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Abstract—The existing packet forwarding technology cannot
meet the increasing needs of Internet development due to its rigid
framework. Application of artificial intelligence (AI) for efficient
packet forwarding is gaining more and more interest as a new
direction. Recently, the explosive development of programmable
data plane (PDP) has provided another direction of packet
forwarding driven by AI. Therefore, this paper presents a survey
on the recent research in packet forwarding driven by AI and
PDP. First, we describe two frameworks of the packet forwarding,
i.e., the traditional AI-driven packet forwarding framework and
the new PDP-assisted AI-driven packet forwarding framework.
Then, we focus on performance improvement of the packet
forwarding under the two frameworks in four measures: delay,
throughput, security, and reliability, correspondingly in four
sections. In each section, we discuss the evolution from simple
packet forwarding, to packet forwarding performance improve-
ment with the assistance of AI, to the latest research on AI-driven
packet forwarding supported by PDP. Through the review of
packet forwarding in different evolution stages, we present the
development rules and new open issues of packet forwarding
at the end of each section. Finally, we summarize this survey,
identify three directions in the development of future AI-driven
packet forwarding, and highlight the challenges and issues in
future research.

Index Terms—Machine learning, packet forwarding, pro-
grammable data plane.

I. INTRODUCTION

PACKET forwarding (PF) is an essential operation of com-
munication in the Internet. Switching devices store and

forward received packets through a series of preset processes
to complete the delivery of data. However, with the rapid
development of network technologies, the exponential growth
of global Internet traffic stimulates an unprecedented demand
in four aspects: low delay, high throughput, high security,
and high reliability [1] [2] [3]. Examples include a line-rate
packet forwarding capacitated with 6.50Tbps [4], a low-latency

Corresponding author: Ziheng Xu.
Wei Quan, Ziheng Xu, Mingyuan Liu, Gang Liu, and Deyun Gao

are with the School of Electronic and Information Engineering, Beijing
Jiaotong University, Beijing 100044, China (e-mail: weiquan@bjtu.edu.cn;
zihengxu@bjtu.edu.cn; mingyuanliu@bjtu.edu.cn; gangliu93@foxmail.com;
gaody@bjtu.edu.cn).

Nan Cheng is with Key State Lab. of ISN, and the School of Telecommu-
nications Engineering, Xidian University, Xi’an, 710071, P.R. China (email:
nancheng@xidian.edu.cn).

Hongke Zhang is with the School of Electronic and Information Engineer-
ing, Beijing Jiaotong University, Beijing 100044, China, and also with PCL
Research Center of Networks and Communications, Peng Cheng Laboratory,
Shenzhen 518040, China (e-mail: hkzhang@bjtu.edu.cn).

Xuemin (Sherman) Shen and Weihua Zhuang are with the Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON
N2L3G1, Canada (e-mail: sshen@uwaterloo.ca; wzhuang@uwaterloo.ca).

packet forwarding on the order of 0.32ms [5], a secure packet
forwarding against high-volume attacks [6], and a reliable
packet forwarding for highly dynamic vehicular networks [7].
The framework of traditional packet forwarding is rigid, using
the same process in most scenarios. Many efficient algorithms
for improving network performance cannot be deployed in
the traditional framework, such as dynamic network resource
allocation for customized network services and network attack
behavior monitoring for a secure network.

Deploying artificial intelligence (AI) in networks is one
potential way to satisfy the aforementioned demands [8] [9]
[10]. The application of AI aims to flexibly allocate network
resources according to different network service demands,
enabling the deployment of customized networks. At the same
time, the application of AI is real-time. When the network state
changes, the resource allocation can be adjusted in time to
adapt to network dynamics. For example, AI can effectively
model dynamic features of multiple heterogeneous network
paths and find the optimal scheme of resource allocation,
to maximize the throughput of multi-path packet forwarding
[11]. In addition, the application of AI can help improve
network security, such as detecting a Distributed Denial of
Service (DDoS) attack by identifying complicated packet
behaviors [12]. While AI can be applied to effectively realize
functions that packet forwarding cannot perform, deploying
AI in networks has challenges. For example, deploying AI in
a network controller can introduce unexpected delays, which
becomes a stumbling block to high-rate packet forwarding [13]
[14]. Further, the effectiveness of an AI model is affected by
the granularity of network state information that the AI model
can acquire.

Recently, the rise of programmable data plane (PDP) pro-
vides a solution to the challenges of AI-based packet forward-
ing, and attracts extensive attention for further performance
improvement. The PDP can program the running logic of
switching devices so that the software can flexibly choose
an appropriate plane to deploy. For example, PDP provides
a programmable plane for an AI model to complete the
deployment and avoid the delay caused by deploying in a
controller [15]. Meanwhile, PDP can provide more detailed
network state information for the AI model to improve the
operation. Due to the programmability and flexibility, PDP
has a huge potential in AI-driven packet forwarding.

Looking into the evolution of the Internet, we observe that
AI was introduced when traditional PF could not adapt to the
development, and PDP was created when AI-driven packet
forwarding needs further improvement. The evolution of the
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Fig. 1. A Road Map of This Paper

Internet is accelerated with the convergence of technologies.
Globally, there have been extensive research activities on
integrating PF, AI and PDP. A tutorial is in need to present a
broad view of state-of-the-art packet forwarding that integrates
the three technologies. Therefore, this paper surveys AI-driven
packet forwarding mechanisms that can be deployed in PDP.
A road map of this paper is shown in Fig. 1. First, we provide
an overview of the traditional AI-driven packet forwarding
framework and the new one supported by PDP. Based on
that, we focus on research works that combine AI and PDP
to improve the delay, throughput, security, and reliability
of packet forwarding. A brief summary of future research
directions and challenges is given at the end. The main purpose
of this work is to provide a comprehensive survey on how
PDP technologies can enhance AI-driven packet forwarding.
Existing surveys have summarized research works on AI-
driven and PDP-driven packet forwarding separately [16] [17]
[18] [19] [20] [21] [22]. To our best knowledge, this survey
is one of the first state-of-the-art overviews of the packet
forwarding literature that combines AI and PDP.

The remainder of this paper is organized as follows. Section
II describes the typical AI-driven packet forwarding frame-
work and the new one supported by PDP. Section III and
Section IV discuss research works on improving the delay
and throughput performance respectively by combining AI and
PDP. Then, Section V presents the security improvement and
Section VI discusses the reliability improvement by the two
technologies. Finally, Section VII identifies three potential di-
rections and open issues in future AI-driven packet forwarding
and Section VIII draws a conclusion.

II. FRAMEWORKS OF AI-DRIVEN PACKET FORWARDING

In this section, we first introduce the framework of AI-
driven packet forwarding, and analyze its advantages and
limitations. Then, we give an overview of how PDP can
enhance the framework (i.e., in overcoming the limitations)
and discuss an effective approach that combines AI and PDP
for packet forwarding.

Machine learning (ML), as one of the popular AI technolo-
gies, can make packet forwarding more secure, efficient and

reliable [8] [23]. As shown in Fig. 2, the AI-driven packet
forwarding framework without PDP includes data, control
and knowledge planes from bottom to top. Information is
transferred from one plane to another (shown by arrows in
the figure), which forms a closed control loop. First, the
data plane periodically reports network state information (e.g.,
interface throughputs) to the control plane during the process
of forwarding packets. Next, the control plane collects and
analyzes the information, builds a network state database, and
reports the network state to the knowledge plane. Based on
the network state, the knowledge plane selects an appropriate
ML forwarding model according to the network performance
demand. The ML forwarding models include global network
secure forwarding model, global network reliable forwarding
model, and so on. After selecting a model, the ML forwarding
model generates a corresponding forwarding action message,
and the knowledge plane distributes the action message to the
data plane through the network strategy deployment module in
the control plane. Finally, a closed control loop is completed
to satisfy the network performance demand. As the closed
control loop continues again and again, the whole network
will eventually reach a steady and desired state.

In this closed control loop, there are two drawbacks: (1)
High interaction latency: The interaction latency between
any two planes is long [24], which is not suitable for delay
sensitive applications. For example, the Ultra Reliable Low La-
tency Communication (URLLC) scenario requires 1ms latency
[25] which is much shorter than the latency in the AI-driven
framework; (2) Coarse network state information granularity:
Due to the fixed data plane, network telemetry can obtain only
coarse-grained network state information such as interface
throughputs, but cannot obtain fine-grained information such
as queue length of interfaces or specific flow rate [26]. Using
the coarse-grained information will eventually lead to low
accuracy of ML models, such as low accuracy of DDoS
classification [27].

The programmable data plane provides possibility for over-
coming the preceding drawbacks. The AI-driven packet for-
warding framework supported by PDP is shown in Fig. 3. In
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comparison with that in Fig. 2, some models are transferred
from the knowledge plane to the data plane, which reduces the
interaction latency of the two planes and facilitates the ML
model to acquire fine-grained network state information. The
rest is still placed in the knowledge plane (e.g., global network
congestion control model) to complete the overall regulation
of the network.

The new framework has two advantages. On one hand,
the flexible modification of the packet forwarding process
provides a strong foundation for the optimization of the AI-
driven framework. The PDP is adopted mainly for two reasons:
(1) The PDP can provide line speed to reduce ML decision
delay (the processing delay of a programmable switch is
about several hundred nanoseconds [28], and the processing
delay of a general ML platform is tens of microseconds
[29]); (2) The match-action pipeline of PDP can dynamically
adapt to network packet characteristics of the ML model,
and execute its specific actions. The ML model deployed on
the programmable data plane is called “in-network model”.
Depending on the requirements, the in-network model can
have different functions. For example, Xiong et al. propose a
mechanism to deploy the ML model on a programmable data
plane to implement the in-network traffic classification [28]. In
terms of network security, there are a large number of models,
such as in-network abnormal flow monitoring model [30],
in-network blackmail monitoring model [31], and in-network
DDoS monitoring model [32] [33]. In terms of network
performance, there are in-network cache model [34] [35], in-
network forwarding rule management model [36], in-network
interface queue management model [37], in-network packet
scheduling model [38], in-network traffic flow scheduling
model [39], in-network small flow scheduling model [40], and
in-network Domain Name System (DNS) model [41]. In terms
of network reliability, there are in-network devices running
validation models [42].

On the other hand, the PDP can collect the packet forward-
ing state information in fine granularity, which facilitates the
accurate telemetry of network state to achieve high utilization
of network resources. For example, Li et al. use PDP to collect
network link state information, and use the information to de-
termine whether the corresponding network link is congested
[43]. They use an enhancement learning algorithm to minimize
the maximum link utilization to avoid network congestion. The

proposed global network congestion control model is deployed
in the centralized knowledge plane, forming a closed control
loop of “data plane uploading information - control plane
analyzing information - knowledge plane establishing model
and distributing action - control plane executing action - data
plane updating forwarding rules”.

III. NETWORK DELAY PERFORMANCE IMPROVEMENT BY
AI-DRIVEN PACKET FORWARDING WITH PDP

As a low delay is the basic requirement of most Internet
services, the delay performance is usually one of the most
important measures to be focused on. This section provides
an overview of research works on reducing network delay
by exploiting AI-driven packet forwarding with the PDP. The
network delay that we discuss in this section is the time
between a user sending a request packet and the user receiving
a reply packet. During the packet transmission, the network
delay can be divided into three main components: transmission
delay, configuration delay and queueing delay. Corresponding
to these three components, we can classify the methods of
delay performance improvement into three approaches: (1)
caching service content on switch near the user; (2) actively
managing forwarding rules; (3) scheduling delay-sensitive
services with high priority. Furthermore, with the help of AI
and PDP, the delay performance can be enhanced by using
the two frameworks discussed in Section II. In the following,
we discuss delay performance maximization based on AI and
PDP in each of the three approaches.

A. Caching service content near the user

Caching service content near the user is an idea of dis-
tributing service content data on switches in close proximity
of the user in order to shorten the packet transmission distance
and reduce the transmission delay. When a user requests some
content, the corresponding switch will send the content data
to the user in the shortest transmission distance. The specific
working process of this mechanism is shown in Fig. 4(a).
When the service request packet of the user arrives at a switch,
the switch first matches the service content table. If hit (that
is, the service content is stored on the current device), the
stored service content will be fed back to the user directly;
otherwise, the service request packet will be forwarded to
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the neighbor switches and the neighbor switches will do the
same mechanism. The service request packet is continuously
forwarded until the service content is found. In this process,
the transmission delay is the sum of the transmission time of
each pair switches (one switch and its neighbor switch) in the
transmission path.

In order to reduce the transmission delay, researchers have
explored many effective schemes for caching service content
near the user. For example, Azath et al. design a cloud-based
fog paradigm architecture [44]. By layering fog, temporary
storage nodes are used in the fog layers to speed up the
caching of service content. This architecture can improve
the efficiency of caching service content and reduce content
transmission delay. Majeed et al. propose an active service
content dissemination mechanism [45]. The server pushes the
critical service contents to its neighbor switches to achieve
content caching. This active dissemination mechanism short-
ens the distance between the user and the switch which stores
service content, and reduces the transmission delay. Patra et
al. establish an optimization model for the selection of nodes
for service content caching [46]. They try to select a relay
node to realize a low average transmission delay from the
node to every user who requests the content. Furthermore, they
propose a fast algorithm with time complexity (O(nlogn)) to
solve the optimization model.

ML for caching service content: Due to the dynamic,
complex and heterogeneous characteristics of caching service
content, it is challenging to select appropriate service contents
stored on switches near corresponding users to ensure the
best quality of service for each user. But with the assistance
of ML, effective service content caching can be realized and
network delay can be further reduced. Specifically, the service
content that users may need can be predicted through machine
learning. Then, we choose the content with a high probability
and cache it on the switches, which can provide users with
satisfactory service experience and reduce the transmission
delay of service content.

Tsai et al. build a deep learning model for social media
networks [47]. They obtain the user’s conversation information
and adopt the convolutional neural network (CNN) to analyze
the context of the sentence, and then predict the service content
that the user may request. According to the prediction, the
corresponding service content is cached in the switch near the

user in advance. It is shown that the model can reduce the
transmission delay by 30% as compared with the traditional
method. Cheng et al. propose a new mechanism of caching
service content, which uses new Bayesian learning methods
and reinforcement learning [48]. The new Bayesian learning
methods is to predict user preferences and estimate individual
content request probability (ICRP). Then a caching strategy
is formed based on the results, and reinforcement learning
is used to further optimize the caching strategy. Finally, the
transmission delay for users to obtain the required services can
be reduced. Saputra et al. design an active caching mechanism
for service content caching [34]. First, they collect access
information of users from the content server (CS) and use
deep learning to predict users’ service content requirements.
To address the problem of privacy disclosure caused by sharing
users’ data during information collection, they improve the
architecture by changing the machine learning model into
distributed deep learning to protect users’ privacy, and further
reduce errors in content requirement prediction. The proposed
mechanism reduces the network transmission delay as com-
pared with other machine learning algorithm.

ML and PDP for caching service content: Because the
PDP has flexible programming characteristics, it can provide
multi-dimensional network state information for ML. Based on
the multi-dimensional information, the accuracy of predicting
users’ content requirements can be further improved. Liu et al.
propose a deep-learning-based content popularity prediction
(DLCPP) mechanism [49]. The mechanism collects the spatial-
temporal joint distribution data of network state and predict the
content popularity based on distributed deep learning. In addi-
tion, they put forward a new caching scheme, which effectively
adapts to the DLCPP, improves the caching performance, and
reduces the service content transmission delay.

B. Managing forwarding rules

The application of actively managing forwarding rules con-
figures packet forwarding rules in advance and adjusts the
rules according to the network states, which can reduce the
interaction frequency surge between switches and controllers
in actual operation of the system and finally reduce network
delay. As shown in Fig. 4(b), in a network under centralized
control such as a software-defined network (SDN), forwarding
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rules are in general passively sent to switches according to re-
quest packets from users. When a request packet is forwarded,
a switch that receives a request packet will first check if there
is any request content stored locally. If not, the request packet
needs to be forwarded. The switch matches with the table of
local forwarding rules. If hit, request packets will be forwarded
according to the rules to the next switch to request content;
otherwise, the packet information is uploaded to the controller
to request a forwarding rule. The controller generates and
distributes new forwarding rules according to the network
state information so that the request packet can be forwarded
correctly and the user can quickly acquire corresponding
content. This passive distribution mode not only causes the
frequency surge of interactions, but also limits the number
of forwarding rules (i.e., only the rules corresponding to the
request packet that has been forwarded will be distributed). In
this process, configuration and distribution time of forwarding
rules is a key factor that affects the network delay of packet
forwarding from the user and the server.

Managing forwarding rules actively can solve the problems
to some extent and, on this basis, researchers put forward
various solutions. Luo et al. formulate an NP-hard problem of
minimizing the end-to-end network delay [50]. They design
a heuristic caching algorithm for forwarding rules to reduce
the interaction delay between switches and the controller, and
minimize the end-to-end transmission delay of data packets.
Huang et al. study the compromise point between the cost
of switch caching and the cost of network controller dis-
tributing forwarding rules, and build a minimum weighted
flow provisioning model [51]. According to the network flow
information acquisition, they design an off-line algorithm (i.e.,
after obtaining the network flow information) and two online
algorithms (i.e., before getting the flow information).

ML for managing forwarding rules: Similar to caching
service content, managing forwarding rules can benefit from
ML to further reduce the configuration delay in various
aspects. Bera et al. design a mobility-aware adaptive flow-
rule placement scheme for mobile access networks [52]. In
the presence of user mobility, the scheme predicts the next
possible location of the user through a K-order Markov chain,
and deploys the forwarding rules to the corresponding switches
in advance through the active forwarding rule deployment
method, so as to reduce the network configuration delay. In
actual forwarding, the switch has limited cache space to store
forwarding rules. How to select appropriate forwarding rules
stored in the switch and the rest in the controller to achieve
a balance is a research issue. Mu et al. design a mecha-
nism based on deep reinforcement learning to analyze and
optimize this balance, which aims at reducing the controller
overhead while ensuring the switch caching [53]. Filali et
al. present a load balancing mechanism for multiple SDN
controllers to reduce the configuration and distribution time of
forwarding rules [36]. First, the mechanism predicts the load
of forwarding control devices (e.g., SDN controllers) through
Auto Regressive Integrated Moving Average (ARIMA) and
Long Short-Term Memory (LSTM). Then, according to the
predicted results, a migration algorithm for forwarding rules
based on reinforcement learning is adopted to avoid a large

service response delay in the high-load SDN controller, which
can minimize the configuration and distribution delay of
forwarding rules.

PDP for managing forwarding rules: Due to the pro-
grammable characteristic of PDP, we can reconstruct the
caching architecture and accelerate the storage and matching
speed of forwarding rules. Zhang et al. use PDP to design
a behavioral-level caching mechanism [54]. By uniformly
caching all entries, this mechanism speeds up the matching of
forwarding rules and reduces network delay. Parizotto et al.
propose the ShadowFS system and construct the data plane
[55]. The system uses smaller caches to store and manage
entries, which increases the speed of monitoring and telemetry
on the data plane. Therefore, the switch can obtain high
frequency information and feed this information back to the
controller to adjust the forwarding rules and reduce network
delay. Grigoryan et al. redesign the caching architecture based
on PDP and FPGA, which includes two caching layers in the
architecture [56]. The architecture can accelerate the cache
speed and realize fast forwarding rule matching when packet
is forwarded.

C. Scheduling delay-sensitive services with high priority

Scheduling delay-sensitive services with high priority re-
duces the packet queuing delay of different delay-sensitive
services on switches by active queue management. As shown
in Fig. 4(c), in the traditional packet forwarding model, packets
of various service flows enter the queue according to their
arrival time at the switch, and then leave the queue according
to the first-in first-out (FIFO) principle after processing at the
switch. Therefore, the queuing time is a key factor that affects
the end-to-end network delay in packet forwarding.

In order to reduce the packet queuing time, a variety
of active queue management (AQM) mechanisms has been
proposed [57]. Olariu et al. design a queueing mechanism
based on packet delay [58]. The mechanism divide Voice over
Internet Protocol (VoIP) packets into five priorities according
to the delay and put them into different push-in first-out
(PIFO) queues. The design can avoid most congestion of data
packets and reduce the end-to-end delay. Qiu et al. propose a
backpressure queue scheduling algorithm in order to make the
switches respond to emergency packets in a timely manner
under an elephant flow [59]. The algorithm provides the
shortest forwarding path for emergency packets and ensures
that queues at the switches will not be congested on this path,
so as to reduce the end-to-end network delay of emergency
packets.

ML for scheduling delay-sensitive services: ML can help
to scale services and provide different priority queues for
different services. Alnoman et al. design a two-class priority
queuing system based on supervised learning [37]. They train
and test the system from simulated data sets and then iden-
tify delay-sensitive applications in an IoT network based on
characteristics such as type and location. The system assigns
high priority queuing for the delay-sensitive applications to
reduce the end-to-end delay. Furthermore, different from this
binary division (i.e., delay-sensitive and delay-insensitive ser-
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vices), Zhu et al. propose SmartTrans, which provides multi-
level priority queues for different flows [60]. They use deep
learning to classify and predict the ranking of different flows,
and provide corresponding priority queues according to the
prediction results. In addition, they expand the buffer of the
switch and improve throughput when the network flow surges.

PDP for scheduling delay-sensitive services: PDP can pro-
vide fine grained queueing information for ML, but there are
some challenges in implementing AQM on PDP. Researchers
try to deploy AQM in programmable switches. Papagianni et
al. implement an AQM algorithm (PI2) that needs only the
information on the data plane [61]. This algorithm uses PDP
and the information of inlet and outlet pipeline of the switch.
The queuing delay can be reduced in a short time once PI2
is deployed. Kundel et al. also implement an AQM algorithm
(CoDel) based on PDP [62]. These researchers demonstrate
that AQM can be supported for queue management in a
network composed of programmable switches. Alcoz et al.
propose a solution (strict-priority PIFO (SP-PIFO)) to the
problem of deploying PIFO on hardware [63]. Specifically,
they use the P4 programmable language to dynamically adjust
the priority of packets based on network state and provide
corresponding priority queues. The SP-PIFO can be fully
implemented on Barefoot Tofino switches and has a low
hardware overhead.

ML and PDP for scheduling delay-sensitive services:
Using ML to realize AQM has a challenge. Some AQM
algorithms are so complicated that it is difficult to deploy
them in traditional switches. The PDP provide a solution to
this issue. Shi et al. design a two level queueing management
mechanism based on ML and PDP [64]. This mechanism uses
OpenFlow switch architecture and extreme gradient boost-
ing model (XGBoost) to accurately obtain queueing delay
of switches and provide differentiated service priority for
applications, which can improve the quality of service and
reduce the end-to-end delay. The PDP not only can provide a
platform for deploying complex ML and AQM algorithms, but
also can provide refined network information for ML. Zhang
et al. propose an application classification method based on a
hybrid deep neural network [65]. This method automatically
obtains a large amount of accurate network flow processing
information through PDP, and then learns it through the hybrid
deep neural network to classify applications at a high accuracy.

D. Remarks

We start our review from three traditional network delay
reduction methods. Then, we discuss how ML and PDP help
further reduce the network delay based on these three ways
respectively. In the following, we provide an overview of the
three approaches.

Caching service content near the user: The caching
service content mainly has two stages: distinguishing service
content popularity and choosing their storage location. In the
first stage, we want to find out the popularity of each content,
which helps choose its storage location. In the second stage,
we try to select an appropriate location of each content to
reduce the transmission delay.

Most of the researchers adopt machine learning to determine
the caching of service contents in the first stage. They use
a variety of machine learning models to reach a popularity
ranking. When going further into the second stage, selecting
an appropriate location should be based on the switch states
and link states for data transmission. For example, if a switch
which stores a large amount of high popularity contents is
broken, its stored contents cannot be quickly transmitted to
users and the service quality is affected. Alternatively, when
the transmission link is congested, a switch closest to the
user no longer has the minimal transmission delay. In short,
the choice of caching location is not simply a ranking of
content popularity, but also depends on the actual network
environment. Therefore, further research on machine learning
models is required to improve the caching service content
performance.

Another research issue is how to better exploit the PDP
for content caching. The PDP can help with caching service
content in both two stages. In the first stage, due to its
programmable capability, the PDP can observe the forwarding
of service content and provide ML with accurate forwarding
states to improve the ranking accuracy. In the second stage,
the PDP can provide comprehensive network state information
to help ML select an appropriate cache location. That is, the
PDP has a potential to improve service content caching, which
is a future research direction.

Actively managing forwarding rules: Manage forward-
ing rules includes three aspects: deploy forwarding rules in
advance, optimize existing forwarding rules, and balance the
cost of switches and the controller. The first aspect is to deploy
forwarding rules before the arrival of packets to avoid frequent
interactions between controllers and switches due to switches
having no forwarding rules to match. The second aspect is
based on the existing forwarding rules. When the network state
changes, the forwarding rules need to be adjusted to adapt to
the new environment. The third aspect is related to hardware.
The switches often have a small cache space for forwarding
rules, so it is inevitable to select limited appropriate rules and
store them in switches and the rest will be processed by the
controller.

Traditional forwarding rule management mainly focuses on
the second and third aspects. It looks for better rules under ex-
isting forwarding rules or improve the hardware performance.

Machine learning has succeeded in the first aspect. Through
machine learning algorithms, the obtained network state infor-
mation can be converted into the prediction of future network
state, so that forwarding rules can be deployed in advance
and network delay can be reduced. However, there are limited
studies on the adjustment of existing forwarding rules, which
need to be researched in the future. The dynamic operation of
machine learning is the key to further improve the forwarding
rules in the second aspect.

The PDP is different from the ML. The PDP is mainly
adopted in the third party. The programmable thought of PDP
is very conducive to realize the balance of hardware cost and
even decrease the cost, which improves the performance of
the switch itself and the interaction with the controller.

In addition, the PDP can obtain more detailed network
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state information, which can enhance the accuracy of ML
algorithm. In the future, the integration of ML and PDP in
the forwarding rules management will be a research direction.
How to combine the advantages of the two techniques needs
more investigation, for managing forwarding rules.

Scheduling delay-sensitive services with high priority:
The essence of scheduling delay-sensitive services with high
priority is how to reduce the queuing delay of delay-sensitive
services. The AQM is a basic technique of all methods and
is the key of scheduling delay-sensitive services with high
priority.

In a traditional framework, the AQM has plenty of mecha-
nisms for different optimization objectives, such as achieving
low delay or high throughput, but these mechanisms mainly
adjust the queuing itself. ML can help AQM in another
aspect, by classifying each service flow according to service
states. The AQM schedules the service flow based on the
classification. On the other hand, the programmability of PDP
can flexibly deploy and realize various AQM algorithms. Also,
the PDP can provide accurate network state information for
traffic classification. Integrating ML and PDP for AQM is
expected to provide a platform for deploying complicated
algorithms and to enhance the service differentiation. However,
related research is still in its infancy. There will be more
studies on AQM based on both ML and PDP, as it deserves
further research.

The three delay reduction methods are independent of each
other in operation, and their effective integration will lead
to a complete structure of comprehensive delay reduction
mechanism. As the Internet requires lower and lower network
delays, more and more studies on the topic will continue to
appear. The studies discussed in this section based on ML and
PDP for reducing network delay are summarized in Table I for
easy reference.

IV. NETWORK THROUGHPUT IMPROVEMENT BY
AI-DRIVEN PACKET FORWARDING WITH PDP

The exponential growth of network traffic increases the
throughput demand for various services. This section dis-
cusses three flow granularities in traditional PF networks
for throughput improvement, and presents how to further
improve throughput with ML only and with both ML and PDP,
respectively.

With the popularity and development of the Internet, the
amount of packet transmitted in the network increases expo-
nentially, and the throughput performance of various services
needs to be further improved. An advanced packet forward-
ing mechanism provides a solution to this requirement. In
addition to reducing network delay, the packet forwarding
mechanism can maximize throughput through parallel multi-
channel scheduling of packets. Specifically, the packet for-
warding mechanism distributes a certain number of packets to
different network links according to a scheduling algorithm,
so as to achieve link bandwidth aggregation and maximize
network throughput. According to the number of packets to be
scheduled (i.e., the granularity of flow), the packet forwarding
algorithm can be classified into three categories: (1) multi-path

A B

(a) service

A,C B

(b) small flow

A,C,E B,D,F

(c) packet

Fig. 5. Three Flow Granularities of Multi-path Forwarding

scheduling with service granularity (all packets of a service
flow); (2) multi-path scheduling with small flow granularity (a
fraction of packets of a service flow); (3) multi-path scheduling
with packet granularity (one packet of a service flow) [66].

In multiplex scheduling with service flow granularity, as
shown in Fig. 5(a), the packet forwarding mechanism allocates
service flows to different network links according to the
scheduling algorithm, where all packets in a service flow are
forwarded into the same network link. Many algorithms based
on service flow granularity are studied. Zhou et al. propose
a weighted cost multipath algorithm (WCMP) to control the
traffic size of each path [67]. The algorithm sets weights for
each path according to the network state information, and
allocates service flows in different size into different path, to
improve the network link utilization. Kheirkhah et al. design
maximum multiPath TCP (MMPTCP) algorithm to allocate
elephant flows (long duration flows) and mouse flows (short
duration flows) [39]. The algorithm solves the problem of
poor performance of mouse flows in traditional multiPath
TCP (MPTCP) by randomly scattering packets in the network.
Wang et al. and Liu et al. use software-defined networking
to perceive network topology and link resource information,
and adaptively allocate network links to different service flows
according to network resource state [68] [69].

The preceding multi-path scheduling algorithms of service
flow granularity improve network throughput via matching
service flows with different network links. One idea is to
allocate the service flows with their unique requirements,
such as assigning delay-sensitive service flows to links with a
good forwarding environment. Another idea is to allocate the
flows based on their sizes. For example, we can distribute
an elephant flow on a link with more available resources
and distribute a mouse flow on a link with less resources.
However, the packet forwarding mechanism based on service
flow granularity leads to the different size of service flow in
each link, making the utilization of links in an unbalanced
state.

In order to avoid uneven utilization of network link re-
sources in the multi-path scheduling with service flow granu-
larity, multi-path scheduling with packet granularity has been
studied to distribute packets in a service flow to different
network links as shown in Fig. 5(c). All the red rectangles
represent packets belonging to the same service flow and are
assigned to different network links. Zhang et al. propose Her-
mes, a network balancer, to allocate link resources according
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TABLE I
SUMMARY OF PUBLICATIONS ON IMPROVING NETWORK DELAY BASED ON ML AND PDP

Paper
Method of
reducing

network dealy1

Technique
based on Algorithms, Models, ML types Where ML is used Main ideas

[47] 1 ML Convolutional Neural Network,
Deep Learning Social media network

Apply sentence analysis on the data,
predict service requirements and cache
content in advance.

[48] 1 ML Bayesian Learning Method,
Reinforcement Learning

The wireless
network edge

Use Bayesian learning methods to predict
user preferences and individual content
request probability and cache content
in advance.

[34] 1 ML Distributed
Deep Learning Mobile edge network

Collect user information by content servers
and predict users’ content requirements
while ensuring privacy.

[49] 1 ML&PDP Deep Learning Information-centric
networking

Obtain the spatio-temporal joint distribution
data of network state, predict the popularity
of content and cache the service content
with high popularity.

[52] 2 ML
K-order
Markov Chain,
Greedy Algorithm

Mobile access network
Predict the user’s future location based on
k-order Markov chain, and generate packet
forwarding rules by the greedy algorithm.

[53] 2 ML Deep Reinforcement Learning Data center network

Formulate the optimization equations of
switch cache cost and controller distribution
cost, use deep reinforcement learning to
obtain the approximate optimal solution.

[36] 2 ML

Auto Regressive Integrated
Moving Average,
Long Short-Term
Memory (LSTM),
Reinforcement Learning

Multi-access edge
computing networks

Predict SDN load and migrate high load
in advance to relieve local network pressure.

[54] 2 PDP Behavioral-Level Caching
Mechanism - Unify all cache entries in a switch.

[55] 2 PDP ShadowFS -
Use a small cache to manage entries and
improve the ability to obtain accurate
information with high change frequency.

[56] 2 PDP - -
Redesign cache architecture, replaces
TCMA to FPGA and accelerate caching
speed.

[37] 3 ML Supervised Learning Internet of Things Distinguishe application priorities and creates
two queues to provide priority queues.

[60] 3 ML Deep Learning Data center network
Distinguish the priorities of service flows
and set up multiple priority queues, expand
the switch caching space.

[61] 3 PDP PI2 -
Use the PDP and inlet and outlet pipe
information of switch to implement AQM
on the data plane.

[62] 3 PDP CoDel - Use PDP to implement an AQM algorithm
(CoDel).

[63] 3 PDP Push-in First-out Algorithm -
Dynamically adjust the priority of packets
based on network state and provide priority
queuse.

[64] 3 ML&PDP eXtreme Gradient
Boosting Model Internet of Things

Establish two-layer queue management and
provide differentiated service guarantee
mechanisms for applications.

[65] 3 ML&PDP Hybrid Deep Neural Network -
Obtain accurate network information,
automatically extract characteristics and
classify traffic.

1 1: caching service content near the user; 2: managing forwarding rules actively; 3: scheduling delay-sensitive services with high priority
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to packet granularity [70]. The Hermes can ensure high utiliza-
tion of network link resources by sensing the network state of
available link resources and cautiously adjust the forwarding
rules. Dan et al. utilize the centralized control characteristic of
SDN to obtain the network link state information, and present
a multi-channel scheduling mechanism with packet granularity
to improve the network resource utilization [38]. Liu et al.
propose a scheduling method of packet granularity on the
basis of PDP, encapsulate different network-layer headers
for different packets of one service flow, and forward them
through different network links [71] [72]. The method not
only improves the secure transmission capability of packets,
but also achieves network link bandwidth aggregation. The
preceding packet granularity multiplexing algorithms improve
network throughput by fitting different network links with
different packets. However, due to unique characteristics of
different network links such as in terms of delay, the packet
granularity multiplexing algorithms suffer from packets out of
order [73].

In order to overcome the problems of uneven utilization
of network link resources with the service flow granularity
and packets out of order with packet granularity scheduling,
a compromise is made with small-flow granularity scheduling
which breaks up the service flows into a number of small
streams and distributes the streams to different network links,
as shown in Fig. 5(b). Vanini et al. design a small-flow
switching multiplexing mechanism, dynamic packet schedul-
ing and adjusting with feedback (DPSAF), which enables
service flows to be flexibly “cut” and distributed to network
links [74]. The mechanism ensures that packets arrive in
order and improves the utilization of network links. Shi et al.
develop a multi-path scheduling mechanism based on network
state information, which allocates network link resources with
small flow granularity and dynamically adjusts the number of
packets in a small stream according to network link state [40].
Katta et al. use PDP for network probes to perceive resource
utilization of network links [75]. They “slice” the service flows
into streams according to the gap between adjacent packets
arriving at a switch, and distribute the streams to each network
link according to the perceived utilization.

ML for throughput: All the three flow granularities of
packet forwarding face one problem: how to select an appro-
priate network link for the flow/packet/stream. ML can offer
some advantages in this link resource allocation to service
flows. First, we can use ML for service classification similar
to that in scheduling delay-sensitive services with high priority
in Section III, to provide different link resources for services
with different priorities; second, we can apply ML to predict
the future state of network links based on the existing network
state information and to select an optimal packet transmission
path to maximize throughput.

Pasca et al. apply machine learning techniques to SDN [76].
They establish a decision tree classifier through supervised
learning, which can classify and assign priority to service flows
according to their protocol and source/destination address. As
the switch processes the packets, the switch allocates different
flows to different paths based on the priority. This mech-
anism improves performance of high-priority services and

maximizes network throughput. Ji et al. propose an MPTCP-
based automatic learning selection path mechanism (ALPS-
MPTCP) [77]. This mechanism automatically obtains the
network link states and adaptively selects some high-quality
paths to transmit data packets. Li et al. design a multipath
packet forwarding congestion control mechanism based on ML
to solve the low throughput problem caused by heterogeneous
links in multipath forwarding [11]. They use reinforcement
learning to analyze network congestion and dynamically adjust
the congestion window to avoid congestion, so that aggre-
gate throughput can be improved. It is worth noting that
the training of a reinforcement learning model is an off-
line process, does not influence the decision making process,
does not introduce extra delay and overhead. Azzouni et al.
propose NeuRoute, an ML algorithm based dynamic routing
framework [78]. The framework uses deep learning to learn
service flow characteristics and predict network flow changes.
The new forwarding rules can be generated and distributed
to each switch, which ultimately increase network throughput.
Gilad et al. present a high-performance multipath congestion
control architecture [79]. This structure uses on-line convex
optimization to solve the balance problem of fairness and
high performance. Kanagarathinam et al. propose intelligent
multipath switch (SMS) for MPTCP in a wireless network
[80]. The SMS can use machine learning to dynamically adjust
and manage MPTCP substreams based on the state of the
wireless network to improve network throughput. Mohammed
et al. develope a deep reinforcement learning algorithm [81].
By analyzing the state of the wide area network (WAN), the
algorithm adjusts the transmission path of the service flow,
and reconfigures the traffic of each link, which improves the
utilization and throughput of the network link.

ML and PDP for throughput: The flexible programmable
characteristic of the PDP can provide more detailed network
state information for ML in parallel multipath scheduling of
packet forwarding [82]. With the help of PDP, the network
throughput performance can be enhanced. Basat et al. design
an in-band telemetry mechanism of low overhead based on
PDP to monitor the hop latency, queue depth, and link utiliza-
tion of all paths in parallel multi-forwarding of packets [83].
Based on the perceived refined network state information, they
propose a precise parallel multiplexing mechanism which can
improve the network throughput. Liu et al. utilize PDP to mea-
sure fine-grained network state information and adopt a deep
Q-learning model to make decisions on packet forwarding path
selection [84]. The model can reduce the out-of-order packets
rate in parallel multi-channel transmission, which improves
the network throughput. Hardegen et al. implement feature
prediction for network flow based on ML and collect a variety
of heterogeneous network link state information based on PDP
[85]. They select each packet forwarding path according to
the feature prediction and network link states to maximize the
network throughput. Li et al. propose a mechanism to classify
application flows with different QoS requirements based on
C4.5 decision tree and adjust SDN switch packet queue depth
[86]. The mechanism provides different transmission parame-
ters for application flows with different priorities, which can
reduce delay and increase throughput for the application flows
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with the highest priority. Liu designs a deep reinforcement
learning based routing (DRL-R) algorithm [87]. The algorithm
transforms the performance requirements of service flow into
the resource requirements. Then, according to the require-
ments, the algorithm classifies service flows and allocates cor-
responding resources. In addition, the algorithm pays attention
to network states regularly, adjusts forwarding rules adaptively,
and optimizes network resource allocation. Hu et al. propose
EARS, an intelligence-driven experiential network architecture
for automatic routing [88]. The EARS uses deep reinforcement
learning to control switches and modify forward policies by
interacting with the network environment to improve network
throughput.

Summary and Remarks: In the traditional Internet multi-
path forwarding, forwarding algorithms with three flow granu-
larities have their own advantages and drawbacks. Algorithms
based on service flow can effectively transmit the same service
flow over a unique link, but can lead to uneven utilization
of link bandwidth. Although algorithms based on packet
granularity can improve link bandwidth utilization, they can
lead to disordered packets. The forwarding algorithms based
on small flow is between the two. It can achieve an appropriate
utilization of bandwidth while decreasing out-of-order packets.
It achieves satisfactory performance in all aspects, but not
outstanding. On the other hand, forwarding based on small
flow is a static balance. When the network fluctuates, the
balance is broken, and the throughput performance deteriorates
significantly.

The introduction of ML and PDP does not change the three
granularities methods, but solves the problem of choosing an
appropriate forwarding path. ML dynamically selects network
links through various models to achieve reasonable resource
allocation. In the small flow granularity, ML can change the
static balance into dynamic balance, adapt to various network
fluctuations within a certain range, and stably maintain a high
performance of network throughput for a long time. The PDP
is a technique to facilitate ML. It gathers the current network
state more accurately and provides them to the ML model.
The research on ML and PDP in path selection is at an early
stage and most are based on flow granularity. In the future,
studies on the other two granularities should be carried out,
integrating ML and PDP closely with traditional solutions, to
enhance throughput improvement.

The research works on improving network throughput based
on ML and PDP discussed in this section are summarized in
Table II for easy reference.

V. SECURITY IMPROVEMENT BY AI-DRIVEN PACKET
FORWARDING WITH PDP

Ensuring data security of users and forwarding devices is
gaining increasing importance, which puts forward a higher
requirement on the network security. This section summarizes
recent works on how PDP can improve AI-driven packet
forwarding in terms of data security. That is, AI-driven packet
forwarding with PDP can defense three typical attacks (i.e.,
distributed denial of service, ransomware, and abnormal traf-
fic) with high accuracy and low latency, and mitigate the
attacks with high efficiency.

A. Distributed Denial of Service

Distributed Denial of Service (DDoS) attack is that an
attacker controls multiple systems and constantly sends ma-
licious traffic to the victim to suppress the server, host or
application, which makes the computing or networking system
overloaded. In the defense of traditional DDoS attack, a
switch identifies the field of forwarding packet, and filters out
the DDoS attack packets by extracting feature information.
However, due to the limited performance of a traditional
switch, the defense method cannot reach a high speed and
high efficiency.

ML for DDoS: The dynamic feature extraction of ML can
effectively solve the previous issues. ML can help deal with
complex network environment, and accurately and automati-
cally detect DDoS attacks. Doshi et al. propose a mechanism
that uses IoT network specific behavior, such as a limited
number of IoT nodes, regular forwarding time interval between
adjacent packets, to conduct DDoS attack feature analysis [12].
In particular, they first capture network traffic, sorting packets
based on information such as address and time. Then, they
extract features from the packets and classify them into normal
traffic and DDoS attack traffic. The mechanism can accurately
detect DDoS attacks. Idhammad et al. design a DDoS detec-
tion mechanism based on semi-supervised learning to solve
the problems of low accuracy and high false identification
rate in typical DDoS detection [32]. The detection mechanism
consists of two main parts: unsupervised and supervised.
Unsupervised learning estimates the entropy of network traffic
features based on a time sliding window algorithm, and then
calculates the information ratio of gains. Network traffic with
high information ratio of gains is considered abnormal. Su-
pervised learning uses an ML classifier based on an extra-tree
algorithm to accurately classify abnormal traffic and reduce
the false positive rate of unsupervised learning. The detection
failure rate of the mechanism is low. Yuan et al. propose a
DDoS attack detection method, DeepDefense, based on deep
learning [89]. It uses a bi-directional recurrent neural network
and data sets to learn patterns from network traffic sequences
and track network attack activities. The Deepdefense is better
than shallow machine learning method in recognition error
rate and generalization. Prez-Daz et al. design an SDN-based
security architecture consisting of two independent systems, an
intrusion prevention system (IPS) and an intrusion detection
system (IDS) [90]. The IDS is deployed at the host, and is
trained by machine learning for network traffic identification.
If a flow is recognized as an attack, the flow will be processed
by the IPS module in the controller to defend against the DDoS
attackers. The proposed architecture is practical for identifying
and mitigating DDoS attacks. Niyaz et al. propose a multi-
vector DDoS detection system based on deep learning [91].
The system monitors network traffic, analyzes and evaluates
traffic tracks in different scenarios, and determines whether
DDoS attacks exist.

In addition, there are many ML algorithm models, and how
to choose an appropriate model for DDoS attack defense has
been studied. In order to solve the problem of new DDoS
attacks in an SDN environment, Santos et al. realized three
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TABLE II
SUMMARY OF PUBLICATIONS ON IMPROVING NETWORK THROUGHPUT BASED ON ML AND PDP

Paper Technique
based on Algorithms, Models, ML types Where ML is used Main ideas

[76] ML Supervised Learning - Classify and prioritize service flows, assign different
flows to different paths based on priority.

[77] ML
K-NN Algorithm, Random Forest,
K-Means Algorithm,
Reinforcement Learning

Internet of Things Automatically obtain network link states and adaptively
select high-quality paths to transmit packets.

[11] ML

Reinforcement
Learning,
Hierarchical Tile Coding
Algorithm

Heterogeneous
network

Dynamically adjust the congestion window size to
reduce congestion and improve aggregation throughput.

[78] ML Deep Learning - Predict network traffic changes and generate new
forwarding rules to improve network throughput.

[79] ML Online Convex Optimization -
Propose multipath fairness and switch performance
optimization equations and solve by online convex
optimization.

[80] ML Smart Multipath Switch Wireless network Dynamically adjust and manage MPTCP substreams
according to the state of the wireless network.

[81] ML Deep Reinforcement Learning,
Upper-Confidence Algorithm Wide Area Network

Analyze the wide area network states, adjust the
transmission path of service flows and reconfigure the
traffic on each link.

[83] ML&PDP In-band Network Telemetry - Obtain information such as delay, queue depth,
and link utilization to achieve fine multipathing control.

[84] ML&PDP Distributed Asynchrono
Deep Reinforcement Learning - Analyze the network states and determine the

forwarding path, reduce the packet out-of-order rate.

[85] ML&PDP Deep Neural Network - Predict network traffic and select an appropriate path
to forward.

[86] ML&PDP C4.5 Decision tree,
Low Latency Queueing -

Classify applications and configure priorities, adjust
queueing depth of SDN switches to forward packets
of applications with different priorities.

[87] ML&PDP Deep Q-Network,
Deep Deterministic Policy Gradient -

Transform performance requirements of the service
flow into the resource requirements, allocate network
resources for flows and adaptively adjusts the
forwarding rules.

[88] ML&PDP Deep Learning aAlgorithm - Interactive network environment periodically and
modified forwarding rules dynamically.

different types of DDoS attack detection (flow table attack,
bandwidth attack and controller attack) using four machine
learning methods: support vector machines (SVM), multilayer
perceptron (MLP), decision tree and random forest in an
SDN simulation environment [92]. The results show that the
decision tree approach has the shortest processing time, and
the random forest approach has the highest absolute value
accuracy.

PDP for DDoS: PDP has the characteristics of flexible
programming, which can quickly collect attack flow informa-
tion and update switch forwarding rules in real time. Such
real-time updates can enhance defense capability. Bunia et
al. establish an SDN-based framework called SoftThings,
where SDN switches continuously monitor the traffic of IoT
devices and provide the traffic information to the cluster SDN
controller [93]. The controller detects abnormal behaviors by
analyzing traffic, and dynamically sets traffic rules for switches
to defend against DDoS attacks. In this framework, abnormal
traffic can be quickly detected at the network edge. Shang

et al. propose FloodDefender, a network defense framework,
to address the problem that communication links between two
planes in the SDN architecture are vulnerable to DDoS attacks
[94]. The framework monitors network states in real time.
When an attack occurs, the neighbor switch takes over the
work of the victim switch and sends the received data stream to
the interceptor of the controller to identify whether it is normal
traffic. In addition, the controller updates the new attack stream
characteristics into the interceptor in real time to improve the
efficiency of interception.

ML and PDP for DDoS: The integration of PDP and
ML is the development direction of DDoS attack defense,
which is mainly studied in three aspects. Firstly, the PDP
provides multiple planes to better deploy ML models, which
can realize a DDoS monitoring algorithm on line speed and
greatly reduce DDoS attack monitoring latency [95] [96].
Secondly, fine-grained network state information can be sup-
plied by the PDP, including queue length, network delay
and so on, to provide more multidimensional features for
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Fig. 6. Two Mechanisms about Defending DDoS Attacks with ML and PDP

accurately monitoring DDoS attacks [97] [98]. Thirdly, the
flexible and programmable characteristics of the PDP provide
the foundation for customized DDoS attack monitoring [99].
The DDoS attacks monitoring algorithm can be dynamically
selected according to requirements of security level. Therefore,
aggregating ML and PDP for more accurate monitoring of
DDoS attacks has become a research hotspot in the commu-
nity.

Musumeci et al. use ML and PDP to detect DDoS attacks
during packet forwarding in real time [100]. Their mechanism
workflow is shown in Fig. 6(a). In the packet forwarding
process with PDP, the numbers of IP, UDP, TCP and SYN
packets are counted, and the local ML analysis and decision
module can use these numbers to judge whether there is
a DDoS attack. If there is, the decision forwarding engine
distributes the forwarding rules containing the attacker’s IP
and other information in the form of table entry, and blocks
the attacks. Mi et al. design an ML-Pushback mechanism with
deep learning and PDP to accurately identify and mitigate
DDoS attacks [101]. The workflow is shown in Fig. 6(b).
The data collector is customized with PDP, and gathers real-
time discarded packets in the network. When the number
of discarded packets reaches a threshold, the data collector
automatically extract packet information and uploads it to the
control plane. When the deep learning module of the control
plane receives the information, the feature extraction sub-
module will extract the IP source/destination address, protocol
type, interface number and other features, and then hand them
to the decision tree of the analysis and decision module to
judge whether there is a DDoS attack. If a DDoS attack exists,
the features of DDoS attacker are further extracted. Then, the
analysis and decision module distributes the forwarding rules
to switches to limit the traffic from the attackers.

Hu et al. propose a prototype system to defend DDoS attack
in real time [102]. During the process of packet forwarding,
they adopt flow-based information collection methods in SDN
switches to quickly gather network state information, and use
the support vector machine (SVM) model for data analysis
to detect and judge DDoS attacks. At the same time, they

design a DDoS attack mitigation mechanism based on the
white list, which can dynamic update the packet forwarding
rules to block the service packets that are not in the white list
and effectively reduce the damage of DDoS attacks. Chen et
al. propose a distributed intrusion prevention system, CIPA, for
programmable networks and SDNs, based on artificial neural
network (ANN) [103]. The CIPA distributes computing power
to some or all of the switches in the network, monitors the
network and forms a global view of the network states, and
performs high-precision intrusion detection and mitigation on
discovered malicious online traffic. Phan et al. design a hybrid
stream working mechanism based on SVM and self organizing
map (SOM) [104]. The mechanism uses SDN to collect switch
flow information and classify the flow by SVM. Then, SOM
is used to make the final decision, and the switch transmission
rules are changed to reduce network attacks. Chen et al. use
extreme gradient boosting (XGBoost) as a detection method
for cloud-based SDN networks [105]. The XGBoost classifier
detects DDoS attacks on packets collected by TcpDump. The
method has high detection accuracy, low false positive rate,
fast detection speed and scalability.

B. Ransomware

Ransomware is a kind of virus software that extorts the files
of victims. The attacker holds the file until the victim pays a lot
of money to redeem it. Ransomware comes in many forms, and
the traditional defense methods do not provide comprehensive
protection against ransomware.

ML for ransomware: ML can help defend ransomware
attacks by quickly detecting and filtering the attack packets
at the interfaces of switches. Poudyal et al. analyze the raw
data, library files, number of functional interface calls and
other multi-level data of the user’s computer, and use Bayesian
Network, Random Forest and other supervised learning algo-
rithms to detect ransomware [106]. Zhang et al. first analyze
the opcodes of the user terminal and generate an N-gram
sequence, then extract the features from the sequence with
the TF-IDF data mining algorithm, and finally construct a
ransomware detection model with the extracted features [107].
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TABLE III
SUMMARY OF PUBLICATIONS ON DEFENDING DDOS ATTACK BASED ON ML AND PDP

Paper Technique
based on Security type Algorithms, Models, ML types Main idea

[12] ML DDoS
Random Forests, SVM,
K-nearest Neighbors,
Decision Trees, Neural Networks

Classify packets, extract traffic characteristics, and classify them
into normal traffic and attack traffic.

[32] ML DDoS
Semi-supervised Learning,
Time Sliding Window Algorithm,
Extra-trees Algorithm

Unsupervised learning extracts the characteristic entropy of data
stream and calculates the information gain ratio. Supervised
learning distinguishes abnormal flow and reduces the false positive
rate of unsupervised learning.

[89] ML DDoS Bi-directional Recurrent Neural
Network

Use bi-directional recurrent neural network and data sets to learn
DDoS attack patterns and track attack activity.

[90] ML DDoS Intrusion Prevention System,
Intrusion Detection System

Intrusion prevention system uses machine learning on the host to
identify DDoS attacks. DDoS attacks are sent to the intrusion
petection system of the controller for processing and interception.

[91] ML DDoS Deep Learning Monitor network traffic, analyze and evaluates traffic tracks in
different scenarios, and determine whether DDoS attacks exist.

[92] ML DDoS
Support Vector Machines,
Multiple Layer Perceptron,
Decision Tree, Random Forest

Test the effectiveness of different machine learning algorithms
against DDoS attacks.

[93] PDP DDoS -
Collect traffic characteristics, provide them to the controller,
analyze and distinguish data flows, and adjust forwarding rules
dynamically.

[94] PDP DDoS -
The neighbor switch performs the work of the victim switch. The
controller identifies and analyzes the data flow, and updates the
interception rules in real time.

[100] ML&PDP DDoS
Random Forest,
Knearest Neighbors,
Support Vector Machine

Collect the number of IP, UDP, TCP and SYN packets, analyze
the data and identify DDoS attacks by local ML, update the flow
rules to intercept DDoS packets.

[101] ML&PDP DDoS Deep Learning, Decision Trees

Collector collects the packets discarded by the switch and sends
the packets to the controller for feature extraction. The controller
identifies DDoS attacks and updates the forwarding rules in the
switch to limit the rate of DDoS attacks.

[102] ML&PDP DDoS
sFlow-based Method,
Supervised Learning,
Support Vector Machines

Use sflow-based information collection to quickly collect network
state information, use support vector machines to analyze and
identify DDoS attacks, update forwarding rules in time, and
minimize looses caused by DDoS attacks.

[103] ML&PDP DDoS Artificial Neural Network
Assign computing tasks to multiple switches, collect data from
each switch, and form network state monitoring to detect DDoS
attack flows with high accuracy.

[104] ML&PDP DDoS Support Vector Machine,
Self Organizing Map

SDN collects switch information. Support vector machine classifies
data flows. Self organizing map determines whether data flows are
attack flows and modifies switch forwarding rules to reduce attacks.

[105] ML&PDP DDoS Extreme Gradient Boosting Collect switch inbound packets, detect and identify DDoS attacks.

Lee et al. make comprehensive use of information entropy and
ML methods to classify ransomware [31]. Their classification
scheme accurately identifies ransomware. Omar et al. design
NetConverse to identify ransomware [108]. Specifically, they
analyze network flow, extract its characteristics, and compare
them with the characteristics of the learned ransomware to de-
termine whether it is a ransomware flow. Shaukat et al. propose
RansomWall, a layered defense system for defending against
crypto-ransomware [109]. RansomWall combines static and
dynamic analysis to extract file features and send them to the
feature collector. The feature collector sends suspicious file to
the machine learning model to make the final judgment on
whether it is ransomware.

ML and PDP for ransomware: Different from the infor-
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mation provided for DDoS attack defense, the PDP provides
the real-time and accurate network endogenous state informa-
tion to ML for a better ransomware detection. Cusack et al.
propose a ransomware precise detection mechanism based on
ML and PDP [110]. As shown in Fig. 7, the mechanism mainly
includes two modules: network stream processing module
and network stream classification module. First, the network
stream processing module uses the PDP to quickly collect
the information of each packet, and extracts the network
stream features (packet 5-tuple information), including packet
timestamp, packet size and byte number. Then, the network
stream classification module gathers the feature information
to identify the ransomware stream by the random forest
algorithm. By adjusting the number (40) and depth (15) and
the maximum amount of features in random forest decision
trees, the accuracy of detection ransomware reaches 86%,
and the failure rate of detection is only 11%. Combining
the advantages of IDS and SDN, Boero et al. use the SVM
algorithm as the core of the system to detect ransomware on
the SDN controller side with the characteristics of byte rate,
packet rate and average packet length [111]. Experimental
results show that the proposed scheme has a high detection
rate.

C. Automating Network Traffic Detection

Automating Network Traffic Detection (ANTD) mainly
addresses the attacks caused by abnormal network traffic. The
ANTD detects anomalies and security attacks by analyzing
network traffic. Especially in the data center, a large amount
of network traffic needs to be monitored for a safe network
environment. However, the ANTD technique has low perfor-
mance in a traditional network and brings huge hidden danger
for network security.

ML for ANTD: ML provides a powerful tool for the
ANTD. It can construct an abnormal network traffic model
and accurately detect abnormal traffic, which achieves a high
security level. Salman et al. establish an abnormal traffic de-
tection framework for IoT network devices based on ML [30].
In this framework, network traffic information is collected
from IoT network devices. Then, the information is extracted
into 39 network traffic features for further classification. The
ML algorithm keeps running to identify abnormal network
traffic. The mechanism can detect abnormal traffic with a high
accuracy. Ji et al. utilize ML to model a deep attack pattern
of network abnormal traffic [112]. Specifically, they design
a mechanism based on ML and SVM algorithm to analyze
abnormal network traffic and predict the categories of network
attacks. Niu et al. propose a network intrusion detection
method based on Transfer Component Analysis (TCA) [113].
The method uses TCA to map the traffic features of the
source domain and the traffic features of the target task to
a shared subspace for domain adaptation, and then uses K-
Nearest Neighbors (KNN), SVMs and Random Forests (RF) as
base classifiers for training detection models to find abnormal
traffic. Kong et al. propose an abnormal traffic identification
system (ATIS) based on SVM [114]. The system determines
abnormal traffic in four steps: data collection, traffic features
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extraction, data processing, and SVM classification. The sys-
tem can classify and identify various attack traffic applications.
Kong et al. design an anomaly encrypted traffic detection
method based on machine learning and behavior characteristics
[115]. This method extracts behavior characteristics of applica-
tion programs and classifies abnormal traffic based on machine
learning. This method can effectively improve the accuracy
of abnormal encrypted traffic detection. Yong et al. design a
parallel cross convolutional neural network (PCCN) for net-
work traffic detection [116]. The PCCN fuses two branches of
convolutional neural network, with excellent learning ability.
It can complete the learning of traffic characteristics in the
case of a small number of samples. In addition, it adopts an
improved original flow feature extraction method and achieves
fast convergence speed of network traffic classification and
identification, which lead to a quick detection.

PDP and ML for ANTD: The high processing performance
of the PDP facilitates the line-speed analysis and detection of
network abnormal traffic. The PDP can be used to design a
fine-grained traffic collection and analysis mechanism in the
packet level to ensure the realtime and accuracy of abnormal
traffic analysis [117] [118] [119] [120]. Using PDP to monitor
network traffic can avoid sending too many network packets
to the centralized control plane, and can reduce abnormal
network traffic analysis decision delay [121]. Therefore, in-
tegrating ML and PDP to improve ANTD has become a hot
topic in the security field.

Lee et al. propose an endogenous abnormal traffic analysis
mechanism based on PDP, and deploy an ML random forest
algorithm on switches to realize real-time online abnormal
traffic detection in networks [122]. The specific workflow is
shown in Fig. 8. First, 12 network traffic features are selected
as the judgment basis, e.g., the TTL from source to destination
terminal (STTL), the TTL from destination to source terminal
(DTTL) and the number of packets from destination to source
terminal (DPKTs). Then, the 3-order random forest decision
tree algorithm is used to carry out abnormal analysis of
network traffic. If abnormal network traffic is confirmed, the
corresponding packet forwarding rules will be distributed to
the switches and the abnormal traffic packets are discarded;
otherwise, the packets will be forwarded following the default
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TABLE IV
SUMMARY OF PUBLICATIONS ON DEFENDING RANSOMWARE BASED ON ML AND PDP

Paper Technique
based on Security type Algorithms, Models, ML types Main idea

[106] ML Ransomware Bayesian Network, Random Forest,
Supervised Learning

Analyze the original data, library file, number of function
interface call of user, and detect ransomware by supervised
learning algorithm.

[107] ML Ransomware Term Frequency-Inverse Document
Frequency Data Mining Algorithm

Analyze the operation code of user and generat N-gram,
extract sequence features by term frequency-inverse document
frequency data mining algorithm, construct ransomware
detection model.

[31] ML Ransomware Information Entropy, Decision Tree,
Deep Learning

Classify ransomware according to different file formats based
on information entropy and ML methods.

[108] ML Ransomware Decision Tree
Analyze network flow, extract features, compare with
ransomware feature database, determine whether it is
ransomware.

[109] ML Ransomware Gradient Tree Boosting Algorithm
Extract file features by static and dynamic analysis, send
features to collectors. Collector send suspicious files to machine
learning engines to identify ransomware.

[110] ML&PDP Ransomware Random Forest, Decision Trees PDP quickly collects data flow information, extracts features.
ML collects features and determines whether it is ransomware.

[111] ML&PDP Ransomware Support Vector Machines Collect byte rate, packet rate and average packet length, and
detect ransomware by support vector machines.

flow table rules. Busse-Grawitz et al. deploy a supervised
learning model on the top plane of PDP to detect the en-
dogenous traffic in the network [15]. First, due to the memory
and floating operation constraints in the PDP, they modify the
feature selection process in the supervised learning to adapt
the information from the PDP. Then, they design a real-time
accurate network traffic analysis mechanism based on PDP and
ML. In the model training stage of the mechanism, the labeled
network traffic data is used to train the classification model
of supervised learning, and then the classification model is
deployed on the PDP to realize the line speed online classifier.
The workflow is shown in Fig. 8. First, 18 network traffic
features are extracted by counting the first three packets of
a network traffic as the judgment basis. Then, the random
forest algorithm with semantic association is used to conduct
abnormal network traffic analysis. If abnormal network traffic
exists, the corresponding traffic will be discarded according
to the packet forwarding rules; otherwise, the packets will be
forwarded following the default flow table rules.

Song et al. propose an abnormal traffic defense mechanism
based on SDN and machine learning [123]. The mecha-
nism first extracts the characteristics of network traffic, then
evaluates the malicious degree using a random forest al-
gorithm, and finally makes defense decisions to effectively
prevent abnormal traffic transmission. Georgi et al. design a
lightweight traffic detection and defense system [124]. The
system periodically collects traffic statistic information from
the SDN OpenFlow switch. Then, it extracts and aggregates
a set of features to analyze traffic information, so as to
achieve high performance abnormal flow detection. Tuan et
al. use deep learning to detect abnormal traffic in an SDN
environment [125]. They use the NSL-KDD data set to build
a deep neural network anomaly flow detection model. Then the

model is used to analyze network traffic and identify abnormal
traffic. Experiments show that the model has great potential in
abnormal flow detection.

D. Summary and Remarks

The three typical network attacks discussed in this section
have their own unique characteristics and represent three
aspects of network security. The DDoS defense deals with
normal packets in normal stream, while ransomware studies
the abnormal packets in normal stream and ANTD finds the
abnormal stream. In addition, ransomware happens at the
users’ side and the ANTD is opposite. It takes place in the
core network and exists in the traffic entering the forwarding
devices. In this section, we make a brief summary of how to
deal with the three network attacks.

DDoS: DDoS attack defense focuses on the features of
attack packets. How to identify DDoS attack packets more
efficiently and accurately is the research direction. ML can
learn the features of known DDoS attack packets and then
identify and filter other similar ones. While providing more
accurate packet information, PDP can support an ML model to
run on the data plane, avoiding the process of data upload and
distribution, and improving the real-time interception. Existing
solutions have the capability for successfully filtering DDoS
attacks with high accuracy. However, identifying and filtering
functions are in general deployed in the switch near the victim,
which is passive and only triggered at the arrival of DDoS
attack packets. Is it possible to intercept DDoS attacks at the
edge of the network when the packets enter the network? If
so, it will not only successfully defend against DDoS attacks,
but also reduce a large number of junk packets in the network.

Ransomware: Ransomware is different from DDoS attacks.
DDoS attacks use normal packets to bombard the victim.
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TABLE V
SUMMARY OF PUBLICATIONS ON AUTOMATING NETWORK TRAFFIC DETECTION BASED ON ML AND PDP

Paper Technique
based on Security type Algorithms, Models, ML types Main idea

[30] ML ANTD1
Convolutional Neural Network,
Residual Neural Network,
Recurrent Neural Network

Collect traffic information of the IoT device, extract characteristics,
and use machine learning algorithms to classify and identify
abnormal traffic.

[112] ML ANTD Support Vector Machines Use support vector machines algorithm to analyze network abnormal
flow and predict the mechanism of network attack category.

[113] ML ANTD

Transfer Component Analysis,
K-Nearest Neighbors,
Support Vector Machine,
Random Forests

Extract traffic characteristics of source and destination domain, carry
out domain self-adaptation, classify and determine the abnormal traffic.

[114] ML ANTD Support Vector Machine Collect traffic information, extract traffic features, use support vector
machine to determine abnormal traffic.

[115] ML ANTD Intrusion Detection Systems,
Decision Trees

Extract behavior characteristics of applications, use machine learning
to classify and determine abnormal traffic, improve the accuracy of
abnormal flow detection.

[116] ML ANTD Convolutional Neural Network
Fuse two branch convolutional neural networks, adopt improved
method for extracting original stream features, detect abnormal flow
fast and efficiently.

[122] ML&PDP ANTD Supervised Learning,
Random Forest, Decision Tree

Collect 12 network traffic characteristics, use decision tree to analyze
whether the network traffic is abnormal.

[15] ML&PDP ANTD Supervised learning,
Random Forest

PDP rapidly extracts 18 traffic features. Supervised learning realizes
abnormal traffic identification.

[123] ML&PDP ANTD Random Forest Extract the characteristics of traffic, evaluate the malicious degree,
and make decisions to prevent malicious flow transmission.

[124] ML&PDP ANTD Bagged Trees
Periodically collect traffic statistics, extract and aggregate features to
analyze traffic information, and implement high-performance abnormal
traffic detection.

[125] ML&PDP ANTD Deep Learning Establish anomaly flow detection model based on NSL-KDD data set,
detect the abnormal flow.

1 1. Automating Network Traffic Detection

Ransomware, however, sends “masquerading packets” which
are packaged into ordinary packets for control and extortion.
Therefore, the defense methods for them are different. DDoS
mainly intercepts attack packets based on similarity, while
ransomware focuses on identifying attack packets based on
packet content. The ML for ransomware focuses more on
obtaining information from users’ terminal to help identify
ransomware packets and intercept them. PDP, in terms of
information precision, provides real-time and accurate packet
information to assist ML operation. The blocking rate of each
study is generally less than 90% which is not sufficiently high
as desired. The reason is that ransomware can be packaged in
various types of packets, which is very difficult to identify.
In the future Internet, there can be more protocol packet
format, which will lead to higher difficulties for ransomware
identification. Finding them and extracting common features
of ransomware packets correctly and quickly is the future
research direction. How to integrate ML and PDP to maximize
ransomware defense capabilities requires further studies.

ANTD: DDoS and ransomware defense is against the attack
wrapped in a normal traffic, while ANTD is against abnormal
one. ANTD requires a large number of packet characteristics
as the basis for classification, and the ML model is more
complex because of the diversity of the types of abnormal flow.

Controllers deploying ANTD tend to require more resources to
support the ML model. Therefore, how to optimize ML model
and reduce the consumption of hardware resources while
ensuring accuracy is a future research direction of ANTD.

The papers related to network security based on ML and
PDP discussed in this section are summarized in Table III,
Table IV and Table V respectively for easy reference.

VI. RELIABILITY IMPROVEMENT BY AI-DRIVEN PACKET
FORWARDING WITH PDP

Reliability refers to the quality of data transmission and is an
important issue of the Internet. This section offers an in-depth
view of state-of-the-art reliable packet forwarding mechanisms
that utilize AI and PDP technologies. First, research works
on PDP-based network telemetry are discussed in detail.
Then, congestion control and runtime verification are studied
respectively.

A. Network Telemetry
Network telemetry refers to how information from various

data sources is collected by using a set of automated com-
munication processes and transmitted to the corresponding
equipment for analysis tasks. The flexible programmable char-
acteristic of the PDP and its customized header in packets can
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help make the network telemetry accurate, convenient, and
cost effective.

Basat et al. propose a network state telemetry mechanism
based on PDP to collect information such as interface queue
length, packet forwarding processing delay, packet forward-
ing interface [83]. The mechanism needs to insert only one
bit telemetry information when packets are forwarded. The
network state telemetry information can be partitioned and
restored in multiple packets, which greatly reduces the over-
head of telemetry. Zhou et al. design a real-time traffic mon-
itor [126]. The monitor closely deploys multiple information
collection modules in programmable switches and periodically
collects switch information to obtain the states of the network.
Holterbach et al. use the PDP to quickly detect network
failures, and send rerouting signals to the control plane to
ensure rapid recovery of services [127].

Although the PDP can obtain plenty of network state
information, it cannot actively detect network state according
to network needs because of its passive acquisition mode. The
integration of ML and PDP can solve the problem, which
realizes automatic and intelligent network telemetry.

Hyun et al. use an in-band telemetry mechanism of the PDP
to obtain accurate network state information [128]. Based on
the information, they use ML to build a knowledge-defined
network whose system framework is shown in Fig. 9. The
system is mainly divided into four planes, i.e., programmable
data plane, management plane, control plane and knowledge
plane. In the programmable data plane, the network state
information is collected and summarized in the process of
packet forwarding and uploaded to the management plane
and the control plane. The management plane acquires the
network state information and then carries on data statistics,
analysis and processing, and finally constructs the network
state database. The control plane gathers the short-term reports
from the management plane and the information from the
programmable data plane, and then show the network con-
figuration and state for visualization. The knowledge plane
acquires the long-term data of network state from the man-
agement plane, extracts the features of the network state and
trains the ML model to form the knowledge of network
traffic scheduling and abnormal detection. Then, the packet
forwarding strategies are generated through the knowledge and
deployed to the control plane. The control plane translates the
strategies into packet forwarding rules and distributes the rules
to the programmable data plane.

Lazaris et al. propose a DeepFlow framework to enable fine-
grained measurements in programmable switches [129]. The
framework can adaptively measure the activity of service flow
and provide different fine-grained network state information
for different activity levels. In addition, the framework uses
historical measurements to train a cloud-based deep learning
model to provide short-term traffic predictions when switch
resources are limited. Pashamokhtari establishes a security
monitoring mechanism for the Internet of Things [130]. The
PDP is used to dynamically monitor the packet information
of various devices in the Internet of Things. A set of machine
learning models are used to classify and detect the information
to find whether there is malicious behavior. Janakaraj et al.
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design a distributed in-band network telemetry system (S-INT)
and a wireless network operating system (WINOS) [131]. The
S-INT reduces the overhead of monitoring network traffic by
embedding a specialized INT header in the data stream. At
the same time, the WINOS system can summarize distributed
telemetry information and connect with an SDN network to
realize fast machine learning algorithm and network control.

The research of network telemetry not only includes the
integration of ML and PDP to improve network performance,
but also includes the improvement of network telemetry tech-
nique, in-band network telemetry (INT). Hohemberger et al.
formulate an INT’s assignment plan model and enhance it
with machine learning algorithms [132]. The enhanced model
can improve the ability of INT to identify abnormal network
states. Yang et al. propose a high-speed network telemetry
mechanism called FAST-INT [133]. The Fast-INT monitors
network change events through a reinforcement learning algo-
rithm, and dynamically deploys and adjusts INT monitoring
tasks to achieve efficient network monitoring in a short time.
Vestin et al. develop a fast INT reporting collector based on
the PDP [134]. The collector uses P4 language and is deployed
on the stream processor of switches. It can quickly obtain the
switch data plane information, while requiring a low network
overhead and switch load. Mayer et al. propose a soft-failure
localization framework based on ML [135]. The framework
can be applied in the case of failure of telemetry equipment
that cannot use INT to detect. In this framework, an artificial
neural network is used to simulate network failures, and the
approximate location of failures can be obtained quickly,
which speeds up failure location determination.

B. Network Congestion Control and Management

Network congestion control and management is to ensure
the network transmission performance remains at a high level
for a long time. The PDP can help to find network congestion
quickly and upload a congestion signal to the controller in
real time, realizing the in-network congestion control and
management. Feldmann et al. use PDP to identify elephant
flow at line-speed level and assign an independent queue for
each elephant flow through multi-queue management [136].
Further, they monitor queue state information in real time to
detect network congestion. If congestion is about to occur, a
congestion signal will be sent to inform the upstream node to
change the packet forwarding rules, which can avoid network
congestion and achieve accurate congestion control.

The PDP has advantages on network information acquisition
in congestion control, while ML can predict occurrences of
network congestion. Zhou et al. propose a supervised learning
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regression model that can capture global routing behavior
[137]. The model can obtain whole network routing informa-
tion and predict network congestion.

In recent years, researchers have explored using ML and
PDP to realize efficient and predictable in-network congestion
management. Mai et al. propose a network congestion de-
tection and management mechanism based on reinforcement
learning for network congestion caused by instantaneous burst
of elephant flows [138]. When an elephant flow fluctuates,
the mechanism can adjust queueing assignment based on real-
time feedback from reinforcement learning to avoid network
congestion. Jain et al. obtain a large amount of data from
practical telecommunication network and train the network
traffic prediction model [139]. The model can predict the
occurrence of network congestion and use big data to adjust
the packet forwarding rules and improve the quality of service.
Li et al. design a TCP-proximal policy congestion control
(TCP-PPCC) algorithm [140]. The algorithm obtains network
state information through the PDP, updates the forwarding
policy offline, and further adjusts the new policy online. It
can effectively prevent network congestion. Li et al. use the
PDP to accurately collect network link state information, based
on which, they determine whether the corresponding network
link is about to be congested [43]. Further, they adopt an
enhancement learning algorithm to minimize the maximum
link utilization to avoid network congestion. The workflow
of this mechanism is shown in Fig. 10. First, the network
state information is collected through in-band telemetry when
the packets are forwarded in the PDP. Then, the in-band
telemetry agent in the control plane gathers the collected
network state information and extracts the load of each net-
work link and each node device as the state parameters for
reinforcement learning. After that, the reinforcement leaning
model generates routing adjustment strategies to avoid network
congestion based on the state parameters. Finally, the control
plane translates the strategies into packet forwarding rules and
distributes them to the network devices on the programmable
data plane.

C. Network Device Runtime Verification and Management

With the popularity of programmable switches, customized
packet forwarding becomes the basis of more and more
research works. Along with the trend, verification and man-
agement of the functional feasibility of programmable network
devices and the validity of the runtime forwarding table
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have become a research hotspot. The functional feasibility
verification of network device refers to the analysis of whether
the PDP packet forwarding processing has bugs [141] [142]
[143] [144]. The validity of the runtime forwarding table refers
to the analysis of whether there is an abnormal packet for-
warding table when the PDP is running [144] [42] [145]. For
example, malicious attackers can tamper a forwarding table to
interrupt the user’s services [144]. A verification mechanism is
completed by Zhou et al. They design an anomalous runtime
forwarding table mechanism [42]. The mechanism uses an
intermediate representation based on a binary decision diagram
to form the data plane probe of switch and to monitor the
anomaly of packet forwarding. The mechanism can ensure
that packets are transmitted efficiently and smoothly across
the PDP.

In addition to manually collecting network packet forward-
ing state information to verify and manage the functional
feasibility and the validity, researchers explore ML to realize
automatic verification and improve the correctness and feasi-
bility of packets forwarding management. Jagadeesan et al.
formulate an approach to enhance automated verification with
machine learning-based analytics and detect the faulty or mali-
cious behaviors [146]. The approach takes the switch behavior
as input and determines whether it is an faulty or malicious
behavior through machine learning analysis. Furthermore, the
approach has low operational requirements and can easily be
deployed on the switch.

Shukla et al. propose a variation-coefficient and fuzzy-
evaluation mechanism guided by reinforcement learning to
verify the validity of packet forwarding logic and forwarding
table during the operation of programmable network devices
[147]. The workflow is shown in Fig. 11. First, the users
describe expected packet forwarding behavior on the PDP
through P4Q lightweight language, and provide packet for-
warding logic described by P4 language. Second, the reward
system of reinforcement learning generates two kinds of test
packets according to information from the users. One is
the ordinary packet, which is used for samples (seeds) of
the initial environment state of reinforcement learning. The
other is specific boundary packets (such as Ethernet address
FF:FF:FF:FF:FF:FF), which is used to verify whether there
are bugs in the packet forwarding logic. The reward system
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sends the ordinary test packets to complete the initialization
of the reinforcement learning system. Then, the reward system
sends out a specific boundary test packet, at which time
the agent fuzzily selects an action expected to forward the
packet. Meanwhile, the reward system monitors the forwarding
process of the packet in real time. Finally, the forwarding of
this packet is finished and the reward system compares the two
actions and gives a reward value. The agent checks whether
the reward value triggers the bug threshold. If it is, the agent
will notify the user that there is a bug in the packet forwarding.

VII. FURTHER TRENDS, CHALLENGES AND OPEN ISSUES

Packet forwarding is the foundation and the core of the
Internet and still has a long way to go in the future. AI-driven
packet forwarding technology is the basic future direction, and
intelligence is one of the most important features of future
networks [148]. This section discusses the future AI-driven
packet forwarding technology from three development trends,
and highligets challenges and research issues respectively. The
structure of this section is shown in Fig. 12.

A. AI-driven Packet Forwarding for Diverse Network Archi-
tectures

Future Internet architecture is one of the most discussed
research hotspots in recent years. Traditional IPv4 networks
can no longer meet the needs of the current diversified and
intelligent network requirements. Thus various new network
architectures have emerged, such as open programmable net-
work (ForCES, SDN), new service-oriented network system
(SOI, NetServ, COMBO, SONA), content center network
(NDN, DONA, PSIRP, NetInf), new mobility-oriented network
system (MobilityFirst, HIP, LIN6, Six/One), intent-driven net-
works (IDN), and smart identifier networks (SINET). The
explosion of proposed new network architectures has brought
about today’s Internet, where the traditional IPv4 network is
deployed as the core and diversified new network architectures
are accessed as private networks.

1) Challenges: Packet forwarding technology is an indis-
pensable part in both traditional and new network architec-
tures. However, different network architectures have different
deployment planes and functional requirements for packet
forwarding, which leads to the first challenge of furture
packet forwarding technology – How to properly deploy
packet forwarding in various network architectures? In ad-
dition, to satisfy differentiated network architecture require-
ments, high-performance programmable hardware emergies
and can be utilized for efficient and custom packet forwarding.
How can we better integrate packet forwarding and high-
performance programmable hardware? The integration be-
comes a new challenge. On one hand, diverse network ar-
chitectures have different requirements, and the compatibility
of high-performance programmable hardware in the context
becomes a problem. On the other hand, the enrichment of
forwarding functions requires high-performance hardware to
provide more programming interfaces, which undoubtedly puts
forward new challenges for hardware design.

Furthermore, a careful look at today’s Internet results in
a question: whether today’s Internet with IPv4 as the core
network and new architectures as the private networks will
continue to have a development momentum? The new archi-
tecture is supposed to break the bottleneck of the traditional
Internet and replace IPv4 network. But the actual situation
is that the widespread IPv4 popularing provides poor com-
patibility between new network architectures. New network
architectures can exist only in the form of private networks.
Can we develop a super network? We call this super network
as “unified network”. It should have excellent forwarding
compatibility, which can replace IPv4 network completely at
low cost. At the same time, it should have extensive backward
compatibility, which can easily access various new networks
and realize the true integration of the Internet.

2) Reasearch Issues: In response to the challenges, we
identify three further research directions.

• Modularization of packet forwarding functions. Func-
tional modularity is not a new concept in programmable
network. In network architecture ONOS, various network
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functions exist in the form of APP, and the ONOS can
arbitrarily take some functions to meet user needs. In
essence, packet forwarding in the Internet is a network
function, and its basic elements are the packet storage
and packet forwarding. Hence, it is possible to represent
it as separate modules for multiple API interfaces and for
embedding in different network architectures. Even if the
network architecture changes, packet forwarding can be
updated and implemented.

• High-performance programmable forwarding. The en-
hancement of high-performance programmable forward-
ing can be carried out from two aspects: general hardware
chip and interface enrichment. The high-performance
programmable forwarding must be deployed on specific
network devices. For example, DPDK is deployed on
supported nics and FPGA is deployed on programmable
network cards. All these require unique interface and
hardware of forwarding devices. General hardware chips
may be an answer. The packet forwarding can be in-
tegrated into a chip placed in the general network
hardware. Devices in various network architectures can
install this network hardware to implement the packet
forwarding. Interface enrichment addresses the integra-
tion of programmable forwarding capabilities with high-
performance hardware. The richer the forwarding func-
tions, the more interfaces the hardware needs to provide.
How to design high-performance programmable hardware
supporting multiple forwarding functions deserves further
studying.

• Modularization of Internet architectures. The modu-
larization of Internet architectures is an important ap-
proach towards the super network. Compared to the
modularization of forwarding functions, network archi-
tecture modularization looks at the network from a higher
perspective. The core of the super network can be similar
to that of an Android system. The system itself does
not realize any network functions, but establishes a
framework for the operation of all network functions and
coordinates mutual communications of various networks.
Such approach allows for freedom to design a unique
network architecture and install it in the system as an
APP. The network architecture can operate internally as
an independent entity while communicating with other
network architectures as a subnet.

B. AI-driven Packet Forwarding for Enhanced Network Secu-
rity

We discuss network security separately because network
security is receiving more and more attentions in the global
community. With the rapid advances of information technol-
ogy, the digitalization of information dominates the industry,
and network security has become one of the most important
technical issues.

1) Challenges: Network security defense and security at-
tack are an opposing and unified topic. For any security attack,
given a sufficient time, each security defense mechanism can
be developed. In turn, each security defense mechanism faces

vulnerabilities to new security attacks. Therefore, security
attack and security defense are two sides of the coin. There
is no security attack that cannot be solved and no security
defense that cannot be broken. How to continuously enhance
network security defense is a challenge to the development of
network security solutions. In addition, most existing network
security defense mechanisms defend against a specific type of
security attacks. However, paying too much attention to each
specific type of security attack defense leads to lack of the
coordination between security defense mechanisms and causes
new vulnerabilities. How to defend more types of security
attacks? How to coordinate different security defense mech-
anisms? These challenging question requirs more research
efforts.

2) Reasearch Issues: In view of the challenges, we focus on
typical network security defense mechanisms related to packet
forwarding technology and divide them into four categories:
data security, transmission security, service security and secu-
rity defense mechanism collaboration.

• Data securtiy. Data security includes data encryption and
data recovery. For data encryption, data sources or switch-
ing devices encrypt important data before sending them
into the network. In this way, hackers cannot decrypt
the packets to obtain the original information. AI can
help the switch select an appropriate encryption algorithm
and generate random encryption keys to further improve
data security. Blockchain establishes an information chain
with multiple nodes responsible for security. The infor-
mation in blockchain is difficult to be modified. Future
research may focus on the integration of blockchain and
AI-driven packet forwarding technology to realize decen-
tralized data exchange and intelligent forwarding. In addi-
tion, blockgraph brings more possibilities for blockchain
[149]. Blockgraph transforms two-dimensional lines into
three-dimensional graphs, further expanding the secure
responsibility of nodes and enhancing mutual supervision
between nodes.
In packet transmission, hackers can destroy a packet to
make data incomplete when reaching the destination.
Data recovery can be a solution to it. Data recovery can
use network coding to increase redundancy in a packet.
When the packets arrive at the destination terminal, the
terminal only needs partial data to restore the complete
original information. The network coding and AI-driven
forwarding technology can be integrated. A network
coding algorithm should be flexibly selected by intelligent
forwarding technology, so as to ensure more secure data.

• Transmission security. While data security means
putting the data in a safe, transmission security means
hiding the delivery route. One popular approach in trans-
mission security is multipath transmission technology,
which separates data packets and sends them from differ-
ent paths to hide the transmission routes. When a hacker
intercepts packets on only one path, the original data
cannot be completely obtained. AI can help switches
select more secure routes to forward packets, further
improving the transmission security. Another research
hotspot is quantum communication, which uses quan-
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tum entanglement technology to completely eliminate
the possibility of path interception. Although quantum
communication remains a theory, it may have a great
potential to improve transmission security.

• Service securtiy. Service security does not protect pack-
ets in the network, but protects critical network nodes
such as DNS servers and cloud servers. There are dif-
ferent servers that need to be defended, but the attack
types are similar, including DDoS attacks and abnormal
flow attacks. The typical defense mechanism for service
security attacks is packet detection and filtering, which
is discussed in Section V. In fact, the interception and
filtering of abnormal packets also block the forwarding
of normal packets, affecting the quality of service. There-
fore, improving the accuracy of recognition by AI is an
issue worth studying.

• Security mechanism collaboration. Collaborative secu-
rity is no longer a single security defense, but a security
defense for the entire network. Collaborative security
establishes a intelligent collaborative system, which can
flexibly schedule various security defense mechanisms
(e.g., firewall, intrusion detection system, security au-
dit system, and log analysis system) by AI algorithm
to implement comprehensive network security defense.
However, with more types of security attacks and more
diversified security defense mechanisms, rapid scheduling
among these mechanisms becomes increasingly difficult.
Future security coordination systems with high efficiency
are worth studying.

C. AI-driven Packet Forwarding for Customized Network Sce-
narios

“Internet Plus” has become a new model for Internet de-
velopment. The formation of intelligent information platform
providing services for vertical industries is another trend of
Internet development. Vertical industries are diverse and have
different performance requirements for the Internet. According
to characteristics of the industries, the Internet should focus
on providing efficient performance in a certain aspect, such
as ultra-low delay for telemedicine, network collaboration
for industrial Internet, and network intelligence for smart
home. The Internet and various vertical industries have formed
various kinds of private networks, which plays an important
role in society.

1) Challenges: The traditional Internet has relatively single
functions and simple forwarding technology, which cannot
provide customized network requirements for various indus-
tries. How to meet the differentiated needs of each scenario?
This is a major challenge in the trend of network scenario
customization. It is an effective solution to select appropriate
Internet function modules according to the requirements of
each scenario, provide corresponding service performance, and
form demand-centered forwarding scheduling. In addition, it is
difficult for private networks to communicate with each other.
Each network scenario uses independent network protocols
and packet forwarding technologies to achieve efficient inter-
nal communication. However, if a device in one scenario wants

to access a device in another scenario, problems may occur.
The compatibility of network protocol recognition and packet
forwarding technology becomes the largest obstacle. How to
ensure information transfer across scenarios poses technical
challenges.

2) Research Issues: There are many kinds of network
scenarios. We select some popular scenarios, discuss the AI-
driven packet forwarding in them, and point out their research
issues.

• Telemedicine. Telemedicine is a popular network sce-
nario in recent years. With the COVID-19 outbreak,
the need for telemedicine has become even more ob-
vious. Doctors can remotely control surgical equipment
and operate on patients through a dedicated network,
forming a new operation mode with no contact and
zero infection. Telemedicine has a high requirement for
network delay, and it is necessary to ensure that doctors at
different physical locations carry out surgical operations
synchronously. AI-driven packet forwarding can meet
these needs. On one hand, AI can select a dedicated
packet transmission path to ensure the stability of surgical
operations. On the other hand, AI can adjust the different
network delay of doctors at different physical locations to
ensure the synchronization of operations. Therefore, how
to further improve ultra-low delay and keep the operation
synchronized are the research issues of telemedicine.

• Internet of vehicles and intelligent transportation.
Internet of vehicles is another scenario with high require-
ments on network delay, which is an important part of
intelligent transportation. Internet of vehicles ensures in-
stant information exchanges between vehicles, establishes
effective vehicle sensile driving models, and prevents
traffic accidents through intelligent traffic control algo-
rithms. Internet of vehicles and intelligent transportation
also have high requirements on network computing and
network reliability. Vehicle network information changes
frequently and rapidly. Timely information processing
and strategy generation are important prereguisites to
ensure intelligent transportation. AI can adjust the load of
data computing nodes in the vehicle network to improve
computing speed. AI-driven packet forwarding can ensure
high-speed and stable data transmission. However, the
deployment of AI in vehicles puts high demands on
the hardware, which hinders the further vehicle network
development. Therefore, optimizing AI algorithms and
proposing the AI deployment strategies are the research
issues for Internet of vehicles and intelligent transporta-
tion.

• Industrial Internet. Industrial Internet is a platform
for the effective integration of information and com-
munication technology and industrial economy, which
can promote the development of industry digitization,
networking and intelligence. Industrial Internet focuses
on network coordination ability. It connects the four
systems of network, platform, data and security to provide
a perfect application model for industrial production
and services. Information collaboration and integration
between systems is the key to an industrial Internet.
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AI-driven packet forwarding technology can coordinate
the work of the four systems and improve the net-
work collaboration capability on the basis of ensuring
the transmission performance. Therefore, delopying AI-
driven packet forwarding for high network collaboration
ability is the research issue of industrial Internet.

• Cloud/fog computing networks. Cloud/fog computing
networks generally are an essential component of net-
work scenarios. A cloud/fog computing network has high
information computing and processing capacity, which
can provide efficient information processing for many
network scenarios. The deployment and allocation of
resources are important issues for the development of
cloud/fog computing. AI-driven packet forwarding can
reduce the data transmission delay among computing
nodes, balance the computing load of each node, and
improve resource allocation. Utilizing AI-driven packet
forwarding better for resource deployment while main-
taining a high computing performance is the research
point of cloud/fog computing in the future.

• Smart home. Smart home focuses on the ability to
generate and respond to network control information.
Smart home can obtain the needs of the user, generate
the equipment control instructions and realize intelligent
control of the homely electrical equipment. The response
time of smart home program is closely related to the
user experiences. The realization of fast and efficient
equipment control through AI-driven packet forwarding
is the research issue of smart home.

In addition to the three research directions discussed in
this section, there are other development directions for AI-
driven packet forwarding, such as network resource allocation,
network devices management and network fault detection.
These directions are also worth studying.

VIII. CONCLUSION

This paper presents a survey on AI-driven packet forwarding
with PDP. We first discuss the typical framework of AI-driven
packet forwarding and show the existing problems of this
framework. Then, we introduce the new framework of PDP-
assisted AI-driven packet forwarding to show that PDP can
improve AI-driven packet forwarding. After that, we discuss
the delay, throughput, security and reliability based on the
evolution of packet forwarding: packet forwarding, AI-driven
packet forwarding, and AI-driven packet forwarding with PDP,
and show the existing studies on them. Finally, we elaborate
our own views on the AI-driven packet forwarding evolution
and propose three research directions.

AI with PDP can effectively improve the performance of
packet forwarding in many aspects, which play an important
role in the development of the Internet. However, there are still
many challenges in this field. This paper attempts to study
the current development of packet forwarding and discusses
the future research direction. We hope that our research and
discussion can provide more information for other scholars
to study packet forwarding and make contributions to the
development of advanced networking technology.
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