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ABSTRACT:  Computer simulation is an essential approach to access the performance of mobile
and portable communications systems. However, in the case of a slowly Jading channel (where
the number of fading cycles dominantly determines the confidence interval of the simulation
results), computer simulation time can be prohibitively long in order to obtain an accurate
bit error rate (BERY) estimate using the Monte Carlo (MC) method. This paper develops an
adaptive importance sampling (AIS) technique for BER estimation over Rayleigh fading
channels. The AIS simultaneously biases statistical properties of both channel fading process
and input Gaussian noise and adaptively searches for the optimal biased densit v function during
the course of simulation. The AIS technique is applied to analyze the BER performance of
QPSK with multiple-symbol differential detection. Computer simulation results show that the
AIS technique significantly reduces the simulation time compared with the conventional MC
technique, and simplifies the procedure of selecting the optimal biased density function.

1. Introduction

Computer simulation is an essential tool to assess the bit error rate (BER) per-
formance of digital communications systems where theoretical analysis is very diffi-
cult or impossible and to validate theoretical evaluations of the system performance.
Using the Monte Carlo (MC) method, the necessary computer simulation time can
be prohibitively long for a low BER value or a slowly fading channel. Importance
sampling (IS) techniques have been investigated to reduce the simulation time for
the BER performance analysis in an additive white Gaussian noise (AWGN) channel
(1-3). In the modified MC simulation (with IS), the statistical properties of the noise
processes driving the system are biased in such a way to make the low probability
events occur more frequently, so that the simulation of these events can be made
with relatively smaller sample size and with a reduction in time simulation. Since the
error events are intentionally increased in a known way, it can be corrected for.
However, the biased probability densities (or weighting functions) widely used in IS
simulation are still far from optimal ones. In some cases, trial and error method and
others are used to search for ‘good’ densities, which can be very burdensome.
Adaptive importance sampling has been investigated to considerably reduce the
statistical error of the estimated failure probability in structural reliability analyses
(4, 5). The technique iteratively adapts the biased probability densities to the optimal
ones. Recently a similar approach has been studied for a digital communications
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system in an AWGN channel (6). The basic concept of AIS is that the data samples
which cause an error event are distributed according to the (unknown) optimal IS
density. Therefore, the optimal biased density can be obtained by estimating the
probability density of the data samples.

Over the last decade, mobile and portable digital communications systems have
experienced tremendous development. Research work on the system performance
evaluation is important in developing better system structures and improving
system performance. Mobile fading channels are often characterized by fading
random processes with AWGN. Due to the complexity of the channel fading
characteristics, it can be very difficult (if not impossible) to theoretically evaluate
the BER performance of the systems. Computer simulation is a4 complementary
approach. In the simulations, the confidence interval of the BER estimates depends
not only on the number of error events that have occurred but also on the number
of fading cycles that the system has experienced. In the case of a high received
signal-to-noise ratio (SNR), the error events occur only in the deep fading region
of each fading cycle. Most of the simulation time is spent in simulating the process
where the system experiences non-deep fading and no error events occur. In order
to obtain an accurate BER estimate, the system has to undergo a number of fading
cycles. As a result, the number of fading cycle is a dominant factor in determining
the confidence interval. Generally, the ratio of the maximum Doppler frequency
shift f,, of the received signal to the transmission symbol rate 1/T (where T is the
symbol interval) decides the degree of the signal fading. When f,- 7'« 1.0, the
channel exhibits slow fading. For instance, in the European Digital Cordless
Telecommunications (DECT) system, T is less than one nanosecond, and f) is a
few Hertz for indoor wireless communications, the value of f,,- T'is of the order of
10~¢. For such a slow fading channel, it would take a large amount of computer time
to estimate the system BER performance. Therefore, IS techniques are necessary to
reduce the simulation time.

Previous work investigates the applications of IS and AIS techniques to the BER
estimation of a digital communications system in an AWGN channel (6). In this
paper, the AIS technique is applied to a Rayleigh fading channel. Probability
densities of both fading random process and AWGN are biased instead of only
the fading process or the noise process, so that more simulation time reduction is
possible. An adaptive algorithm is developed to search for the optimal biased
probability density during the course of the simulation, instead of using trial and
error method. The AIS has advantages over conventional MC and IS techniques
in that: (i) the computer simulation time for estimating the BER performance can
be dramatically reduced; (ii) the accuracy of the BER estimate can be greatly
increased : and (iii) the estimate of the optimal biased density function can be
achieved with high accuracy and simplified procedure.

The remainder of this paper is organized as follows. A general system model is
described in Section 11, Section I11 investigates the IS technique for fading channels.
Section 1V develops the adaptive algorithm for the optimal biased probability
densities. The AIS technique is applied to analyze the BER performance of QPSK
with multiple-symbol differential detection over a slow Rayleigh fading channel in
Section V. The conclusions of this work are presented in Section VI.
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II. System Description

The simplified functional block diagram of a digital communications system
over a fading channel is shown in Fig. 1. The data source generates an independent
identically distributed (iid) binary data sequence. The transmitter consists of an
encoder and a modulator (where the encoder may be omitted depending on the
system encoding scheme). The binary sequence is encoded, and modulated into the
transmitted signal s(7). The fading channel corrupts the transmitted signal s(¢) by
introducing a multiplicative envelope distortion y(r) and a carrier phase disturbance
¥ (1). The received signal r(r) is also degraded by AWGN n(r) with a one-side
spectral density N,, i.e.

r() = y(1) e ' s()+n(n). (1)

In the case that the transmitted signal arrives at the receiver antenna through
multiple paths and there is no direct path between the transmitter and receiver, the
amplitude distortion y(7) has a Rayleigh distribution, and the carrier phase jitter
(1) has a uniform distribution over [0, 2z]. Furthermore, y(7) and Y (1) are inde-
pendent random processes. Such a statistical model is widely used for an indoor
radio channel (7). The autocorrelation coefficient of y(7) can then be derived as (8)

p. (1) = E[y(0)y(t+1)] = P+ Jy(2nfp1) (2)

where P is the received signal power and J,(*) is a zero-order Bessel function. The
channel fading has memory depending on the value of f,. The memory of the
system also depends on the structure of the transmitter and receiver, such as those
of decoder, modulator and demodulator. The effects of the channel memory on
the system BER performance depends on the data transmission rate. and the
structure of the transmitter and receiver.

II1. Importance Sampling

From equation (1), the system BER performance depends on the transmitted
signal 5(1), the channel fading y(1)e ¥ and the Gaussian noise #(z). The function
of the receiver can be expressed by a mapper g(*) : 2% — #. where M is the system
memory. Let R =TS+ N be the received signal vector with M elements, where
R={rir....on_yarfs T={me ™™y o™i v ys e e u 1, 8T=
St Skatee S e} and N = {nmom . o.M _ao1). Then the BER can be
represented by

(1) (1)
data fading f demo- data
source [ encoder > modulator | channel ‘_}'Ldulator i decoder rﬁ* sink
L — / s ~ _v
transmitter receiver

FiG. 1. Functional block diagram of the communications system.
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pe = [  DIg(RL S fom) 1) dy Ay dnds 3)

where £.(y)/;,(¥), f,(n) and f,(n) are the probability density functions (pdf’s) of the
M-dimensional random variables I', N and S respectively, and

1, ifanerroroccurs;

D[g(R)] = {

0, otherwise.

The MC estimate of p, is .
1Y
pe =5 X Ply(R)) )
|

where N is the sample size of the data bits transmitted and R, is the ith sample of
the received signal. If the original pdf’s f.(y) and f,(n) are modified to new pdf’s
f*(y) (>0 for all y) and f}(n) (>0 for all n), then the IS weighting function is

OAOIE

w(y,n) =~

IEONHON
where w.(y) = £.(2)/f*(y) and w,(n) = f,(n)[f }(n). Equation (3) can be rewritten as

w, () - w,(n) (5)

Pe = J DIg(R)w..(2)w,(n)f ¥(7) £ () £:(5) S, () dy dnds dy. (6)
M
The IS estimate of p, is

1 &
Pt =173 ¥ D*[9(R)) )

i=1
where N* is the total data samples in the IS simulation and
D*[g(R)] = D[g(R)]w.(7)w,(n). (8)
From equation (7),
E[p¥] = Ex{D*[9(R)]} ®)
where E,(-) represents the expectation with respect to the biased densities /*(7)

and f*(n). Using equations (7) and (8),
E[pH = | D*[g(RLF W) fx(n) fi(s)dy dy dnds
Jat

~

= | DLGRMGI 0S50 Sy (L3 15) 7 A dnds

RE

=1, D[g(R)}f:()fy (W) £,(n) fi(s) dy dy dn ds

o A

I

E[p.), (10)
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that is, p* of equation (7) is an unbiased estimator of P.. The variance of the IS
estimator is

0% = E[(5*— E(j%)’]
- J De ) DL (R L) £ ) 1) ()

Ve dydydnds  (11)

which can be estimated from simulation results as

A P

e 1 ) pe
¢ = N {; [w.CHw, ()" D[g(R)] - NE (12)
The improvement ratio (IR) of IS to MC simulations can be derived as
g N Lo A=p)DIgRVL D LD L) ) dydpdnds

" N*al - L DG, (m) = p I DIg(R)L L. () £, () £,,(n) £:(s) dy dyp dn ds

where ¢ is the variance of MC simulation. When ¢* = ¢*2, f is the factor of the
simulation sample size reduction. For AWGN, several types of the weighting
function w,(n) have been investigated, such as optimized variance increasing (1)
and optimized translations of the original probability densities (3). As to Rayleigh
fading, the pdf of y is
v 2 a2 fl i 5 >
j{;) _ {(.«IU;-)CXP( ) :—Jz‘)a 7y =0 (14)
0, y < 0.

The only parameter in the pdf is ¢.. If the same form of the pdf is desired, then
with a modified parameter % the weighting function for v is

£6) [P afz)}
= et , y=0. 15
o) o O [ 20t g (1

() =

The fading process I'* = {yFe M, y¥ e Wi ok e Wi, '} has to satisfy
the correlation coeflicient defined in equation (2). One way to simulate the random
process I'* is to use the *sum of sines” method (8). The method sums a large number
of weighted sinusoids with discrete frequencies spanning the Doppler spectrum to
simulate the Rayleigh fading channel. In this way. by changing ¢7 to ¢*°, the
random process 7 is modified to y*, while the pdf of i * is still uniformly distributed
over [0, 2x] (i.e. unchanged). In the IS simulation, the simulation process for
each BER value is divided into a number of short subsimulations. Over each
subsimulation, the fading process I'* is correlated according to equation (2).
However, uncorrelated fading processes are generated for the different subsi-
mulations, so that the system can go through all the statistical status of the channel
fading in a shorter period than that of an MC simulation. Each subsimulation is
long enough to take into account the system memory due to the transmitter and
receiver. From equation (15), when ¥ < o2, w.(y) < 1, the system is more likely
to experience deep fading and the error events are artificially made more likely to
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happen. If f,(n) is biased by increasing the variance o2 to ¢, the optimal biased
variances 6** and ¢}** are the values which minimize the estimation variance o*?
of equation (11). The solution cannot be obtained from equation (11) since it
contains the item p, which is unknown and is to be estimated. As in the case of an
AWGN channel, trial and error method and others may be used to search for
‘good’ values of ¢*? and ¢}, which is time consuming and burdensome ; further-
more, the ‘good’ values may be far from the optimal ones. In the following, an
adaptive algorithm is developed to iteratively search for the optimal biased density
functions during the course of simulation.

1V. Adaptive Algorithm for Optimal Biased Density Functions

From equation (5), the weighting function consists of two components, one for
the biased channel fading, and the other for the biased Gaussian noise. Both biased
independent random processes increase the error events in the IS simulation. The
adaptive algorithm for estimating the optimal biased pdf of the Gaussian noise
f*n) in the case of non-fading applications has been studied in (6). Due to the fact
that the Gaussian noise samples are iid random variables. and that the channel
fading samples are correlated (equation (2)), the adaptive algorithm developed for
the optimal biased pdf of the Gaussian noise is not directly applicable to the case
of correlated channel fading samples. In the following, an adaptive algorithm is
developed to obtain the optimal biased density /() of the channel fading process.
The basic concept underlying the AIS technique is that the channel fading samples
which result in error events are distributed according to the optimal IS density.
The AIS algorithm consists of sequential simulation runs. During each run, p, is
estimated and when an error event occurs, the sample of the channel fading is
recorded. These fading samples are then used to estimate the optimal biased pdf
of the channel fading (i.e. the optimal parameter ¢**). The estimated optimal pdf
is then used to generate channel fading samples for the next simulation run. Thus,
the estimation of the optimal pdf becomes more and more accurate as the number
of the simulation runs increases. So does the estimation of the BER value. The
advantages of AIS over IS are: with AIS the estimation of the optimal biased
density is performed at the same time as the estimation of p,, and the updated
biased density estimate is then used in the next subsimulation runs. With the
biased pdf close to the optimal one. substantial simulation time reduction becomes
possible.

Since the pdf of a biased Rayleigh amplitude fading is decided by the only
parameter ¢*°, the approach of a parametric AIS algorithm is considered. instead
of non-parametric AIS algorithms which estimate the optimal biased pdf directly.
From equation (14),

o
e = EG°) = J 7 f7)dy = 267, (16)
Therefore, if we can obtain an estimate of the biased ¢** by calculating the mean
of the biased 7* during the AIS simulation, then we can further obtain the optimal
biased pdf. The estimate of the optimal mean p* with IS can be achieved by
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ik = E(;*|yel) = J.}J fp(r) dy (17)

where Z is the sample space of y corresponding to an error event. Equation (17)
can be rewritten as

o P2 LO) G)
pe J= G P
* &
=CEEwohes)
* &
=ﬁ’; 7’ (18)

where p¥* is the probability of error of the IS simulation and §° = E [1?w.()|y € Z].
Due to the correlation among channel fading samples in each subsimulation run,
not all the samples are suitable to be used to estimate 3%, which is different from
the case of AWGN. Only the independent samples should be used, which is a very
small number in each subsimulation run in the case of slow fading channel. One
way to increase the sample size is to use all the information available, i.e. to use all
independent fading samples in previous subsimulations to estimate 7° and then use
the estimate to bias the IS density for the next subsimulation. A recursive algorithm
is proposed to estimate 77 :

1
- l
o= Y Yor Wolyor)s Mo =po (19)
Po ')
2 n; 1 _3 l . 2
T=e— +— vrowe(va), m=m._,+p 20
i m;‘ ! | m; ,{Z i ik ,,(r A) 1 P; ( )

where p, is the number of the independent fading samples in the ith subsimulation,
m, 1s the total number of independent fading samples up to the ith subsimulation,
7 18 the kth independent fading sample in the ith subsimulation. all these samples
resulting in error events; and w._(*) is the weighting density for the ith subsi-
mulation. Since

Po

E(75) = J }’53\“';-U(Tok)ff(}'ok)d}'ok
I Jrge=

l

Dok
1 e

= — E [77w.(y)|yeZ]
Y Bl

=2

%, (21)

=2 2
3= 5=

75 is an unbiased estimator of $°. Assuming that 7 | is an unbiased estimator of
77, then
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m;

EGF) =— — Z J Yorw, Ga) fXuw) dva

?’1, -"”e k=1

om; 24

Z Ex[7*w.(2)yeE]

m; Q=1

[¥]

(22)

B
-2

Therefore. 57 of equation (20) is an unbiased estimator of 7. In equation (18).
substitute p, with its IS estimator pX*from (7) and p¥ with its M(‘ estimate

pEE = m, /N* 23)

at the end of the /th subsimulation. Then from (19)-(23), the estimate of x* can
be derived as

Z Z n&"" (uk)

i=1 k=1

= (24)

Z 2 w, (Vi)

i=1 k=1

at the end of the Ith subsimulation. All the three estimators, p**, p, and 77, of
equation (18) are unbiased, and the variance of the estimators tends toward zero
as the sample size tends to infinity. As a result, the estimator ji* of equation (24)
is a weakly consistent estimator of the optimal g% ‘

In summary, the steps for the AIS algorithm f'or the fading channel are:

(i) bias the parameter o7 to a smaller value a*? . the initial IS pdf of the channel
fading is determined ; '

(i) start a series of short subsimulations with the IS density from the previous
step and record the independent fading samples which cause error events

(iii) calculate the update estimate i* according to equation (19)-(20) and (24)
to form the update 1S pdf of the channel fading ;

(iv) run a simulation with ¢** = ji*%/2 as the parameter of the biased IS pdf of
the channel fading, record the mdependent channel fading samples which generate
error events, and calculate ¥ using equation (7) ;

(v) if the updated IS pdf of the channel] fading from (iii) is still far away from
the optimal IS pdf, then repeat (iii)—(v).

It should be mentioned that the optimal ¢** value is a function of p,. Generally,
the optimal value decreases as the SNR value of the received signal increases. The
estimated optimal ¢** for a (SNR/bit) value should be used as a reference in
choosing the initial biased estimate ¢%” for a nearby (SNR/bit) value, so that the
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optimal a;“"' value can be estimated accurately based on a relatively small size of
data samples.

V. Applications

The AIS technique is applied to study the BER performance of a differentially
encoded quadrature phase-shift-keying (QPSK) signal transmitted over a cor-
related Rayleigh fading channel with multiple-symbol differential detection. The
block diagram of the transmitter is shown in Fig. 2, which has a phase mapper, a
differential encoder. and a quadrature modulator. The input to the phase mapper

HH

is equiprobable, independent m-bit information words b7’ = [b¢, bi, . .., b}, where
bi € {0, 1}. The phase mapper converts the uncoded binary sequence 4} into an M-
ary PSK symbol, where M is the number of different symbols M = 2”. The mapping

LA

rule can be described in two steps. First, b;’s are converted into A®, by

2
AD, = Y 2 (25)

fe=]

then, a complex valued sequence ¢, is obtained by ¢, = ¢*®. The differential
encoding applied to ¢, is also a complex operation, and can be described by
el® = ¢ el®-1 where ¢, represents the phase of the transmitted symbol. The relation
between ¢, and AD, is

‘i’& = A‘D;,- @ ¢’L-—| (26)

where @ represents mod(2n) addition. For QPSK, m = 2. The transmitted signal
s(1) is then 5(7) = Re{de"'** "1 where 4 is the amplitude of the signal. The trans-
mitted signal experiences channel fading and is corrupted by AWGN with one-
sided spectral density N,.

The basic units in the receiver include a L-bit differential detector, the block
diagram of which is shown in Fig. 3. The signal y(¢) is the output of the bandpass
filter (BPF). The inphase (d/(r)) and quadrature (d9(f)) outputs of the i-bit detector
are obtained by low-pass filtering the products of y(r) with an iT seconds delayed
and 0, radian phase shifted version of itself, where 0, = 0 for inphase channel
(¢ = I) and 8. = = for quadrature channel (¢ = Q).

At the time instant £ T, the output of the low-pass filter (LPF) can be represented
as

di(kT) = cos(A®, (k) —0,) +n<(kT), c=1IorQ (27)

where A® (k) = ¢p(kT) © ¢(kT—iT) (& represents mod(2n) subtraction) and
n; (kT) lumps all the noise terms together. Using equation (26), A®,(k) = A®, for
i=1, AQyk)=AD, ®AD, |, for i=2, and in general AQ(k) = AD, P
AD,_ @ - P AD, ,,,. The decision rule is: choose the sequence ¢ which maxi-
mizes the statistic (9)

L-2

(k= L+ D)D)+ ) y(tk=)T)e "Z5 G AD, |7

i=0
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- phase differential quadrature

bni: mapper encoder modulation s(t)

F1G. 2. The differential QPSK modulator.

This rule implies that we observe the received signal over L symbol time intervals
and from this observation make a simultaneous decision on L — 1 data phases. The
first received symbol is used to provide a phase reference for the whole block and
the last symbol is used as a reference for the next block. The memory length of the
modulation scheme is 2 symbols due to the differential encoding, and the memory
length of the detector is L+ 1 symbols.

Figure 4 shows the BER performance of the system with L = 3 based on (1)
theoretical analysis, (i) MC simulation, and (iii) AIS simulation with biased pdf
of channel fading process using the adaptive algorithm to obtain the estimate of
the optimal ¢** (based on the first 200 data blocks). A channel fading rate of 10~*
is selected which characterizes a slowly fading channel. With the adaptive algorithm
discussed in Section IV, the biased density function of the channel amplitude
fading converges to the optimal biased density functions over relatively small data
samples. Figure 5 shows the convergence of the estimated optimal G** for the
received signal energy per bit (E,) to the noise spectral density (N,) ranging from
10 dB to 45 dB. The optimal biased variances ¢** are obtained from (11) with p,
values known for the E,/N, ratios. It is observed from the figure that even though
the initial ¢*%* values are far from the corresponding optimal ones, they converge
to the optimal ones very quickly. With the fast convergence of the 6* estimate, a
large improvement ratio can be achieved. Table I gives the estimated BER per-
formance, estimated variance of p, (obtained according to (12)), o’;"z and the
corresponding optimal values; Table II gives data sample size and improvement
ratio of the simulations. The AIS technique reduces the necessary data sample sizes
by 67 times for the SNR/bit values between 10 and 35 dB. The sample size reduction

dt)

;' )

8
r(t) y(t) 5 gnsl
=}
BPF > g
%
'S
@
=

D

F1G. 3. The multiple-symbol differential detector.
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10 : . , , 1 |
- : theoretical analysis
o : MC simulation
10-2:' * 1 AIS simulation
@
=
fa
g 10°
=3
Eé
104;
10 15 20 25 30 35 40 45

Ey/N, (dB)

FiG. 4. The BER performance of the differential QPSK.

increases as the SNR/bit increases to 40 dB and 45 dB. The improvement ratio will
increase if the memory length of the receiver is reduced or if the channel fading
rate decreases. The advantage of AIS simulation over MC simulation is clearly
observed from the simulation results (Tables I, 1T and Fig. 4).

V1. Conclusions

An AIS technique for estimating the BER performance of a2 mobile or portable
communications system over a Rayleigh fading channel has been developed and
analyzed. The statistical properties of both channel fading process and input
Gaussian noise can be biased simultaneously to increase error events. An adaptive
recursive algorithm is proposed to search for the optimal biased density function
of the channel fading random process during the course of simulation. The AIS
technique is applied to study differential QPSK with multiple-symbol differential
detection over a slow Rayleigh fading channel. Computer simulation results show
that the AIS technique reduces the simulation time dramatically and simplifies the
procedure of choosing an optimal biased density function. The estimate of the
optimal biased density function converges very quickly, which results in a sig-
nificant data sample size reduction (at least 67 times with 4-symbol differential
detection).
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: ll - E”’No = 25dB i
[=] .
= 103 ]
E E,/N, = 30dB ]
P

Ey/Ny, = 35dB

S

— It Ll

o
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10° :
10'5 1 1 1 | 1 1 1 L L
0 20 40 60 80 100 120 140 160 180 200
Number of Samples
FiG. 5. Convergence of ¢ as a function of sample size.
TagrLE ]
Estimates of p,and 6**, and their performance
Bit error rate Biased density
SNR/bit .
(dB) Pe a*’ ¢** a*’
10 5.50% 1072 46x10°° 286x107° 3.29x 1077
15 2.08% 1077 6.4x10"’ 1.28x 1077 1.25x10°°
20 7.86x 10" 1.1x 1077 465x107° 471 x107°
25 1.98x10°* 1.5% 107" 1.39x 10} 1.50%x 1077
30 591x10* 1.3x107° 439%10°* 471 x10°°
35 2.34x10°* 1.2x10°" 1.20x10°* 1.36x 10°*
40 6.98 x 107° 1.ox 107" 4.06x10° 425x10°°
45 1.77x 1077 1.1x10°" 1.32x 1077 1.41x10°°
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TaBLE 1]
The data sample size and improvement ratio

Sample size

SNR/bit Improvement
(dB) MC AlS ratio
10 6.0 % 10° 9.0x%10° 67
15 6.0x 10° 9.0x%10° 67
20 6.0 x 10° 9.0x10° 67
25 6.0 x 10° 9.0x10° 67
30 6.0 x 10° 9.0x10° 67
35 6.0 % 10° 9.0x 10° 67
40 9.0x10° 9.0x 10° 100
45 1.8 % 10° 9.0x10° 200

References

(1) K.S. Shanmugan and P. Balaban, **A modified Monte Carlo simulation technique for
the evaluation of error rate in digital communication systems™, IEEE Trans. Conmnun..
Vol. COM-28, pp. 19161924, 1980.

(2) M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital
communication systems”, [EEE J. Select. Areas Commun., Vol. SAC-2, pp. 153-170,
January 1984,

(3) D. Luand K. Yao, “Improved importance sampling technique for efficient simulation
of digital communications systems”, IEEE J. Select. Areas Commun., Vol. SAC-6.
pp. 67-75, 1988.

(4) C. G. Bucher, “Adaptive sampling—an iterative fast Monte Carlo procedure”, Struc-
tural Safety, Vol. 5, pp. 119126, 1988,

(5) R. E. Melchers, “*Search-based importance sampling”, Structural Safety, Vol. 9, pp.
117128, 1990.

(6) J. S. Stadler and S. Roy, “Adaptive importance sampling”, IEEE J. Select. Areas
Commnmun., Vol. SAC-11, pp. 309-316, 1993,

(7) A. A. M. Saleh and R. A. Valenzuela, A statistical model for indoor multipath
propagation”, IEEE J. Select. Areas Commun., Vol. SAC-5, pp. 128137, 1987.

(8) W.C. Jakes, Jr, “Microwave Mobile Communications™, John Wiley & Sons, 1974.

(9) D. Divarsalar and M. K. Simon. ““Multiple-symbol differential detection of MPSK ™.
1EEFE Trans. Commun., Vol. COM-38, pp. 300-308, 1990.

Received: 5 April 1994
Accepted: 26 September 1994

Vol 3318, No. 3. pp. 285-297, 1994
Printed in Great Britain. All rights reserved 29?



