected
number of arriving packets (that are not replaced) in a frame duration. From (2.8),
(2.9), and (2.4) (with Tf replaced by T e

f ), n′
s and T e

f can be solved.
In the case with buffer, we have

T
e,b
f = nsnmTm + n′

sTx (2.10a)

T
e,b
f

∑

l

∑

m

λm,l = n′
s (2.10b)

which gives

T
e,b

f = nsnmTm

1 −∑
l

∑
m

λm,lTx
. (2.11)
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Substituting Tf in (2.3) and (2.6) with T e
f and T

e,b
f , respectively, gives the AD-

F of the proposed design with MsCS and SyncCS. In the case without buffer, T e
f

depends on τm,l through (2.4), which renders a complicated relation.

2.4.5 Impact of SMsA

The AD-F in Sects. 2.4.1 and 2.4.2 is obtained when each mini-slot is assigned to a
device exclusively. With SMsA, we have the following questions:

• What is the relation among the AD-F of different devices assigned the same
mini-slot?

• How does the SMsA impact the relation in the AD-F between devices assigned
adjacent mini-slots?

Denote the set of all devices assigned mini-slot m of slot l by Dm,l . The following
theorem answers the first question.

Theorem 2.3 In the case without buffer, all devices in Dm,l have the same AD-F,
regardless of the difference in their individual packet arrival rates. In the case with
buffer, assuming a negligible packet collision probability and

λi 	
m∑

r=1

∑

j∈Dr,l

λj ,∀i ∈ Dm,l, (2.12)

the differences among the AD-Fs of devices in Dm,l are negligible.

For the second question, similar to (2.3) and (2.6), the relation between the AD-
Fs of devices in adjacent mini-slots in the case of SMsA can be characterized. The
characterization is given in [57]. It is worth mentioning that the packet collision
probability has an impact on the AD-F even if devices do not detect collisions or
re-transmit. Given the aggregated packet arrival rate of devices sharing a mini-slot,
a higher collision probability implies less channel busy duration for transmitting
the same amount of packets. Consequently, the average packet waiting time and
the AD-F decrease as the collision probability increases. However, if the collision
probability is low, such impact can be negligible.

With the AD-F, we can estimate the packet collision probability. Consider the
case with buffer as an example and assume that the condition in (2.12) is satisfied.
Based on Theorem 2.3, all the devices in Dm,l have the same AD-F, denoted by τ

s,b
m,l .

Then, any device in Dm,l with a packet to send is expected to have one transmission
opportunity in every τ

s,b
m,l frames. The expected number of packet arrivals at device

i ∈ Dm,l between any two consecutive transmission opportunities, which must
be less than 1, can be estimated by τ

s,b
m,lTfλi . With the MsCS, all devices in Dm,l

that have packets to send share the same transmission opportunities. Therefore, the
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probability that device i’s packet encounters a collision is approximately given by

q
c,b
i = 1 −

∏

j∈Dm,l\{i}

(
1 − τ

s,b
m,lTfλi

)
. (2.13)

Note that, knowing only the average packet arrival rates, the above approximation
may be limited in accuracy. An accurate determination of the collision probability
requires the traffic arrival model of all devices, which can be difficult to obtain
in practice. In Sect. 2.6, we will demonstrate through numerical results that our
approximation can be a useful tool for device assignment.

2.5 Scheduling and AI-Assisted Protocol Parameter Selection

While the proposed MAC design gives the frame of our connectivity solution for
the smart factory use case, the performance of our solution also depends on the
scheduling of transmission opportunities for the devices. In this section, we cover
the background of scheduling, introduce the scheduling problem in our design, and
develop AI-assisted protocol parameter selection for the scheduling component in
our connectivity solution.

2.5.1 Background

Section 2.3 introduces our MAC protocol for MTC in IIoT, which provides a
potential to increase network capacity and improve QoS performance through
increasing channel utilization efficiency. Meanwhile, how to utilize this potential
to guarantee stringent QoS requirements in a dense network calls for further
investigation. Specifically, given the proposed mini-slot based slot structure and a
large number of devices, proper scheduling, i.e., determining the slot/cycle lengths
and assigning the devices specific slots and mini-slots, has a significant impact on
the MAC performance.

In our networking scenario, scheduling is for single-hop and uplink communica-
tions. Even in this limited scope, many research works exist in the literature, with a
common focus on the trade-off between performance and signaling overhead. Early
studies include the development of semi-persistent scheduling for voice over IP in
Long Term Evolution (LTE) [65], which aims to achieve a balance between system
capacity and signaling overhead. For WLAN, Wang and Zhuang propose a token-
based scheduling scheme, which achieves performance prioritization for different
traffic types with a low overhead in a fully connected network [66]. Gamage et al.
develop uplink scheduling for WLAN and cellular interworking to enable multi-
homing voice and data services [67].
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Despite the abundance of existing studies, scheduling in the setting of MTC
and IIoT remains challenging. Ksentini et al. note the potentially overwhelming
overhead in the uplink scheduling with a massive number of MTC connections
and consider a simple round-robin scheduling algorithm for the case with no QoS
requirements [68]. Lioumpas et al. recognize that schedulers designed for general
cellular networks cannot be directly applied to MTC, due to a higher device density
and a wider variety of QoS requirements, and propose a scheduling algorithm to
prioritize devices with low delay tolerance [69]. However, the delay requirements
considered therein is in the range from 10 ms to 10 minutes, which can be too large
for IIoT applications.

To handle a large number of devices, a popular strategy is to divide the devices
into groups (or clusters) and schedule the devices based on the groups [70]. Si et al.
propose a grouping-based algorithm that adjusts the service rate for each user group
to provide statistical QoS guarantees, where the considered delay requirements are
in the range from 20 ms to 100 ms [71]. Karadag et al. present semi-persistent
scheduling for MTC in cellular networks, taking delay constraints of devices into
account, where devices have periodic traffic arrivals [72]. Zhang et al. propose a
random access scheme for MTC in cellular networks by grouping devices according
to their delay requirements and applying access control for each group based on the
group size, aggregated packet arrival rate, etc. [73]. Arouk et al. propose a group
paging based scheduling for massive MTC access in cellular networks, where the
key idea is to scatter the contention for channel access to improve performance
in terms of delay, collision probability, and energy consumption [74]. The focuses
of the last two works are on throughput maximization and energy consumption
reduction, respectively.

Given a high device density, diversified service types, and stringent QoS require-
ments, scheduling may need to be further fine-grained. Specifically, a scheduler
may need to attend to the available information (e.g., packet arrival rate) or access
strategy of each single device. Salodkar et al. propose a learning-assisted scheduling
scheme, in which each device uses reinforcement learning to determine a preferred
transmission rate and a base station (BS) schedules the device with the highest
rate [75]. Such a scheme can adapt to unknown packet arrival statistics. Chang et al.
propose device-level uplink scheduling schemes based on conflict-avoiding codes,
in which each device is assigned a two-dimensional code matrix [76]. These
schemes are applicable when multiple channels are available. In their recent work,
Rodoplu et al. present proactive forecasting-assisted scheduling to support massive
access in the IoT, which explores machine learning to predict the traffic of each
device and reserve channel time accordingly [77]. The scheme improves network
performance with low overhead. Yang et al. utilize a neural network to predict the
number of IoT devices and Wi-Fi users, which facilitates dynamic scheduling and
channel allocation for co-existing IoT and Wi-Fi communications [78].

In this section, our objective is to develop an effective scheduling scheme to pair
with the proposed protocol in Sect. 2.3. Different from the existing works, we focus
on achieving QoS guarantee with very low delays. As a part of our MAC protocol,
the scheduling scheme contributes to a customized link-layer solution to MTC in
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IIoT, supporting high device density, diversified service types, and stringent QoS
targets. While we aim to maximize channel utilization efficiency through delicate
distributed coordination in the MAC protocol in Sect. 2.3, the focus in this section is
to develop a centralized analysis-based scheduling scheme. The scheduling scheme
should achieve a desired balance in the QoS of different services or different
QoS metrics for the same service. The integration of distributed coordination and
centralized control is expected to strengthen the proposed MAC protocol.

Scheduling for a dense network with hundreds or even thousands of devices can
be beyond the reach of conventional approaches, when the packet arrival rate of
each device may impact the protocol parameters and the QoS requirement of each
device needs to be satisfied. This motivates us to exploit neural networks to assist
scheduling. We propose to schedule in two steps, i.e., slot/mini-slot assignment and
protocol parameter selection, and develop methods to reduce complexity in each
step. The main contribution of this part is twofold: first, we develop algorithms to
assign devices specific slots and mini-slots of the proposed protocol in Sect. 2.3,
when the protocol parameters are given. Based on the analytical results in Sect. 2.3,
the proposed algorithms sort devices of each type, estimate the impact of potential
assignments for each device, and make assignments for the devices one by one.
As a result, the assignments possess the due accuracy and granularity necessary
for satisfying diverse and stringent QoS requirements; Second, to determine the
protocol parameters, we exploit a deep neural network (DNN) to assist scheduling.
The DNN is structured such that it can be used given any number of devices
and learn the mapping from various combinations of device and packet arrival
profiles and protocol parameter settings to the resulting scheduling performance.
We demonstrate that, after sufficient training, the DNN can learn the mapping.
Then, given a specific device and packet arrival profile, the DNN can be used to
compare different protocol parameter settings and determine proper parameters for
the proposed MAC.

2.5.2 The Considered Scheduling Problem

The following factors have significant impact on the performance of the proposed
MAC protocol:

• The number of mini-slots in each slot, i.e., nm;
• The assignment cycles, rH, rR, and rL, which serve as different frame lengths for

different types of devices;
• The device assignment, i.e., the allocation of devices to slots and mini-slots.

We refer to the problem of determining the above factors with the objective of
satisfying QoS requirements as the packet transmission scheduling problem, which
is illustrated in Fig. 2.6. The AP in the network is expected to have computing
capability and conduct the scheduling.
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Fig. 2.6 An illustration of the scheduling problem. Different colors in the sub-blocks of a mini-slot
correspond to different devices assigned that mini-slot, while dot-filled, solid-filled, and grid-filled
patterns represent mini-slots assigned to HP, RP, and LP devices, respectively. The scheduling
problem involves determining protocol parameters nm, rH, rR, and rL as well as assigning slots
and mini-slots to all devices

Note that the scheduling problem may not be always feasible. Indeed, we cannot
guarantee the satisfaction of arbitrary QoS requirements given an arbitrarily large
set of devices with arbitrary packet arrival rates. Thus, the objective here is to
investigate effective scheduling that can support as many devices as possible while
satisfying their QoS requirements.

Given the sets of all devices D = {1, . . . , D}, HP devices DH, RP devices DR,
LP devices DL, and packet arrival rates {λi}, i ∈ D, we attempt to accommodate
all devices while satisfying delay requirements δH, δR, and δL and packet collision
probability requirements ρH, ρR, and ρL for the HP, RP, and LP devices, respec-
tively. Based on the protocol, the following constraints exist for the scheduling
problem (see Sect. 2.3.4):

• The LP assignment cycle length, rL, is a multiple of the RP assignment cycle
length, rR, which in turn is a multiple of the HP assignment cycle length, rH;

• A mini-slot should not accommodate more than one type of devices;
• If mini-slot m of slot l, where l ≤ rH and m ≤ nm, is assigned to a subset of HP

devices, IH, then mini-slot m of slot l′, for any l′ ∈ {rH + l, 2rH + l, . . . , rL −
rH + l}, is also assigned to the same set of HP devices IH. If mini-slot m of slot
l, where l ≤ rR and m ≤ nm, is assigned to a subset of RP devices, IR, then



38 2 Industrial Internet of Things: Smart Factory

mini-slot m of slot l′, for any l′ ∈ {rR + l, 2rR + l, . . . , rL − rR + l}, is also
assigned to the same set of RP devices, IR. Both cases are illustrated in Fig. 2.6.

To solve the scheduling problem, we first investigate the device assignment while
assuming protocol parameters nm, rH, rR, and rL are given. Then, we explore a
DNN to assist determining these parameters. In both steps, we assume that MsCS,
SyncCS, differentiated assignment cycles, and SMsA from Sect. 2.3 are adopted in
the proposed MAC protocol.

2.5.3 Device Assignment

In this subsection, we first discuss the impact of protocol parameters (nm, rH, rR,
and rL) and then investigate the device assignment problem.

Impact of rH, rR, and rL

The delay requirements, δH, δR, δL, place constraints on rH, rR, and rL, respectively.
Consider HP devices for example. When there are nm mini-slots in each slot, an
upper bound on the number of slots per HP assignment cycle, i.e., rH, is given by13

r̄H =
⌊

2δH

nmTm + Tx

⌋
(2.14)

where 
·� is the floor function. The denominator is the length of a slot. The factor ‘2’
in the numerator follows from the fact that the average gap between the beginning
of an HP cycle and the arrival of an HP packet is equal to one half of an HP cycle.

Using (2.14), a relation between nm and rH can be obtained. If nm is large, rH

should be small, and the HP devices will be “densely” packed into the rH slots. As
a result, it can be challenging to satisfy the QoS requirements of HP devices. On
the other hand, if nm is small so that rH can become large, more slots are available
for HP devices in each frame. However, the transmission opportunity for RP and LP
devices will decrease. Therefore, determining appropriate values for rH, rR, and rL

is crucial but nontrivial.

Device Assignment
The assignment of slots and mini-slots to devices is a complex problem. Consider
the case with buffer and SMsA. Even if nm, rH, rR, and rL are given, the device
assignment is a combinatorial integer programming problem. Based on the analysis
in Sect. 2.4.5, assigning any new device an occupied mini-slot can affect the delay
and collision probability of all other devices assigned that mini-slot.

13 The upper bound is obtained under the assumption that every HP device is assigned the first
mini-slot of a slot.
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We propose a heuristic algorithm for device assignment, built on the analysis in
Sect. 2.4, when nm, rH, rR, and rL are given. The analysis allows us to estimate
the delay and collision probability of devices in a mini-slot after adding each new
device to the mini-slot. The proposed assignment algorithm tentatively assigns a
device while estimating the resulting performance, with the target of satisfying the
QoS requirements of all assigned devices in the process. The following setting is
considered in the assignment:

• All devices assigned the same mini-slot have the same priority type;
• The maximum packet collision probability among all devices assigned the same

mini-slot is referred to as the collision probability for that mini-slot and denoted
by qc

m,l for mini-slot m of slot l;
• Under the assumption that the impact of collision probability on the cycle length

is negligible, the length of an LP cycle can be calculated by

T L
f = rLnmTm

1 − ∑
i∈D

λiTx
, (2.15)

which is based on (2.11). Parameter ns in (2.11), i.e., the number of slots in a
general frame, is replaced with rL in (2.15) since an LP cycle serves as a frame
for LP devices. Note that the use of differentiated assignment cycles does not
change the packet arrival rates. Based on the constraints mentioned in Sect. 2.5.2,
all devices should be scheduled at least once in an LP cycle, which leads to
the summation over the packet arrival rates of all devices in the denominator of
(2.15).

Let m̂l denote the minimum index among the mini-slots of slot l that have not
been assigned to any device. For notation simplicity, we omit subscript l in m̂l

when m̂l and l both appear in the subscript (e.g., qc
m̂l ,l

will be written as qc
m̂,l

). The

length of the HP, RP, and LP assignment cycles are denoted by T H
f , T R

f , and T L
f ,

respectively. The proposed assignment is given in Algorithms 1 and 2. Algorithm 1
is the core algorithm for assigning slots and mini-slots to a set of devices with the
same priority for a given cycle length, while Algorithm 2 is the overall algorithm
that calls Algorithm 1 to make assignments for all devices and all cycles.

In the two algorithms, variables nc
i , Λm,l , and Γm,l denote the expected number

of simultaneously transmitting packets given that device i is transmitting (which
can be larger than 1 as a result of a nonzero collision probability), the aggregated
packet arrival rate for all devices assigned mini-slot m of slot l, and the accumulated
number of packet arrivals for all devices assigned mini-slots 1 to m of slot l in the
corresponding cycle, respectively. Detailed description can be found in Appendix C
of [57] and is omitted here for brevity.

The basic ideas of Algorithms 1 and 2 are given as follows. Algorithm 1 assigns
mini-slots to devices, starting from the first mini-slot of every slot, and tracks the
current mini-slot being assigned. It tentatively assigns a device the current mini-slot
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Algorithm 1 Core assignment algorithm

Input: D†,R†, nm, Tm, Tx, {λi}∀i∈D† , r†, m̂l ,∀l, Γm̂,l ,∀l.
Output: Assignment matrix A† with size 2 × |D†|.
1: Initialize: a) qc

m,l = 0,∀m, l; nc
i = 0, Λm̂,l = 0,∀l;

2: b) Number of assigned devices N
†
a = 0.

3:
4: for device i in D† do
5: Check τm̂,l ,∀l ∈ R†.

6: if min
l∈R†

(τm̂,l − 1) × T
†

f + Tx + τ
†
0 > δ† then

7: Quit with flag F = i;
8: else
9: Find set S† ={l|(τm̂,l −1) × T

†
f +Tx+τ

†
0 ≤ δ†}.

10: end if
11: Calculate q̄c

m̂,l
for tentative assignment {m̂l , l},∀l ∈ S†, using either (2.16a) or (2.17a) with

q̃c
m,l replaced by q̄c

m̂,l
, depending on whether device i is the first device assigned this mini-slot.

12: if min
l∈S†

q̄c
m̂,l

> ρ† and m̂l = nm,∀l ∈ S† then

13: Quit with N
†
a = i;

14: else if min
l∈S†

q̄c
m̂,l

> ρ† and ∃l ∈ S† : m̂l < nm then

15: Update R† = {l ∈ S†|m̂l < nm};
16: Update m̂l =m̂l +1, calculate τm̂,l , and go to Step 3;
17: else
18: Find slot l
 = arg min

l∈S†
q̄c
m̂,l

;

19: A†(1, i) = l
,A†(2, i) = m̂l
 ;
20: Update qc

m̂l
 ,l

by setting qc

m̂l
 ,l

= q̄c

m̂l
 ,l

;

21: Update ni ,Λm̂l
,l

 ,Γm̂l
,l


 using (2.16b) to (2.16d) or (2.17b) to (2.17d).
22: end if
23: end for
24: Return {m̂l}∀l , {Γm̂,l}∀l , A†, N

†
a .

of all available slots, trying to find the best assignment based on the resulting delay
and packet collision probability estimations. If the current mini-slot in none of the
slots can accommodate the device in satisfying its collision probability requirement,
the algorithm moves to the next mini-slot. The procedure repeats until any of the
following three conditions is satisfied: (i) all devices are allocated, (ii) there is
no more vacant mini-slot, or (iii) none of current mini-slots can satisfy the delay
requirement of a device. Algorithm 2 sorts the devices and calls Algorithm 1 for
mini-slot and slot assignment for each device priority type. After obtaining an
assignment for HP devices and RP devices, Algorithm 2 extends the assignment for
the RP cycle and LP cycle, respectively. Some details of main steps in the algorithms
are summarized as follows:

• Step 3 of Algorithm 1—The left-hand side of the inequality represents the overall
delay including the base and access delays. The calculation is discussed in
Sect. 2.4.1;
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Algorithm 2 Overall assignment algorithm

Input: nm, rH, rR, rL, Tm, Tx, DH, DR, DL, {λi}∀i∈D .
Output: Device assignment matrix A (size 2 × D), Assignment success flag Fs.
1: Initialize: i = 1, qc

m,l = 0,∀m, l, nc
j = 0,∀j ∈ D, Fs = 0; Set AR and AL to all-zero matrices

with sizes 2 × DR and 2 × DL, respectively.
2: Calculate the LP Cycle length using (2.15). Calculate the RP and HP Cycle length using T R

f =
T L

f rR/rL and T H
f = T L

f rH/rL, respectively.
3:
4: Calculate the base delay for HP, RP, and LP devices using τH

0 = T H
f /2, τR

0 = T R
f /2, τL

0 =
T L

f /2, respectively.
5:
6: Sort devices in an increasing order of packet arrival rate for DH, DR, and DL, respectively.
7: Set m̂l = 1, Γm̂,l = 0, and τm̂,l = 1,∀l. Set D† = DH, R† = {1, 2, . . . , rH}, T

†
f = T H

f ,

r† = rH, τ
†
0 = τH

0 , δ† = δH, and ρ† = ρH. Run Algorithm 1 and output {m̂l}∀l , {Γm̂,l}∀l , A†,

and N
†
a . Let AH = A† and Na = N

†
a .

8:
9: if NH

a = |DH| then
10: Update m̂l = m̂l + 1,∀l; Update R† = {l|l ∈ [1, rR], m̂l ≤ nm}; For each slot l ∈ R†

and any l′ ∈ {rH + l, 2rH + l, . . . , rR − rH + l}, add l′ to R† and let Γm̂,l′ equal Γm̂,l . Then,
calculate τm̂,l ,∀l ∈ R†.

11:
12: Run Algorithm 1 with inputs {Γm̂,l}∀l and R† from Step 10, D† = DR, T

†
f = T R

f , r† = rR,

τ
†
0 = τR

0 , δ† = δR, ρ† = ρR. Obtain output {m̂l}∀l , {Γm̂,l}∀l , A†, and N
†
a . Let AR = A† and

Na = Na + N
†
a .

13:
14: if N

†
a = |DR| then

15: Update m̂l = m̂l +1,∀l; Update R† = {l|l ∈ [1, rL], m̂l ≤ ns}; For each slot l ∈ R† and
any l′ ∈ {rR+ l, 2rR+ l, . . . , rL−rR+l}, add l′ to R† and let Γm̂,l′ equal Γm̂,l . Then, calculate
τm̂,l ,∀l ∈ R†.

16: Run Algorithm 1 with inputs {Γm̂,l}∀l and R† from Step 15, D† = DL, T
†

f = T L
f ,

r† = rL, τ
†
0 = τL

0 , δ† = δL, ρ† = ρL. Obtain output A†, and N
†
a . Let AL = A† and

Na = Na + N
†
a .

17:
18: Set Fs = 1 if Na = D.
19: end if
20: end if
21: Return A = [AH,AR,AL], Fs .

• Step 16 of Algorithm 1 and Steps 10 and 15 of Algorithm 2—These steps move
from the current mini-slot to the next mini-slot of the same slot. As a result,
the AD-F of the next mini-slot needs to be calculated. The details regarding the
calculation of τm̂,l in these steps can be found in [57];

• Step 2 of Algorithm 2—Since each LP assignment cycle consists of rL/rH HP
cycles and rL/rR RP cycles, respectively, the HP and RP assignment cycles can
be found accordingly after obtaining the LP cycle length based on (2.15);
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• Step 21 of Algorithm 2—The element in the first/second row and the ith column
of the device assignment matrix, A, gives the index of the slot/mini-slot assigned
to device i;

• Matrix A only gives the first slot/mini-slot assigned to device i. If device i is
an HP device and assigned slot and mini-slot {l, m}, then it is also assigned
slot/mini-slot {l′,m} for any l′ ∈ {rH + l, 2rH + l, . . . , rL − rH + l}. If device
i is an RP device and assigned slot and mini-slot {l, m}, then it is also assigned
slot/mini-slot {l′,m} for any l′ ∈ {rR + l, 2rR + l, . . . , rL − rR + l}. This is
reflected in Steps 10 and 15 of Algorithm 2 and consistent with the illustration in
Fig. 2.6.

In the core assignment algorithm (Algorithm 1), adding a device to a mini-slot has
an impact on Λm,l , Γm,l , and qc

m,l . Therefore, after assigning device i mini-slot m

of slot l, these variables need to be updated for the mini-slot. If device i is the first
device assigned mini-slot m of slot l, the following update applies:

q̃c
m,l = 0 (2.16a)

ñi = 1, (2.16b)

Λ̃m,l = λi (2.16c)

Γ̃m,l = Γm,l + T
†
f λi (2.16d)

τ̃m,l = τm,l (2.16e)

where x̃ represents an updated value of x after assigning device i, and T
†
f is the

corresponding (HP, RP, or LP) cycle length. If device i is not the first device assigned
mini-slot m of slot l, the following update applies:

q̃c
m,l =

(
1 − (1 − qc

m,l)(1 − T
†
f λi)

)
(2.17a)

nc
i = 1 +

∑

j∈Dm,l\{i}
τm,lT

†
f λj (2.17b)

Λ̃m,l = Λm,l + λi

(
1 − q̃c

m,l

nc
i

)
(2.17c)

Γ̃m,l = Γm,l + T
†
f λi

(
1 − q̃c

m,l

nc
i

)
(2.17d)

τ̃m,l = τm,l (2.17e)
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which is based on the analysis in Sect. 2.4.5 of Sect. 2.4. Equations (2.17a)–
(2.17d) update the packet collision probability,14 the average number of packets per
transmission (taking collision into account), the aggregated packet arrival rate, and
the accumulated number of packet arrivals, respectively, corresponding to a mini-
slot after a new device is assigned that mini-slot. The last equation, i.e., (2.17e),
follows from [57] (the proof of Theorem 3 therein). Specifically, the result shows
that, under a low collision probability, the AD-F for devices assigned any mini-slot
depends on the packet arrival rates of all devices in the preceding mini-slots, but not
the packet arrival rates of other devices sharing the same mini-slot.

2.5.4 AI-Assisted Protocol Parameter Selection

The proposed device assignment in the preceding section can be applied when
parameters nm, rH, rR, and rL are given. In this subsection, we propose learning-
assisted scheduling to determine the values of these protocol parameters.

The motivation for learning-assisted scheduling roots in the complexity of
choosing proper values for the protocol parameters. First, the impact of protocol
parameters nm, rH, rR, rL and the impact of device assignment are correlated.
For example, knowledge of the slot/mini-slot assignment is required to analyze the
impact of nm, while the assignment cannot be determined without knowing nm first.
Second, the effects of nm, rH, rR, rL on the performance are mutually dependent.
Consider nm and rH as an example. Both nm and rH affect the delay of HP devices.
The impact of adjusting rH depends on the value of nm, and the dependence is
further affected by the device packet arrival rate profile. As a result, we cannot
establish an analytical model for determining nm, rH, rR, and rL. On the other hand,
using brutal force to choose their values is not viable due to the large number of
diverse devices. There are usually too many candidate combinations of nm, rH, rR,
and rL, and each combination requires a re-calculation of the device assignment
using Algorithms 1 and 2. As the assignment algorithm is based on calculating
the delay and collision probability while assigning each device, the complexity of
recalculating all assignment for all combinations can be very high.15

To cope with the complexity of scheduling problem, we use a learning-based
method to capture the impact of nm, rH, rR, rL and determine their values.
Specifically, we train a DNN to learn the mapping from the combination of device
and packet arrival rate profiles and protocol parameter settings to the protocol
performance. A significant part of the training can be done offline to avoid a long

14 In practice, a guard margin may need to be applied to the estimated collision probability in
(2.17a). After all, such estimation may not be sufficiently accurate since we assume no statistical
knowledge of the packet arrival of any device other than the average arrival rate.
15 Such complexity, as the result of a mixed integer nonlinear programming, is noted in many
works, e.g., [79], some of which adopt a learning-based method.
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training duration in an online setting caused by searching for and determining
appropriate protocol parameters. The DNN assists in determining the parameters
of the proposed MAC protocol as follows. First, for each device and packet arrival
rate profile,16 we try different combinations of nm, rH, rR, and rL, use the heuristic
algorithm to obtain the assignment, and test the resulting performance using
simulations. Then, the device and packet arrival rate profile, protocol parameter
setting (nm, rH, rR, and rL), and the resulting protocol performance (as label) are
used to train and test the DNN.

The data generation, training, and testing are conducted offline. When the DNN
is well-trained, we can imitate the mapping from a device and packet arrival rate
profile and a protocol parameter setting to the protocol performance. Accordingly,
we can determine the protocol parameters online by trying different parameters on
the DNN and compare the resulting performance. Recall that the packet arrival rates
of devices remain constant in a relatively long duration, as mentioned in Sect. 2.3.
When an update of the packet arrival rates occurs, it triggers a decision on the
protocol parameters, and the DNN assists the decision making as aforementioned.

The input of the DNN includes the following two components:

• Device and packet arrival rate profile—To be flexible with the number of devices,
we divide the range of packet arrival rate into I intervals. Letting λmax and λmin

denote the maximum and minimum packet arrival rates, the width of each interval
is (λmax − λmin)/I . We count the number of HP, RP, and LP devices in each of
the I intervals and organize the corresponding numbers into three I × 1 vectors
cH, cR, and cL, respectively;

• Protocol parameter settings—The number of mini-slots in each slot (nm) and the
number of slots in each HP, RP, and LP assignment cycle (rH, rR, and rL) are the
second input component.

The input data, {cH, cR, cL, nm, rH, rR, rL}, is normalized by the Z-score
method [80] and fed to the first fully connected layer.

The DNN consist of K fully connected layers. For layer k, nk neurons are
deployed. The trainable parameters, i.e., kernels and bias, for neurons in the network
are denoted by θ . The DNN output includes the maximum and the average delay
as well as the maximum and the average packet collision probability for each of
the three device types. In addition, we adopt an indication bit in the output to
indicate whether the assignment algorithms fail to find a solution that satisfies the
performance requirements of all devices. The indication bit is 1 if the assignment
attempt fails and 0 otherwise. Overall, there are 13 output neurons introduced in the
network.

The DNN following the above-mentioned design is illustrated in Fig. 2.7. The
DNN is implemented by Keras [81], a high-level neural network application
programming interface using Tensorflow backend. The objective of the offline

16 We refer to the collective information including the number of HP, RP, and LP devices as well
as the packet arrival rate of each device as a device and packet arrival rate profile.
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Fig. 2.7 The structure of the DNN

training is to find an appropriate θ value that minimizes the loss function L(θ)

represented by the mean squared error (MSE) for regression.
Adam optimizer [82] is adopted to minimize the loss function iteratively, where

the optimizer is set with learning rate α = 1e−3 and exponential decay rates β1 =
0.9 and β2 = 0.999.

The labels, i.e., the protocol performance under specific device and packet arrival
rate profiles and the protocol parameter settings, are generated via simulations.
Although we can generate the labels offline, a very large training set may not
be practical as it could require overwhelmingly long simulations. Meanwhile, the
simulation results also demonstrate randomness, due to the randomness in the packet
arrival at each device. Given the limited training set with randomness in the labels,
the problem of over-fitting can be severe. We can use random dropout to alleviate
over-fitting and improve the robustness of the training model [83].

It is worth noting that our DNN does not directly output the best protocol
parameters {nm, rH, rR, rL}. An alternative design is to train a DNN that outputs
the best {nm, rH, rR, rL}. The difference is whether the DNN assists the decision
making or directly makes a decision. We choose the former and let the DNN learns
the mapping from various protocol parameters to the resulting performance since
this approach is more flexible. For example, if the DNN directly makes a decision,
the output may not be feasible or preferred when there are additional constraints
on {nm, rH, rR, rL}. By contrast, using our approach, we can identify different
parameter sets and compare them for a feasible or preferred solution.



46 2 Industrial Internet of Things: Smart Factory

2.6 Numerical Results

This section presents our numerical results in three parts. First, we demonstrate
the effectiveness of MsCS, SyncCS, and SMsA proposed in Sect. 2.3 and verify
our analysis in Sect. 2.4. Second, we demonstrate the performance of the device
assignment in Sect. 2.5. Last, we demonstrate the feasibility of the DNN-assisted
scheduling in Sect. 2.5.

The length of a mini-slot is important and should be chosen carefully. As men-
tioned in Sect. 2.3, the length of a mini-slot depends on the maximum propagation
delay across the coverage area and the time required for detecting the channel status.
The propagation time across a 500 m distance, which is larger than the size of
typical factories, is about 1.7µs. The channel sensing based on energy detection
can be very fast and is not considered as the bottleneck for reducing the mini-
slot length here [84]. However, the hardware/software incurred delay can vary for
different devices. To be conservative, we use the DCF slot length in IEEE 802.11ac
as the reference and set the mini-slot length to be 9µs in most of our simulation
examples [85]. Using this mini-slot length, the overhead in each slot incurred by
having nm mini-slot for channel sensing is 9 × 10−6 × nm seconds. For example,
consider a packet length of 50 bytes in the physical layer, and a data transmission
rate of 3 Mb/s, which yields a data transmission duration of 133µs. With 10 mini-
slots in each slot, the overall length of mini-slots is 90µs in every 223µs.

2.6.1 Mini-Slot Delay with MsCS, SyncCS, and SMsA

Via simulations, we evaluate the mini-slot delay17 in the cases with and without
SyncCS and SMsA and compare the numerical results with the analytical results
from Sect. 2.4. We focus on different mini-slots of one target slot. The general
settings in this subsection are as follows (unless stated otherwise):

• nm and ns are set to 10 and 100, respectively;
• Tm is set to 9µs. Tx is 133µs, i.e., the duration of a 50-byte physical-layer packet

transmitting at 3 Mb/s. Accordingly, Ts in its full length is 223µs, i.e., 10 × 9µs
+ 133µs;

• Device i is assigned a mini-slot with smaller index than the mini-slot of device j

if λi < λj ;
• 20,000 frames are simulated for each case.

Mini-slot delay with MsCS and with both MsCS and SyncCS: Fig. 2.8 shows the
results with only MsCS (i.e., no SyncCS or SMsA), with and without buffer, as well
as the results with both MsCS and SyncCS, in the case with buffer, for Poisson

17 For brevity, we use ‘mini-slot delay’ to refer to the delay of a device assigned that mini-slot.
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Fig. 2.8 Mini-slot delay of MsCS only and of MsCS and SyncCS with (a) 0.2 to 1 packets per
second per device; (b) 1 to 5 packets per second per device

packet arrivals. The overall delay includes both the base and the access delay.
The packet arrival rate of each device is randomly generated based on a uniform
distribution. Figure 2.8a corresponds to a lower packet arrival rate, i.e., in the range
between 0.2 and 1 packets per second per device, and Fig. 2.8b corresponds to a
higher packet arrival rate, i.e., between 1 and 5 packets per second per device. The
analytical results in Fig. 2.8 are based on (2.3) and (2.6) with the expected frame
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length given by (2.11), respectively. The following observations can be made:

• The difference between the analytical and numerical results is small for all mini-
slots in all cases;

• The delay increases slowly with the mini-slot index for the first several mini-slots
but faster for the last several mini-slots in the case of higher packet arrival rate;

• The difference in delay with and without buffer is insignificant under lower
packet arrival rate and significant under higher packet arrival rate;

• Without SyncCS, the delay for the first mini-slot is around 11 ms. For the last
mini-slot, depending on the packet arrival rate, the delay ranges from 15 ms in
Fig. 2.8a to 125 ms in Fig. 2.8b, less than the average packet arrival interval in all
cases;

• With SyncCS, the delay is reduced by more than 50% for each mini-slot as
compared with the case without SyncCS. In the case of a higher packet arrival
rate in Fig. 2.8b, the maximum delay decreases from about 125 ms to around
35 ms.

Overall, the numerical results demonstrate the accuracy of (2.3) and (2.6), the
practicality of accommodating multiple devices in the same slot via MsCS, as well
as the effectiveness of SyncCS.

Mini-slot delay with MsCS and SMsA: In this simulation example with SMsA
(but not SyncCS), each mini-slot accommodates 7 devices instead of one. Note that
such mini-slot usage is not optimal and is only used for illustrating the impact of
SMsA on the mini-slot delay. As the 10 mini-slots accommodate 70 devices in total,
the slot is prone to overloading if the packet arrival rate is high. Therefore, we use
low packet arrival rate in this example. Figure 2.9 shows the case (a) without and (b)
with buffer, respectively. Now that each mini-slot accommodates 7 devices, there are
7 numerical results on the delay for each mini-slot. The simulation results overlap
in Fig. 2.9, suggesting that the delay for all 7 devices in any given mini-slot is
almost identical. This is consistent with Theorem 2.3 in Sect. 2.4.5. Moreover, the
simulation results match closely with the analytical results (some details can be
found in Appendix C of [57]).

Impact of mini-slot length and frame length: We use the same settings as in
Fig. 2.9 with buffers, except for a change in the mini-slot length or the frame length.
The mini-slot usage here is still not optimal and only for showing the impact of mini-
slot and frame lengths. In Fig. 2.10a, the mini-slot length reduces to 7µs from 9µs
in Figs. 2.8 and 2.9. Comparing with Fig. 2.9b, the impact of mini-slot length on the
delay becomes evident. Accordingly, the performance of the proposed protocol can
further improve if a reduction in the mini-slot length is feasible. In Fig. 2.10b, the
mini-slot length is back to 9µs, the packet arrival rate is multiplied by 5, and the
frame length reduces to 5 slots from 100 slots. Comparing with Fig. 2.9b, the impact
of frame length on the delay and the necessity of differentiated assignment cycles
become clear. The results indicate that a very low delay is achievable if we keep the
HP assignment cycle sufficiently short.



2.6 Numerical Results 49

1 2 3 4 5 6 7 8 9 10
Mini-slot Index

0

20

40

60

80

100

120
D

el
ay

 (
m

s)

Analysis, MsCS + SMsA (no Buffer)
Simulation, MsCS + SMsA (no Buffer)

(a)

1 2 3 4 5 6 7 8 9 10
Mini-slot Index

0

20

40

60

80

100

120

140

D
el

ay
 (

m
s)

Analysis, MsCS + SMsA (with Buffer)
Simulation, MsCS + SMsA (with Buffer)

(b)

Fig. 2.9 Mini-slot delay of MsCS and SMsA with (a) 0.2 to 1 packets per second per device,
no buffer; (b) 0.2 to 1 packets per second per device, with buffer. There are 7 overlapping dashed
curves in each plot, corresponding to the simulation results. Given any mini-slot index, the 7 points
on the 7 dashed curves are for the 7 devices sharing the corresponding mini-slot. The only solid
curve in each plot gives the analytical result for all devices, since Theorem 2.3 suggests that the
delay for all devices sharing the same mini-slot is approximately the same
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Fig. 2.10 Mini-slot delay of MsCS and SMsA with (a) 0.2 to 1 packets per second per device,
7µs mini-slot, 100 slots per frame; (b) 1 to 5 packets per second per device, 9µs mini-slot, 5 slots
per frame. The 7 overlapping dashed curves in each plot are the result of 7 devices sharing each
mini-slot. The only solid curve in each plot gives the analytical result for all devices based on
Theorem 2.3
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2.6.2 Performance of the Device Assignment Algorithms

We evaluate the performance of the device assignment, i.e., Algorithms 1 and 2 in
Sect. 2.5, given nm, rH, rR, and rL. In the evaluation, MsCS, SyncCS, SMsA, as
well as differentiated assignment cycles are used, and a buffer is assumed at each
device. Again, Tm and Tx are set as 9µs and 133µs, respectively.

We consider 1000 devices with mixed packet arrival patterns. Specifically, the
number of HP, RP, and LP devices is 50, 450, and 500, respectively. A half of all the
devices, selected randomly, have Poisson packet arrivals with rate randomly selected
from the range between 1 packet per second per device and 5 packets per second
per device. The remaining devices have periodic packet arrivals. The arrival rate is
randomly distributed in the same range (i.e., [1, 5]), and a random component within
±5% of the packet arrival interval is added to each arrival instant for periodical
packets. Each slot consists of 8 mini-slots (i.e., nm = 8), and each HP assignment
cycle consists of 5 slots (i.e., rH = 5). Delay thresholds δH, δR, δL are set to 1ms,
10ms, and 80ms, respectively, while the packet collision probability thresholds ρH,
ρR, and ρL are set to 1.5%, 6%, and 10%, respectively.

A simulation duration of 2000 seconds is used to test the performance of
Algorithms 1 and 2. Figure 2.11 shows the delay and packet collision probability
of each device as well as the average for each type of devices, with two different
assignment cycle settings. The three clusters in each figure correspond to the three
groups of HP, RP, and LP devices, respectively. In Fig. 2.11a, rR and rL are 45 and
270, respectively, while rR and rL are 35 and 140 in Fig. 2.11b. From Fig. 2.11, we
observe that the preset QoS requirements for all devices are satisfied. For example,
from Fig. 2.11a, the following observations can be made:

• HP devices—average delay 0.38 ms, maximum delay 0.39 ms; average collision
probability 0.54%, and maximum collision probability 1.08%;

• RP devices—average delay 3.1 ms, maximum delay 3.7 ms, average collision
probability 1.4%, and maximum collision probability 4.8%;

• LP devices—average delay 14.2 ms, maximum delay 20.9 ms, average collision
probability 0%, and maximum collision probability 0%.

Figure 2.11 also clearly demonstrates differentiated performance achieved for
different type of devices. Note that the delay in Fig. 2.11 is smaller than that in
Figs. 2.8 and 2.9 for two reasons. First, differentiated assignment cycles enable a
very low delay for HP and RP devices. For example, each HP device gets a potential
transmission opportunity in every 5 slots in the case of Fig. 2.11, the same as in
Fig. 2.10b, instead of every 100 slots in the case of Figs. 2.8 and 2.9. Second, each
slot consists of only 8 mini-slots in the case of Fig. 2.11, instead of 10 in the case
of Figs. 2.8 and 2.9. A less number of mini-slots leads to both shorter slots, which
reduce delay for all devices, and higher slot idle probabilities, which contribute to a
further reduction in delay thanks to SyncCS.

Further, Fig. 2.11 shows the impact of assignment cycles on the performance.
Specifically, via different settings of rR and rL in Fig. 2.11a and b, the possibility
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Fig. 2.11 The performance of Algorithms 1 and 2 with 1000 devices and mixed packet arrival
patterns: (a) Delay and collision performance, rR = 45, rL = 270; (b) delay and collision
performance, rR = 35, rL = 140
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of making a trade-off between collision and delay is shown. Moreover, Fig. 2.11a
and b demonstrate how our proposed algorithms can adapt to the given protocol
parameters. In Fig. 2.11a, rL is larger and each LP device has to wait for a longer
duration before having a transmission opportunity. As a result, the probability that
an LP device has a packet to send in its assigned mini-slot can be high, and assigning
two or more LP devices the same mini-slot in such case can yield a high collision
probability. Therefore, the algorithms choose to assign each LP device an exclusive
mini-slot. In comparison, rL is much smaller in Fig. 2.11b, and thus the probability
that an LP device has a packet to send in its assigned mini-slot is lower. Therefore,
the algorithms allow LP devices to share a mini-slot at the cost of small collision
probabilities.

Figure 2.12 demonstrates the performance under the same setting as in Fig. 2.11
except: (1) there are now 350 devices, all HP, in the network; and (2) there are 4
mini-slots in each slot (nm = 4) and 6 slots in each HP cycle (rH = 6). The QoS
requirements on delay and packet collision are satisfied for all devices. The average
delay and collision probability among all devices are less than 0.26ms and 0.6%,
respectively. This result illustrates the flexibility of the proposed device assignment
algorithms in terms of adapting to different device profiles.

In the simulation examples in this subsection, the number of mini-slots, nm, and
the assignment cycles, rH, rR, and rL, are not optimized. Thus, the resulting perfor-
mance is not necessarily optimal. However, the results shown in Fig. 2.11 illustrate
the advantage of the proposed MAC protocol and the assignment algorithms, in
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Fig. 2.12 The performance of Algorithms 1 and 2 with 350 HP devices, nm = 4, rH = 6
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terms of satisfying stringent QoS, prioritization, and flexibility. Particularly, while
random access is known to have distinctive advantage for low data traffic in delay
as compared with scheduled access, e.g., as discussed in [86], we demonstrate
that appropriate scheduling, combined with well-designed access protocol, can also
achieve very low delay in a high-density MTC network.

2.6.3 DNN-Assisted Scheduling

The structure parameters of our proposed DNN are given in Table 2.2. We utilize
8200 sets of device packet arrival profiles and generate the corresponding delay
and packet collision performance via the device assignment algorithms, for various
values of nm and rR.18 Each of the 8200 sets consists of 6 different combinations
of nm and rR, yielding 49,200 data entries. We employ 80% of 49,200 data entries
as the training set, 10% as the validation set in training, and 10% as the test set. To
deal with the overfitting issue in training, we utilize the random dropout technique.
Specifically, the neurons in layers n1 and n2 have a 70% chance to be dropped off
in each training step. The gradient backpropagation is performed over data batches
of size 128 during 50 epochs.

The training loss and validation loss of the proposed DNN are shown in
Fig. 2.13a, where the output data are normalized to the range [0, 1]. The convergence
occurs after around 20 epochs. In addition, the gap between training loss and
validation loss is small, showing that the overfitting issue is alleviated by random
dropout.

We adopt the R-squared score to measure the fitness of our trained model in the
training data set. The R-squared score is calculated by

R-square =
∑

i (ŷi − ȳi )
2

∑
i (yi − ȳi )2 . (2.18)

Table 2.2 DNN structure

Layer Number of neurons Activation function Dropout

n1 1024 elu 70%

n2 1024 elu 70%

n3 512 elu –

n4 256 relu –

n5 128 relu –

n6 64 relu –

n7 13 relu –

18 We fix rH and rL in this illustration for simplicity.
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Fig. 2.13 (a) Training loss and validation loss of the proposed DNN; (b) R-squared score of the
proposed DNN

When the score is close to 1, the trained model can generate predicted results with
a reasonably small variance. The R-squared score of the proposed DNN is shown in
Fig. 2.13b, in which the score converges to a value close to 1 after 10 epochs.

We further validate the fitness of the trained DNN model with the data from
the test set. The comparison between the predicted performance metric values
and the ground truth labels is presented in Table 2.3.19 It can be seen that the

19 The LP devices always have 0 collision probability in this example (similar to the case in
Fig. 2.11a. Thus, the MSE is 0 but not meaningful in such cases. Therefore, we use two ‘-’ under
LP instead of ‘0’ in this table.
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Table 2.3 Comparison between predicted results and labels in the test set

Overall MSE
Collision probability

Maximum MSE Mean MSE

HP LP RP HP LP RP

2.3e−4 2.9e−5 – 1.8e−4 1.2e−6 – 1.6e−5

Flag bit accuracy
Delay

Maximum MSE Mean MSE

HP LP RP HP LP RP

98.5% 5.8e−9 4.0e−5 2.6e−7 5.0e−9 1.4e−5 1.5e−7

predicted results can match the ground truth labels in the test set with low MSE,
and thus the proposed DNN is able to learn the mapping from the device and packet
arrival profile and the protocol parameter settings to the resulting performance after
sufficient training.

2.7 Summary

In this chapter, we first tailor a MAC protocol for the smart factory use case in
IIoT. To increase channel utilization efficiency, we propose MsCS and SyncCS,
both of which feature distributed coordination. To prioritize devices and guarantee
the QoS requirement of HP devices, we adopt differentiated assignment cycles for
different types of devices. To further increase the supported number of devices,
we develop the idea of SMsA, which can multiply the network capacity with a
delay-collision trade-off. Thanks to the above design elements, the overall protocol
has the potential to simultaneously achieve the targets of improving channel
usage, minimizing messaging overhead, satisfying stringent QoS constraints, and
providing differentiated performance. Then, for achieving the full potential of the
proposed protocol, we customize scheduling for our proposed MAC protocol to
complete the overall connectivity solution. Based on the performance analysis, we
are able to assign devices with the due granularity and accuracy. Utilizing a trained
DNN, we manage to determine the protocol parameters efficiently. Integrating
the distributed coordination and the centralized scheduling composes the unique
strength of our tailored MAC design. As a result, the proposed MAC is capable of
supporting a large number of devices with sporadic data packets under a single AP
and a single channel, while achieving a (sub)millisecond-level delay and very low
collision probability.
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Chapter 3
UAV-Assisted Edge Computing: Rural
IoT Applications

In this chapter, we study unmanned aerial vehicle (UAV) assisted mobile edge com-
puting to optimize computing offloading with minimum UAV energy consumption.
In the considered scenario, a UAV plays the role of an aerial server to collect
and process the computing tasks offloaded by ground devices. Given the service
requirements of devices, we jointly optimize the UAV trajectory, the device transmit
power, and computing load allocation. The resulting optimization problem corre-
sponds to nonconvex fractional programming, and the Dinkelbach algorithm and
the successive convex approximation technique are adopted to solve it. Furthermore,
we decompose the problem into multiple subproblems for distributed and parallel
problem-solving. Simulation results demonstrate the effectiveness of the proposed
approach for maximizing the energy efficiency of the UAV.

3.1 Background on UAV-Assisted Edge Computing

MEC is a key enabling technology to support computing services for billions of
IoT devices [1, 2]. IoT devices can offload their computing tasks to network edges
to prolong their battery life and reduce computing delay, which benefits energy-
constrained IoT devices, e.g., energy-harvesting devices [3], and devices with
limited computing capability, e.g., smart cameras [4]. However, many IoT devices
operate in unattended areas, such as forests, deserts, mountains, or underwater
locations [5], to execute some compute-intensive applications, including pipeline
monitoring and control [6], underwater infrastructure monitoring [7], and military
operations [8]. In these scenarios, the IoT devices alone cannot support the
applications, and the computing loads cannot be offload to the cloud server due
to the sparsely deployed terrestrial communication infrastructures.
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The advancement of network infrastructure and communication technologies
facilitates a new solution, i.e., using UAVs to support the connectivity of IoT devices
in rural areas. UAVs equipped with communication and computing capability can
serve rural IoT devices. As a key technology in next-generation networks, UAV-
assisted networks have drawn significant attention from academia in recent years for
applications related to ubiquitous communication [9, 10], low latency and real-time
communication [11, 12], and post-disaster recovery [13, 14]. Extensive performance
tests and communication protocol development on UAV-assisted networks have
been conducted in recent years by 3GPP [15], which demonstrates the ability of
UAVs to provide flexible and ubiquitous services for IoT devices. With computing
capabilities, UAVs can function as mobile edge servers to collect and process
computing tasks of ground IoT devices that cannot connect to terrestrial edge
servers. The potential advantages of UAV-assisted computing networks can be
summarized as follows:

(1) Flexible computing capability deployment—UAVs can be dispatched to desig-
nated places for providing on-demand communication and computing services
to IoT devices [9, 16–18];

(2) Reliable offloading links—UAVs operate at a high altitude, providing line-of-
sight (LoS) communication links to ground IoT devices. The LoS links facilitate
reliable computing offloading;

(3) Cost-effectiveness—Compared with deploying fixed terrestrial infrastructures,
UAV-mounted servers offer a low-cost solution to deal with the computing
demands that are spatio-temporally changing.

In comparison with terrestrial network infrastructures, UAVs have their own
features, which result in additional design requirements for UAV-assisted computing
networks. The features of UAVs include

(1) Limited computing energy—The on-board energy of UAVs is limited. Thus,
UAV-mounted servers cannot provide durable computing services to IoT
devices;

(2) Maneuverability—While the maneuverability of UAVs increases the flexibility
in communication service deployment, it yields dynamic channel conditions
and operation constraints for computing resource deployment.

Moreover, the maneuverability of UAVs increases the energy demand due to
the energy consumption from aircraft engines. A UAV-mounted server needs to
move to collect data from sparsely distributed devices, while a significant portion
of UAV energy consumption is for flying around to collect data. Therefore, an
energy-efficient UAV trajectory and computing offloading strategy is important for
UAV-assisted MEC.
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3.2 Connectivity Requirements of UAV-Assisted MEC for
Rural IoT

UAV-assisted MEC provides a connectivity solution for IoT devices in rural areas.
Meanwhile, UAV-assisted networks and rural IoT introduce requirements and
constraints in connectivity.

3.2.1 Network Constraints

As aforementioned, the on-board energy of a UAV is limited. Consider the two
popular types of UAVs in the market: fixed-wing UAVs and rotary-wing UAVs. The
battery power of quad-rotor and fixed-wing UAVs can only support up to an hour
and a few days of service, respectively [19]. The maneuverability of quad-rotor
UAVs is relatively higher than that of fixed-wing UAVs. Thus, the most common
application for quad-rotor UAVs is to provide static coverage while hovering in a
designated area. On the other hand, fixed-wing UAVs have high horizontal speed
but cannot hover. Thus, the most common application for fixed-wing UAVs is to
collect computing tasks by flying above the ground devices following a designed
trajectory. A comparison between fixed-wing and rotary-wing UAVs is provided
in Table 3.1. The trajectory of UAVs should be properly designed, considering the
features of UAVs.

IoT devices in rural areas usually have no access to power grids. Therefore, they
may prefer to offload as many computing tasks to an edge server as possible, in order
to reduce their energy consumption on computing. Thus, it is necessary for a UAV
to fly around for collecting data from sparsely distributed devices, which consumes
energy. As a result, the UAV trajectory should be carefully determined to balance
the number of computing tasks collected by the UAV and the energy consumed for
collecting tasks, while finding the optimal trajectory is nontrivial.

Last, the computing energy consumption of a UAV may not be negligible even
though it is relatively small compared to the mechanical energy consumption of
the UAV. In the state-of-the-art MEC server architecture, dynamic voltage and
frequency scaling (DVFS) is adopted to adjust the power setting on a computing
device’s processors and maximize power saving in computing. With DVFS, the

Table 3.1 Comparison of between fixed-wing and rotary-wing UAVs

Maximum
height

Horizontal
speed

Vertical
speed Hovering Endurance

Fixed-wing 16 km Fast Medium Not supported
From half a day to
days or weeks

Rotary-wing 6 km Medium Fast Supported
Less than 1 h (on
LiPo battery)
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computing energy consumption for a unit time grows cubically as the computing
load increases [20]. Without proper computing load allocation, the computing
energy consumption can be excessive. Another possible consequence is that the
offloaded tasks cannot be finished in time. Furthermore, the computing load
allocation depends on the number of computing tasks offloaded by IoT devices and
collected by the UAV. Therefore, UAV trajectory design, computing load allocation,
and communication resource management are correlated in UAV-assisted MEC [21],
which makes related designs very challenging.

3.2.2 State-of-the-Art Solutions

UAV-assisted networks have been investigated in [22–24]. In [22], Wu et al. consider
trajectory design and downlink communication power control for a multi-UAV
multi-device system to maximize the throughput of ground devices in a downlink
scenario. In [23], Zeng et al. analyze the energy efficiency of a UAV-assisted
network and design a UAV trajectory for hovering above a single ground mobile
device. In [24], Tang et al. investigate a game-based channel assignment scheme for
UAVs in D2D-enabled communication networks. UAVs have also been utilized to
enhance the flexibility of MEC in [25, 26], where UAVs act as communication relays
to assist the computing offloading of ground devices. Recently, more works utilize
UAVs as aerial servers to provide edge computing services [27–29]. In [27], Jeong et
al. study UAV trajectory planning to minimize communication energy consumption
for offloading tasks from mobile devices, given a limited energy budget of the
UAV-mounted server for computing. In [28], Tang et al. propose a UAV-assisted
recommendation system in location-based social networks, while a UAV-mounted
server is deployed to reduce computing and traffic load at a cloud server. In [29],
Cheng et al. propose a computing offloading strategy in an IoT network, given pre-
determined UAV trajectories. The work aims to jointly minimize the computing
delay, device energy consumption, and server computing cost, although the energy
consumption of the UAV-mounted server is not investigated. None of the above
works discusses the energy efficiency for computing in a UAV-mounted server,
which is important for prolonging the computing service lifetime of the UAV.

3.3 Multi-Resource Allocation for UAV-Assisted Edge
Computing

To address the connectivity requirements, we investigate energy-efficient resource
management for UAV-assisted MEC in this chapter. IoT devices on the ground can
access and partially offload their computing tasks to a UAV-mounted server accord-
ing to their service requirements. The UAV flies according to a designated trajectory
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to collect the offloading data, process computing tasks, and send computing results
back to the devices. We aim to optimize the energy efficiency of the UAV, which
is defined as the ratio of the overall offloaded computing data to the UAV energy
consumption, by jointly optimizing the UAV trajectory and resource allocation in
communication and computing. The highlights of this chapter are summarized as
follows:

(1) A model for energy-efficient resource allocation for a UAV-assisted MEC
system is developed. Based on the model, communication and computing
resources are allocated, subject to device communication energy budgets,
computing capability, and the mechanical operation constraints of the UAV;

(2) We exploit optimization techniques to solve the non-convex resource allocation
problem. In order to improve scalability, we further adopt the alternating
direction method of multipliers (ADMM) technique to facilitate distributed
optimization;

(3) A spatial distribution estimation technique, i.e., Gaussian kernel density esti-
mation, is applied to predict the location of ground devices. Based on the
predicted location information, our proposed strategy can determine an energy-
efficient UAV trajectory when the device mobility and offloading requests are
ambiguous.

3.3.1 Network Model

A UAV-assisted MEC system is shown in Fig. 3.1, in which a single UAV-mounted
server is deployed to offer edge computing services for ground devices in area A.
The UAV periodically collects and processes the computing tasks offloaded from
ground devices. Each device processes the rest of the computing tasks locally if the
task cannot be fully collected by the UAV. Define the computing cycle as a duration
of T seconds. Each cycle contains K discrete time slots with equal length. Denote
the set of time slots in the cycle by K. Thus, the time length for a slot is T/K , which
is denoted by Δ.

At the beginning of each cycle, ground devices with computing tasks in area A
send offloading requests to the UAV-mounted server. Denote the set of those ground
devices by I, where I = {1, . . . , N}. Assume the ground devices in I can connect
to the UAV for all time slots in a cycle. In this work, the UAV and the devices
cooperatively determine the offloading and resource allocation strategy for each
cycle, including the UAV moving trajectory, the transmit power of ground devices,
and computing load allocation for the UAV-mounted server.1 During a cycle, the
UAV flies over the ground devices and offers the computing service according to

1 We assume that the computing load of finding the optimal strategy is negligible as compared with
the computing loads of the offloaded tasks.
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Fig. 3.1 System model
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the designated trajectory and resource allocation strategy. By the end of the cycle,
the UAV returns to a predetermined final position.

3.3.2 Communication Model

The quality of communication links between the UAV and ground devices depends
on their locations. To represent their locations, we construct a 3D Cartesian
coordinate system. For IoT device i, the horizontal coordinate at time k is denoted
by qi,k = [qx

i,k, q
y
i,k]. Assume that devices know their trajectory for the upcoming

cycle, i.e., {qi,k,∀k}. For the UAV, the horizontal coordinate at time k is denoted
by Qk = [Qx

k ,Q
y
k ]. The UAV moves at a fixed altitude, H . The UAV trajectory

plan, as an optimization variable, consists of UAV positions in the whole cycle, i.e.,
Q = [Q1; . . . ;QK ]. The average UAV velocity in slot k is given by

vk(Q) = Qk − Qk−1

Δ
,∀k ≥ 2. (3.1)

The average acceleration in slot k is given by

ak(Q) = vk(Q) − vk−1(Q)

Δ
,∀k ≥ 2. (3.2)

The magnitudes of velocity and acceleration are constrained by the maximum speed
and the maximum acceleration, which are denoted by vmax and amax, respectively.

It is assumed that the Doppler frequency shift in the communication can
be compensated at the receiver. The channel quality depends on the distance
between the UAV and devices. Due to the high probability of LoS links in UAV
communication [23], we assume that the channel gain follows a free-space path loss
model. The channel gain for device i in slot k is denoted by hi,k , given by
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hi,k(Qk) = g0

‖Qk − qi,k‖2
2 + H 2

(3.3)

where ‖·‖2 is L2 norm, and g0 denotes the received power at the reference distance
(e.g., d = 1 m) between the transmitter and the receiver. We consider two channel
access schemes: (i) orthogonal access, in which the radio spectrum bandwidth
is partitioned into N sub-channels each occupied by one device; and (ii) non-
orthogonal access, in which the bandwidth is shared among devices. Denote the
channel bandwidth for the uplink by B. The amount of data that can be offloaded by
device i in slot k is

Ri,k(δi,k,Qk) = BΔ

N
log
[
1 + δi,khi,k(Qk)P

σ 2(B/N)

]
(3.4)

under the orthogonal access model, and

Ri,k(δk,Qk)=BΔlog
[
1 + δi,khi,k(Qk)P

σ 2B+∑j �=iδj,khj,k(Qk)P

]
(3.5)

under the non-orthogonal channel model. In (3.4) and (3.5), P and σ 2 denote the
maximum transmit power of ground devices and the power spectral density of
channel noise, respectively; δi,k ∈ [0, 1] represents the portion of the maximum
power that is allocated to device i within time slot k, which is a part of the offloading
strategy; δk denotes the vector of δi,k for all i ∈ I in slot k. The received noise power
in the transmission is represented by n0, where n0 = σ 2B/N for the orthogonal
channel access model, and n0 = σ 2B for the non-orthogonal channel access model.
In non-orthogonal model, devices share the same channel to offload their tasks. The
communication of a device may interfere with that of other devices.

3.3.3 Computing Model

Due to the limited battery and the computing capability of the UAV, only a part of
tasks can be offloaded and executed in the UAV-mounted server. Full granularity in
task partition is considered, where the task-input data can be arbitrarily divided for
local and remote executions [27, 30, 31]. Accordingly, a portion of the computing
tasks are offloaded to the server while the rest are executed by the ground devices
locally. Devices upload the input data for their offloaded tasks, and the UAV
processes the corresponding computing loads of those tasks. We assume that
the computing load can be executed once the input data is received, and the
amount of data to process is equal to the size of input bits of tasks [27]. A task
partition technique is considered, which divides the input bits between the offloaded
computing load and local computing load. The overall input data size for computing
tasks of device i is denoted by Ii . We set a threshold Ǐi as the minimum the amount
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of input data required to be offloaded to the server for device i, where Ǐi ≤ Ii . The
threshold represents the part of computing tasks to be processed in the server. Thus,
the overall offloaded bits of device i is constrained as follows:

Ǐi ≤
∑

k∈K
Ri,k(δk,Qk) ≤ Ii,∀i. (3.6)

In a scenario that (3.6) holds, if tasks cannot be fully offloaded, the rest of the tasks
are processed by IoT devices locally.

After devices upload the input data, the UAV will store the received data in a
buffer for further processing. The UAV processes the received data according to
the workload allocation results. Let Wi,k denote the amount of data from device i’s
offloaded task, to be processed in slot k. The UAV can only compute the task which
is offloaded and received, and all offloaded tasks should be executed by the end of
the cycle. Therefore, the following computing constraints are given:

k∑

t=1

Ri,t (δk,Qk) ≥
k∑

t=1

Wi,t ,∀k (3.7a)

K∑

t=1

Ri,t (δk,Qk) =
K∑

t=1

Wi,t . (3.7b)

In addition, for local computing, the CPU-cycle frequency of the IoT device i

is a constant, denoted by f M
i . For the UAV-mounted server, we consider a CPU

featuring the DVFS technique. The CPU-cycle frequency can step up or down
according to the computing workload and is bounded by the maximum CPU-cycle
frequency, f U

max . As in [20, 30], the CPU-cycle frequency for the server can be
calculated by

f U
k (Wk) =

∑
i χiWi,k

Δ
≤ f U

max,∀k (3.8)

where f U
k (Wk) represents the CPU-cycle frequency in time slot k, and χi denotes

the number of computing cycles needed to process 1 bit of data.

3.3.4 Energy Consumption Model

Energy Consumption at devices The main energy consumption of devices is the
energy cost from communication and local computing. Firstly, the communication
energy consumption of device i for offloading tasks in slot k can be formulated as

Si,k(δi,k) = δi,kPΔ. (3.9)
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The overall offloading communication energy of device i is bounded by ET
i , i.e.,

∑

k

Si,k(δi,k) ≤ ET
i ,∀i. (3.10)

Therefore, the energy consumption of a device on communication can be reduced
if the UAV is closer. On the other hand, for the computing energy consumption,
we consider a lower bound of offloaded bits Ǐi , which ensures that the remaining
computing load at the device will not consume excessive computing energy locally,
i.e.,

EM
i = κχi(Ii − Ǐi )(f

M
i )2 ≤ ÊM

i (3.11)

where EM
i is the maximum computing energy that can be reached by threshold

Ǐi , and ÊM
i is a parameter representing the constraint of computing energy

consumption. The computing energy model is adopted from [20, 32]. Parameters
f M

i and κ represent the fixed CPU-cycle frequency of device i and a constant related
to the hardware architecture, respectively.

Energy Consumption at UAV-Mounted Server The main energy consumption at
the UAV-mounted server consists of the energy cost from mechanical operation and
computing. Although downlink transmission is needed in our system, this part of
energy consumption is negligible for two reasons: (1) The communication energy
is small compared to the UAV propulsion and computing energy; (2) The output
computing results usually have much less data amount compared to the input data
amount [33]. We use the refined UAV propulsion energy consumption model for
fixed-wing UAV following [23].2 The propulsion energy consumption in slot k

depends on the instantaneous UAV acceleration and velocity, given by

EF
k (Q) = γ1‖vk(Q)‖3

2 + γ2

‖vk(Q)‖2
(1 + ‖ak(Q)‖2

2

g2
) (3.12)

where g denotes the gravitational acceleration; γ1 and γ2 are fixed parameters
related to the aircraft’s weight, wing area, air density, and so on [23, 27]. The
computing energy for executing tasks from device i in time slot k is expressed as

E
C,U
i,k (Wk) = κχiWi,k

(
f U

k (Wk)
)2

. (3.13)

2 We deploy the fixed-wing UAV in the proposed system as an example. The proposed approach
can be extended to the system with a quad-rotor UAV, where the mechanical energy consumption
model is different.
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3.3.5 Problem Formulation

Our main objective is to maximize the energy efficiency of the UAV-mounted server,
subject to device task offloading constraints, UAV computing capabilities, and the
mechanical constraints of the UAV. The energy efficiency of the UAV is defined as
the ratio of the overall offloaded data to the energy consumption of the UAV in a
cycle. The energy efficiency maximization problem is formulated as follows.

max
δ,W,Q

η =
∑

i∈I
∑

k∈K Ri,k(δk,Qk)
∑

k∈K
∑

i∈I E
C,U
i,k (Wk) +∑k∈K EF

k (Q)
(3.14a)

s.t. ‖vk(Q)‖2 ≤ vmax,∀k, (3.14b)

‖ak(Q)‖2 ≤ amax,∀k, (3.14c)

QK = Qf , vK(Q) = v0, (3.14d)

0 ≤ δi,k ≤ 1, (3.14e)

(3.6), (3.7a),(3.7b), (3.8),(3.10).

In (3.14), Qf represents the designated final position of the UAV, and v0 represents
the initial velocity at the beginning of the cycle. The constraints can be categorized
into three types: 1) device QoS constraints (3.6), (3.10), and (3.14e); 2) UAV com-
puting capacity constraints (3.7a), (3.7b), and (3.8); 3) UAV mechanical constraints
(3.14b), (3.14c), and (3.14d). The optimization problem is a non-linear fractional
programming. Due to the interference among devices in the non-orthogonal channel
and the propulsion energy consumption for the fixed-wing UAV, both functions
Ri,k(δk,Qk) and EF

k (Q) are non-convex. Therefore, solving optimization problem
(3.14) is challenging. Finding the optimal solution of a non-convex problem is often
slow and may not be possible. In the following, we propose an approach to find a
local optimum efficiently.

3.3.6 Optimization Algorithm for UAV-Assisted Edge
Computing

In this section, an optimization approach is introduced to find a solution of problem
(3.14). Firstly, an inner convex approximation method is applied to approximate the
non-convex functions, Ri,k(δk,Qk), and EF

k (Q) by solvable convex functions. The
successive convex approximation (SCA) based algorithm is adopted to achieve the
local optimum of the original problem. After the approximated convex functions
are built, the fraction programming in the inner loop of the SCA-based algorithm is
handled by the Dinkelbach algorithm. Moreover, in order to improve scalability, the
problem is further decomposed into several sub-problems via the ADMM technique,
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in which the power allocation is solved by devices in a distributed manner, while the
computing load allocation and UAV trajectory planning are determined by the UAV.

Problem (3.14) is a non-convex problem due to Ri,k(δk,Qk) and EF
k (Q). To

construct an approximation that is solvable, we first introduce several auxiliary
variables, {ξi,k, ωk, li,k, Ak, Ři,k, Ê

F
i,k}. For the orthogonal channel access scheme,

the equivalent form of problem (3.14) is as follows:

max
V

η̌(V) =
∑

i∈I
∑

k∈K Ři,k
∑

k∈K
∑

i∈I E
C,U
i,k (Wk) +∑k∈K ÊF

k

(3.15a)

s.t. Ři,k ≤ BΔ

N
log(1 + ξi,k),∀i, k (3.15b)

ξi,kli,k ≤ δi,kP ,∀i, k (3.15c)

(‖Qk − qi,k‖2
2 + H 2)n0

g0
≤ li,k,∀i, k (3.15d)

ÊF
k ≥ γ1‖vk(Q)‖3

2 + γ2Ak,∀k (3.15e)

ω2
k ≤ ‖vk(Q)‖2

2,∀k (3.15f)

ωkAk ≥ 1 + ‖ak(Q)‖2
2

g2 ,∀k (3.15g)

Ǐi ≤
∑

k∈K
Ři,k ≤ Ii,∀i, (3.15h)

(3.6), (3.7a),(3.7b), (3.8),(3.10), (3.14b)–(3.14e).

Set V represents the union set of the primary and auxiliary optimization variables,
where V = {δ,W,Q, ξ ,ω, l,A, Ř, ÊF }. For the non-orthogonal channel model,
constraint (3.15b) is replaced by the following constraint:

Ři,k ≤ BΔ
[

log(1 +
∑

i∈I
ξi,k) − log(1 +

∑

j∈I/{i}
ξj,k)

]
,∀i, k. (3.16)

Lemma 3.1 Problem (3.15) is an equivalent form of problem (3.14).

Proof Firstly, to deal with the non-convex function on the numerator, i.e.,
Ri,k(δi,k,Qk), we introduce auxiliary variable Ři,k to indicate the lower bound of
the data rate for device i in slot k. Moreover, we introduce two auxiliary variables:
ξi,k , where ξi,k ≤ δi,kP/li,k , and li,k , where li,k ≥ N0/hi,k . Thus, the following
relation can be established

Ři,k ≤ BΔ

N
log(1 + ξi,k) ≤ Ri,k(δi,k,Qk) (3.17)
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where Ři,k is the epigraph form of Ri,k(δi,k,Qk). When (3.15a) is maximized, i.e.,
the numerator Ř∗

i,k is maximized, we have l∗i,k = 1/g∗
i,k , ξ∗

i,k = δ∗
i,kP/l∗i,k , and

Ř∗
i,k = Ri,k(δ

∗
i,k,Q

∗
k).

Furthermore, to deal with the non-linear function in the denominator, i.e.,
EF

k (Q), we introduce auxiliary variable ÊF
k to indicate the upper bound of the

UAV propulsion energy in slot k. For the non-linear part of the function, we
introduce two auxiliary variables: ωk , where ω2

k ≤ ‖vk(Q)‖2
2, and Ai,k , where

Ai,k ≥ (1/ωk)(1 + ‖ak(Q)‖2
2/g

2). Thus, we have

ÊF
k ≥ γ1‖vk(Q)‖3

2 + γ2Ak

≥ γ1‖vk(Q)‖3
2 + γ2

1

ωk

(1 + ‖ak(Q)‖2
2

g2
) ≥ EF

k (Q). (3.18)

Similarly, when (3.15a) is maximized, i.e., the denominator, EF
k (Q), is minimized,

ÊF∗
k = EF

k (Q∗). Therefore, problem (3.15) is equivalent to problem (3.14), and
η∗ = η̌∗. ��

Problem (3.15) includes four non-convex constraints, which are (3.15c), (3.15f),
(3.15g), and (3.16). We approximate those non-convex constraints by their first order
Taylor expansions and adopt the successive convex optimization technique to solve
the problem. New auxiliary variables, {ξ t

i,k, l
t
i,k, ω

t
k, A

t
k , vk, z

t
i,k}, are introduced

to represent the corresponding estimated optimizers at the previous iteration of
optimization, i.e., iteration t . The SCA-based algorithm iterates until the estimated
solution reaches to a local optimum. Constraint (3.15c) can be approximated as
follows:

‖ξi,k + li,k, ξ
t
i,k − lti,k, xi,k − 1‖2 ≤ xi,k + 1 (3.19)

where

xi,k = δi,kP − (ξ t
i,k − lti,k)(ξi,k − li,k)

2
.

Constraint (3.15f) can be approximated by

ω2
k ≤ ‖vt

k‖2
2 + 2(vt

k)
T (vk(Q) − vt

k). (3.20)

Constraint (3.15g) can be approximated by

‖ωk − Ak, ω
t
k + At

k, yk − 1, 2,
2ak(Qk)

g
‖2 ≤ yk + 1 (3.21)

where

yk = (ωt
k + At

k)(ωk + Ak)

2
.
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Constraint (3.16) can be approximated as follows:

Ři,k ≤ BΔ

N

[
log(1 + ξi,k + ei,k) − log(1 + et

i,k) − ei,k − et
i,k

ln 2(1 + et
i,k)

]
(3.22)

where ei,k =∑j∈I/{i} ξi,k .

Lemma 3.2 Non-convex constraints (3.15c), (3.15f), (3.15g), and (3.16) can be
approximated by the convex forms in (3.19)–(3.22). The solution of the approxi-
mated problem is a local maximizer of problem (3.14), which provides the lower
bound of the maximum energy efficiency that can be achieved.

Proof Constraint (3.15c) can be transformed into the following equivalent form:

(ξi,k + li,k)
2 − (ξi,k − li,k)

2 ≤ 4δi,kP (3.23)

which is difference of convex functions [34]. Then, we approximate the second part
of the equation by Taylor expansion,

(ξi,k − li,k)
2 ≈ (ξ t

i,k − lti,k)
2 +
[

2ξ t
i,k − 2lti,k

2lti,k − 2ξ t
i,k

]T [
ξi,k − ξ t

i,k

li,k − lti,k

]
(3.24)

Further, we reformulate the approximated equation as the constraints in (3.19) with a
cone expression. Moreover, constraint (3.15g) is approximated by constraint (3.21)
in a similar way. Constraints (3.15f) and (3.16) are approximated by (3.20) and
(3.22), respectively, by first order Taylor expansion to obtain the lower bound on the
squared norm and the subtracted term.

All the approximated constraints, (3.19)–(3.22), are stricter than their original
counterparts, guaranteeing that the solution of the approximated problem is strictly
smaller than the original optimum. For example, consider the optimal ξi,k and li,k
obtained by solving the approximated problem, which are denoted by ξa

i,k and lai,k .
These two variables are bounded by constraint (3.19) in the approximated problem.
Comparing (3.19) with the original constraint (3.15c) and considering the property
of the Taylor expansion, we have ξa

i,kl
a
i,k + Δapprox ≤ δi,kP , where Δapprox ≥ 0.

Thus,

BΔ

N
log(1 + ξa

i,k) ≤ BΔ

N
log(1 + δi,kP

lai,k
). (3.25)

Moreover, due to lai,k ≥ 1/gi,k , we have

BΔ

N
log(1 + δi,kP

lai,k
) ≤ Ri,k(δi,k,Qk). (3.26)



76 3 UAV-Assisted Edge Computing: Rural IoT Applications

Therefore, the approximation on constraint (3.15c) leads to Ř∗
i,k < Ri,k(δi,k,Qk).

Other approximated constraints can be proven similarly to show that the
approximated objective function provides the global lower bound for original
objective function (3.14). Moreover, due to the gradient consistency in the
first order estimation, the SCA algorithm will stop when a local optimizer
is found. ��

Based on Lemmas 3.1 and 3.2, the SCA-based algorithm is summarized in
Algorithm 3, where η̌(V;At ) represents the energy efficiency η̌(V) in (3.15) with
the given value in auxiliary variable set At . Note that the approximated problem
inside the loop (Steps 3 and 4 in Algorithm 3) is a fractional programming problem
and non-convex. We will find the optimal solution of the approximated problem in
the remainder of the section. The convergence of SCA has been proven in [34], and
the algorithm will stop after a finite number of iterations if a local optimum exists.

Algorithm 3 SCA-based algorithm for solving problem (3.15)

1: Initialize the auxiliary variables A0 = {ξ0
i,k, ω

0
k , l

0
i,k, A

0
k, Ř

0
i,k, Ê

F,0
i,k } and loop index t = 0.

2: Solve the approximated problem (3.27) for given A
t , and denote the optimal solution for

auxiliary variables by A
t+1:

max
V

η̌(V;At ) (3.27)

s.t. (3.6), (3.7a),(3.7b), (3.8),(3.10), (3.14b)–(3.14e),

(3.15d), (3.15e), (3.15h), (3.19)–(3.20),

(3.15b), in the case of orthogonal channel,

(3.22), in the case of non-orthogonal channel.

3: Update t = t+1. The difference of the solutions between two adjacent iterations, i.e., ‖At+1−
A

t‖, is below a threshold θ1.

Problem (3.27) is a fraction programming problem. We can adopt the Dinkelbach
algorithm to find the optimal solution. The objective function, (3.27), can be
rewritten in the following parametric programming form,

F t(α) = max
V

{∑

k∈K

∑

i∈I
Ři,k − α

[∑

k∈K

∑

i∈I
E

C,U
i,k (Wk)

+
∑

k∈K
ÊF

k

]|V ∈ F t
}

(3.28)

where F t represents the feasible set of problem (3.27) at the t-th iteration in
Algorithm 3. The function, F t(α), is a monotonic decreasing function of α. Let
α∗ denote the solution of F t(α∗) = 0. Due to the monotone decreasing property of
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Algorithm 4 Dinkelbach algorithm for solving problem (3.27)

1: Initialize α0 = 0 if t = 0, α0 = α∗ in loop t − 1 if t ≥ 0, and the loop index m = 0.
2: Solve problem (3.28) for given αm, and denote the solution for the problem by Vm

d .
3: Update the Dinkelbach auxiliary variable αm+1 = η̌(Vm

d ;At ).
4: m = m + 1. F t (αm+1) ≤ θ2.

F t(α), F t(α∗) = 0 if and only if α∗ is equal to the optimal result of problem (3.27),
i.e., α∗ = η̌(V∗;At ) [35]. The algorithm for solving problem (3.27) is shown in
Algorithm 4.

Due to the nature of the SCA-based algorithm and Dinkelbach algorithm, we can
further reduce the number of iterations based on the following Lemma.

Lemma 3.3 Denote optimal Dinkelbach parameter α∗ for two consecutive SCA
iterations by α∗(t − 1) and α∗(t). We have α∗(t − 1) ≤ α∗(t), and F t(α∗(t − 1)) ≥
F t(α∗(t)) = 0.

Proof Denote the optimization result and the corresponding Dinkelbach parameter
at iteration t − 1 by V∗(t − 1) and α∗(t − 1), respectively. From Dinkelbach
algorithm, we have α∗(t − 1) = η̌∗(V∗(t − 1);At−1) ≤ η̌∗(V∗). As shown
in Lemma 3.2, the approximated function provides the global lower bound of
the original optimization function, and the results are inside the feasible set of
the approximate optimization function for the next iteration. Thus, η̌∗(V∗(t −
1);At−1) ≤ η̌(V∗(t − 1);At ) ≤ η̌∗(V∗(t);At ). Therefore, α∗(t − 1) ≤ α∗(t).
Moreover, due to the monotonically decreasing nature of F(α), F t(α∗(t − 1)) ≥
F t(α∗(t)) = 0. ��

Given Lemma 3.3, the initial point in iteration t , i.e., α0(t), in Algorithm 4 can
be set at α∗(t −1) rather than 0, so that the computing efficiency of the optimization
algorithm can be further improved.

By now, the UAV computing energy efficiency maximization problem has
been transformed into a solvable form. However, solving problem (3.28) is time-
consuming due to multiple second order cone (SOC) constraints and requires the
local information exchange between the UAV and devices. Therefore, we propose
a distributed solution, in which devices maximize the amount of their offloaded
computing tasks in parallel while the UAV aims to minimize its energy consumption.
The original problem is decomposed into several sub-problems without losing
optimality, and the UAV and devices solve the optimization problem cooperatively.
Local information, such as the mobility of devices and the propulsion energy
consumption function of the UAV, is not required to be shared among devices and
the UAV.

We adopt the ADMM technique to decompose problem (3.28) [36]. The
optimization solution is achieved in an iterative manner. Firstly, we introduce an
auxiliary variable, G, which is defined as:
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G =
⎡

⎢⎣
Q̈1,1 . . . Q̈N,1 W1,1 . . . WN,1

...
. . .

...
...

. . .
...

Q̈1,K . . . Q̈N,K W1,K . . . WN,K

⎤

⎥⎦

T

where Q̈i,k denotes the UAV location in time slot k expected by device i. Each
device solves a part of the matrix Gi =[Q̈i,1,Wi,1; . . . ; Q̈i,K,Wi,K ], and updates
it to the UAV. Then, the UAV determines its trajectory, Q, and overall computing
load allocation according to the uploaded matrix G. Denote the overall amount of
computing load processed in slot k at the UAV by Vk , where V = [V1; . . . ;VK ].
The results determined by the UAV are summarized in matrix H, where H =
[I(N×1)Q;V], and I(N×1) is a vector where all N entries are 1. By the end of the
ADMM algorithm, the expected UAV trajectories should be unified and follow
the flying constraints. The computing load should be allocated under the UAV
computing capability. Thus, in the final optimal solution, the following constraint
should be satisfied:

P
T
G = H (3.29)

where

P =
[
I(N×N) 0(N×1)

0(N×N) χ

]
.

Vector χ represents the computing intensity for devices’ tasks, where χ =
[χ1; . . . ;χN ]. The sub-matrices, I(N×N) and 0(N×N), denote N -by-N identity
matrix and zero matrix, respectively.

In addition, for the non-orthogonal channel model, we introduce another aux-
iliary variable, ei,k , which denotes the summation of ξj,k in all other devices
except device i. This variable is used to decorrelate ξj,k in (3.16) to facilitate an
independent optimization process at each device. At the end of the optimization,
ei,k should be equal to

∑
j∈I/{i} ξj,k . For simplicity of presentation, we transform

this constraint to

1

N
(ei,k + ξi,k) = ξ̄k (3.30)

where ξ̄k is the mean of {ξ1,k, . . . , ξN,k}. Then, the augmented Lagrangian function
is formulated as follows:

Γ (VA) = −
∑

k∈K

∑

i∈I
Ři,k + α

[∑

k∈K

∑

i∈I
E

C,U
i,k (W) +

∑

k∈K
ÊF

k

]

+Tr
{
UT

1 (PT
G − H)

}+ ρ1

2
‖PT

G − H‖2
F
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+�
∑

k∈K

∑

i∈I

{
U2,i,k[ 1

N
(ei,k + ξi,k) − ξ̄k]

+ρ2

2
[ 1

N
(ei,k + ξi,k) − ξ̄k]2

}
(3.31)

where ‖·‖F represents the Frobenius norm, VA = {V,G,H,U1,U2}, U1 ∈
R(N+1)×K and U2 ∈ RN×K are Lagrange multipliers for the two auxiliary
constraints, (3.29) and (3.30), respectively. Two parameters, ρ1 and ρ2, are penalty
parameters. The parameter � indicates the channel model, with � = 1 for the non-
orthogonal channel access scheme, and � = 0 for the orthogonal channel access
scheme.

Problem (3.28) can be separated into two sub-problems. The sub-problem solved
in device i is organized as follows:

min
V1

−
∑

k∈K
Ři,k+Tr

{
(Un−1

1,i )T PT
i Gi

}+ ρ1

2
‖PT

i Gi −J
n−1
i ‖2

F

+ �
{Un−1

2,i,k(ei,k)

N
+ ρ2

2
(
ei,k − en−1

i,k

N
+ θn−1

i,k )2

+
∑

j∈I/{i}
[−Un−1

2,j,kξi,k

N
+ ρ2

2
(

θn−1
j,k

N − 1
+ ξn−1

i,k − ξi,k

N
)2]
}

(3.32a)

s.t.
(‖Q̈i.k − qi,k‖2

2 + H 2)n0

g0
≤ li,k,∀i, k (3.32b)

(3.7a),(3.7b),(3.10),(3.14e), (3.15h), (3.19),

(3.15b), if � = 0,

(3.22) , if � = 1.

The sub-problem solved in the UAV is organized as follows:

min
V2

α
[∑

k∈K

κV 3
k

Δ2
+
∑

k∈K
ÊF

k

]−Tr
{
(Un

1)T H
}+ ρ1

2
‖PT

G
n−H‖2

F (3.33a)

s.t.
Vk

Δ
≤ f U

max,∀k, (3.33b)

(3.14b),(3.14c),(3.15e), (3.21),(3.20).

In (3.33), (x)n−1 represents the variable x obtained in iteration n− 1. The Lagrange
multipliers, U1 and U2, are updated at each iteration as follows:

Un
1 = Un−1

1 + ρ1(P
T
G

n − H)n (3.34a)

Un
2,i,k = Un−1

2,i,k + ρ2θ
n
i,k (3.34b)
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where

θn
i,k = 1

N
(en

i,k + ξn
i,k) − ξ̄ n

k (3.35)

represents the difference between the expected interference and the real interfer-
ence. At iteration n, problem (3.32) is solved by each device individually. The
optimization variable set V1 includes {δi,k,Wi,k, Q̈i,k, ξi,k, l, Ř, ei,k} for all k ∈ K.
To decompose the auxiliary constraint (3.29) for each device i, we introduce sub-
matrices Pi , Hi , and U1,i : Pi is a sub-matrix sliced from P, where Pi = diag{1, χi};
matrix Ji is obtained from the UAV information, where J

n
i = [Qn;Vn/N +

χiWi
n −∑j∈I χjWn

j /N ]; sub-matrix U1,i is sliced from the dual variable, where
U1,i = [U1(i, :);U1(N +1, :)]. Subsequently, problem (3.33) is solved by the UAV.
The optimization variable set V2 includes {Q,ω,A, ÊF }.
Lemma 3.4 If the initial value of {e0, ξ0,U0

1,U
0
2} is shared and unified among all

devices and the UAV, only information from the UAV required for computing the
sub-problem on the device side at each iteration is {Jn−1

i , θn−1}.
Proof If the initial value is unified among the UAV and devices, the dual variables
are not required to be shared and can be computed locally by the UAV and devices.
For computing dual variable U1,i at n, the following knowledge is required: updated
global value Jn−1

i , the historical value for local information G
n−1
i , and the historical

value of dual variable Un−1
1,i . Therefore, if U0

1,i is identical to all devices and the
UAV, Un

1,i can be synchronized according to the historical value and the value from
the global variable. Similarly, U2 can be evaluated by devices if the initial value is
known. ��

Algorithm 5 ADMM Algorithm for solving problem (3.28)

1: Initialize variables {e0, ξ0, θ0,H0,G0} and dual variables {U0
1,U

0
2}. Loop index n = 0.

Repeat
2: For each device i:
3: If � = 0: Wait until receive updated J

n−1
i .

4: If � = 1: Wait until receive updated {Jn−1
i , θn−1}.

5: Calculate the dual variable Un−1
1,i = Un−2

1,i + ρ1(P
T
i G

n−1
i − J

n−1
i ).

6: Calculate the dual variable U2 for all i ∈ I by (3.34b).
7: Solve problem (3.32).
8: If � = 0: Send G

n
i to the server.

9: If � = 1: Send {Gn
i , e

n
i , ξ

n
i } to the server.

10: For the UAV-mounted server:
11: Gather information from devices to form matrix G

n.
12: Solve problem (3.33), and update H

n.
13: Update dual variable Un

1 by (3.34a)
14: If � = 1: Update variables θn

i,k∀i, k by (3.35), and send the variables to devices.
15: n = n + 1.

Until |Γ n(V,G,V,U1,U2) − Γ n−1(V,G,V,U1,U2)| ≤ θ3.
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Under the condition in Lemma 4, the distributed algorithm is given in Algo-
rithm 5. In each optimization iteration, the devices compute and share matrix G with
the UAV, and the UAV computes and shares matrix J to the devices. Meanwhile,
when � = 1, excepting contributing matrix Gi , device i needs ej,k and ξj,k from
other devices j ∈ I/{i} to evaluate the interference.

By the problem decomposition, at the device side, each device aims only to
maximize its own offloading data given the UAV trajectory computed by the UAV-
mounted server and the interference environment in the previous iteration. At the
UAV-mounted server side, the UAV aims to minimize energy consumption under
the devices’ expected UAV trajectories to collect enough workload. The trade-off
between the received offloaded tasks and the energy consumption is controlled
by parameter α which is updated in the ADMM algorithm loop. Meanwhile, the
corresponding variables and constraints are split into two groups. This introduces
three advantages. Firstly, local variables and parameters, such as device location
and device offloading constraints, are not required to be uploaded to the UAV.
Similarly, UAV’s mechanical parameters and settings are not required to be shared
with devices for offloading optimization. Secondly, less re-configuration is required
when the UAV is replaced. Thirdly, the main computing load in solving the problem
is from the SOC programming. The SOC constraints are now decomposed and
solved by devices in parallel such that the computing efficiency can be improved.
For the ADMM algorithm, in the orthogonal channel model, there are two main
distributed blocks: the device side and the UAV side. The convergence of ADMM is
guaranteed when the number of blocks is no more than two. In the non-orthogonal
channel model, since each device is required to compute interference variable ei,k

parallelly, convergence is not always guaranteed. Proximal Jacobian ADMM can be
adopted to ensure the convergence, in which the proximal term, τ

2 ||xi − xk
i ||2, is

further combined in the primal problem of the current algorithm [37].

3.3.7 Proactive Trajectory Design Based on Spatial
Distribution Estimation

So far, we have introduced the trajectory design and resource allocation for the
scenario that all computing load information and device location are known.
However, as some IoT devices are mobile [38], knowing their future positions during
the upcoming computing cycle can be difficult. Moreover, devices needs to send
the offloading requests at the beginning of the cycle. It means that the device may
buffer the computing task until a new cycle begins, which introduces extra delay for
waiting to send the request. Thus, the maximum queue delay may reach T seconds.
To deal with the issues, in this subsection, we introduce an approach to estimate
the spatial distribution of device locations in a cycle. The mobility of devices
is predicted by an unsupervised learning tool, kernel density estimation method
[39], and the computing load of each device is considered in a stochastic model
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correspondingly. The UAV trajectory is optimized via the estimated knowledge
about ground devices. Thus, the UAV can collect the offloaded tasks of devices
without requests in advance.

To estimate the location of devices, each device needs to report its current
location periodically. The sampled location of device i is represented by qi . We
use the sampled location to estimate the spatial distribution of devices for the cycle,
where the probability density function for the device at (x, y) is denoted as f (x, y).

In order to compute f (x, y), consider a small region, R, which is a rectangle area
with side length of hx and hy , i.e., Parzen window. To count the number of devices
within the region, we define the following function to indicate if device i is in the
area:

C(qx
i , q

y
i ;R) =

{
1, if max{ ||qx

i −x||
hx

,
||qy

i −y||
hy

} ≤ 1
2

0, otherwise
(3.36)

where (x, y) is the central point of the area. Thus, for a large N value, the general
expression for non-parametric density estimation is [39]

f (x, y) = 1

Nhxhy

∑

i∈I
C(qx

i , q
y
i ;R). (3.37)

To establish a continuous estimation function, a smooth Gaussian kernel is applied,

f̂ (x, y) = 1

N
√

hxhy

∑

i∈I

1

2π
e
−[ (qx

i
−x)2

2hx
+ (q

y
i

−y)2

2hy
]

(3.38)

which f̂ (x, y) is the distribution obtained by Gaussian kernel estimation. In (3.38),
hx and hy represent the bandwidth of the Gaussian kernel rather than the width of
the Parzen window. To improve the estimation quality, the proper bandwidth, hx and
hy , needs to be selected to minimize the error between the estimated density and the
true density. Here, the maximum likelihood cross-validation method [39] is used to
determine bandwidth hx and hy . The optimal bandwidth is

[h∗
x, h

∗
y] = argmax

{
1

N

∑

i∈I
log f̂−i (q

x
i , q

y
i )

}
(3.39)

where f̂−i (q
x
i , q

y
i ) is the estimated distribution in which device i is left out of the

estimation.
In order to apply the estimated distribution into our proposed approach, we divide

the working area of the UAV, A, into G × G sub-areas. For each sub-area Ai , there
is a virtual device located at the center of the area. The virtual device carries all
the computing tasks in the sub-area. It is assumed that the distribution of the task
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input data size and device spatial location are independent. The expected length of
input bits for the tasks generated by a device is denoted by E[X]. Thus, the expected
length of computing bits generated inside the sub-area Ai is

E[Ii] = E[X]E[Ni] = E[X]
∫

(x,y)∈Ai

f̂ (x, y)dxdy (3.40)

where E[Ni] denotes the expected number of devices in the sub-area Ai . Our
proposed approach can now solve the problem: In the new problem, there are G2

virtual devices participating in the computing task offloading, and virtual device i

has E[Ii] computing load to be completed in a cycle. The location of virtual device
i is fixed at the center of the sub-area. For the orthogonal channel model, virtual
device i shares a portion of E[Ni]/N of the channel bandwidth. As G increases, the
performance of the estimation will be improved correspondingly.

3.4 Numerical Results

In this section, we evaluate the performance of our proposed optimization approach.
The parameter setting is given in Table 3.2. The channel gain, g0, is −70 dB.
Let p represent the percentage of computing tasks offloaded to the server, i.e.,
p = (Ǐi/Ii) ∗ 100%. Devices have homogeneous offloading requirements in the
simulation, i.e., ET

i and p are identical for all devices. Consider both the non-
orthogonal channel access scheme, denoted by “NO", and the orthogonal channel
access scheme, denoted by “O". We consider the circular trajectory scheme as
a benchmark, where the UAV moves on a circle within circular area centered at
(0.5,0.5) km, and the radius is predefined. Two network scenarios are considered: a
three-device scenario and a four-device scenario. In the three-device scenario, there
are three devices located at (0,1) km, (1,1) km, and (1,0) km, as shown in Fig. 3.2a.
At the beginning of the cycle, the UAV moves from the location (0,0) at an initial
speed (−10,0) m/s. By the end of the cycle, the UAV returns to the final designated
position at (0.5,0) km. In the four-device scenario, there are four devices located
at randomly generated locations. The devices travel at constant speeds randomly

Table 3.2 Parameter setting for the computing scenario with three IoT devices

Parameter Value Parameter Value

B 3 MHz κ 10−28

σ 2 −80 dBm/Hz γ1 0.0037

χi 1550.7 γ2 500.206

Δ 1.5 s H 100 m

amax 50 m/s2 P 100 mW

vmax 35 m/s K 50
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Fig. 3.2 Optimal UAV trajectories with different parameter settings: (a) the three-device scenario;
(b) the four-device scenario with device mobility, where the solid straight lines represent device
trajectories, and the arrows represent device moving directions
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selected from [−3,−3] m/s to [3,3] m/s, as shown in Fig. 3.2b. The UAV moves
from location (200,200) m at an initial speed (−10,0) m/s and returns to the initial
position at the end of the cycle.

The UAV trajectory results obtained by the proposed approach are shown in
Fig. 3.2. In the three-device case shown in Fig. 3.2a, the UAV takes most of the time
moving towards and stays around the location of device 2 due to high computing
task loads of the device. With a higher minimum offloading requirement, p, the
UAV moves closer to devices in order to collect more offloading tasks. Similarly,
with a lower maximum communication energy requirement, ET

i , the UAV also
moves closer to devices to reduce the device’s offloading communication energy
consumption. Moreover, since the non-orthogonal access method has a higher
channel capacity, under the same condition, the trajectory of the non-orthogonal
case shrinks to preserve the mechanical energy consumption as compared to the
orthogonal channel case. Similar results can be obtained in the four-device case, as
shown in Fig. 3.2b.

The comparison of the energy efficiency with different settings are shown in
Fig. 3.3. In Fig. 3.3a and b, the x-axis represents the iteration number of the
SCA-based algorithm loop. For both scenarios, with less task offloading demands,
the energy efficiency improves due to the expanded optimization feasible set.
In contrast, with more task offloading demands, the energy efficiency decreases
significantly due to high energy consumption for the UAV to move closer to the
devices.

For the three-device case, the ratio between the offloaded data amount and the
overall computing data amount is shown in Fig. 3.4. The parameter setting for
the indexes is given in Table 3.3, where the results using the proposed approach
are shown in 1-6, and the results with the circular trajectory are shown in 7-
9. For all scenarios, the proposed approach can meet the minimum offloading
requirement, while the circular trajectory scheme cannot. Moreover, when the
maximum communication energy requirement, ET

i , increases, the UAV can collect
more data even though its trajectory is further away from devices than in the case
with a lower ET

i value. The UAV collects extra offloaded tasks, which is beyond the
devices’ requirement, to improve its energy efficiency.

The trade-off between the maximum offloading energy, ET
i , and the energy

efficiency in the three-device case is shown in Fig. 3.5a. As ET
i increases, the energy

efficiency of the UAV increases at first and hits the ceiling with a high ET
i . At

that point, ET
i is not the factor that limits the energy efficiency performance since

all device’s computing data is collected, as shown in Fig. 3.5c. When the energy
efficiency reaches the maximum value, the UAV will find a path that has minimum
energy consumption, given that all tasks are offloaded. Furthermore, our proposed
approach can improve the energy efficiency significantly compared to the circular
trajectory.

The magnitudes of the UAV acceleration and velocity in the three-device case
are shown in Fig. 3.6a and b, respectively. The final velocity is constrained to be
equal to the initial velocity. Note that the optimal velocity cannot be zero due to the
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Fig. 3.3 Energy efficiency versus main loop iteration number with different trajectory designs: (a)
the three-device scenario; (b) the four-device scenario with device mobility
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Fig. 3.4 The ratio between the offloaded task data amount and the overall computing task data
amount generated by devices with different parameter settings

Table 3.3 Parameter setting for the computing scenarios in Fig. 3.4

Index p ET
i Index p ET

i Index Radius ET
i

1 90% 0.5 J 4 60% 0.5 J 7 200 m
0.5
J

2 90% 0.8 J 5 60% 0.8 J 8 200 m
0.8
J

3 90% 1.1 J 6 60% 1.1 J 9 200 m
1.1
J

characteristic of fixed-wing UAV. With the lower maximum energy requirement,
both magnitudes of acceleration and velocity increase, such that the UAV can move
closer to devices. With the higher energy requirement, the fluctuation on velocity
and acceleration decreases to reduce the propulsion energy consumption of the UAV.

The ratio of the actual allocated transmit power to the maximum power, δi,k , for
the three devices in a cycle is shown in Fig. 3.7a. Note that the overall offloading
communication energy is limited. For the device with a high offloading demand,
i.e., device 2, the ratio is maximized when the UAV moves close to it, while the
ratio is minimized when the UAV moves away from it. The device tends to preserve
the communication energy and starts the offloading only when the data rate is
high. However, for device 3, the transmit power is allocated when the UAV is
far away from the location of the device for two reasons: Firstly, the maximum
communication energy of the device allows uploading the data even though the
device transmission efficiency is low. Secondly, the UAV-mounted server prefers
collecting the data in advance such that it can balance the computing load to reduce
the computing energy cost.

The computing load allocation of the server in the three-device case is shown
in Fig. 3.7b. Since the energy consumption increases cubically as the computing
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Fig. 3.5 (a) Energy efficiency versus the maximum offloading communication energy with
different settings. (b) Overall energy consumption in a cycle versus the maximum offloading
communication energy. (c) Overall offloaded bits in a cycle versus the maximum offloading
communication energy

load in a unit time increases (based on (3.8) and (3.13)), the most energy-efficient
computing load allocation policy is to balance the computing loads among time
slots. As shown in Fig. 3.7b, the computing loads executed in a time slot may keep
increasing at the beginning of a cycle for collecting the computing tasks and, then,
remain at a fixed value for minimizing the computing energy consumption.
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3.5 Summary

In this chapter, an optimization approach is presented to maximize the energy
efficiency of a UAV-assisted MEC system, where the UAV trajectory design and
resource allocation have been jointly considered. The non-convex and non-linear
energy efficiency maximization problem has been solved in a distributed manner.
Moreover, the device mobility estimation has been adopted to design a proactive
UAV trajectory when the knowledge of device trajectory is limited. This study
provides some insights on UAV optimal trajectory design for providing on-demand
edge computing service for remote IoT devices.
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Chapter 4
Collaborative Computing for Internet
of Vehicles

In this chapter, a collaborative edge computing framework is presented to reduce
computing service latency and improve service reliability for vehicular networks.
First, a task partition and scheduling algorithm is proposed to decide the workload
allocation and the execution order of tasks offloaded to edge servers. Second,
an artificial intelligence based collaborative computing approach is developed to
determine the task offloading, computing, and result delivery policy for vehicles.
Specifically, the offloading and computing problem is formulated as a Markov
decision process. A deep reinforcement learning technique, i.e., deep deterministic
policy gradient, is adopted to find the optimal solution for a complex urban
transportation network. Our approach minimizes the service cost, which includes
computing service latency and service failure penalty, via the optimal workload
assignment and server selection in collaborative computing. Simulation results show
that the proposed learning-based collaborative computing approach can adapt to a
highly dynamic environment and perform well.

4.1 Background on Internet of Vehicles

Vehicular communication networks have drawn significant attention from both
academia and industry in the past decade. Conventional vehicular networks aim
to improve the driving experience and safety via data exchange using vehicle-to-
everything (V2X) communications. As the communication capacity keeps increas-
ing in the 5G era, the concept of vehicular networks has been extended to
Internet of Vehicles (IoV). Via the integration of communication and computing
in vehicular networks, IoV targets interactive vehicular applications, such as
assisted/autonomous driving, platooning, urban traffic management, and on-board
infotainment services [1, 2].
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The IoV is anticipated to address the challenges of modern transportation
networks. Vehicles can play the role of intelligent sensors to sense the conditions
of a transportation network, such as traffic jams and accidents. Within the IoV,
vehicular networks can become a platform to gather and analyze sensor data and
provide information for vehicles, such as the HD maps for autonomous driving. The
information can be analyzed by vehicles to facilitate intelligent transportation, such
as traffic congestion relief, fuel consumption, and pollution reduction. Moreover,
on-board applications can enhance the traveling experience of passengers. There-
fore, the IoV can lead to a revolution in various sectors of the automotive industry,
including vehicle manufacturing, energy, automation, and software.

Although the IoV is promising, realizing IoV applications faces challenges.
One of the obstacles is the limited on-board computing capability at vehicles.
For example, a self-driving car with ten high-resolution cameras may generate 2
gigapixels of data per second, while 250 trillion computing operations per second
are required to process the data promptly [3]. Supporting such compute-intensive
applications on vehicular terminals is energy-inefficient and time-consuming. The
MEC is a possible solution for supporting low-latency and energy-efficient comput-
ing services for vehicles [4–6]. Via vehicle-to-infrastructure (V2I) communications,
resource-constrained vehicles can offload their compute-intensive tasks to highly
capable edge servers co-located with roadside units (RSUs) for task processing.
Meanwhile, compared with cloud computing, the delay caused by task offloading
can be significantly reduced in MEC due to the proximity of edge servers to vehicles
[7]. Consequently, applications that require high computing capabilities, such as
path navigation, video stream analytics, and objective detection, can be enabled in
IoV by MEC [8]. Despite the advantage brought by MEC, new challenges have
emerged in task offloading and computing. In vehicular networks, the high mobility
of users leads to intermittent communication links [9], while an edge server may
take some time to execute the offloaded tasks. Due to the non-negligible computing
time and the limited communication range of vehicles, a vehicle may travel out
of the coverage area of an edge server during a computing session, resulting in a
service disruption. Therefore, proper computing resource management is required
to support seamless MEC in highly dynamic vehicular networks.

4.2 Connectivity Challenges for MEC

The main challenge in supporting IoV applications is to maintain the connectivity
between an edge server and vehicles during a computing session. In this section,
we review existing research on computing offloading and introduce two main
approaches for seamless edge computing in IoV.
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4.2.1 Server Selection for Computing Offloading

Computing offloading, i.e., a vehicle offloading computing tasks to an edge server, is
the first step of edge computing. When the communication coverage of edge servers
overlaps, vehicles may be able to connect to multiple edge servers. An edge server
with larger communication coverage can potentially maintain a longer connection
duration for a vehicle, which can reduce the chance of service disruption and the
communication overhead for migrating computing services across edge servers.
Therefore, the mobility of vehicles impacts computing offloading policy, while
associating multiple vehicles with differentiated mobility and locations to multiple
edge servers is a challenging problem.

The problem of computing offloading has been investigated in many research
works in the context of vehicular networks [10–12], where the main objective is
to minimize service delay by edge server selection. In [13–15], machine learning
techniques are used to make offloading decisions for vehicles via predicting their
trajectories. In [13], Sun et al. focus on task offloading and execution utilizing
computing resources on vehicles, i.e. vehicular edge. An online learning algorithm,
i.e., multi-armed bandit, is utilized to determine the association between vehicles
and edge servers. In [14], Ning et al. apply a Deep Reinforcement Learning (DRL)
approach to jointly allocate communication, caching, and computing resources in a
dynamic vehicular network.

Even with proper edge server selection for computing offloading, it is possible
that vehicles travel out of the communication coverage of an edge server during
their computing sessions. To ensure that vehicles can obtain their computing results
at the end of a computing session, multiple edge servers may need to collaborate to
provide seamless connectivity for vehicles.

4.2.2 Service Migration

To support reliable computing services for vehicles with high mobility, service
migration is a potential solution. Service migration aims to adjust the server-vehicle
association when vehicles leave a server’s communication range. According to the
trajectory of a vehicle, an ongoing computing service can be moved to another
edge server that will cover the vehicle in near future. Migration decisions are
made according to a variety of factors, including the communication link quality,
computing capability of edge servers, and vehicle mobility. In [16, 17], service
migration schemes among federated cloud data centers are presented, which can
be extended to the MEC system. An ongoing service can be migrated to another
server as the corresponding vehicle moves out of range. Based on the random walk
model, a Markov decision process (MDP) for determining the migration policy is
developed in [18]. The MDP method is to make a proactive decision on whether a
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service should be migrated according to the mobility of vehicles. Similar proactive
service migration strategies are investigated in [19] and [20].

Overall, computing service migration provides a practical solution for imple-
menting MEC in a highly dynamic environment. However, it increases the complex-
ity of resource management. Specifically, when a vehicle is beyond the communica-
tion range of an edge server, the edge server needs to determine whether to interrupt
and migrate the ongoing service to another edge server or not. If yes, a proper
edge server should be selected to receive the migrated service according to the
vehicle trajectory. Otherwise, a proper transmission policy is required to maintain
the connectivity between the vehicle and the edge server so that the computing result
can be delivered at the end of the session. An effective migration policy should adapt
to the dynamics in channel condition, server computing capability, vehicle location,
migration overhead, etc. [21], while obtaining such a policy can be difficult due
to high vehicle mobility. A potential approach is proactive service migration using
Artificial Intelligence (AI) techniques based on learning the vehicles’ mobility and
channel conditions.

4.2.3 Cooperative Computing

Different from service migration, which enhances service reliability by migrat-
ing computing services according to the vehicle’s trajectory, service cooperation
improves MEC service reliability by accelerating task processing. A computing
task can be divided and computed by multiple servers in parallel or offloaded to
one server with high computing capability [22, 23]. With cooperative computing,
a computing task can be forwarded to an edge server out of the vehicle’s commu-
nication range. Compared to service migration, in which each edge server executes
tasks offloaded only by vehicles in its communication coverage, service cooperation
allows edge servers to process tasks offloaded by vehicles out of their coverage for
reducing the overall computing delay.

Service cooperation has been studied in [4, 24] and [25]. The works [4] and
[24] consider that vehicles divide and offload the computing tasks to multiple
servers according to their trajectories. Vehicle-to-vehicle communication is used to
disseminate computing results if edge servers cannot connect with vehicles at the
end of a computing session. In [25], the authors utilize neural networks to predict
computing demands in a vehicular network, and MEC servers are clustered to
compute offloaded tasks cooperatively. Nevertheless, wireless transmission among
edge servers or vehicles in the task offloading process can result in significant
transmission delay and communication resource consumption. The tradeoff between
communication overhead and computing capability increases the complexity of
server assignment in collaborative computing.
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4.3 Computing Task Partition and Scheduling for Edge
Computing

We present a computing collaboration framework to provide reliable low-latency
computing in an MEC-enabled vehicular network. Once an edge server receives
the computing tasks offloaded by a vehicle, it may partially or fully distribute
the computing workload to another edge server to reduce computing latency.
Furthermore, by selecting proper edge servers to deliver the computing results,
vehicles are able to obtain computing results without service disruption caused by
mobility. Under this framework, we present a novel task offloading and computing
approach that reduces the overall computing service latency and improves service
reliability. To achieve this objective, we firstly formulate a task partition and
scheduling optimization problem, which allows all received tasks in the network to
be executed with minimized latency given the offloading strategy. A heuristic task
partition and scheduling approach is developed to obtain a near-optimal solution of
the non-convex integer problem. In addition, we formulate the radio and computing
resource allocation problem as an MDP. An AI approach, DRL, is adopted to find
a proactive offloading policy for vehicles by evaluating the MDP. Specifically, a
convolutional neural network (CNN) based DRL is developed to handle the high-
dimensional state space, and a deep deterministic policy gradient (DDPG) algorithm
is adopted to handle the high-dimensional action space.

4.3.1 Collaborative Edge Computing Framework

An MEC-enabled vehicular network is illustrated in Fig. 4.1. A row of RSUs,
equipped with computing resources, provide seamless communication and comput-
ing service coverage for vehicles on the road. An RSU can communicate with other
RSUs within its communication range via wireless links. The set of RSUs is denoted
by R, where the index of RSUs is denoted by r ∈ R. We divide each one-way road
into several zones with equal length, where the set of zones is denoted by Z . We
divide time into time slots, where the index and set of time slots are denoted by t

and T , respectively. The index of the zones is denoted by z = (a, b) ∈ Z . The
parameters, a and b, represent the index of roads and the index of segments on the
road, respectively, where a ∈ {1, . . . , A}, and b ∈ {1, . . . , B}. As the vehicle drives
through the road, it traverses the zones consecutively. We assume that all vehicles
in the same zone follow the same offloading and computing policy.1 For simplicity,
we aggregate tasks from vehicles in each zone and refer to the tasks offloaded by
vehicles in zone z as task z. We suppose that the vehicle will not travel out of a zone

1 The accuracy of vehicle locations improves as the length of the zone is reduced. In consideration
of the length of a car, the length of a zone is larger than 5 m.
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Fig. 4.1 Network model

during the time duration of a time slot, and vehicles can complete the offloading
process of a task generated in a zone before it travels out of the zone. We assume
that a global controller has full knowledge of the transportation network and makes
offloading and computing decisions for all the vehicles in a centralized manner. In
our model, a computing session for a task includes three steps:

(1) Offloading—When a computing task is generated at a vehicle, the vehicle
selects an RSU, which is under its communication range, and offloads the
computing data of the task to the RSU immediately. In the example shown in
Fig. 4.1, RSU r is selected for computing tasks offloaded by the target vehicle.
Such RSU is referred to as receiver RSU for the task;
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(2) Computing—After the computing task is fully offloaded, receiver RSU either
processes the whole computing task or selects another RSU to share the
computing load. The RSU, which is selected to process the task collaboratively
with receiver RSU, is referred to as helper RSU for the task;

(3) Delivering—A vehicle may travel out of the communication range of its
receiver RSU. Therefore, the controller will select an RSU, which can connect
with the vehicle at the end of computing session, to gather and transmit
computing results. The RSU is referred to as deliver RSU. For efficiency, we
limit deliver RSU to be either receiver RSU or helper RSU of the task. In
Fig. 4.1, RSU r + 1 behaves as both helper RSU and deliver RSU for the
computing task offloaded by the vehicle.

To reduce the decision space in task offloading and computing, instead of
providing the offloading and computing policy to individual vehicles, we consider
location-based offloading and computing policy. Denote the set of vehicles in zone
z and time slot t ∈ T as Vz,t . The offloading decision for vehicles in zone z and

time slot t is represented by a vector αz,t ∈ Z
|R|
+ , where

∑|R|
r=1 αz,r,t = 1. The

element, αz,r,t , is 1 if RSU r is selected as receiver RSU for the vehicles in zone
z and time slot t , and 0 otherwise. Similarly, the collaborative computing decision
for vehicles in zone z and time slot t is represented by vector βz,t ∈ Z

|R|
+ , where

∑|R|
r=1 βz,r,t = 1. The element, βz,r,t , is 1 if RSU r is selected as helper RSU for the

vehicles in zone z and time slot t , and 0 otherwise. In addition, the decision on result
delivery is denoted by a binary variable, γz,r,t , where γz,r,t is 1 if the computing
results are delivered by RSU r for task z in time slot t and 0 otherwise. The system
cost comes from the service delay and service failure.

4.3.2 Service Delay

We adopt the task partition technique during task processing [26, 27]. A task
offloaded by vehicles in a zone can be divided and processed by receiver RSU and
helper RSU cooperatively. At each time slot, receiver RSU, helper RSU, and deliver
RSU are selected for each zone according to the task offloading policy. Vehicles
in a zone offload the task to selected receiver RSU for the zone. Once a receiver
RSU receives the offloaded tasks, it immediately divides the tasks and offloads a
part of each task to helper RSU selected for the zone. We denote the computing
delay of task z corresponding to receiver or helper RSU r in time slot t as Mz,r,t .
As shown in Fig. 4.2, the computing delay includes task offloading delay, queuing
delay, and processing delay. Since the amount of output data is usually much smaller
compared to the amount of input data, we neglect the transmission delay in result
delivery [12, 28]. We assume that the workload for partitioning tasks is much smaller
than the workload for processing offloaded tasks, and thus we neglect task partition
delay.
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Fig. 4.2 An example of the task offloading and computing process

Firstly, task offloading comprises two steps: offloading tasks from vehicles to
their receiver RSU and offloading the partial workload from receiver RSU to helper
RSU. According to the propagation model in 3GPP standards [29], the path loss
between a transmitter and a receiver with distance d (km) can be computed as:

L(d) = 40(1 − 4 × 10−3Dhb) log10 d − 18 log10 Dhb (4.1)

+ 21 log10 f + 80 (dB)

where f is the carrier frequency in MHz, and Dhb represents the antenna height
in meter. We do not consider the shadowing effect of the channel. Denote the
distance between the center point of zone z and the location of RSU r as Dz,r ,
and the distance between RSU r and r ′ as Dr,r ′ . The data rate for vehicles in zone z

offloading task to RSU r is

rz,r = BZ log2

(
1 + P V10−L(Dz,r )/10

σ 2
v

)
(4.2)

where σ 2
v denotes the power of the received Gaussian noise in the V2I channel, P V

represents the vehicle transmit power, and BZ represents the bandwidth reserved for
vehicles in a zone. At the receiver RSU for task z, a signal-to-noise ratio threshold
should be satisfied, given by
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P V 10−L(Dz,r )/10

σ 2
v

≥ αz,r,t δ
O,∀t, z, r (4.3)

where δO is the signal-to-noise ratio threshold for data offloading. Assume that
vehicles in a zone are scheduled to offload the tasks successively, and the channel
is time-invariant in the duration of any computing task offloading. The transmission
delay for offloading the computing data in zone z to receiver RSU is

Az,t =
∑

r∈R

αz,r,tWz,t

rz,r
(4.4)

where Wz,t represents the overall computing data generated by vehicles in zone z,
i.e., task z, and time slot t . In addition, the data rate between RSU r and RSU r ′ for
forwarding the computing data offloaded from a zone is

rr,r ′ = BR log2

(
1 + P R10−L(Dr,r′ )/10

σ 2
r

)
(4.5)

where σ 2
r represents the power of received Gaussian noise power in the RSU to RSU

channel, P R represents the RSU transmit power, and BR represents the bandwidth
reserved for forwarding data offloaded from a zone. In data forwarding, the signal-
to-noise constraint is required to be satisfied,

P R10−L(Dr,r′ )/10

σ 2
r

≥ βz,r ′,t δ
O,∀t, z, r, r ′. (4.6)

For computing task z in time slot t , the portion of workload to be processed by
receiver RSU and helper RSU is denoted by xz,t and 1−xz,t , respectively. Thus, the
delay for forwarding the data to deliver RSU is

Fz,t =
∑

r∈R

∑

r ′∈R

αz,r,tβz,r ′,t (1 − xz,t )Wz,t

rr,r ′
. (4.7)

Furthermore, after the task is offloaded to edge servers, a queuing delay may be
experienced. Let set Zr,t denote the zones which have tasks offloaded to RSU r ,
i.e., {z|αz,r,t = 1} ∪ {z|βz,r,t = 1}, and let i(z) represent the index of zone z in set
Zr,t . We denote Nr,t as the number of tasks offloaded in time slot t and assigned

to RSU r , where Nr,t = ∑
z αz,r,t + βz,r,t . Then, a matrix, I(r,t) ∈ Z

Nr,t×Nr,t

+ , is
defined to denote the processing order of tasks offloaded to RSU r in time slot t ,
where I

(r,t)
i(z),j = 1 if the task offloaded from zone z is scheduled as the j -th task

to be processed among all the tasks offloaded in the same time slot. As shown in
Fig. 4.2, the queuing delay of a task depends on the computing delay of the task
schedule priorly. For the first task to be processed among the tasks offloaded in time
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slot t , the queuing delay stems from the computing delay for the tasks offloaded in
previous time slots. Thus, the queuing delay of task z in RSU r is given by

Uz,r,t =
{

Ûr,t , if I
(r,t)
i(z),1 = 1,

∑
z′
∑

j I
(r,t)
i(z),j I

(r,t)

i(z′),j−1Mz′,r,t , otherwise.
(4.8)

In (4.8), Ûr,t represents the latency for finishing the tasks offloaded in previous time
slots {1, . . . , t − 1}, where

Ûr,t = max

⎧
⎨

⎩
∑

z′
I

(r,t)

i(z′),Nr,t−1
Mz′,r,t−1 − ε, 0

⎫
⎬

⎭ (4.9)

and ε is the length of a time slot.
We consider that data transmission and task processing are in parallel. After the

task is offloaded and other tasks scheduled priorly are completed, the task can be
processed by the dedicated server. The delay for processing task z offloaded to RSU
r in time slot t is given by

Gz,r,t = χWz,t [αz,r,t xz,t + βz,r,t (1 − xz,t )]
Cr

(4.10)

where Cr denotes the computing capability (CPU-cycle frequency) of RSU r , and
χ denotes the number of computing cycles needed to process 1 bit of data.

Given the offloading delay, queuing delay, and processing delay, the computing
delay for task z on RSU r is

Mz,r,t = max
{
Az,t + βz,r,tFz,t , Uz,r,t

}+ Gz,r,t . (4.11)

Denote the overall service delay for the task offloaded from zone z in time slot
t by Sz,t . As shown in Fig. 4.2, the overall service delay depends on the longest
computing delay between receiver RSU and helper RSU. Thus, we have

Sz,t = max

{
∑

r

αz,r,tMz,r,t ,
∑

r

βz,r,tMz,r,t

}
. (4.12)

4.3.3 Service Failure Penalty

The mobility of vehicles brings uncertainty in result downloading. Service failure
may occur if a vehicle is out of the coverage of its deliver RSU during the computing
session. Denote the zone that vehicle v is located when its computing result is
delivered by mv , i.e., the location of vehicle v ∈ Vz,t in time slot t + Sz,t . Also, we



4.3 Computing Task Partition and Scheduling for Edge Computing 103

denote the signal-to-noise ratio threshold for result delivering as δD. Let 1z,t indicate
whether the computing service for task z offloaded in time slot t is successful or not,
where

1z,t =
{

1, if P R10−L(Dmv,r )/10 ≥ σ 2
r γz,r,t δ

D,∀v ∈ Vz,t

0, otherwise.
(4.13)

4.3.4 Problem Formulation

The objective is to minimize the weighted sum of the overall computing service
delay for vehicles and service failure penalty. The objective function is as follows:

min
{α,β,γ ,x,

{I(r,t),∀r,t}}
lim

T →∞
1

T

T −1∑

t=0

∑

z∈Z

{
Sz,t1z,t + λWz,t (1 − 1z,t )

}
(4.14a)

s.t. (4.3), (4.6), (4.14b)
∑

r∈R
αz,r,t = 1,

∑

r∈R
βz,r,t = 1,

∑

r∈R
γz,r,t = 1 (4.14c)

Nr,t∑

i=1

I
(r,t)
i,j = 1,

Nr,t∑

j=1

I
(r,t)
i,j = 1 (4.14d)

0 ≤ xz,t ≤ 1, (4.14e)

αz,t ,βz,t ∈ Z
|R|
+ , (4.14f)

I(r,t) ∈ Z
Nr,t×Nr,t

+ (4.14g)

where λ represents per-unit penalty for the case when a computing service fails.
There are two types of optimization variables: edge server selection for task

offloading and computing, i.e., {α,β, γ }, and the computing policy for the offloaded
tasks, including task partition, i.e., x, and task execution order, i.e., {I(r,t),∀r, t}.

It can be seen that Problem (4.14) is a mixed-integer nonlinear optimization
problem. Solving the problem by conventional optimization methods is challenging.
Furthermore, the number of variables in the problem is too large to apply model-free
techniques directly. Taking the variables of task execution order as an example, i.e.,
I(r,t), there are Nr,t ×Nr,t decisions to be determined for a server in a time slot. The
number of combinations of task execution order is at least (|Z|/|R|)! × |R| × |T |,
in which tasks are evenly assigned to servers and each task is processed by only
one server. Thus, to solve the problem in a scalable manner, we divide Problem
(4.14) into two sub-problems: (i) task partition and scheduling problem, and (ii)



104 4 Collaborative Computing for Internet of Vehicles

edge server selection problem. Specifically, in the task partition and scheduling
problem, we aim to obtain the optimal task partition ratio and the execution order to
minimize the computing latency given an edge server selection decision, i.e., {α,β}.
After that, we re-formulate the edge server selection problem as an MDP and utilize
the DRL technique to obtain the optimal edge server selection decision.

4.3.5 Task Partition and Scheduling

In each time slot, an edge server receives tasks offloaded by vehicles in different
zones. The overall computing service delay for a task depends on the task execution
order in edge servers. In addition, the workload of a task can be divided and
offloaded to two edge servers, i.e., receiver and helper RSUs. The workload
allocation of a task also affects the overall computing service delay. Therefore, we
study task partition and scheduling to minimize the service delay given a edge server
selection policy {α,β}. Based on Problem (4.14), the delay minimization problem
is formulated as follows:

min
x,{I(r,t),∀r,t}

∑

z∈Z
Sz,t (4.15a)

s.t. (4.14d), (4.14e), (4.14g). (4.15b)

Problem (4.15) is a mixed-integer programming, which involves a continuous
variable, x, and an integer matrix variable, {I(r,t),∀r, t}. To reduce the time-
complexity for solving the problem, we exploit the properties of the problem and
develop a heuristic algorithm to obtain an approximate result. To simplify the
notations, we eliminate the time index t in the remainder of the subsection since
we focus on task partition and scheduling scheme for the tasks offloaded in one
time slot. Let r(z) and h(z) represent the index of receiver and helper RSUs for task
z, respectively.

Lemma 4.1 If no task is queued after task z for both receiver RSU and helper
RSU, the optimal partition ratio for the task is x∗

z = min{max{0, x̂z}, 1}, where x̂z

is determined by Eq. (4.16).

x̂z =
⎧
⎨

⎩

X1+Uz,h(z)

χWzX2
, if X1 ≥ χX2[Wz − Rr(z),h(z)(Uz,h(z) − Az)]

(X1+Az)Rr(z),h(z)+Wz

χWz(X2Rr(z),h(z)+1)
, otherwise

(4.16)

where

X1 = χWz

Ch(z)

− max{Uz,r(z), Az}, (4.17)
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and

X2 = 1

Cr(z)

+ 1

Ch(z)

. (4.18)

Proof Without considering the service delay of tasks queued later, the optimal task
partition ratio can be obtained by minimizing the following problem:

min max{Mz,r(z),Mz,h(z)} s.t. (4.14e). (4.19)

If 0 < x∗
z < 1, the optimal task partition ratio can be obtained when Mz,r(z) =

Mz,h(z), i.e., x̂z. In addition, if x∗
z = max{0, x̂z} = 0, helper RSU can fully process

task z in a shorter service delay as compared to the queuing delay in receiver RSU,
i.e., X1 ≥ max{Uz,h(z), Az + χWz

Rr(z),h(z)
}. Otherwise, x∗

z = min{1, x̂z} = 1, when
receiver RSU can process task z by itself in a shorter service delay compared to the
queuing delay in helper RSU, i.e., max{Uz,r(z), Az} ≤ Uz,h(z) − χWz

Cr(z)
. ��

Lemma 4.1 shows the optimal partition ratio from the individual task perspective.
However, multiple tasks could be offloaded from different zones to an RSU, where
the role of the RSU could be different for those tasks. The task partition strategy for
a single task could affect the computing latency for the task queued later. Therefore,
we will investigate the optimality of the task partition scheme in Lemma 4.1 in terms
of minimizing the overall service delay for all tasks z ∈ Z .

Lemma 4.2 Assume that the following conditions are met:

• The computing capability, Cr , is identical for all edge servers.
• Receiver RSU and helper RSU are different for each task, i.e., r(z) �= h(z).
• For helper RSUs for all tasks, the queuing delay is not shorter than the offloading

delay, i.e., Uz,h(z) ≥ Az + Fr(z),h(z),∀z, r .

Then, given the execution order of tasks, the optimal solution of Problem (4.15) is
given in Lemma 4.1, i.e., x∗

z = min{max{0, x̂z}, 1}, ∀z.

Proof An illustration of task partition is shown in Fig. 4.3. Given that task partition
ratio following the results in Lemma 4.1, we focus on a task which is numbered as
task 1 as shown in the figure. As indicated in the second and the third assumptions
in Lemma 4.2, the computing load of task 1 is shared between RSU r(1) and h(1).
Tasks 2 and 3 are scheduled after task 1 in RSU r(1) and h(1), respectively. In
addition, U2,h(2) ≥ A2 + Fr(2),h(2). We then prove that, under the assumption in
Lemma 4.2, the summation of the overall service delay of tasks 2 and 3 will increase
if the partition ratio of task 1 does not follow the solution presented in Lemma 4.1.

For task 1, if the workload assigned to RSU r(1) is decreased by Δx, the
computing delay of task 1 in server r(1) is reduced by Δt

r(1)
1 = Δx/Cr(1), while

the computing delay of task 1 in server h(1) is increased by Δt
h(1)
1 = Δx/Ch(1).
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Fig. 4.3 An illustration of
task partition

Correspondingly, the service delay of task 1 is increased by ΔT1 = Δx/Ch(1).
Given that task partition ratio x1 is decreased by Δx, let x̂2 represent new partition
ratio of task 2. Then, the service delay of task 2 can be calculated in the following
cases:

• Case 1: RSU r(1) is receiver RSU for task 2, i.e., r(2) = r(1), and x̂2 < 1.
According to Eq. (4.12) and Lemma 4.1, when the task partition ratio of task 1 is
x1, the service delay of task 2 is

S2 = max{A2, U2,r(1)} + (U2,h(2) − max{A2, U2,r(1)})Ch(2) + χW2

Cr(1) + Ch(2)

.

(4.20)

After task partition ratio x1 is decreased by Δx, task 2 can be processed by RSU
r(1) in advance by Δt

r(1)
1 . The new service delay of task 2 is

(S2)
′ = max{A2, U2,r(1) − Δt

r(1)
1 }

+ (U2,h(2) − max{A2, U2,r(1) − Δt
r(1)
1 })Ch(2) + χW2

Cr(1) + Ch(2)

.

(4.21)

The service delay deduction on task 2 can be obtained by subtracting Eq.
(4.21) from Eq. (4.20). The deducted service delay for task 2 is ΔT2 ≤
Δt

r(1)
1 Cr(1)/(Cr(1) + Ch(2)).

• Case 2: RSU r(1) is receiver RSU of task 2, i.e., r(2) = r(1), and x̂2 = 1. When
the task partition ratio of task 1 is x1, the service delay of task 2 is

(S2)
′ = max{A2, U2,r(1) − Δt

r(1)
1 } + χW2

Cr(1)

. (4.22)
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By subtracting Eq. (4.22) from Eq. (4.20), we have

ΔT2 ≤ Δt
r(1)
1 − (χWz/Cr(1) − U2,h(2) + U2,r(1))Ch(2)

Cr(1) + Ch(2)

≤ Δt
r(1)
1 Cr(1)

(Cr(1) + Ch(2))
(4.23)

where equality holds when A2 ≤ U2,r(1) − Δt
r(1)
1 .

• Case 3: RSU r(1) is helper RSU of task 2, i.e., h(2) = r(1). When the task
partition ratio of task 1 is x1, the service delay of task 2 is

(S2)
′ = max{A2, U2,r(2) − Δt

r(2)
1 }

+ (U2,r(1) − Δt
r(2)
1 − max{A2, U2,r(2)})Cr(1) + χW2

Cr(2) + Cr(1)

.

(4.24)

Similar to Case 1, the deducted service delay for task 2 is ΔT2 = Δt
r(1)
1 Cr(1)

/(Cr(1) + Cr(2)).

As mentioned in the first assumption of Lemma 4.2, the computing capability, Cr ,
is identical for all servers. Thus, the maximum service delay deduction for task 2
is Δt

r(1)
1 /2. For all tasks queued after task 1 in RSU r(1), the overall service delay

deduction is less than Δt
r(1)
1 [1/2+(1/2)2 +(1/2)3 + . . . ], which is always less than

Δt
r(1)
1 . The proof for the case when the workload assigned in RSU h(1) is decreased

by Δx can be obtained similarly. Therefore, the overall service delay will increase
if the task partition ratio does not follow the solution presented in Lemma 4.2. ��

Lemma 4.1 shows the optimal solution for the task partition ratio given the task
execution order. Next, we will find the optimal scheduling order given the task
partition ratio solution.

Lemma 4.3 Consider only one RSU in the system, i.e., r(z) = h(z),∀z. Assume
that the offloading delay is proportional to the size of the task. The optimal task
execution order is to process the task with the shortest service delay first.

Proof Suppose that the tasks offloaded to edge server r are processed following the
shortest-task-first rule, and task 2 is processed after the task 1. Then, we have

max{U1,r , A1} + G1,r ≤ max{U1,r , A2} + G2,r . (4.25)

If task 1 and task 2 switch in the processing order, the service delay of task 2
decreases by

D = max{max{U1,r , A1} + G1,r , A2} − max{U1,r , A2}. (4.26)
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On the other hand, the service delay of task 1 increases by

I = max{U1,r , A2} + G2,r − max{U1,r , A1}. (4.27)

From (4.25), we can derive that I ≥ G1,r . Then, the overall service delay of tasks 1
and 2 increases by

I − D ≥ G1,r − max{max{U1,r , A1} + G1,r , A2}
+ max{U1,r , A2}. (4.28)

We then consider the following three scenarios on A2.

• Case 1: A2 ≥ max{U1,r , A1} + G1,r . In this case, I − D ≥ G1,r ≥ 0.
• Case 2: U1,r ≤ A2 ≤ max{U1,r , A1}+G1,r . In this case, I−D ≥ A2−max{U1,r ,

A1}. According to the assumption in Lemma 4.3, where A1 ≤ A2, we then have
I − D ≥ 0.

• Case 3: A2 ≤ U1,r . In this case, I − D ≥ U1,r − max{U1,r , A1} = 0.

Therefore, we can conclude that the overall service delay increases if the task
execution order does not follow a shortest-task-first rule under the assumption in
Lemma 4.3. ��

Based on the properties provided in Lemmas 4.1–4.3, we design a heuristic
algorithm, i.e., Algorithm 6, to determine the task execution order and allocate
workload among the RSUs. In the algorithm, we allocate the task that has the
shortest service delay first. For each task, receiver RSU and helper RSU share the
workload according to the optimal partition ratio in Lemma 4.1. In the worst case,
in which all zones have tasks to be offloaded in a time slot, the algorithm requires
|Z|(|Z|+1)/2 iterations to compute the task partition and scheduling results, which
can still provide fast response in a dynamic environment.

4.4 AI-Assisted Collaborative Computing Approach

We utilize a DRL method to solve the edge server selection problem in a dynamic
environment. To implement the DRL method, we first re-formulate the problem into
an MDP. An MDP can be defined by a tuple, (S,A,T,C), where S represents the
set of system states; A represents the set of actions; T = {p(st+1|st , at )} is the set
of transition probabilities; and C is the set of cost functions. Let C(s, a) represent
the cost when the system is at state s ∈ S and an action a ∈ A is taken. A policy, π ,
represents a mapping from S to A. The state space, action space, and cost model in
an MDP are summarized as follows:

(1) State space: In time slot t , the network state, st , includes the computing data
amount in zones, i.e., {Wz,t ,∀z}, the average vehicle speed, i.e., {vz,t ,∀z}, and
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Algorithm 6 Task partition and scheduling algorithm (TPSA)
1: At time slot t , initialize set S = {z|Wz,t �= 0}.
2: Initialize ψr = Ûr,t , I(r,t) = 0, and jr = 1,∀r .
3: while |S| �= 0 do
4: Initialize Qz = 0,∀z ∈ S.
5: for Task z = 1 : |S| do
6: Update r(z) = {r|αz,r,t = 1} and h(z) = {r|βz,r,t = 1}.
7: Update partition ratio xz = min{max{0, x̂z}, 1}, where x̂ is obtained by (4.16).

8: Update ψ̂z,r(z) = ψr(z) + Mz,r(z).
9: Update ψ̂z,h(z) = ψh(z) + Mz,h(z).

10: If xz = 1, then Qz = ψ̂z,h(z).
11: If xz = 0, then Qz = ψ̂z,r(z).
12: If 0 < xz < 1, then Qz = (ψ̂z,r(z) + ψ̂z,h(z))/2.
13: end for
14: Find z∗ = argminzQz.
15: Update ψr(z∗) = ψ̂z∗,r(z∗) and ψh(z∗) = ψ̂z∗,h(z∗).

16: Update order matrix I
r(z∗),t
z∗,jr(z∗)

= 1, and I
h(z∗),t
z∗,jh(z∗)

= 1.

17: Update jr(z∗) = jr(z∗) + 1, and jh(z∗) = jh(z∗) + 1.
18: S = S\{z∗}.
19: end while
20: Ûr,t+1 = ψr − ε,∀r .

the delay for edge servers to finish computing the tasks offloaded in previous
time slots {1, . . . , t − 1}, i.e., {Ûr,t ,∀r}.

(2) Action space: For zone z and time slot t , the action taken by the network
includes three elements: the indices of receiver RSU, helper RSU, and deliver
RSU, which can be represented by {a1

z,t , a
2
z,t , a

3
z,t }, respectively.

(3) Cost model: Given a state-action pair, the overall service delay can be obtained.
According to the objective function (4.14), the cost function can be formulated
as

C(st , at ) =
∑

z∈Z

{
Sz,t1z,t + λWz,t (1 − 1z,t )

}
. (4.29)

Then, the value function for the expected long-term discounted cost of state s is

V (s, π) = E

[ ∞∑

t=0

γ tC(st , at )|s0 = s, π
]

(4.30)

where γ is a discount factor. By minimizing the value function of each state,
we can obtain the optimal offloading and computing policy, π∗, which is

π∗(s) = arg mina

∑

s′
p(s′|s, a)[C(s, a) + γV (s′, π∗)]. (4.31)
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Due to the limited knowledge on the state transition probabilities and the sizeable
state-action space in the network, the conventional dynamic programming technique
is not able to find the optimal policy efficiently. Therefore, we adopt DRL to solve
the server selection problem. There are three common DRL algorithms: deep Q
network (DQN), actor-critic (AC), and DDPG. DQN is a powerful tool to obtain the
optimal policy with a high dimension in the state space. DQN uses an online neural
network (evaluation network) to learn the Q value and apply a frozen network (target
network) to stabilize the learning process. However, the method shows inefficiency
for problems with a high dimension in the action space, while the large number of
zones leads to high dimensions in both state and action spaces in our problem. In
comparison, both AC and DDPG can tackle problems with high dimensions in both
state and action spaces by a policy gradient technique. Specifically, two networks,
i.e., actor and critic networks, are adopted. The critic network evaluates the Q value,
and the actor network updates policy parameters in the direction suggested by the
critic. DDPG combines the characteristics of DQN on top of the AC algorithm to
learn the Q value and the deterministic policy by adopting frozen networks, thereby
achieving fast convergence [30]. In this chapter, we exploit the DDPG algorithm to
obtain the optimal edge server selection policy in vehicular networks.

The illustration of our proposed AI-based collaborative computing approach is
shown in Fig. 4.4. In each time slot, the controller observes the system state in the
network. At state st , the optimal server selection policy can be generated by the
DDPG algorithm. According to the server selection results, the corresponding task
partition and scheduling policy can be obtained by the proposed TPSA algorithm.
After server selection, task partition, and scheduling policies are deployed into the
network, the cost of the corresponding state-action pair and the next system state are
observed from the environment. A state transition tuple, (st , at , rt , st+1), is stored
in the replay memory for training neural networks. In DDPG, four neural networks
are utilized. Two of the four networks are evaluation networks, where the weights
keep updating whenever the neural networks are trained. The other two networks
are target networks, where the weights are replaced periodically from evaluation
networks. For both evaluation and target networks, two neural networks, i.e., actor
and critic networks, evaluate the optimal policy and Q value, respectively. The
weights in evaluation and target critic networks are denoted by θQ and θQ′

, and
the weights in evaluation and target actor networks are denoted by θμ and θμ′

,
respectively.

In each training step, a batch of experience tuples are extracted from the
experience replay memory, where the number of tuples in a mini-batch is denoted
by N . Both evaluation and target critic networks determine the value function and
compute loss function L, where

L(θQ) = E
[(

yt − Q(st , at |θQ)
)2]

. (4.32)

In (4.32), Q(st , at |θQ) represents the Q function approximated by the evaluation
critic network. The value of yt is obtained from the target critic network, where
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Fig. 4.4 AI-based collaborative computing approach

yt = C(st , at ) + γQ(st+1, μ
′(st+1|θμ′

)|θQ′
). (4.33)

In (4.33), μ′(st+1|θμ′
) represents the action taken at st+1 given by the target actor

network. On the one hand, the weights in the evaluation critic network, i.e., θQ,
are updated by minimizing loss function (4.32). On the other hand, to update the
weights of the evaluation actor network, the policy gradient can be represented as

∇θμJ ≈ 1

N

∑

t

∇aQ(s, a|θQ)|s=st ,
a=μ(st )

∇θμμ(s|θμ)|s=st . (4.34)

According to (4.34), the weights of the evaluation actor network are updated in each
training step.
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Fig. 4.5 The structure of actor and critic neural network

To further improve the efficiency of the DDPG algorithm, we utilize CNN in
both actor and critic networks to exploit the correlation of states and actions among
different zones. The structure of actor and critic networks is shown in Fig. 4.5. In
those neural networks, convolution layers and pooling layers are applied to learn
the relevant features of the inputs among zones. Due to the weight sharing feature
of CNN filters, the number of training parameters can be significantly reduced as
compared with that of the neural networks with fully connected layers [31]. After
several convolution and pooling layers, the output of the CNN combines the state of
edge servers and forwards the output to fully connected layers.

The proposed AI-based collaborative computing approach is implemented in
Algorithm 7, where τ is a small number less than 1. As shown in Algorithm 7,
to learn the environment efficiently, the system continuously trains the weights in
the neural networks by Nt times after Ne time steps, where Ne > Nt .

4.5 Performance Evaluation

In this section, we first demonstrate the efficiency of the proposed TPSA algorithm
in task partition and scheduling. Then, we evaluate the performance of the proposed
AI-based collaborative computing approach in a vehicular network simulation using
VISSIM [32].
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Algorithm 7 AI-based collaborative computing approach

1: Initialize critic network Q(s0, a0|θQ) and actor network μ(s0|θμ) with weights θQ and θμ.
2: Initialize target network with weights θQ′ = θQ and θμ′ = θμ.
3: Initialize the experience replay buffer.
4: Initialize a random vector N as the noise for action exploration.
5: for episode = 1:G do
6: Initialize environment, and observe the initial state s0.
7: for time slot t = 1 : T do
8: Select action at = μ(s|θμ) + N .
9: Let αz,a1

z,t ,t
, βz,a2

z,t ,t
, and γz,a3

z,t ,t
equal to 1.

10: Compute the task partition and scheduling results by Algorithm 6
11: Observe next state st+1 and cost C(st , at ).
12: Store transition (st , at , rt , st+1) into the experience replay buffer. Delete the oldest

transition set if the buffer is full.
13: if k mod Ne == 0 then
14: for j = 1 : Nt do
15: Sample a mini-batch of N samples.
16: Update yt by (4.33).
17: Update the weights in the evaluation critic network by minimizing the loss in (4.32).
18: Update the weights in the evaluation actor network using sampled policy gradient

presented in (4.34).

19: Update target networks: θQ′ = τθQ + (1 − τ)θQ′
; θμ′ = τθμ + (1 − τ)θμ′

.
20: end for
21: end if
22: end for
23: end for

4.5.1 Task Partition and Scheduling Algorithm

We first evaluate the performance of the proposed TPSA algorithm. In the simula-
tion, computing tasks can be offloaded to five RSUs with the offloading rate of 6
Mbits/s. The communication rate among the servers is 8 Mbits/s. The computing
capability of the servers is 8 Gigacycle/s, and the number of computing cycles
needed for processing 1 Mbit is 4 Gigacycle . The amount of data for each
computing task is uniformly distributed between 1 Mbits and 21 Mbits. For each
task, receiver and helper RSUs are randomly selected from the five RSUs. We
compare the proposed TPSA algorithm with brute-force and random schemes. In the
brute-force scheme, the exhaustive search is utilized to find the optimal scheduling
order. In the random scheme, the task execution order is randomly assigned. Note
that, for both brute-force and random schemes, we apply the optimal task partition
ratio in Lemma 4.2. The simulation results are averaged over 200 rounds of Monte
Carlo simulations.

The service delay performance is shown in Fig. 4.6a. It can be seen that, as the
task number increases, the overall service delay increases correspondingly, and the
increasing rate of the random scheme is the highest among the three schemes. The
proposed TPSA algorithm achieves a performance very close to the brute-force
scheme. Moreover, we compare the runtime between the proposed TPSA and the
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Fig. 4.6 (a) Average service
delay among the three task
partition and scheduling
schemes with respect to the
number of tasks. (b) Average
computing runtime among
the three task partition and
scheduling schemes with
respect to the number of tasks
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brute-force scheme. As shown in Fig. 4.6b, when the number of task increases,
the runtime of brute-force scheme increases exponentially, while the proposed
TPSA algorithm has insignificant runtime to determine the task execution order.
In summary, the proposed TPSA algorithm can achieve a near-optimal performance
for task partition and scheduling with low computing complexity.

4.5.2 AI-Based Collaborative Computing Approach

In this subsection, we evaluate the performance of the proposed AI-based collab-
orative computing approach. In the simulation, we consider an 800 m × 800 m
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Fig. 4.7 The transportation
network topology for
simulation

Table 4.1 Network
parameters

P V P R σ 2
r , σ 2

v λ ε

27 dBm 37 dBm −93 dBm 50 1 s

f χ Ne,Nt δO δD

2800 MHz 1200 C/bits 80, 25 7 dB 7 dB

transportation system, where the transportation topology is shown in Fig. 4.7. Nine
RSUs with edge servers are deployed, as shown in the figure. We generate vehicle
traffic by VISSIM [32], with 200 vehicles traveling in the area. The speed of vehicles
depends on the speed limit of the road and the distance between vehicles. For each
vehicle, the computing tasks are generated following a Poisson process, and the
input data amount of a task is uniformly distributed in the range of [2,5] Mbits.
The length and width of a zone are 40 m and 10 m (2 driving lanes), respectively.
Other network parameter setting is presented in Table 4.1. We simulate the system
performance within a duration of 20 s.

The neural network structure of the DDPG algorithm is presented in Table 4.2.
The initial learning rates of the actor and critic networks are 1e-5 and 1e-4,
respectively, and the learning rates are attenuated by 0.991 in every 500 training
steps. The experience replay buffer can adopt 8000 state-action transition tuples.
In each training step, the number of transition tuples selected for training, i.e.,
the batch size, is 128. We adopt a soft parameter replacement technique to update
the weights in target networks, where τ is 0.01. We compare the performance of
the proposed AI-based collaborative computing approach with three benchmark
approaches. In the Greedy approach, vehicles always offload their tasks to the RSU
with the highest SNR, and receiver RSU does not share the workload with other
RSUs. In the Greedy+TPSA approach, a vehicle offloads its tasks to the RSU with
the highest SNR, and receiver RSU randomly selects another RSU to compute the
task collaboratively. The task partition and scheduling policy follows the proposed
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Table 4.2 Neural network
structure

Actor network

Layer Number of neurons Activation function

CONV1 5×1×2×10, stride 1 relu

POOL1 2×1 none

Data concatenation and batch normalization layer

FC1 1400 tanh

FC2 1400 tanh

FC3 5×A × B tanh

Critic network

Layer Number of neurons Activation function

CONV1 5×1×2×40, stride 1 relu

POOL1 2×1 none

CONV2 3×1×40×10, stride 1 relu

POOL2 2×1 none

Data concatenation and batch normalization layer

FC1 640 relu

FC2 512 relu

FC3 128 none

FC4 1 relu

Fig. 4.8 Average weighted
computing service cost versus
computing task arrival rate
per vehicle
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TPSA algorithm, and computing results are delivered by the receiver RSU. In the
Random+TPSA approach, receiver, helper, and deliver RSUs are selected randomly,
and the TPSA algorithm is applied to determine the task partition ratio and the
execution order.

The overall weighted service cost with respect to task arrival rate is shown in
Fig. 4.8. Our proposed approach can achieve the lowest computing cost compared
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Fig. 4.9 Average percentage of service failure versus computing task arrival rate per vehicle

with the other three approaches. The reason is that parallel computing is able
to reduce the overall service delay, and the proposed TPSA is able to achieve
near-optimal task partition and scheduling results. The random approach suffers
the highest cost compared with others due to inefficient server selection. The
Greedy+TPSA approach achieves a lower cost than the greedy approach. However,
both Greedy+TPSA and greedy approaches select servers according to the instan-
taneous cost rather than the value in the long term. Therefore, the Greedy+TPSA
approach cannot attain a lower cost as compared to the proposed AI-based approach.

As indicated in Eq. (4.29), the weighted service cost consists of the service delay
and the failure penalty. The percentage of service failure is shown in Fig. 4.9. Similar
to the service cost, the proposed AI-based approach achieves the lowest failure
percentage among the four approaches. Correspondingly, as shown in Fig. 4.10,
the proposed approach can successfully process the highest amount of data among
the four approaches. The average service delay for successfully computing 1
Mbits data is shown in Fig. 4.11. Compared with the other three approaches, the
proposed approach reduces the service delay significantly. Furthermore, the delay
of the random approach increases exponentially since less data can be successfully
computed when the task arrival rate is high.

The convergence performance of the proposed AI-based approach is shown in
Fig. 4.12, where the highlighted line represents the moving average over 50 samples
around the corresponding point. Note that our algorithm explores the environment
multiple times in each training step. It can be seen that our approach converges
after 10,000 episodes, or equivalently, after the network is trained by around 3000
episodes, i.e., 60,000 training steps.
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Fig. 4.10 Average computing data amount successfully computed versus computing task arrival
rate per vehicle
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Fig. 4.11 Average service delay for 1 Mbits successful computed data versus computing task
arrival rate per vehicle
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Fig. 4.12 Convergence performance of the proposed algorithm, where the task arrival rate is 0.1
request/sec

4.6 Summary

We have introduced a novel collaboration computing framework to reduce com-
puting service latency and improve service reliability in MEC-enabled vehicular
networks. The proposed framework addresses the challenge of maintaining comput-
ing service continuity for vehicles with high mobility. As a result, our collaborative
computing approach is able to support proactive decision making for computing
offloading through learning the network dynamics. Our work can be applied to
offer low-latency and high-reliability edge computing services to vehicles in a
complex network environment, such as urban transportation systems. A potential
future direction is using a multi-agent learning approach to compute the optimal
computing strategy with limited information collected by the edge servers.
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Chapter 5
Edge-Assisted Mobile VR

In this chapter, we investigate edge-assisted content caching and distribution for
mobile virtual reality (VR) video streaming. In the considered VR use case, an edge
server caches chunks of popular videos and delivers them to users. We focus on
how a caching policy can improve the quality of experience of users while adapting
to network dynamics given limited network resources. The research objective is
to develop content placement and distribution schemes to cache high-quality and
popular VR video chunks in a video-on-demand setting while reducing the video
frame missing rate. To achieve this objective, we first propose a content placement
scheme to make decisions on which video chunks to cache, while considering
the trade-off among communication, computing, and caching resource utilization.
Based on the content placement decisions, we further propose a learning-based
content distribution scheme to allocate computing units given content delivery
requests from multiple users. Specifically, a deep reinforcement learning approach
is developed for the edge server to deliver content effectively and reduce the
overall frame missing rate with low communication overhead. Simulation results
are provided to verify the performance of proposed schemes.

5.1 Background on Mobile Virtual Reality

Mobile VR streaming is an emerging application of importance in next-generation
wireless networks [1]. In the scenario of mobile VR, users can watch 360◦ VR
videos using wireless head-mounted devices (HMDs). A key feature of mobile VR
videos is their ultra-high spatial resolution. A mobile VR video can have a resolution
up to 12K (11,520 × 6480 pixels), while conventional videos normally have a
resolution of 4K or less [2]. From the communication perspective, delivering VR
videos to users requires an unprecedented high bit rate, which introduces pressure
on both backhaul and wireless links in existing communication networks. From the
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computing perspective, extensive video processing and frame rendering require high
computational capability, while the computing capability of the GPUs in HMDs is
too limited to support an acceptable frame rate and render videos with satisfactory
latency, even for a modest video quality [3].

MEC leverages computing and storage resources on network edge, such as small
BSs and other APs, to cache popular content and process compute-intensive tasks
offloaded by users. Specifically, the storage resource at an edge server can be utilized
to cache popular VR video chunks to alleviate network congestion in the backbone,
and the computing resource can be utilized to process video chunks for HMDs
[4, 5]. However, there are many challenges in implementing MEC-assisted mobile
VR applications. Even for one-hop communications between edge servers and VR
devices, i.e., HMDs, it is difficult to achieve an ultra-high bit rate for VR video
delivery. In particular, VR users will feel dizzy if the motion-to-photon latency, i.e.,
the time elapsed between user movement and VR display response, is greater than
20 ms [6]. For a video segment of 12K resolution with a duration of two seconds
and 60 frames per second, content delivery would have to reach over 3000 Gbps
to meet the stringent motion-to-photon latency requirement, which is too high for
the current communication networks. Furthermore, since the storage resource at the
edge server is limited, it is impossible to store all VR videos at the edge server.
Therefore, some VR videos have to be downloaded from the cloud server with a
higher content delivery delay, which further increases the difficulty of satisfying the
requirements of mobile VR video delivery. Thus, to support VR video streaming,
innovations in video caching and delivery methods are necessary.

Innovative content delivery should take advantage of VR video characteristics
and the layered encoding technique to reduce the resource consumption for deliv-
ering VR videos. Since VR videos are 360◦ panoramic, a VR user only watches
a part of the spherical domain of a video, referred to as a field-of-view (FoV), at
any instant. Therefore, a full VR video can be divided into small spatio-temporal
chunks, and only the chunks corresponding to the user’s current FoV are delivered
to HMDs. Due to the comparatively small size of a video chunk, the resolution of
the video to be delivered can be reduced significantly, which results in a lower data
rate requirement for video delivery. In addition, facilitated by AI techniques, the
watching preferences and motions of users can be predicted in advance. Using the
prediction, video chunks can be delivered to the HMDs proactively and stored in
the buffer of the devices, which increases the tolerance for content delivery latency.
The above two solutions make mobile VR video streaming possible, while proper
resource management schemes are needed to implement them.

5.2 Caching and Computing Requirements of Mobile VR

There are three aspects of FoV-based content caching and proactive content delivery
to investigate. First, the format of VR video chunks to be cached and delivered
to users should be determined. Different video chunk sizes result in different
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video encoding efficiency and file sizes, which further impact the efficiency of
content caching and delivery. Second, a caching policy should be developed for
resource-efficient edge caching. Finally, given cached video chunks, it is necessary
to schedule limited computing units at the edge server in order to enable proactive
video processing and content delivery. In this section, we investigate how to address
the caching and computing requirements in mobile VR video delivery from these
aspects.

5.2.1 Mobile VR Video Formats

As aforementioned, a VR video can be divided into small video chunks, and only
video chunks in the user’s FoV need to be delivered. While this method reduces
the file size in video delivery, it raises the problem of granularity while dividing
video chunks. Multiple video chunks with a small size can be delivered to an HMD
to render an FoV video [2, 7, 8]. Fine video quality can be achieved by utilizing
different video qualities in different video chunks. However, dividing videos into
small-size chunks leads to low video encoding efficiency in storing the chunks and
high complexity for selecting video chunks from a large number of candidates [9].
Alternatively, one video chunk with a large size can be delivered to an HMD to
render the FoV video [5, 10]. However, video chunks with a large size require
more communication resources in delivery, and the quality of an FoV video cannot
be adjusted flexibly to adapt to network dynamics. Therefore, the size of video
chunks should be properly selected to balance the video encoding efficiency and
the granularity of video quality adjustment.

5.2.2 Edge Caching for Mobile VR

Popular video chucks can be prefetched to reduce content delivery latency by
using the caching resource of an edge server. However, compared to conventional
video caching, determining the popularity of video chunks in VR videos is more
challenging. In conventional videos, video segments (VSs) are divided temporally,
and the popularity of VSs in one video is similar and follows the popularity of the
corresponding video. However, for mobile VR, video chunks are divided spatio-
temporally, and the popularity of video chunks is determined by the movement
of the user’s viewpoint. In order to determine the popularity of video chunks,
extensive measurements must be made by HMDs during video playback [11]. Fine-
grained measurement of popularity complicates edge caching, since a video could
have millions of video chunks that may have different popularity. Moreover, with
small-size video chunks, rendering a user FoV needs multiple video chunks; with
large-size video chunks, a video chunk may render multiple FoVs. As a result,
correlation on popularity may exist among video chunks, which makes edge caching
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more difficult. Without knowledge of the spatial correlations among video chunks,
the effectiveness of a caching policy cannot be guaranteed. Therefore, to support
mobile VR video delivery, a proper content placement scheme should evaluate
the popularity of video chunks in a scalable manner according to their spatial
correlations.

Furthermore, different from conventional caching, the edge server can cache both
original video chunks and processed video chunks in mobile VR video caching.
The resulting trade-off among communication, caching, and computing in mobile
VR video caching has been discussed in [10, 12], in which caching solutions are
based on a given popularity profile of video chunks and a constant processing rate.
An edge server with a high computing capability should prefetch more original
video chunks in the cache to avoid frequent content fetching from the cloud
server, while an edge server with a low computing capability should prefetch more
processed video chunks to reduce processing delay. However, due to the dynamics
of content delivery requests and limited computing units at the edge server, the
content delivery delay dynamically changes with the content delivery demands. As a
result, a constant processing rate without considering dynamically changing content
delivery demands may not be accurate for evaluating the content placement policy.
To optimize the content delivery policy, the dynamics of content delivery demand
should be evaluated while investigating the trade-off among multi-dimensional
resources.

5.2.3 Edge Computing for Mobile VR

Given a content placement policy, how to properly deliver cached VR video chunks
to users is another challenge. Although the average content delivery latency may be
reduced by caching popular video chunks, satisfying the real-time delivery latency
is difficult, especially when unpopular video chunks are requested. Unsuccessful
content delivery results in failure of rendering video frames i.e., frame missing,
at user HMDs. Proactive video chunk delivery and scheduling policies based on
predicted user HMD trajectory or user request profile have been considered in [13,
14] to alleviate frame missing. However, the impact of network dynamics on the
scheduling policy should be further investigated.

Furthermore, proactive content delivery is based on prediction. In particular, an
HMD can track the user’s viewpoint trajectory, predict viewpoints in the subsequent
time slots, and request the corresponding video chunks to render the FoV of the
predicted viewpoints [15]. The accuracy of viewpoint prediction can therefore
have a significant impact on content delivery. Various learning-based techniques
have been adopted to improve the accuracy of viewpoint prediction, such as long
short-term memory (LSTM) networks [15, 16] and linear regression methods [17].
However, it is difficult to achieve error-free prediction. To improve the quality of
experience of users, such uncertainty should be taken into account in proactive
content delivery.
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In the remainder of this chapter, we investigate the problem of edge-assisted
content caching and delivery for mobile VR video streaming. The research objective
is to develop content placement and distribution schemes to cache popular and
high-quality VR video chunks and deliver video chunks to users while reducing
video frame missing. Specifically, we focus on three research problems: determining
resource-efficient video chunk formats for caching, designing content placement
policy subject to network resource constraints, and developing a content distribution
scheme to accommodate network and user request dynamics. To enable a scalable
and efficient manner for content placement for mobile VR video streaming, we
look into the specific characteristics of VR videos, evaluate the trade-off among
multi-dimensional resources, and propose a content placement solution to handle
the complex problem with a large number of variables. Meanwhile, for content
distribution, we explore a novel learning-based solution to schedule content delivery
for users with low communication overhead.

5.3 Mobile VR Video Caching and Delivery Model

In this section, we elaborate on the system model in mobile VR video caching and
delivery and present the research problems given the system model.

5.3.1 Network Model

We consider a network with multiple VR users with HMDs within the communica-
tion coverage of an edge server, such as a BS or an AP, as illustrated in Fig. 5.1.
A wired communication link connects the cloud server on the Internet and the
edge server, and the average data rate is RB on the wired link. The edge server
communicates with user HMDs through wireless communication links. The overall
number of users is denoted by U .

The edge server is equipped with storage and computing capabilities for content
caching and processing, respectively. Popular content can be prefetched at the cache
for reducing traffic on the wired link and alleviating content delivery latency. The
cache capacity of the edge server is denoted by C. When a video chunk is requested
by a user HMD, the video chunk can be downloaded from the edge server, if the
corresponding content is cached, or from the cloud server otherwise. User HMDs
play 360-degree 3D stereoscopic videos, where extensive computing is required for
video processing, such as projection between 2D monoscopic to 3D stereoscopic
videos. Since the computing capability at a user HMD is limited, most video
processing is executed at the edge server. In an edge server, there are E computing
units, and the computing frequency for video processing is f . The computing model
is introduced in Sect. 5.3.2.
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Fig. 5.1 An illustration of the network model

The edge server connects with a user HMD at a mmWave band, while a backup
band, such as a sub-6GHz band, is utilized when the high-speed mmWave band
is in outage [18]. Such transmission link is modeled as a two-stage Markov chain.
When the high-speed mmWave band is in operation, the corresponding transmission
rate is RE,H . Otherwise, when the backup band is in operation, the corresponding
transmission rate is RE,L. The probabilities of the high-speed state (with rate RE,H )
transiting from and to the low-speed state (with rate RE,L) are denoted by pL and
pH , respectively. Independent Markov processes among user HMDs are assumed.
The corresponding average transmission rate between the edge server and a user
HMD is denoted by R̄E .

5.3.2 Content Distribution Model

Similar to a conventional video, a full-length VR video is divided into VSs in the
time domain for video streaming, which is illustrated as the horizontal layers in
Fig. 5.2. The playback time duration for a VS is TS . The group of VSs corresponding
to video l is denoted by Sl . As aforementioned, a VR user watches a part of the
spherical domain of a video, i.e., an FoV, at any given instant. The center point
of an FoV is called the viewpoint, which changes with the user HMD movement.
Delivering full 360◦ video is bandwidth-consuming, and the typical solution is to
deliver only video within the user’s FoV. A VS is further divided into video chunks
in the spatial domain. The minimum unit of the spatial area of a chunk is referred
to as a tile. Each VS is evenly divided into X × Y tiles in the spatial domain, shown
as the cubes in Fig. 5.2. The set of tiles is denoted by I, and |I| = X × Y . A video
chunk may consist of several tiles, and one or multiple video chunks are assembled
to render an FoV. Details of video chunk formats are given in Sect. 5.4.1.

A typical system model for 360◦ stereoscopic VR delivery is shown in Fig. 5.3.
The cloud server stores 360◦ equirectangular videos in 2D with auxiliary 3D
representation files, such as depth maps [20]. With the 3D representation files, 2D
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video chunks can be projected to 3D video chunks. We do not investigate the caching
policy for the 3D representation files in this work since they have much smaller
data size in comparison with video chunks. The video delivery is based on layered
encoding, where a video is encoded into a base layer, which has a low resolution
to satisfy the minimum video quality requirement of users, and an enhanced layer,
which can be added on top of the base layer for video quality improvement. To
reduce the bandwidth consumption in video delivery, the equirectangular video is
further divided into video chunks both spatial and temporal domains. The popular
2D video chunks can be prefetched to the cache at the edge server.

A user HMD continuously tracks the viewpoint movement, with the viewpoint
sampling frequency g. When a viewpoint of the user changes, a corresponding 3D
stereoscopic video chunk may be requested from the edge server. The edge server
can download the video chunk from the cloud server or fetch it from the cache at
the edge server. As two different videos are required for the left and the right eyes
of each user, the data size of a stereoscopic video chuck is larger than the data size
of the corresponding monoscopic video chunk [10, 21]. Therefore, to alleviate the
backhaul traffic load, the video chunks downloaded from the cloud server are in
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2D. The 2D video chunks need to be projected to 3D stereoscopic video chunks
according to the 3D representation files before the video chunks can be rendered at
user HMDs. Such projection is compute-intensive and is processed by computing
units at the edge server. Besides the 2D monoscopic video chunks, the video chunks
in 3D stereoscopic format can be cached at the edge server to avoid repetitive video
processing. The edge server delivers 3D stereoscopic video chunks to a user HMD
for further decoding and rendering. If the requested content cannot be delivered in
time or cannot match the user viewpoint, the HMD can render only a part of its FoV
or cannot render the FoV [6]. The result is referred to as frame missing.

5.3.3 Content Popularity Model

We investigate proactive caching at the edge server, which utilizes statistical
popularity information and prefetches popular video chunks. The popularity of VS
s is denoted by pV S

s . User viewpoints may focus on a similar region when they
are watching a specific VS, i.e., region of interest. The region of interest highly
depends on the video content. The averaged fraction of time that user viewpoints
fall into a specific tile over the whole duration of a VS is referred to as the viewpoint
popularity, which can be obtained from historical user viewpoint movement profiles
created during VR streaming [11]. User HMDs track the user viewpoint movement,
and the edge server and the corresponding service provider can collect data from
HMDs to obtain the viewpoint distribution for each VS. The viewpoint popularity
distribution for VS s is denoted by pP

s = [pP
1,s , . . . , p

P
|I|,s], where pP

i,s represents
the viewpoint popularity at tile i in VS s. The popularity of video chunks can be
obtained by viewpoint popularity distributions. As a result, the edge server can
proactively cache video chunks according to their popularity. In our work, the
popularity distributions of VSs and viewpoints are assumed to be known in advance.

5.3.4 Research Objective

Given the system model, the research problem is to design content caching and
distribution schemes for mobile VR video streaming with the following three
objectives:

• Caching the popular and high-quality VR video chunks at the edge server to
reduce backhaul traffic, subject to average content delivery time and cache
capacity constraints;

• Reducing video streaming frame missing likelihood to improve the quality of
experience of mobile VR users within the coverage of an edge server;

• Exploring the role of learning methods in the content caching and distribution
scheme.
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In addition, we have the following design targets:

• Improving the resource utilization efficiency on content caching and distribution;
• Reducing the message overhead for real-time content distribution.

Caching mobile VR videos has two differences from caching conventional videos:
diversified content formats and an even larger amount of content. The differences
result in different content caching considerations. In terms of content formats, both
2D monoscopic video chucks and 3D stereoscopic video chunks can be cached
at the edge. Although 2D monoscopic video chunks have a smaller data size,
caching 2D video chunks yields computing latency when the data is delivered to
the users. Caching 3D stereoscopic video chunks can reduce the computing latency,
while they require more storage resources. A trade-off among caching, computing,
and communication resources should be carefully made in the caching policy. In
terms of the scale of content, a VR video can be divided into video chunks into
both temporal and spatial dimensions. As a result, the number of video chunks
associated with a VR video can increase significantly from that associated with a
traditional video. A scalable cache management policy is required, which should
address the design challenges of the diversified popularity distribution and content
formats. Furthermore, even in conventional video streaming, content distribution
is challenging in a dynamic network environment, especially when multiple users
are served simultaneously by an edge server. Although edge caching reduces the
content delivery latency for popular content, large delivery latency can occur when
unpopular content is requested and delivered. For VR videos, the user viewpoint
movement further introduces uncertainty in content distribution. In such a dynamic
environment, video delivery scheduling without yielding extra overhead is difficult.

To achieve the research objectives, we first design an adaptive model for dividing
video chunks in Sect. 5.4.1. We then propose a content placement scheme to
cache high-quality and popular video chunks at the edge server subject to network
constraints in Sect. 5.4.2. Furthermore, a proactive content distribution scheme is
proposed to improve the content delivery performance in real-time in Sect. 5.5.

5.4 Content Caching for Mobile VR

In this section, we propose a novel content placement scheme for caching mobile
VR video chunks. It achieves a balance between the popularity of cached video
chunks and the video quality, while satisfying the resource constraints on com-
munication, computing, and caching. By evaluating the trade-off among network
resources, an edge server can adapt its caching policy to alleviate the backhaul
communication congestion, reduce the computing delay, or a combination of both,
depending on the networking scenario. Moreover, we develop a scalable optimiza-
tion method to improve the algorithm efficiency for the proposed content placement
scheme. Our method decouples and solves the complex content placement problem.
Parallel content placement is enabled to select video chunks to cache from a large
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number of candidates with different formats and popularity correlations under
resource constraints.

5.4.1 Adaptive Field-of-View Video Chunks

In this section, we introduce the formats of the video chunks for effective caching.
As shown in Fig. 5.2, a full video is divided into VSs in the time domain. Then, a VS
is further divided into smaller video chunks,in the unit of tiles, in the spatial domain.
There are two existing solutions regarding the size for a VR video chunk:

• Tile-based caching solution [2, 7, 8]: Cloud and edge servers store the video
chunks in the unit of tiles. Multiple video chunks are stitched together into
an FoV-size video chunk and sent to user HMDs. The advantage is that the
video quality in an FoV can be flexibly customized according to the network
environment. Since users normally have a lower requirement on video quality for
the edge of an FoV, the edge server can adjust the number of video chunks from
the enhanced layer in the FoV, to adapt to the network environment. However,
fine-granularity video chunks result in a low video encoding efficiency and a
large amount of content to cache, which increases the overall storage usage
required for caching and complicates caching management.

• FoV-based caching solution [9, 10, 22]: In this solution, the video chunk size is
the same as the user’s FoV size. Both 2D monoscopic and 3D stereoscopic video
chunks can be cached at the edge server without stitching. However, the video
quality for the tiles in a video chunk is fixed. Moreover, if FoVs with adjacent
viewpoints are cached, the overlapping area of the FoVs in the cache causes
redundancy and reduces the effectiveness of caching.

To balance caching efficiency and video quality adaptivity, we propose a hybrid
content format solution, which combines the advantage of the two existing solutions.

5.4.1.1 Extended FoV

The video chunk setup is illustrated in Fig. 5.4. The spatial area of an FoV consists
of (α0 × β0) tiles. We encode and deliver video chunks with (α × β) tiles to a user
HMD, where α ≥ α0 and β ≥ β0. The corresponding 3D stereoscopic video chunk
is referred to as an extended FoV (EFoV). The index of an EFoV is denoted by
(i, s), where i follows the index of the tile located in the center of the video chunk,
and s is the VS index for the video chunk. Denote the set of tiles associated with
EFoVs {(i, s),∀s} by Ti . Delivering a spatial area that is larger than an FoV can
accommodate viewpoint movement variations and avoid frequent content delivery
[6]. As a result, an EFoV can be used to render multiple adjacent viewpoints at a
user HMD. The set of viewpoints that can be rendered by EFoV (i, s) is denoted by
Vi . In the example shown in Fig. 5.4, EFoV (i, s) can render all viewpoints located
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Fig. 5.4 The illustration of video chunk sizes and types

in the tiles around tile i, within the red dashed line. However, a large-size EFoV
increases the data size of an EFoV. The parameters α and β depend on the video
encoding efficiency and user viewpoint movement. Note that EFoVs are in 3D and
ready to be downloaded by users.

5.4.1.2 Content Types

There are three types of video chunks that can be stored in the cache:

• Base FoV (BFoV): BFoVs are the 2D monoscopic video chunks, which cover the
same spatial area as EFoVs.1 The BFoV video chunks are partitions of the base
layer of a video. Therefore, a BFoV has a low resolution and ensures the basic
quality of service for users. The data size of BFoV (i, s) in VS s is denoted by
dBFoV
i,s in the unit of byte;

• Enhanced tile (ET): An ET provides quality enhancement for a 2D monoscopic
video chunk and covers the spatial area of a tile. ET video chunks are partitions
of the enhanced layer of a video. ETs can be added on top of a BFoV to improve
the video quality for a specific tile. When an FoV is requested by a user HMD,
the BFoV and corresponding ETs are stitched together, projected to an EFoV, and
sent to the user HMD. As the number of ETs added into the BFoV increases, the
overall data size of projected EFoV increases correspondingly. The data size of
ET (i, s) in VS s is denoted by dET

i,s ;
• EFoV: As mentioned, EFoVs are 3D stereoscopic video chunks ready to be

sent to user HMDs. EFoV (i, s) is projected from BFoV (i, s) combined with
ETs (i′, s), where i′ ∈ Ti . Thus, an EFoV video chunk may contain both base
layer and enhanced layer video chunks. Video chunks projected from ET into

1 The proposed scheme supports different BFoV image size through video processing, such as
video stitching and clipping. Considering the video encoding efficiency and aiming to simplify the
model, we assume that a BFoV here has the same image size as an EFoV.
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3D format and added on an EFoV are referred to as 3D-ETs on the EFoV.
The size of EFoV (i, s) is dEFoV

i,s = ωi,sd
BFoV
i,s +∑i′∈Ti

ωET
i′,s Ii′,i,sd

ET
i,s , where

Ii′,i,s indicates whether 3D-ET (i′, s) is on EFoV (i, s). If it is true, Ii′,i,s = 1;
otherwise, Ii′,i,s = 0. Let ωi,s and ωET

i′,s be the ratio of the data size after BFoV
(i, s) and ET (i′, s) are projected to the 3D format to the data size of the BFoV
and the ET, respectively.

Similar to the tile-based caching solution, the proposed hybrid caching solution can
adaptively change the number of ETs according to the network dynamics. Moreover,
compared to the tile-based caching solution, we use video chunks that support base
video quality in a large spatial area to improve the video encoding efficiency.

5.4.1.3 Rules for Content Distribution

As shown in Fig. 5.5, the three types of content, i.e., BFoV, ET, and EFoV, can be
cached at the edge server. When a user HMD requests an EFoV to render viewpoint
i for VS s, there are four cases:

• Case 1: Direct delivery. An EFoV that can render viewpoint i for VS s is
cached. The video chunk is fetched from the cache and delivered to the user
HMD directly;

• Case 2: Projection and delivery. No EFoV in the cache can render viewpoint
i for VS s, while a BFoV that can render viewpoint i for VS s is cached. The
BFoV is stitched with all the associated ETs cached in the edge server, projected
to an EFoV, and delivered to the user HMD;

• Case 3: Stitching, projection, and delivery. No EFoV and BFoV in the cache
can directly render viewpoint i for VS s. However, two or more BFoVs stored in
the cache can be stitched together to render viewpoint i for VS s. The BFoVs are
processed and projected to an EFoV. The EFoV is delivered to the user HMD;

• Case 4: Fetching, stitching, projection, and delivery. No EFoV and BFoV in
the cache can render or be stitched to render the viewpoint. The corresponding
BFoV is downloaded from the cloud server, stitched with any ET cached at the
edge server, projected to an EFoV through a computing unit, and delivered to the
user HMD.

Stitching Project
EFoV

BFoV
Delivery
Scheduler

Cache

Computing

BFoV ET EFoV

Cloud
Server

Fig. 5.5 Flowchart for content distribution at the edge server
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5.4.2 Content Placement on an Edge Cache

In this subsection, we present a content placement scheme for caching popular
and high-quality video chunks at the edge server. We first formulate the objective
function for content placement. Taking into account the trade-off among multi-
dimensional resources, we propose a content placement scheme for video chunks
in a VS. Moreover, we extend the content placement scheme for placing the video
chunks with different VSs.

The objective in content placement is to maximize the popularity of content in
the cache, while

• Improving the video quality of the cached video chunks as much as possible;
• Satisfying an average content delivery latency requirement;
• Complying with the maximum cache capacity C.

Denote content placement variables by eEFoV
i,s , eEFoV −E

i,i′,s , eBFoV
i,s , and eET

i,s , ∀i, s,
which indicate

• whether EFoV (i, s) is cached at the edge server;
• whether 3D-ET (i′, s) corresponding to cached EFoV (i, s) is cached;
• whether BFoV (i, s) is cached at the edge server;
• whether ET (i, s) is cached at the edge server,

respectively. If the corresponding video chunk is cached, the corresponding indica-
tor is one; otherwise, the indicator is zero. Let Es = {EEFoV

s , EEFoV −E
s , EBFoV

s ,

EET
s } denote the set of cached video chunks in VS s. To evaluate the quality of

cached video chunks, we utilize a parameter, w, to weigh the popularity of video
chunks from the enhanced layer. When w > 1, high video quality is required by
a user; otherwise (w ≤ 1), the user has less strict demand on the video quality.
We also introduce parameter oi,i′ to represent the quality requirement for tile i′
in EFoV (i, s). Denote the physical distance between tiles i and i′ by di,i′ . Since
a lower quality is required for the marginal area of an FoV [6, 7], parameter
oi,i′ is proportional to 1/di,i′ . Let pEFoV

s and pBFoV
s denote the overall weighted

popularity achieved by the cached EFoV and BFoV in VS s. We formulate the
weighted popularity for the cached video chunks according to VS s as follows:

• The weighted popularity achieved by EFoV (i, s) can be formulated by

pi,s =
∑

i′∈V∗
i

pP
i′,s(1 + w

αβ

∑

m∈Ti

oi,meEFoV −E
i,m,s ), i ∈ EEFoV

s (5.1)

where V∗
i is a subset of Vi . It includes the viewpoints in set Vi which cannot be

rendered by other cached EFoVs except EFoV (i, s). The weighted popularity of
EFoV (i, s) is the summation of the popularity of viewpoints that can be rendered
by caching the EFoV and the weighted popularity of 3D-ETs on the EFoV. For
all cached EFoVs, the weighted popularity is
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pEFoV
s =

∑

i′
pP

i′,s max
{i|i′∈Vi }

eEFoV
i,s (1 + w

αβ

∑

m∈Ti

oi′,meEFoV −E
i,m,s ). (5.2)

The overall weighted popularity contributed by caching EFoV files includes two
parts: One is the overall popularity of viewpoints that can be rendered by the
cached EFoVs; the other is the summation of the maximum weighted popularity
contributed by 3D-ETs on the cached EFoVs to render viewpoints.

• The weighted popularity achieved by a BFoV (i, s) can be formulated by

pi,s =
∑

i′∈V∗
i

pP
i′,s(1 + w

αβ

∑

m∈Ti

oi,meET
m,s), i ∈ EBFoV

s . (5.3)

Similar to the weighted popularity achieved by an EFoV, the weighted popularity
achieved by a BFoV includes the summation of the popularity of viewpoints that
can be rendered and the weighted popularity contributed by ETs. Note that ET
(m, s) can be reused to add to any BFoV (i, s), where i ∈ {i|m ∈ Ti}. BFoVs can
be stitched together to render the viewpoints out of set Vi for BFoVs. Let f BFoV

i,s

indicate if tile i is included by any BFoV stored in the cache, given by

f BFoV
i,s = 1 −

∏

{m|m∈Ti }
(1 − eBFoV

m,s ). (5.4)

A BFoV can be synthesized when all the tiles in the BFoV are included in the
cached BFoVs. Moreover, since a BFoV can be projected and delivered only
when a viewpoint cannot be rendered by any cached EFoV, only the popularity
of viewpoints that cannot be rendered by EFoVs is taken into account. Therefore,
for all cached BFoVs, the weighted popularity is

pBFoV
s =

∑

i′
pP

i′,s
∏

{i|i′∈Vi }
(1 − eEFoV

i,s )(
∏

m∈Ti′
f BFoV

m,s + w

αβ

∑

m∈Ti′
oi,i′e

ET
m,s).

(5.5)

Meanwhile, caching different types of video chunks results in different delivery
delay. Given the channel Markov chain in Sect. 5.3.1, R̄E can be obtained by

R̄E = pH

pH + pL

RE,H + pL

pH + pL

RE,H . (5.6)

Let tEFoV
s , tBFoV

s , and tCloud
s denote the average content delivery delay for

rendering viewpoints in VS s by the cached EFoVs, the cached BFoVs, and the
video chunks from the cloud server, respectively. The average content delivery delay
for rendering a viewpoint can be formulated as follows.

• For EFoV (i, s) cached at the edge server, the average content delivery delay is
the video chunk transmission time from the edge server to a user HMD, given by



5.4 Content Caching for Mobile VR 137

qEFoV
i,s = (ωi,sd

BFoV
i,s +

∑

i′∈Ti

ωET
i′,s e

EFoV −E
i,i′,s dET

i′,s )R̄−1
E , i ∈ EEFoV

s . (5.7)

For all viewpoints in VS s that can be rendered by the cached EFoVs, the average
delay is

tEFoV
s =

∑

i′
pP

i′,s min
{i|i′∈Vi }

eEFoV
i,s qEFoV

i,s . (5.8)

• For BFoV (i, s) cached at the edge server, the average content delivery delay
includes the video processing time (for video stitching and projection) and the
video chunk transmission time from the edge server to a user HMD, which is

qBFoV
i,s = (ωi,sd

BFoV
i,s +

∑

i′∈Ti

ωET
i′,s e

ET
i′,s d

ET
i′,s )R̄−1

E +(dBFoV
i,s +

∑

i′∈Ti

eET
i′,s d

ET
i′,s )R−1

C

(5.9)

where RC represents the computing rate for video processing. Denote the average
number of computing cycles needed to process a data bit by χ . The average
computing rate is RC = f/χ . For all viewpoints in VS s that can be rendered by
cached BFoVs, the average delay is

tBFoV
s =

∑

i′
pP

i′,s[
∏

{i|i′∈Vi }
(1 − eEFoV

i,s )]{ min
{i|i′∈Vi }

qBFoV
i,s eBFoV

i,s

+
∏

{i|i′∈Vi }
(1 − eBFoV

i,s )[(
∏

i∈Ti′
f BFoV

i,s )qBFoV
i′,s eBFoV

i′,s ]}. (5.10)

Equation (5.10) includes the average delay in Cases 2 and 3 of the content
delivery scenario in Sect. 5.4.1.2: for Case 2, when viewpoint i′ can be rendered
by at least one of the cached BFoVs, the average delay is the minimum average
delivery delay achieved by the cached BFoVs. For case 3, when viewpoint i′
cannot be rendered by any of the cached BFoVs but can be stitched by multiple
BFoVs, BFoV (i′, s) will be stitched and delivered, and the average delivery
delay is the delay for processing and transmitting BFoV (i′, s).

• For viewpoints in VS s that cannot be rendered by any EFoV and BFoV in the
cache, the corresponding BFoVs are downloaded from the cloud server. In such
case, the average content delivery delay includes the time of downloading BFoV
(i, s) from the cloud server to the edge server, the video processing time, and the
video chunk transmission time from the edge server to the user HMD, given by

qCloud
i,s = qBFoV

i,s + dBFoV
i,s R−1

B . (5.11)

The average delay for delivering video chunks from the cloud server is
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tCloud
s =

∑

i′
pP

i′,s
∏

{i|i′∈Vi }
(1 − eEFoV

i,s )(1 −
∏

i∈Ti′
f BFoV

i,s )

· (qBFoV
i′,s + dBFoV

i′,s R−1
B ). (5.12)

In summary, the optimization problem of content placement can be formulated
as

max
{Es ,∀s}

∑

s∈S
pV S

s (pEFoV
s + pBFoV

s ) (5.13a)

s.t.
∑

s∈S
pV S

s (tEFoV
s + tBFoV

s + tCloud
s ) ≤ δ (5.13b)

∑

s∈S

∑

i∈I
dBFoV
i,s (ωi,se

EFoV
i,s + eBFoV

i,s )

+ dET
i,s (

∑

i′∈Ti

ωET
i′,s e

EFoV −E
i,i′,s + eET

i,s ) ≤ C (5.13c)

eEFoV −E
i,i′,s = 0, if eEFoV

i,s = 0 (5.13d)

eEFoV
i,s , eEFoV −E

i,i′,s , eBFoV
i,s , eET

i,s ∈ {0, 1},∀s, i, i′ (5.13e)

where δ is the average content delivery delay threshold. Solving the above optimiza-
tion problem has two challenges. First, the problem is a non-linear combinatorial
optimization problem. A similar problem is the maximal coverage problem [23],
which is proved to be NP-hard. Second, the large number of video chunks results in a
large number of variables. Consider a five-minute video for example. A one-second
equirectangular video can be divided into 24×12 tiles/viewpoints in the spatial
dimension. For each viewpoint, there are at least 4 decision variables for a VS, i.e.,
eEFoV
i,s , eBFoV

i,s , eET
i,s , and {eEFoV −E

i,i′,s ,∀i′}. Consequently, at least 345,600 decision
variables need to be determined for caching this video, which leads to significantly
high computing complexity. Therefore, we propose a two-stage solution for problem
(5.13). We first decouple the problem into subproblems, which place content for
each individual VS, given the delay bound and the cache capacity bound for VSs.
We then determine the two bounds, i.e., δs and Cs , for all VSs by an iterative
optimization method. Our proposed solution divides a large number of decision
variables into a number of small variable sets, makes decisions for the small set
of variables in a parallel manner, and attains the optimal solution iteratively.
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5.4.3 Placement Scheme for Video Chunks in a VS

Video chunks in different VSs share cache capacity C, where the share of cache
capacity for video chunks in VS s is Cs . We introduce a delay bound, δs , for caching
video chunks in VS s. The values of Cs and δs are determined in Sect. 5.4.4. Given
Cs and δs , problem (5.13) is decoupled into subproblems, each of which places
video chunks in a VS. A subproblem is formulated as

max
Es

pEFoV
s + pBFoV

s (5.14a)

s.t. tEFoV
s + tBFoV

s + tCloud
s ≤ δs (5.14b)

∑

i∈I
dBFoV
i,s (ωi,se

EFoV
i,s + eBFoV

i,s )

+ dET
i,s (

∑

i′∈Ti

ωET
i′,s e

EFoV −E
i,i′,s + eET

i,s ) ≤ Cs (5.14c)

eEFoV −E
i,i′,s = 0, if eEFoV

i,s = 0 (5.14d)

eEFoV
i,s , eEFoV −E

i,i′,s , eBFoV
i,s , eET

i,s ∈ {0, 1},∀i, i′. (5.14e)

Denote the optimal weighted popularity for cached video chunks of VS s by
Ps(Cs, δs). To solve the constrained problem (5.14), we propose a heuristic
algorithm. The first step in the algorithm is to select video chunks to cache with
the objective of guaranteeing delay constraints with minimum cache capacity usage.
The second step is to cache popular content to maximize the objective function in
(5.14a).

In the first step, we select video chunks that can effectively reduce the average
content delivery delay. We define an index, hi , to represent the average delay
deduction per bit by caching video chunk i. The index of VS s is dropped since we
focus on only one VS here. Note that 3D-ETs on EFoVs and ETs are not considered
in this step since caching ETs cannot reduce the average content delivery delay.
Based on (5.7), (5.9), and (5.11), hi for EFoVs and BFoVs can be obtained as:

hi =
{

pi,s(R
−1
C + R−1

B )ω−1
i,s , for i ∈ EEFoV

s

pi,s(R
−1
B ), for i ∈ EBFoV

s .
(5.15)

A higher hi means that caching video chunk i is more effective in reducing content
delivery delay. The main idea of this step is to cache as many video chunks
with high hi as possible under delay bound δi . However, the problem is non-
linear since multiple EFoVs can render the same viewpoint, and multiple BFoVs
can be stitched to render a viewpoint. The value of pi,s depends on other video
chunks in the cache, and so does index hi . Let H(E) represent the summation of
index hi achieved by video chunks in set E . Without considering stitching BFoVs,
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H(E1 ∪ E2) ≤ H(E1) + H(E2) − H(E1 ∩ E2), where strict inequality holds when a
video chunk from E1 and a video chunk from E2 can render the same viewpoints. It
makes the function H(E) a sub-modular set function, and the problem is similar to
a maximal coverage problem, in which a near-optimal solution can be obtained by
a greedy approach [23, 24]. The corresponding greedy content placement scheme is
presented in Algorithm 8, where the video chunk that maximizes H(E) is selected
consecutively as long as the average delay is not larger than the delay bound.
Function ts(E) represents the content delivery delay after caching the content in
E , which can be obtained by (5.8), (5.10), and (5.12). Let h({i}|E) represent the
index of video chunk i given that video chunks in set E are cached, where

h({i}|E) = H({i} ∪ E) − H(E). (5.16)

In practice, adjacent BFoVs can be stitched to render a viewpoint. In such case,
the sub-modularity of H(E) no longer holds. Therefore, we design a heuristic
approach to adjust the solution from Algorithm 8, which is provided in Algorithm 9,
where k represents the iteration number, and EBFoV,k+1 represents the set of BFoVs
in Ek+1. The idea of the heuristic algorithm is to cache BFoVs to further improve the
overall achieved index value, H(E), until no BFoV can further improve H(E). The
algorithm provides a feasible content placement solution of problem (5.14). If the
content placement result cannot satisfy the average delay requirement, we consider
the content placement problem infeasible.

After a feasible solution is obtained, we further improve the overall weighted
popularity of content in the cache, as presented in Algorithm 10. The idea is
similar to that of Algorithm 9, while Algorithm 10 maximizes the overall weighted
popularity rather than the overall index value. Let function P(E) represent the
overall weighted popularity by caching video chunks in set E . The value of P(E)

can be obtained from objective function (5.14a). Let p({i}|E) represent the weighted

Algorithm 8 Greedy content placement
Input: Index function H(·), delay requirement δs , and cache capacity Cs .
Output: Set of video chunks E0.
1: E0 ← ∅.
2: Ê ← all BFoV and EFoV video chunks.
3: while ∃i ∈ Ê}|{ts (E0 ∪ {i}) ≥ δs} do
4: if the overall data size of content in E0 is greater than Cs then
5: Break
6: end if
7: i = argmax

i∈Ê
h({i}|E0).

8: E0 ← E0 ∪ {i}.
9: Ê ← Ê\{i}.

10: end while
11: Obtain the indexes of cached video chunks: {h({i}|E0\{i}),∀i ∈ E0}.
12: Return E0.
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Algorithm 9 Heuristic content adjustment—Stage 1
Input: Index function H(·), delay bound δs , and cache capacity bound Cs .
Output: Feasible solution E .
1: Run Algorithm 8, k = 0.
2: while 1 do
3: Find a BFOV i∗ not in Ek , where:

i∗ = argmax
i

h({i}|Ek\{i′}), i′ ∈ EBFoV,k, i /∈ EBFoV,k,

and h({i∗}|Ek\{i′}) is larger than the minimum index of video chunks in Ek .
4: if i∗ exists then
5: Ek ← {Ek\{i′}} ∪ {i∗}, k = k + 1.
6: else
7: Break. Return set Ek .
8: end if
9: while the overall data size of content in Ek is greater than Cs do

10: Delete the video chunk with the minimum index.
11: end while
12: end while

Algorithm 10 Heuristic content adjustment—Stage 2
Input Index function H(·), delay bound δs , and cache bound Cs .
Output Content placement solution Es .
1: Run Algorithm 9 to obtain the feasible solution E , and initialize E0 = E , k = 0.
2: while 1 do
3: Run Algorithm 8 to place content with the highest index h{{i}|Ek} until cache capacity

bound Cs is reached.
4: Find video chunk i∗, where:

i∗ = argmax
i

p({i}|Ek\{i′}),∀i′ ∈ Ek,∀i /∈ Ek

and (a) p({i∗}|Ek\{i′}) is larger than the minimum weighted popularity of video chunks in Ek ;
(b) the average delay constraint is satisfied if video chunks i∗ and i′ are switched.

5: if i∗ exists then
6: Ek ← {Ek\{i′}} ∪ {i∗}, k = k + 1.
7: else
8: Break. Return set Es = Ek .
9: end if

10: Obtain the weighted popularity of video chunks in the cache: {p({i}|Ek\{i}),∀i ∈ Ek}.
11: while the overall data size of video chunks in Ek is larger than Cs do
12: Delete video chunks with the minimum weighted popularity.
13: end while
14: end while

popularity of video chunk i given that video chunks in set E are cached, where

p({i}|E) = P({i} ∪ E) − P(E). (5.17)
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The content placement is finished when there is no video chunk that can be cached
to further improve the overall weighted popularity. In this case, a local optimum of
problem (5.14) is achieved.

5.4.4 Placement Scheme for Video Chunks of Multiple VSs

Although Algorithm 10 can be used to cache video chunks of different VSs, high
computational complexity is expected due to the large number of variables and the
correlation in popularity among video chunks. Observing the independence among
video chunks in different VSs, we next propose an optimization scheme to determine
the share of cache capacity C and delay requirement δ for individual VSs, i.e., Cs

and δs , respectively. Based on parameters Cs and δs , we can select the video chunks
to cache from different VSs in a parallel manner.

Given Cs and δs , the solution of (5.14) for one VS can be obtained, i.e.,
Ps(Cs, δs). The overall optimization problem (5.13) can be rewritten as

max{Cs,δs ,∀s}
∑

s∈S
pV S

s Ps(Cs, δs) (5.18a)

s.t.
∑

s∈S
pV S

s δs ≤ δ (5.18b)

∑

s∈S
Cs ≤ C (5.18c)

Cs ≥ Cmin
s (δs),∀s. (5.18d)

In (5.18d), Cmin
s (δs) represents the minimum cache resource required to cache the

video chunks of VS s in order to satisfy the delay bound δs for delivering these
video chunks. Function Ps(Cs, δs) depends on the viewpoint distribution and the
data size of video chunks in VS s and is not known in advance. Although the value
of Ps(Cs, δs) can be obtained by Algorithm 10 given Cs and δs , the continuous
range of the two variables makes problem (5.18) intractable. Therefore, utilizing
an approach similar to that in Sect. 5.4.3, we first determine a suboptimal solution
for δs . After the value of δs for all VSs is known, we then determine Ps(Cs, δs)

tentatively via an optimization method.
Both Algorithms 8 and 9 place the video chunk with the highest index

h({i}|E\{i}) as long as the average delay requirement is satisfied. Therefore,
there exists a minimum index hmin. The average delay constraint can be satisfied
by caching the video chunks with indexes higher than the minimum index. As
the average delay bound decreases, the minimum index for caching increases.
Similarly, for caching video chunks of multiple VSs, there exists a global minimum
index to meet the delay requirement with δ. Thus, we find hmin to meet the delay
bound. Since hmin does not increase with δ, we use the bisection method to find its
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minimum index. The index for the cached video chunk (i, s) is h({(i, s)}|E\{(i, s)}).
Using an idea similar to that in Algorithms 8 and 9, we place the content with
indexes h({(i, s)}|E\{(i, s)}), which are higher than hmin, in parallel for all VSs.
The average delay bound, δs , and the corresponding required minimum storage
resource, Cmin

s (δs), can be obtained after placing the video chunks.
After obtaining δs and Cmin

s (δs), we utilize an ADMM technique to find the
cache capacity bound Cs for all VSs. The ADMM technique allows attaining the
optimal solution iteratively and, more importantly, optimizing function Ps(Cs, δs)

for all VSs in a parallel manner. Using ADMM, we can tentatively estimate the
unknown function, Ps(Cs, δs), for each VS iteratively.

To decompose problem (5.18) for individual VSs, we introduce auxiliary vari-
ables z1 and {z2,s ,∀s} and rewrite constraints (5.18c) and (5.18d) as

C̄ − C

|S| − z1 = 0 (5.19a)

Cs − z2,s = Cmin
s (δs),∀s (5.19b)

where C̄ represents the mean value of {Cs,∀s}. Correspondingly, the augmented
Lagrangian of problem (5.18) is formulated as

L({Cs, z2,s , u2,s ,∀s}, z1, u1) = −
∑

s∈S
pV S

s Ps(Cs, δs) + u1(C̄ − C

|S| − z1)

+
∑

s

u2,s(Cs − z2,s) + ρ1

2
(C̄ − C

|S| − z1)
2

+ ρ2

2

∑

s

(Cs − z2,s)
2 (5.20)

where u1 and {u2,s ,∀s} are the Lagrange multipliers for constraints (5.19a) and
(5.19b), respectively. Parameters ρ1 and ρ2 are penalty factors for augmented
Lagrangian. It is straightforward that Ps(Cs, δs) is a non-decreasing function of Cs

(i.e., as the cache size increases, the overall weighted popularity for video chunks
in the cache increases). Therefore, Ps(Cs, δs) is a quasi-convex function. To prevent
the algorithm from converging to a local optimum, a variation of ADMM, i.e.,
relaxed heavy ball ADMM [25], is adopted. Denote the iteration number by k. The
variables in (5.20) can be updated iteratively as follows:

Ck+1
s = argmin

Ck+1
s

{−pV S
s Ps(C

k+1
s , δs) + uk

1(C̄
k − Ck

s + Ck+1
s − C

|S| − zk
1)

+ uk
2,s(C

k+1
s − z2,s) + ρ1

2
(C̄k − Ck

s + Ck+1
s − C

|S| − zk
1)

2

+ ρ2

2
(Ck+1

s − zk
2,s)

2} (5.21a)
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zk+1
1 = min{ε(C̄k+1 − C

|S| ) + (1 − ε)ẑk
1 + 1

ρ1
ûk

1, 0} (5.21b)

zk+1
2,s = max{εCk+1

s + (1 − ε)ẑk
2,s + 1

ρ2
ûk

2,s , C
min
s (δs)},∀s (5.21c)

uk+1
1 = ûk

1 + ρ1[ε(C̄k+1 − C

|S| ) + (1 − ε)ẑk
1 − zk+1

1 ] (5.21d)

uk+1
2,s = ûk

2,s + ρ1[εCk+1
s + (1 − ε)ẑk

2,s − zk+1
2,s ],∀s (5.21e)

ûk+1
1 = uk+1

1 + γ (uk+1
1 − ûk

1) (5.21f)

ûk+1
2,s = uk+1

2,s + γ (uk+1
2,s − ûk

2,s),∀s (5.21g)

ẑk+1
1 = zk+1

1 + γ (zk+1
1 − ẑk

1) (5.21h)

ẑk+1
2,s = zk+1

2,s + γ (zk+1
2,s − ẑk

2,s),∀s (5.21i)

where 0 ≤ ε ≤ 1, and 0 ≤ γ ≤ 1. Solving (5.20) requires the knowledge of
the gradient of Ps(Cs, δs). We introduce a non-decreasing function, Qs(Cs), to
estimate Ps(Cs, δs) iteratively, where δs is omitted for simplicity. Equation (5.21a)
is rewritten as

Ck+1
s = argmin

Ck+1
s

{−pV S
s Qs(C

k+1
s ) + uk

1(C̄
k − Ck

s + Ck+1
s − C

|S| − zk
1)

+ uk
2,s(C

k+1
s − z2,s) + ρ1

2
(C̄k − Ck

s + Ck+1
s − C

|S| − zk
1)

2

+ ρ2

2
(Ck+1

s − zk
2,s)

2} (5.22)

Consider a piecewise linear function for Qs(Cs). In iteration k, when Ck+1
s is

obtained by (5.22), we place the content according to Algorithm 10 for the
VSs in parallel and observe the true value of weighted popularity Ps(C

k+1
s , δs).

Accordingly, Qs(Cs) is updated by

Qk+1
s (Cs) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qk+1
s (Ck+1

s )−Qk
s (C

−
s )

Ck+1
s −C−

s

(Cs − C−
s ) + Qk

s (C
−
s ),

for C−
s ≤ Cs < Ck+1

s
Qk

s (C
+
s )−Qk+1

s (Ck+1
s )

C+
s −Ck+1

s

(C+
s − Cs) + Qk+1

s (Ck+1
s ),

for Ck+1
s ≤ Cs < C+

s

Qk
s (Cs), Otherwise

(5.23)
where C−

s and C+
s represent the minimum closest and maximum closest values

obtained in the previous iterations compared to Ck+1
s , respectively. As the iteration

number increases, Qs(Cs) approaches Ps(Cs, δs). For limiting influence from
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inaccurate estimation in the optimization process, we apply an attenuated noise on
Ck+1

s to explore the real value of the original function. Let N (0, σ 2) represent a
Gaussian random noise with zero mean and standard deviation σ . The rate of noise
attenuation is αattn. The algorithm for placing video chunks of multiple VSs is given
in Algorithm 11.

The complexity of the proposed content placement scheme is analyzed as
follows: For placing video chunks in one VS (Algorithm 10), the worst time
complexity is (M1 × N2

g ), where Ng is the number of video chunks in a VS and M1
is the iteration number for searching the optimal result. For placing video chunks in
multiple VSs (Algorithm 11), the worst time complexity is (M1 × |S| × M2 × N2

g ),
where M2 is the number of iterations for Algorithm 11 to converge. Despite the
iterations in Algorithm 11, the content placement for different VSs is in parallel.
Moreover, if the weighted popularity functions {Ps(Cs, δs),∀s ∈ S} are known,
the complexity of the ADMM algorithm is negligible, and the time complexity of
Algorithm 11 for a parallel placement process becomes (M2 × N2

g ), i.e., the time
complexity of Algorithm 10.

Algorithm 11 Content placement scheme for video chunks of multiple VSs
% Bisection method to determine δs

1: while 1 do
2: h = (hmax − hmin)/2.
3: for VS s in S do
4: Place and adjust video chunks with indexes h((i, s)|E\{(i, s)}) ≥ h by Algorithms 8

and 9.
5: end for
6: Calculate the overall average content delivery delay t = ∑

s∈S pV S
s (tEFoV

s + tBFoV
s +

tCloud
s ).

7: If |t − δ| is smaller than a threshold: Break.
8: If t ≤ δ: hmin = h. Otherwise: hmax = h.
9: end while

10: Calculate the content delivery delay for VS s, i.e., δs , and the content data size, i.e., Cmin
s (δs),

for all s ∈ S.
% ADMM method to determine Cs

11: Initialize estimation function Q0
s (Cs), k = 0.

12: while 1 do
13: Calculate Ck+1

s {Qk
s (Cs)} by (5.22).

14: Update axillary variables and Lagrange multipliers by (5.21b)–(5.21i).
15: Ck+1

s = Ck+1
s + N (0, σ 2),∀s.

16: for VS s in S do
17: Place video chunks of VS s given bounds Ck+1

s and δs by Algorithm 10.
18: Let Qk+1

s (Ck+1
s ) = P(Ck+1

s , δs).
19: end for
20: Update Qk+1

s (Cs) by (5.23).
21: σ = αattnσ , k = k + 1.
22: if |L({Cs, z2,s , u2,s ,∀s}, z1, u1)

k+1 − L({Cs, z2,s , u2,s ,∀s}, z1, u1)
k | and σ are less than

the thresholds then
23: Break. Return the content placement solution with cache capacity bound Cs .
24: end if
25: end while
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Table 5.1 Video metadata
[11]

No Video length Content Category

1 2′44" Conan360-Sandwich Performance

2 3′20" Freestyle Skiing Sport

3 4′48" Google Spotlight-Help Film

5.4.5 Numerical Results

In this section, we demonstrate the numerical results of the proposed content
placement schemes.

Parameter Settings In the simulation, we utilize the HMD tracking dataset
composed of 48 users watching 3 spherical VR videos with different categories
[11]. The details of the VR videos are provided in Table 5.1. In the data set, user
viewpoints in the 3D coordinate system are sampled once every millisecond. We
map the viewpoint locations into 2D space via equirectangular projection to obtain
the viewpoint popularity distribution in each tile. The 360◦ ×180◦ equirectangular
video is divided into 24×12 tiles. The user’s FoV spans 7×5 tiles, and the BFoV
and EFoV both span 9×7 tiles. The time length of a video chunk is 4 s. Therefore,
the three videos have 41, 50, and 72 VSs, respectively. We randomly generate the
data size of video chunks using Gaussian distributions, where the average data size
of a BFoV and an ET are 1 and 0.1 MByte, respectively, and the standard deviation
of the data size are 0.45 and 0.14 MByte, respectively. The ratios, ωi,s and ωET

i,s , are
generated using a Gaussian distribution, both with mean and variance of 1.5 and 0.3,
respectively. The communication rate RB between the cloud and the edge server is
200 MB/s. The average content delivery delay bound, δ, is 85 ms.

Content Placement Performance We present the numerical results of the parallel
content placement scheme for a number of VSs. The content placement scheme is
presented in Algorithm 11. The first 40 VSs in videos 1 and 2 are evaluated in the
simulation. The popularity of the 40 VSs in the two videos, i.e., pV S

s , is generated
randomly. The overall cache capacity is 380 MBytes, and RC and R̄E are 35 MBytes
and 200 Mb, respectively. The required average delay bound is 85 ms.

The relation between the VS popularity, i.e., pV S
s , and the cache capacity

allocated for a VS, i.e., Cs , in videos 1 and 2 is shown in Figs. 5.6 and 5.7,
respectively. The circle markers show the VS popularity sorted in an increasing
order. The cross markers show the corresponding allocated cache capacity, and
the markers are fitted to a second-order polynomial line. As the popularity of a
VS increases, the cache capacity assigned to the VS increases correspondingly, as
expected. However, due to different viewpoint distributions in different VSs, the
allocated cache capacities among VSs are different. Moreover, compared to video
1, the correlation between the popularity and the allocated cache capacity for a
VS is weak, especially for the VSs with high popularity. The reason is, compared
to video 1 (performance video), video 2 (film video) has a more concentrated
viewpoint distribution. The optimal overall weighted popularity and the average
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Fig. 5.6 The VS popularity pV S
s and cache capacity allocated for a VS Cs for the first 40 VSs in

video 1
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video 2
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Fig. 5.8 Convergence performance of proposed parallel content placement scheme

delay constraints can be achieved by caching fewer video chunks. In this case,
increasing the allocated cache size for the popular VS may not increase the overall
weighted popularity significantly.

The convergence performance of the proposed scheme with different parameter
settings is shown in Fig. 5.8, in which “P-ADMM” denotes the relaxed heavy
ball ADMM method used in the proposed scheme, and “ADMM” denotes the
conventional ADMM method. As shown in the figure, both P-ADMM and ADMM
methods converge after 60 iterations. However, the P-ADMM method can achieve
higher overall weighted popularity compared to the ADMM method since the P-
ADMM method can reduce the chance the algorithm converges to a local optimum.
Meanwhile, the noise attenuation rate has less impact in the case of P-ADMM,
which shows that the P-ADMM method may achieve the global optimum via a short
exploration process.

5.5 AI-Assisted Mobile VR Video Delivery

The content placement scheme in Sect. 5.4.2 decreases the average content delivery
delay. However, the real-time video playback missing rate is not guaranteed so far,
especially when unpopular video chunks are requested. In this section, we propose
a content distribution framework to minimize video playback frame missing rate
by distributing video chunks proactively. On the user side, the video chunks to be
played in the future are requested according to the user viewpoint trajectory. On
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Fig. 5.9 Requesting and distributing video chunks for user u

the edge side, we propose a Whittle index (WI) based content delivery scheduling
method to schedule delivery sequence according to user viewpoint movement,
channel quality, and delivery time of requested video chunks.

5.5.1 Content Distribution

The content distribution framework is illustrated in Fig. 5.9. As mentioned in
Sect. 5.3, the user viewpoint is sampled with frequency g. The n-th sampling interval
is referred to as time slot n. The video watching timeline is divided into time
segments that are aligned with the playback time of VSs. Thus, a time segment
includes �Tsg� slots. The index of the first time slot of time segment s is denoted by
n(s). In each time slot, the steps for requesting and delivering content in each time
slots are summarized as follows:

(1) Each user HMD samples the user’s viewpoint at the beginning of the time slot
and checks if the viewpoint can be rendered by any downloaded EFoVs in the
HMD’s buffer;

(2) If the current viewpoint can be rendered, the user HMD plays the corresponding
EFoV; otherwise, it plays the downloaded EFoV with a center point closest to
the current viewpoint;

(3) The user HMD predicts the viewpoint in the subsequent time slots until finding
a viewpoint that cannot be rendered by any EFoVs in the HMD’s buffer;

(4) The user HMD sends a request to the edge server for an EFoV to render that
viewpoint;

(5) The edge server, after receiving requests from all user HMDs, schedules a
content delivery request by assigning a computing unit for processing the
request. If no computing unit is available, the edge server cannot satisfy any
request until at least a computing unit is available;
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(6) If the request of a user HMD is scheduled, the edge server fetches the video
chunk from the cache or the cloud, processes the video chunk, and sends
the video chunk to the user HMD. The content delivery process occupies a
computing unit. The user HMD saves the received video chunk in its buffer.

Note that if a request is not scheduled in a slot, the user HMD may request the
same EFoV in the subsequent slots until either of the following two cases happen.
First, the time slot has passed for the required EFoV, and another EFoV will be
required for a future time slot. Second, the user HMD identifies the prediction was
wrong, and the EFoV is no longer required for subsequent time slots. The detailed
content distribution settings are provided in the following subsection.

5.5.2 Intelligent Content Distribution Framework

The user HMDs predict the viewpoint movement of the users and request a video
chunk that they will watch in the subsequent time slots. If a request is scheduled
by the edge server, the requested video chunk is processed and delivered to the user
HMD. The received video chunk is then buffered in the device. In each slot, a user
HMD plays the video chunk corresponding to the user viewpoint if the video chunk
is stored at its buffer. If the viewpoint cannot be rendered by any video chunk in the
buffer, frame missing happens for that slot. The viewpoint of user u in time slot n is
denoted by ju,n.

The set of video chunks in the buffer of user u in time slot n is denoted by Bu,n.
Let function A(Bu,n) represent the set of viewpoints that can be rendered by the
video chunks in set Bu,n. Thus, if viewpoint ju,n can be rendered by one video chunk
in the buffer, we have ju,n ∈ A(Bu,n). Note that a video chunk has playtime Ts and
can render viewpoints in multiple time slots. The video chunks for the previous time
segments will be deleted automatically in the buffer.

Viewpoint prediction techniques, such as linear regression [7] and neural net-
works [13], have been widely investigated in the literature. In our scheme, we use
a LSTM neural network to predict future viewpoints according to the previous
user viewpoint trajectory. Nevertheless, any other AI-based viewpoint prediction
solution can be adopted in our proposed scheduling scheme. The previous viewpoint
trajectory of user u is denoted by vu,n = {ju,n−W, . . . , ju,n}, where W denotes the
viewpoint window length for prediction. Given the trajectory, the user HMD predicts
the viewpoint in the next slot and checks if it can be rendered by any video chunks
stored in the buffer. If so, the user HMD consecutively predicts viewpoints in future
time slots until finding a viewpoint that cannot be rendered by any video chunks in
the buffer. The user HMD then send a request for the corresponding video chunks to
the edge server. The time between the current slot and the slot when the user HMD
will play the requested video chunk is denoted by Δu, which is referred to as request
duration.
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We assume that user HMD has knowledge of the cached content at the edge
server. Since multiple video chunks can render the same viewpoint, user HMDs
select the video chunks with the shortest average content delivery time in their
requests. For example, if both chunk A, cached as an EFoV, and B, cached as a
BFoV, can render the future viewpoint, the user HMD requests chunk A. The video
chunk that is selected and requested by user HMD u in time slot n for VS s is
denoted by (i, s)u,n.

For simplicity, we consider only one computing unit in the edge server, and
the edge server can only process and deliver one request at a time. However,
the proposed framework and solution can be extended to schedule delivery with
multiple computing units. The edge server receives requests from user HMDs,
selects one request, and delivers the requested video chunks to the corresponding
user HMD. When a video chunk is scheduled for delivery, the edge server stitches
all cached and associated ETs of the video chunk. Whenever the edge server finishes
the delivery for one request, it evaluates received requests and selects one request for
the next delivery. Different video chunk delivery requests result in different content
delivery time. The content delivery time depends on the wireless channel condition
and the content caching policy. We use the content delivery delay formulated in
Sect. 5.4.2 to model the delivery time. The wireless transmission rate follows the
two-stage Markov chain as mentioned in Sect. 5.3. The transmission rate in the n-th
time slot for user HMD u is denoted by RE,n,u. For notation simplicity, the overall
number of time slots for delivering video chunks of the request scheduled in slot n

for user HMD u is denoted by Dn,u.
The probability that a video chunk in the buffer matches the current viewpoint

is referred to as hit probability. The objective in the content distribution phase is to
schedule the content delivery sequence to minimize the frame missing likelihood,
which can be achieved by maximizing the hit probability. Define scheduling variable
zu,n, where zu,n = 1 if the request from user HMD u in time slot n is scheduled,
and zu,n = 0 otherwise. An optimization problem can be formulated as

max{zu,n,∀u,n} lim
N→∞

1

N
E
[∑

n

∑

u

1{ju,n ∈ A(Bu,n)}
]
. (5.24)

In (5.24), 1{x} = 1 when x is true; 1{x} = 0, otherwise. Meanwhile, the scheduling
decision is constrained since only one request can be processed at any time. In order
to solve the problem in a tractable manner, the constraint is relaxed into a time-
averaged constraint given by

lim
N→∞

1

N
E
[∑

n

∑

u

zu,n

] ≤ 1

δ × g
. (5.25)

The relaxed constraint indicates that at most one request can be scheduled during
every δ × g time slots, where δ × g is the average number of slots for delivering a
video chunk.
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The scheduling decision depends on several factors. Intuitively, the video chunk
in the request with the minimum Δu value is most urgently needed. However, if
the user experiences poor channel quality or the video chunk has a long content
delivery time, the requested video chunk may not be delivered in time. Furthermore,
when the user viewpoint moves rapidly, e.g., when watching a sports game, the
requested video chunk may render viewpoints only for a few slots. In contrast,
when the user viewpoint moves slowly, the requested video chunk can support
the viewpoints for multiple slots. When the computing resource is limited and
only one request can be satisfied, the edge server may satisfy the request from
the user HMD with lower viewpoint movement variation to increase the overall
hit probability. Further, frequently changing viewpoints introduces a challenge for
prediction accuracy. The uncertainty increases the possibility of a delivery failure,
which should be considered in scheduling.

In the following two subsections, we reformulate the scheduling problem as
a restless multi-armed bandit (RMAB) problem and propose a WI-based content
delivery scheduling scheme. We further utilize a reinforcement learning method to
determine the WI values in the scheduling scheme.

5.5.3 WI-based Delivery Scheduling

We first formulate the scheduling problem as an RMAB problem. Consider U

controlled Markov chains {Xu
n, u = 1, . . . , U, n ≥ 0} with state space Yu. The

state of the Markov chain for user HMD u, denoted by Yu
n , includes the previous

viewpoint trajectory of user u, vu,n, the set of video chunks in the buffer of user
HMD u, Bu,n, and current channel condition, RE,n,u. We add the information of the
request in the state, including the requested video chunk index, (i, s)u,n, the request
duration, Δu,n, the data size of the corresponding video chunk, and the content
placement policy of the video chunk. The control variable for the Markov chain
for user HMD u is zu,n, which is binary: active when zu,n = 1 and passive when
zu,n = 0. Denote a processing epoch by φ, where φ = D(u∗, n), in which u∗ is the
user HMD whose request is scheduled in time slot n. The probability of transiting
from state Yu

n to state Yu
n+φ under control zu,n is denoted by P(Yu

n+φ |Yu
n , zu,n),

where
∑

Yu
n+φ∈Yu P (Y u

n+φ |Yu
n , zu,n) = 1.

The reward for scheduling a request is the number of future viewpoints that can
be rendered from granting that request, which is formulated as

R(Yu
n , zu,n) =

{∑n(s+1)−1
n′=min{n+Dn,u,n(s)} κn′−n1{ju,n′ ∈ A(iu,n,s)}, if zu,n = 1

0, if zu,n = 0.

(5.26)

The discounted reward model is applied in (5.26), where κ is the discount factor.
When the discount factor is one, the average of the accumulated reward in an infinite
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time horizon for all user HMDs is equivalent to the average hit probability in (5.24).
The problem is now an RMAB problem. Similar to the multi-armed bandit problem,
in each decision epoch, we select one user HMD out of U user HMDs to schedule
with unknown dynamics. Compared to multi-armed bandit problems, RMAB allows
state transition when an arm is passive. In our case, the state of a user HMD still
evolves even if the user HMD is not scheduled.

We solve the RMAB problem by a WI-based method, which is a heuristic
solution and has good empirical performance [26]. Specifically, the WI-based
method defines a subsidy for passivity for candidates, i.e., user HMDs, in the
scheduling problem. The subsidy depends on the current state of each user HMD.
The edge server will receive a higher long-term reward to schedule the user HMD
with a higher subsidy. By the WI-based method, user HMDs can evaluate and
transform the network dynamics into a WI value in a distributed manner. The edge
server makes adaptive scheduling decisions by comparing the WI values collected
from user HMDs. Denote the WI for user HMD u with state Yu

n by λ∗(Y u
n ). The WI

can be obtained by

λ∗(Y u
n ) =R(Yu

n , 1) +
∑

Yu
n+φ∈Yu

P (Y u
n+φ |Yu

n , 1)κD(n,u) max
zu,n+φ

{Q(Yu
n+φ, zu,n+φ)}

−
∑

Yu
n+φ∈Yu

P (Y u
n+φ |Yu

n , 0)κδg max
zu,n+φ

{Q(Yu
n+φ, zu,n+φ)}. (5.27)

In (5.27), Q(Yu
n , zu,n) is the state-action value, i.e., Q value, for state Yu

n with action
zu,n. The edge server collects the WI from all user HMDs and schedules the request
with the maximum WI value. The conventional solution for finding WI cannot be
applied in our considered problem since the state-action transition probability is
unknown. The work [27] adopts the Q-learning method to learn the Q value and
approximate the WI value. However, it cannot be applied to our problem due to the
large and continuous state space. Therefore, we propose a novel deep reinforcement
learning method to approximate the WI value.

5.5.4 Reinforcement Learning Assisted Content Distribution

Motivated by the actor-critic method, we adopt two neural networks. One of the
neural networks approximates the Q value. Meanwhile, different from the actor-
critic method, another neural network evaluates the WI value rather than provides
the scheduling decision. Each user HMD can evaluate the Q value and WI in a
distributed manner without information of other user HMDs.

Denote the weight vectors of the neural networks for evaluating the Q value and
the WI value by θQ and θW , respectively. In time slot n, if the request of a user HMD
is scheduled, the user HMD observes the reward as given in (5.26). Otherwise, the
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user HMD uses subsidy λ∗(Y u
n ; θW ) as the reward, which represents the value of WI

approximated by the neural network with weight vector θW . The weight vector θQ

is updated by minimizing the loss function for evaluating the Q value, given by

L(θQ) =
{

[Q(Yu
n , 0; θQ) − λ∗(Y u

n ; θW ) − Q(Yu
n+φ, 0; θQ)]2, if zu,n = 0

[Q(Yu
n , 1; θQ) − R(Yu

n , 1) − Q(Yu
n+φ, 1; θQ)]2, if zu,n = 1.

(5.28)

In (5.28), Q(Yu
n+φ, zu,n; θQ) denotes the Q value approximated by the neural

network with weight vector θQ. Based on the Q value, the WI value can be
approximated in an iterative manner, given by

λ̂∗(Y u
n ) = λ∗(Y u

n ; θW ) − ϕλ[Q(Yu
n , 0; θQ) − Q(Yu

n , 1; θQ)] (5.29)

where ϕλ denotes the step size for approximating the WI value. The true value of
λ∗(Y u

n ) satisfies Q(Yu
n , 0; θQ) = Q(Yu

n , 1; θQ). Therefore, for the neural network
with weight vector θW , the loss function for evaluating the WI value is

L(θW ) = [λ∗(Y u
n ; θW ) − λ̂∗(Y u

n )]2. (5.30)

The proposed the WI-based content delivery is summarized in Algorithm 12,
where ϕQ and ϕW are the learning rates for evaluating weight vectors θQ and θW ,
respectively. The algorithm has two parts: In the first part, presented in Lines 4 to
10, each user HMD evaluates its WI value by the neural networks in a distributed
manner, and the device schedules the requests by selecting the request with the
highest WI value. In the second part, presented in Lines 11 to 15, each user HMD
trains the two neural networks based on the received reward. The weight vectors ϕQ

and ϕW are updated in a distributed manner by minimizing loss functions (5.28) and
(5.30). To ensure stability on learning, ϕQ should be higher than ϕW .

5.5.5 Neural Network Structure

The overview of the proposed learning-based content distribution scheme is shown
in Fig. 5.10. In each time slot, user HMDs send requests for video chunks and
the corresponding WI values. The edge server schedules the one with the highest
WI value and delivers the corresponding video chunk. In each time slot, a user
HMD observes its current state, predicts the future viewpoints by a future viewpoint
prediction function, and requests the corresponding video chunk. Specifically, we
apply an LSTM neural network to predict user viewpoints for the subsequent slots,
which is illustrated on the left-hand side in Fig. 5.11. Moreover, the full state is
evaluated by the Q value and WI evaluation networks. The WI value of the state
will be sent to the edge server for scheduling content delivery, and the Q value of
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Fig. 5.10 The overview of the proposed learning-based content distribution scheme
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the state will be utilized for estimating the loss functions and training the neural
networks.

The neural network structures for the Q value and WI evaluation networks are
similar, which are illustrated on the right-hand side in Fig. 5.11. We adopt an LSTM
layer for finding the temporal correlation from the previous viewpoint trajectory and
reducing the input data dimension. Moreover, both the request, (i, s)u,n, and the set
of video chunks in the buffer, Bu,n, are represented by matrices with size X×Y , and
each element corresponds to a tile in the equirectangular size video. In the matrices
representing (i, s)u,n and Bu,n, an element is 1 if the location of the element is the
same with the location of tile i and the location of a viewpoint that can be rendered
by EFoVs in set Bu,n, respectively. Otherwise, the element is 0. CNNs are adopted
to explore the spatial correlation of the inputs and reduce the input dimension. The
outputs of LSTM and CNN layers are concatenated together with the rest of the
state and connected to fully connected layers. The output is the Q value or the WI
value of the input state.
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Algorithm 12 WI-based content delivery scheme
1: Initialize the weight vectors of neural networks θW and θQ for all user HMDs.
2: Initialize the exploration probability ε = 1.
3: while time slot n < nmax do

% Schedule the content delivery requests.
4: for user HMD u = 1 : U do
5: Request new video chunks (i, s)u,n through prediction, and report the WI λ∗(Y u

n ; θW ).
6: end for
7: With probability ε, edge server schedules a request randomly.
8: Otherwise, edge server schedules the request with the highest WI.
9: The scheduled user HMD u receives the requested video chunks and updates the corre-

sponding reward R(Yu
n , 1).

10: Update slot n = n + D(n, u).
% Train the neural networks.

11: for user HMD u = 1 : U do
12: Update the network for evaluating the Q value by minimizing loss function (5.28):

θQ = θQ − ϕQΔL(θQ). (5.31)

13: Update the WI value by (5.29).
14: Update the network for evaluating the WI by minimizing loss function (5.30):

θW = θW − ϕW ΔL(θW ). (5.32)

15: end for
16: If ε > εmin, ε = βattnε.
17: end while

To train the networks, as shown in Fig. 5.11, user HMDs obtain the instant reward
according to (5.26). Parameters θQ in the Q value evaluation network are updated
by minimizing the loss function in (5.28) according to the reward. Moreover, the Q

value is further utilized to generate an approximated WI value by (5.29). The loss
function (5.30) is to minimize the gap between the WI value approximated by the
Q value and that approximated by the WI evaluation network. Parameters θW in the
WI value evaluation network are updated accordingly. The accuracy of WI value
approximation can be improved by learning the network dynamics and training the
neural networks consecutively.

The proposed content delivery scheduling scheme allows user HMDs to train and
infer their WI values in a distributed manner. The edge server makes scheduling
decisions that adapt to network dynamics only by the collected WI values. The
information on local devices, such as viewpoint trajectory and channel conditions,
is not required by the edge server. By the proposed method, user HMDs infer the
WI values in each time slot to measure the value of scheduling their requests. The
edge server collects the WI values from the user HMDs and satisfies the request
with the highest WI without requiring more information from the user HMDs, such
as previous viewpoint trajectories. The information overhead can be significantly
reduced by the proposed scheme. For example, let a value in the state be a float
number (4 bytes). Only updating the previous viewpoint trajectory information, as
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a part of information in a state, requires a user HMD sending 400 bytes (2 float
numbers for a viewpoint location) in each time slot if the viewpoint prediction
window W is 50. Therefore, if the length of a time slot is 32 ms, at least 735 KB of
data will be uploaded by a user HMD for playing a one-minute video. In contrast,
in our proposed scheme, we evaluate a value for a user HMD state, i.e., WI. In each
time slot, a user HMD uploads a float number (4 bytes) rather than the full state
to the edge server for scheduling, which can significantly reduce communication
overhead. Moreover, since the edge server only compares the WI values uploaded
by user HMDs, the WI values can be further processed to reduce communication
overhead, e.g., through quantization.

Furthermore, besides the decentralized structure for decision making, the
proposed learning-assisted WI-based scheme can also schedule content delivery
requests flexibly. First, the proposed scheme does not require a fixed number
of VR users. VR users can enter or leave the system at any time slot, and the
neural networks do not need to retrain their parameters due to environmental
dynamics. Second, the proposed deep reinforcement learning provides a reference
for scheduling rather than scheduling results. Thus, as an extension, it is possible
to provide a priority-aware content distribution scheme by increasing the WI values
for the user HMDs with high priority.

5.5.6 Numerical Results

In this subsection, we present the simulation results of the proposed AI-assisted
mobile VR video delivery scheme.

Content Distribution Setting There are 12 users within the coverage of the edge
server and watching the VR videos. The probabilities of any user watching video
1 to 3 are 0.3, 0.3, and 0.4, respectively. VSs in the same videos have the same
VS popularity. Once a video is selected by a user, the user plays the whole video
without interruption. The viewpoint movement profile of a user is selected randomly
from the viewpoint movement profile among the 48 users in the data set. The
transmission rates RE,H and RE,L are 250 Mb/s and 100Mb/s, respectively. The
transition probabilities pH and pL are 0.6 and 0.3, respectively. The VR videos
play at the rate of 30 frames per second. Thus, the length of a time slot is 32 ms,
i.e., 1/g, and a time segment, i.e., the time length of a VS, contains 125 time slots.
The prediction window length W is 50 time slots. In each time slot, user HMDs
only request the content corresponding to the current VS and the next VS. The
video chunks of the VSs after the next VS will not be requested due to a likely high
viewpoint prediction error.

Neural Network Setting Following the neural network structure shown in
Figs. 5.10 and 5.11, there are three neural networks used for making content
distribution decisions. The first is the neural network for viewpoint prediction.
We apply one LSTM layer with 50 neurons to predict the viewpoint location in
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Table 5.2 Network structure
for evaluating WI value

Number Activation

Layers of neurons function

CONV1 (3×3× 10) elu

POOL1 (2×2) elu

CONV2 (3×3×10) elu

LSTM 50 tanh

Fully connected 1 125 elu

Fully connected 2 64 elu

Fully connected 3 64 elu

Fully connected 4 24 elu

Output 1 Linear

Table 5.3 Network structure
for evaluating Q value

Number Activation

Layers of neurons function

CONV1 (3×3× 10) elu

POOL1 (2×2) elu

CONV2 (3×3×10) elu

LSTM 50 tanh

Fully connected 1 125 elu

Fully connected 2 64 elu

Output 1 Linear

the subsequent time slots. The prediction accuracy is around 94%. The other two
neural networks approximate the Q value and WI value in Algorithm 12. Note that,
besides state Yu

n , we also utilize the statistical viewpoint distribution pP
i,s as a part

of the input to improve the performance. The parameters of the neural networks
for evaluating the Q value and the WI value are presented in Tables 5.2 and 5.3,
respectively. The learning rates of the networks for evaluating the Q value and the
WI value are 5e−4 and 1e−4, respectively. The initial exploration probability is 1,
while the probability decreases with rate βattn = 0.9995 after each iteration. The
minimum exploration probability is 0.008.

Performance of the Content Distribution Scheme The performance of the
proposed WI-based scheme is compared with three benchmark schemes: urgent-
request-first, round-robin, and random. The urgent-request-first scheme always
schedules requests with the minimum Δu. The round-robin scheme schedules
requests in a sequential and rotational manner. The random scheme schedules
requests randomly using a uniform distribution. We generate two different video
selection and viewpoint movement profiles: one for training the neural networks,
and the other for testing the learning-based scheme performance. For each profile,
we generate requests for 2000 s. During the test, our scheme explores the envi-
ronment with a minimum exploration rate and trains the neural networks. With
the viewpoint movement prediction by AI-based method, the performance of the
average hit probability in the four schemes is shown in Fig. 5.12, in which the
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Fig. 5.12 Average hit probability with AI-based prediction and dynamic channel

test profile is applied. The results in Fig. 5.12 are the moving average of the hit
probability in the past 1,000 decision epochs (around 8000 time slots) for each
decision epoch. As shown in the figure, the proposed WI-based scheme can improve
the hit probability by around 15% compared to urgent-request-first and round-robin
schemes. The improvement is because, compared to the benchmark schemes, our
proposed WI-based scheme evaluates the value for scheduling while considering
the long-term rewards according to the states of user HMDs.

5.6 Summary

In this chapter, we have investigated content caching and distribution for mobile
VR video streaming. Specifically, we have proposed a content placement scheme
to cache popular and high-quality video chunks. We have also developed a novel
learning-based content distribution scheme to schedule the video delivery for VR
users. Taking advantage of the characteristics of VR videos, our proposed schemes
can provide a scalable caching policy for a large amount of content with diversified
content size and delivery delay requirements. The content distribution scheme
proactively schedules video chunks in a low-overhead and flexible manner. The
simulation results demonstrate that the proposed solution outperforms benchmark
content caching and distribution policies.
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Chapter 6
Conclusions

In this chapter, we summarize the research in the preceding chapters of this book and
the lessons learned. Then, we briefly discuss some future directions for connectivity
and edge computing in IoT.

6.1 Summary of the Research

IoT has the potential to revolutionize human society, change the daily lives of people
for the better, and create a smart and connected world in the future. While IoT use
cases, such as smart homes, have been commercialized and gained popularity, we
are still at an early stage of IoT research, development, and deployment. Significant
efforts are necessary to propel the IoT towards the vision of connecting billions of
IoT devices with on-demand data collection and analysis. Compared to the Internet,
which revolutionized the world in the twentieth century, the IoT is much broader
and supports many drastically different use cases. As a result, there is no “one-size-
fits-all” solution, since IoT solutions must be customized for specific use cases. The
technical content of this book has demonstrated the necessity and approaches of
customizing connectivity and edge computing solutions in various representative
IoT use cases.

For the smart factory use case in Chap. 2, simultaneously supporting a massive
number of devices and guaranteeing very low communication delay is the main
challenge, which is increased when communication overhead, device diversity,
reliability, and complexity are considered. As a result, no existing MAC design can
achieve all desired performance targets, and the proposed MAC protocol is designed
to bridge the gap. Our customized design adopts the approach of centralized
scheduling and distributed access, with a new slot structure, novel synchronization
schemes, and a DNN assisted protocol parameter configuration, to maximize
channel utilization, reduce delay, and guarantee low communication overhead. The
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resulting design can simultaneously satisfy the density requirement of mMTC and
the delay requirement of URLLC for high-priority devices. A lesson from this
chapter is the importance and difficulty of balancing different performance targets,
such as device density, collision probability, delay, fairness, energy efficiency, and
overhead. This also confirms the necessity of customized connectivity solutions,
since the performance targets can be very different for different IoT applications
such that making proper trade-offs is essential.

For the rural IoT use case considered in Chap. 3, a UAV acts as both a mobile
AP and an MEC server. Contrary to the IIoT network scenario in Chap. 2, devices
to be connected are dispersed over a large area relative to the coverage of the AP.
Therefore, the main challenge is covering and serving more devices given a limited
battery of the UAV, and energy efficiency becomes the main metric. Our approach to
improving energy efficiency is to jointly optimize the UAV trajectory, which affects
the connectivity between the UAV and devices, and the computing task allocation,
which affects the edge computing services provided to connected devices. A lesson
from this chapter is how the service provisioning cost, in terms of the UAV energy
consumption, can have a major impact on the connectivity and computing in rural
IoT applications.

For the IoV use case in Chap. 4, the main challenge is to guarantee computing
service continuity in presence of vehicle mobility. Fortunately, different from the
rural IoT scenario in Chap. 3, infrastructure including APs and MEC servers are
usually available for vehicles in an urban or highway scenario. Therefore, we coor-
dinate multiple neighboring MEC servers to guarantee service continuity and reduce
service delay. The resulting problem involves server selection, computing load
allocation, and result delivery, which can be too complex to solve using conventional
optimization methods. We develop a deep reinforcement learning based approach to
solve this problem, which demonstrates satisfactory adaptivity to vehicle mobility.
A lesson from this chapter is the importance of judiciously designed coordination
across multiple network segments, as well as the corresponding communication and
computing resource scheduling for enabling such coordination, while handling IoT
applications with rapidly changing network environments.

For the mobile VR video streaming use case in Chap. 5, balancing between
the quality and quantity of cached video content is the key to improving the
quality of experience for VR users. Different from the scenario in Chap. 3, in
which the AP/server is mobile, and that in Chap. 4, in which the IoT devices are
mobile, mobility is not a major concern. However, the viewpoints of VR users
can be time-variant, which yields complexity due to the dynamics in VR content
demands. Making the right trade-offs between caching and computing and between
caching high-quality content and caching more content affects the users’ quality
of experience and is crucial to the application. A lesson from this chapter is the
coupling relation between communication, caching, and computing in such IoT
applications and how well-designed solutions should achieve the right trade-off
based on the service demand, resource availability, and network dynamics.

The research works in the above four chapters serve a collective purpose:
enabling on-demand data collection and/or analysis for IoT applications to improve
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various aspects of human society. The improvement made possible from our designs
may manifest through higher productivity in factories, better connected rural areas,
enhanced safety or convenience for vehicles, or a more comfortable or enjoyable
entertainment experience. Of course, there are many more applications to consider,
and many potential research directions to explore. We briefly discuss some of the
directions next.

6.2 Discussion of Future Directions

There are many potential future directions for IoT research. Here, we elaborate on
three promising directions, as follows.

The first is developing highly configurable connectivity solutions. The number
of connected devices, the data traffic volume, and the connectivity requirements
of IoT networks may change over time. For example, the number of connections
in a vehicular network can vary significantly from peak to off-peak hours, and
the type of connected devices in an IIoT network can be different in daytime and
nighttime. Similarly, the number of connected devices on a farm may increase over
time with the advancement of smart agriculture. To cope with the above changes,
highly configurable connectivity solutions, such as configurable protocols, are
desirable. Configurations may apply to the network organization, protocol adaption,
access priority, communication pattern, and so on, while the configurations may
be determined by AI. The objective of designing highly configurable connectivity
solutions is to allow flexible on-demand trade-offs among connection density,
spectrum efficiency, energy efficiency, delay, reliability, etc., since such trade-offs
can be crucial to cost-effective operations of resource-limited IoT networks.

The second is creating intelligent and modular edge computing paradigms.
Different IoT networks can have very different computing demands or comput-
ing capabilities, yet the basic components of edge computing are similar. The
components may include computing task division, data uploading, computing task
migration, computing task execution, collaborative computing, and result delivery.
Accordingly, various modules can be created to manage the components, and a
paradigm can be built from the modules to facilitate edge computing. Each module
can integrate a set of candidate AI methods for achieving certain performance
targets, and the paradigm can select and configure the modules based on the
characteristics of the IoT application and the specific network setup. The objective
of creating intelligent and modular edge computing paradigms is to improve the
scalability of edge computing and provide a universal reference design of edge
computing for various IoT use cases.

The third is designing data-centric IoT frameworks. Since data collection
or exchange and data analysis are the core of IoT, the importance of data is
evident. In addition to data required by IoT use cases, e.g., sensor readings for
factory automation, data describing IoT devices and IoT networks, including data
traffic volume, device mobility, resource utilization, service demands, and network
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performance, are also essential. Exploiting such data with proper AI methods can
infuse intelligence into advanced network management for IoT use cases. Therefore,
a data-centric IoT framework should consist of mechanisms to collect, store, update,
organize, share, and process the data that describe IoT devices and networks,
which should enhance the capability of networks to support corresponding IoT use
cases. The mechanisms should also account for available network resources and
application requirements. The objective of designing data-centric IoT frameworks
is to achieve automated and data-driven IoT network management.
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