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Abstract—The metaverse is envisioned to create immersive
and virtual worlds for people to experience interoperable 3D
applications. However, the real-time, interactive, and multime-
dia characteristics of the metaverse applications require strict
quality-of-service (QoS) on the underlying networking architec-
ture, including high throughput, ultra-low delay, and human-
centric service configurations. Network function virtualization
(NFV)-enabled networking resource management can provide
a promising solution to service-oriented QoS satisfaction for
metaverse users. In this paper, we propose a blockchain-based
collaborative and verifiable virtualized network function (VNF)
management scheme for metaverse, named BVNF+. BVNF+
enables multiple network providers across different trust domains
to abstract their services as VNFs and collaboratively manage
end-to-end network slices for human-centric network services in
metaverse. To address the design challenge of balancing the on-
chain and off-chain overheads, we decouple the computations of
VNF queries into modular components based on software and
hardware verifiable computation (vc) approaches. Our modular
strategy can achieve on/off-chain computation and communica-
tion efficiency while keeping low usage of the secure hardware.
We conduct security analysis and extensive experiments based
on a real-world blockchain testing network. The analysis and
experimental results demonstrate that BVNF+ is both secure and
efficient as compared with the existing works.

Index Terms—Metaverse, verifiable pruning, human-centric
networking, virtualized network function (VNF), VNF query

I. INTRODUCTION

Metaverse is envisioned as the immersive Internet that
creates a digital world for people to experience and live a fully
virtual life [1]. Through interactive devices, such as virtual
reality (VR) and augmented reality (AR) headsets, as well
as wireless body sensors, people can connect to the digital
metaverse to enjoy a wide range of applications [2], including
3D-gaming and online social networks. With the technological
advances in computing, artificial intelligence, and networking,
metaverse has become an increasingly promising paradigm
and thus has attracted extensive attention from academia and
industry [3]. Among the enabling technologies for metaverse,
networking technology plays a vital role to provide not only
seamless connectivity but also reliable transmission guarantees

This work was supported by research grants from the Natural Sciences
and Engineering Research Council (NSERC) of Canada and from Huawei
Technologies Canada.

D. Liu, C. Huang, W. Zhuang and X. Shen are with the Department of
Electrical and Computer Engineering, University of Waterloo, Canada.

L. Xue is with the School of Computer Science, University of Guelph,
Canada, who participated in this study while at University of Waterloo.

B. Ying is with the Huawei Technologies Canada, Ottawa, Canada.

for metaverse services [4]. As the metaverse is required to pro-
vide users with real-time interactions and high-speed delivery
of multimedia contents, it can put a huge burden on current
networking architectures. Moreover, metaverse applications
usually involve a large number of end users with differentiated
quality-of-service (QoS) requirements [5], which requires flex-
ible and automatic network management for efficient network
resource utilization [6].

To cope with stringent QoS requirements, network function
virtualization (NFV) [7] can enable abstractions of network
services as virtualized network functions (VNF) to provide
end-to-end network slices for diversified and human-centric
metaverse applications [8]. Complied with decentralization
features of metaverse, the NFV-enabled networking archi-
tecture for metaverse is required to have a multi-provider
paradigm where VNFs can be provisioned by different re-
source providers [9]. First, the multi-provider paradigm aims
at efficient access resource sharing among wireless operators
[10]–[12] to reduce infrastructure deployment and manage-
ment costs for metaverse applications. Second, the paradigm is
expected to enable flexible slice configurations by integrating
specialized VNFs from technological vendors, such as a packet
inspection function at a cloud server [13] or an artificial-
intelligent function at an edge server [14]. More specifically, a
live music concert via VR headsets requires a network slice on
demand that consists of content caching function from edge
providers, ultra-reliable and low-latency wireless communica-
tion links from operators [15], packet routing function at the
cloud, etc.

With the potential benefits, the multi-provider NFV
paradigm for metaverse also raises many challenges. First,
the lifecycle of a network slice is complex from slice con-
figuration, creation, deployment to deletion, which requires
extensive collaborations between different providers. Second,
it is necessary to implement service-level agreements (SLAs)
for slice users and multiple providers [11]. The SLAs specify
the terms of provided services that must be complied with by
each party. Finally, since the VNF providers usually come from
different trust domains, the providers cannot simply agree on
a single trusted manager [16] for VNF management.

Addressing the challenges requires a distributed, transpar-
ent and secure VNF management framework for the multi-
provider networking architecture in metaverse. Consortium
blockchain [17], [18] is a distributed database for industrial
partners to collaboratively manage their shared business op-
erations. Due to its nature of transparency and immutability,
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the blockchain is recently adopted for reliable and distributed
management of VNF lifecycle, slice configurations, and SLAs
[8]–[11], [19]. More specifically, the blockchain can help
multiple providers collaboratively record information about
their VNFs on its storage within VNF lifecycles. For a specific
metaverse service, the blockchain provides suitable VNFs from
its VNF repository to form a network slice, and enforces
an SLA (as a smart contract) for users and VNF providers.
However, the above-mentioned approach poses prohibitively
expensive implementation costs, as the blockchain distributes
storage to each full node and uses consensus protocols to
maintain storage consistency [20].

On/off-chain computation models can be constructed for
practical blockchain-based VNF management [21]. An exter-
nal (probably untrusted) computing and storage entity (VNF
manager) can be introduced to relieve the blockchain from
heavy storage and computation burdens. With the integration
of verifiable computation (vc) techniques, such as succinct
non-interactive argument (SNARG) [22], [23] and trusted
execution environment (TEE) [24], the external entity can
verifiably provide VNF query services for slice configurations
[25], [26]. By doing so, the expensive on-chain computation
and storage overheads for VNF management can be signifi-
cantly reduced. However, the on/off-chain computation models
cannot be directly applied to design blockchain-based VNF
management. First, the VNF management is complicated with
operations from VNF query to slice configurations [19]. A
simple one-for-all vc framework cannot be efficiently adopted
to various VNF operations with different computation features.
For example, to support fine-grained slice configurations,
VNF queries should support versatile functionalities [27],
such as keyword or membership matching. Second, the vc
techniques usually increase the off-chain processing cost at
the VNF manager. The SNARG-based approaches usually
abstract VNF operations into arithmetic-circuit computations
[28], [29], which can significantly increase the computational
costs for generating verifiable proofs at the manager. Third,
a direct design from existing vc techniques can increase the
operational cost at the manager. For TEE-based approaches,
such as Intel software guard extensions (SGX) [24], [30],
programs are executed within a secure hardware for achieving
computation confidentiality and integrity. With the limited size
of secure memory in current TEE implementations, it usually
requires reducing the size of confidential programs and data
for operational efficiency and execution security [31]. At the
same time, trusted key provisioning for either the SNARG or
TEEs in a blockchain environment needs further attention. To
this end, it is not a trivial task to design off-chain verifiable
VNF management solutions that strike a balance between
versatile functionalities, proving/verification efficiency, and the
management cost of TEEs.

In this paper, we propose a blockchain-based collaborative
and verifiable VNF management scheme for metaverse with
modular designs, named BVNF+. First, we focus on the
designs of verifiable VNF queries by identifying versatile
query functionalities including keyword, range, membership
and prefix matchings. Second, we design succinct on-chain
data structures from commitments and Merkle trees for storing
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Fig. 1: System model

VNF information with a distributed generation and aggrega-
tion mechanism. Third, we decouple the computations of the
versatile VNF query and present a modular design by tailoring
the SNARG and TEE. More specifically, we adopt a two-level
SNARG for verifiable VNF query with dictionary pruning and
propose a secure enclave for communication-efficient pruning
proof verifications. Furthermore, we identify interfaces be-
tween the SNARG and TEE components for secure on-chain
verifications with attestation-based key provisioning.

The main contributions of this work are summarized as
follows:

• We design a blockchain-based collaborative and verifiable
VNF management scheme with versatile query function-
alities for effective slice configurations in metaverse.

• We design modular instantiations for verifiable VNF
query that takes advantage of both SNARG and the TEE.
While achieving efficient off-chain proof generations and
on-chain pruning proof verifications, BVNF+ reduces
operational cost by loading limited computations into the
secure enclave.

• Via thorough security analysis, we demonstrate that
BVNF+ achieves verifiable VNF query. With extensive
experiments on a real-world blockchain testing network,
we demonstrate that BVNF+ is efficient for both off-chain
VNF query and on-chain verifications.

The rest of this paper is organized as follows. We formulate
the verifiable VNF query problem with security model and de-
sign goals in Section II. We present preliminaries for designing
BVNF+ in Section III, and present detailed designs of BVNF+
in Section IV. In Sections V and VI, we give security analysis
of BVNF+, and present on-chain and off-chain performance
evaluations of BVNF+, respectively. We review the related
works of BVNF+ in Section VII, and conclude this paper in
Section VIII.

II. SYSTEM MODEL, THREAT MODEL, AND DESIGN
GOALS

A. System Model

We consider an NFV-enabled architecture for metaverse. As
shown in Fig. 1, the architecture consists of physical, virtual,
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and networking spaces. Users are equipped with interactive
devices, such as augmented/virual reality (AR/VR) headsets,
on-body sensors, and wearable devices, to enjoy the immersive
life in the metaverse. The users can play the role of digital
avatar for a wide range of applications in the virtual space
[1], including 3D gaming/touring, and online social networks.

The metaverse applications, such as 3D multi-player gaming
and VR touring, require real-time human-machine interaction
and multi-media content delivery. This can lead to high
delay and throughput requirements on the current networking
architecture that connects the virtual and physical worlds [2].
To meet the requirements, BVNF+ adopts an NFV-enabled
architecture, where the network services are abstracted as
VNFs, such as network catching function at the edge and
reliable routing function at the network core. End-to-end slices
consisting of multiple VNFs can be constructed and deployed
at different network nodes, i.e., access points, switches, and the
cloud, to meet the service requirements of various metaverse
applications. The NFV-enabled architecture for metaverse has
the following benefits:

• From the perspective of service providers, NFV enables
efficient sharing and management of network resources
for metaverse applications. Moreover, flexible and dy-
namic service provisioning can be deployed in a cost-
efficient way [32].

• From the perspective of users, network slices can be
configured based on user’s service requirements and
preferences. As a result, human-centric and differentiated
metaverse services can be better provisioned with the
NFV-enabled architecture.

Under the system model, we focus on VNF management
issues in the networking space. The metaverse is envisioned
to have an ultra-distributed architecture [2] where the network
resource providers come from different trust domains. There-
fore, the providers should collaboratively manage network
slices for differentiated applications in metaverse, which can
lead to a multi-provider VNF management paradigm. As
shown in Fig. 2, there are three entities for the multi-provider
VNF management paradigm: manager, users, and providers.
Moreover, BVNF+ uses the blockchain as a shared platform
for providers to store and update VNF information and conduct
slice configurations.

• Manager is a computing and storage unit, equipped with
a secure hardware (i.e., Intel SGX), and plays the role of
VNF broker in BVNF+. It stores VNF repositories from
multiple providers as a VNF dictionary. The manager
processes VNF requirements from users and replies with
VNF configurations.

• Users are people or enterprise customers in metaverse.
They enjoy flexible and pay-as-you-go network services
for metaverse, represented by a network slice with a chain
of VNFs.

• Providers are owners of VNFs. They can be a mobile
operator to provision radio access functions or cloud/edge
computing nodes to provision network middlebox ser-
vices, such as firewall and routing.

• Blockchain is a distributed ledger maintained collabora-
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tively by a consortium committee. It is a shared storage
for the manager and providers to collaboratively manage
VNF authenticators and queries.

To achieve human-centric slice configuration for metaverse
applications, a key component in the multi-provider paradigm
is the VNF query process. The manager collects VNF infor-
mation (location, functionality, performance metrics, etc.) from
providers as a VNF dictionary. With service requirements from
users, the manager finds corresponding VNFs for the users to
configure a network slice. Users will pay service fees to the
manager and providers for provisioning VNFs and managing
slice configuration, which can be specified in an SLA. The
blockchain stores succinct digests (authenticators) of VNF
information of different providers that can provide provenance
for query processing at the VNF manager.

B. Threat Model

We focus on the threat model regarding the entities in the
VNF query process. Users and VNF providers are honest
in terms of VNF repository and query construction. Users
faithfully provide their VNF requirements and will accept
VNF configurations when the requirements are met. VNF
providers faithfully supplement their VNF information to the
manager and store corresponding digests on the blockchain.
The manager is a rational entity that may not always follow
the VNF query protocol due to the lack of management trans-
parency and efficient regulation. For example, the manager
may provide users with VNFs of higher prices for profit
considerations. Blockchain is a trusted distributed ledger that
can provide immutable ledger storage and secure ledger state
updates.

C. Design Goals

Under the system model and the threat model, we have two
design goals for BVNF+:

• Verifiable VNF query: This ensures that VNF dictionary
from providers and queries from users are authenticated,
and that query process is correctly executed by the man-
ager. At the same time, various VNF query functionalities
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should be supported for fine-grained slice configurations,
including keyword, range, membership, and prefix match-
ing. It should be noted that fake information provided by
users or providers are out of scope of this study.

• Efficient on/off-chain overheads: The verifiable VNF
query should be efficient for off-chain computation at
the manager. Further, the VNF query results should
be efficiently verified and the corresponding proof size
should be succinct on the blockchain.

III. PRELIMINARIES

TABLE I: Abbreviations and Notations

CRS Common reference string
MHT Merkle hash tree
NFV Network function virtualization
SGX Software guard extensions

SNARG Succinct non-interactive argument
VC Verifiable computation
TEE Trusted execution environment
D VNF dictionary
G Elliptic groups
H Hash function
Q VNF query
V VNF information vector
ZP Integers with order p
π Proof

A. Cryptographic Background

We adopt the pairing-friendly elliptic groups with a prime
order [33]. We denote G = (G1,G2,GT ) as a set of cyclic
groups, where the prime order is p and a ring of integers is
denoted as ZP ; [n] as a set of integers from 1 to n ∈ ZP ;
H : (0, 1)∗ → (0, 1)256 as a collision-resistant hash function,
such as SHA256, that maps an arbitrary-length string to a
256-bit string.

A digital signature is an asymmetric cryptographic scheme
that proves the signer identity of a digital message [34]. It
includes three algorithms:

• E.KeyGen(G, λ), taking a security parameter, λ, and G as
inputs, and generating a public/private key pair, (pk, sk),
as output.

• E.Sign(m, sk), takeing a message, m, and the private key
as input, and generating a signature (πs) on m as output.

• E.Verify(πs,m, pk), taking a message, a public key and a
signature as input, and deciding accept or reject as output.

A Merkle hash tree (MHT) is an authenticated data structure
to generate digest and membership proof for a set of elements
[35]. It includes three algorithms:

• M.Setup(M ), taking a security parameter explicitly and
a set of messages, M = {mi}, as input, and generating
a balanced binary Merkle tree (T ) with a root (T0) as
output. Each leaf node in T is the hash of a message mi

and each non-leaf node is the hash of its two children.

• M.Prove(mi, T ), taking a message, mi ∈ M , and the
Merkle hash tree as input, identifying a path from mi

to T0 and returning the siblings for every node along the
path as a proof πm. That is, the proof length is increasing
with the height of T .

• M.Verify(πm,mi, T0), re-computing the Merkle root us-
ing πm and mi and checking if the re-computed root
equals T0, and deciding accept if the check passes or
reject otherwise.

B. Verifiable Computation

Verifiable computation enables result verifications of a gen-
eral function, F (x) → y. Given F and the input (x), the
output (y) can be efficiently verified with a proof (πs), without
the need to redo the computation. The verifiable computation
should satisfy the following security properties:

• Input authenticity: Input x should come from an authen-
ticated source.

• Execution correctness: The function should be correctly
executed with x. For F (x) ↛ y, a computationally-
bounded adversary cannot forge a valid proof that passes
the verification.

Various techniques can be utilized to construct vc frame-
works, such as SNARG [22], [36], zero-knowledge proof [37],
and secure hardware [24]. Here, we focus on techniques with
succinct verifications. That is, the proof size and the computing
overhead for proof verification should be succinct on the
blockchain regardless of the size and the complexity of the
computing function. In the following, we present an overview
of two vc techniques with efficient verifications: SNARG and
SGX.

1) Succinct Non-interactive Argument: The SNARG is a vc
framework for general computations represented by arithmetic
circuits. A toolchain of the SNARG usually consists of the
following components: (1) A subset of C programs or Java
programs can be written to represent a computing function
with specified inputs and outputs [22], [29]; (2) A program-
to-circuit compiler can convert the program to an arithmetic
circuit with the same inputs and outputs; (3) The circuit can
be converted to a quadratic arithmetic program (QAP) where
the circuit evaluation is accordingly converted to a divisibility
check with a target polynomial of QAP; (4) The divisibility
check of QAP is efficiently instantiated in an elliptic group
with pairing. For users with expertise in designing circuits,
the first two steps in the toolchain can be omitted.

From a high-level abstraction, SNARG consists of three
algorithms: S.Setup, S.Prove, and S.Verify. S.Setup takes the
computing function as inputs and outputs common refer-
ence string (CRS) of the computing function; S.Prove takes
computing inputs and CRS, and outputs computing results
with a proof πs; S.Verify takes CRS, the computing inputs
and outputs, and πs. It outputs either accept or reject. For
efficient on-chain verifications, the program inputs in the
verification can be replaced with the corresponding succinct
and trusted commitment [23]. More specifically, for input
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mi ∈ ZP , i ∈ [n], the corresponding commitment should
be honestly calculated as follows [38]:

Com =

n∏
i=1

gmi
i , (1)

where {gi} is a set of linearly independent generators from
G1 ∈ CRS. At the same time, some mi can be set to
random numbers from ZP , which can increase the randomness
of the generated commitment. The use of commitments in
verifications is critical for the design of efficient on-chain
verifications. For the two security properties of vc, SNARG
achieves execution correctness based on its soundness property
and the trusted setup of CRS; SNARG ensures the input
authenticity of the verification with the trusted input commit-
ment.

2) Software Guard Extensions: The SGX supports secure
program executions in a protected hardware space [24], [30].
With SGX, an enclave can be created in an Intel platform
for secure computations. The enclave can load program codes
and the initial data into the protected hardware space, which
achieves the execution integrity and confidentiality of the
program. The enclave can also communicate with a host
application through ECALL and OCALL to receive data at
run time and to output execution results from the protected
hardware to the host application. There are two important
native mechanisms of SGX:

Attestation: It is important to authenticate the code and
initial data in a user enclave, which is done by the attestation
service [39]. Specifically, an Intel-provided quoting enclave
can generate a measurement of the initial data and code of the
user enclave. The quoting enclave then signs the measurement
with a private group signature key. An attestation service
provider (e.g., Intel) can verify the measurement and establish
a secure channel with the user enclave to provision secrets.

Sealing: During the runtime of an enclave, the enclave may
generate data that should be stored for use in the future.
However, the protected memory cannot be used to store the
data after the enclave is offline. To address the issue, SGX
provides a native method called ‘sealing’, to encrypt and store
the data on the unprotected local storage of its host machine.
Later, when exactly the same enclave is loaded, the enclave can
access and decrypt the stored data within its secure hardware.

While the SGX achieves efficient and secure computing, it
has the limited size of protected space. As a result, the paging
cost is high when the memory requirements of a program
is high. At the same time, SNARG-based vc is extremely
slow in non-algebraic computations, such as computing a
hash. Therefore, it is important to design a vc framework
with modular use of SNARG and SGX, which only operates
essential operations in the enclave [31] and avoids inefficient
computing instantiations with SNARG.

C. Consortium Blockchain and Smart Contract

Consortium blockchain [18] is a distributed ledger main-
tained by a committee of industrial partners. Since the
industrial partners have a certain degree of mutual trust,
more efficient consensus protocols compared with the public

blockchain, such as RAFT, can be implemented. The consen-
sus protocol helps the industrial partners to maintain storage
consistency of the shared ledger. The ledger storage can be
used for recording business collaborations among partners,
whose terms and conditions are defined by smart contract.
More specifically, a smart contract defines (1) what to store
on the ledger, and (2) who and how to change the stored data.
Anyone who is authorized to change the ledger data can send
contract calls to blockchain nodes, which will be verified by
blockchain nodes before finally being confirmed on the ledger.

We rely on Hyperledger Fabric [18] to provide the consor-
tium blockchain service in BVNF+. Hyperledger Fabric pro-
vides certificate-based membership management, blockchain
channel management with plug-in consensus protocols, and
contract implementations from flexible library dependencies
in JAVA.

IV. PROPOSED BVNF+
In this section, we present the designs of BVNF+. First, to

support human-centric networking in metaverse, we present a
design of verifiable VNF queries with various query function-
alities. We elaborate on how different query functions can be
efficiently instantiated for succinct on-chain verifications with
the SNARG. Second, to improve the on-chain storage effi-
ciency, we design a distributed dictionary authenticator gener-
ation and aggregation mechanism. Third, we further introduce
a dictionary pruning strategy to improve the off-chain prov-
ing efficiency at the manager. We design a communication-
efficient dictionary pruning method with SGX-based proof
generation.

A. Versatile VNF Query
In BVNF+, VNF query is defined as a multi-dimensional

feature vector:
Q = (q1, q2, ..., qn). (2)

In (2), qi can be an integer in ZP for a dictionary-based
keyword query, a range (rL, rR) ∈ Z2

P for a range query,
integer mem ∈ ZP for a membership query, or a set of
integers, (p1, p2, ..., pnq ) ∈ Znq

P , for a prefix query.
A single VNF dictionary, Ds, is defined as follows:

Ds = (V1, V2, ..., Vnv
),

Vi = (e1, e2, ..., en),
(3)

where Vi is a VNF description vector that consists of n fea-
tures. Similar to the query, each feature, ei, can be an integer
that represents a keyword w from the keyword dictionary,
an integer that represents a numeric value for a VNF at-
tribute, a set of integers, (mem1,mem2, ...,memnm

) ∈ Znm

P ,
that represents a set of nm elements, or a set of integers
(i1, i2, ..., inf

) ∈ Znf

P that indicates sequence i1.i2., , , .inf
.

Based on the definitions of VNF query and VNF dictionary,
a VNF query execution takes Q and each V ∈ Ds as inputs
to compare each qi ∈ Q with corresponding ei ∈ V . It should
support the following four matching rules:

• Equality test: For a query with qi against ei in V , it tests if
qi equals ei, such as VNF functionality or system version
check;
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• Range test: For a query with (rL, rR) against ei in V ,
it tests if ei lies in (rL, rR), such as VNF price or
performance metrics;

• Membership test: For a query with mem against
(mem1,mem2, ...,memnm

) in V , it tests if mem
matches any memi in the set, which can simulate an-
swering a multi-choice question;

• Prefix test: For a query with (p1, p2, ..., pnq ) against
(i1, i2, ..., inf

) where nf <= nq , it tests if the latter
is a prefix of the former. The query can determine the
affiliation relationship between two items.

We use a conjunctive matching strategy for the VNF query
in BVNF+ with the combinations of arbitrary query models.
That is, a VNF (V ) is said to be matched with a query if
for any query item against the corresponding item in V , the
matching test passes. Moreover, a VNF query function with
Q and Ds as inputs will output indexes of all matched VNFs,
where VNFs can be indexed from 1 to nv in increasing order.

B. Distributed Dictionary Authenticator Generation
The BVNF+ enables multi providers for VNF management

in metaverse. For efficient verifications of a VNF query, the
providers need to pre-compute authenticators of their VNF
dictionaries. Suppose there are np providers in BVNF+ and
the i-th provider is denoted as Pi. For illustrative simplicity,
we assume that each Pi has a VNF dictionary Di of m VNFs,
given by

Di = (Vi,1, Vi,2, ..., Vi,m). (4)

The providers can work with the manger to upload their VNF
authenticators on the blockchain as follows. We assume all
communications between the entities in this phase are secure
and authenticated, and thus omit the descriptions of message
signatures.

VNF Registration. Each provider registers its VNF dic-
tionary with the manager. The manager verifies the identity
and service capability of the providers, and constructs an
overall dictionary, D = (D1, D2, ..., Dnp

). Given the size
of the dictionary and the matching rules, a trusted entity
or a distributed committee sets up CRS of the VNF query
function F (D,Q) → R by running the S.Setup algorithm.
After the setup, the CRS is published onto the blockchain.
In the CRS, there are n ∗ m ∗ np commitment keys for the
overall VNF dictionary. The manager then publicly assigns
provider Pi with a set of indexes for their VNFs and Pi can
retrieve corresponding commitment keys in the CRS from the
blockchain, denoted as CKi ∈ Gm∗n

1 .
Authenticator Construction. Upon retrieving the commit-

ment keys CKi from the blockchain, Pi computes an authen-
ticator, AVi,j

, for each of its VNF, denoted as Vi,j :

AVi,j
=

∏
gi,j,k

ej,k , ej,k ∈ Vi,j , gi,j,k ∈ CKi. (5)

Here, Pi computes an aggregated authenticator Ai =∏m
j=1 AVi,j

and a Merkle root (Ri) for all {AVi,j
||i||j}j∈[m]

using M.Setup algorithm. It uploads Ai and Ri to the
blockchain, and sends all AVi,j to the manager.

Authenticator Aggregation. Upon receiving Ai and Ri

on the blockchain, an aggregated authenticator of all VNF
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dictionaries from all providers can be calculated on chain given
by

AD =

np∏
i=1

Ai. (6)

A Merkle root (R) of all Ri can be computed using M.Setup,
where {Ri||i}i∈[np] denotes all individual roots with cor-
responding indexes of their providers. The on-chain data
structure is shown in Fig. 3. To this end, the verifications
of a VNF query can directly take the dictionary authenticator
(AD) instead of the original dictionary, which can significantly
save the on-chain storage space. Note that BVNF+ requires all
providers honestly compute their authenticators and Merkle
roots. The authenticator generation phase can be re-conducted
when VNF information is changed. For example, a VNF
provider can change its VNF information or can be removed
from the system.

C. SGX-based Dictionary Pruning

The traditional SNARG-based verifiable VNF query suf-
fers from the random access memory (RAM) issue [29].
The circuit-based representations cannot efficiently support
dynamic loop control or array access at the program running
time. As a result, for the SNARG-based verifiable VNF
query, a linear scan of all VNFs is required, which can
incur prohibitively expensive proving overheads at the VNF
manager. To address the issue, a dictionary pruning strategy
based on Merkle tree was proposed [26]. A key query item is
used to reduce the number of potentially matched VNFs by a
dictionary pruning function. Then, the results of the pruning
function are taken into a second function that executes the
full query. Both functions are implemented using different
SNARGs.

The key design for the dictionary pruning is to generate
a verifiable authenticator for the second SNARG system. By
pre-computing all VNF authenticators for the second SNARG
with a Merkle digest, the required authenticator for the sec-
ond SNARG can be efficiently generated [26] and verified
by Merkle proofs. To further increase verification efficiency
of the Merkle proofs on the blockchain, a succinct proof
of the Merkle verifications can be generated using a well-
designed SNARG, which however significantly increases the
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prover computation overhead and will be discussed in the
performance evaluation.

On addressing the challenges, we present an SGX-based
dictionary pruning mechanism. The mechanism uses the two-
level SNARG networks for the key item query and the full
VNF query. For efficient verifications of an aggregated authen-
ticator for the second SNARG, we design an SGX enclave that
faithfully outputs the aggregated authenticator for the second
SNARG. In the following, we present the detailed designs of
our SGX-based dictionary pruning, which consists of CRS and
authenticator setup, enclave attestation and key provisioning,
and VNF query on blockchain.

CRS and Authenticator Setup. The two-level VNF query
function is given by

F1(q
∗, D) → I1,

F2(I1, Q) → I2.
(7)

For the two functions, all providers and the manager agree on
two SNARGs S1 and S2 for a dictionary D similar to (4) and
a query Q similar to (2). Here, S1 takes a key query item (q∗)
in Q and D to output indexes of VNFs in D that match the key
query item. The results are denoted as I1. The second SNARG
(S2) takes VNF description vectors of VNFs in I1 and Q to
generate the final query results (I2) that consist of all indexes
for VNFs in I1 that match Q. Accordingly, CRS1 and CRS2

are faithfully generated for S1 and S2 using S.Setup algorithm.
Following the procedures in Subsection IV-B, providers can

generate and store their authenticators of VNF dictionaries on
the blockchain for S1 using commitment keys from CRS1.
However, for S2, providers do not know the exact order that
their VNFs will appear in I1. As a result, for each VNF,
they need to pre-compute authenticators for every possible
index in I1 using CRS2. The authenticators for the two-
level SNARG system on the blockchain is shown in Fig.
4, where Ai is the dictionary authenticator of Di using
CRS1, AD is the aggregated authenticator, AVi,j,k

denotes
the authenticator of j-th VNF of the i-th provider Pi, and
k indicates that the VNF is the k-th VNF in the pruning
results, I1. Authenticators of VNF dictionaries are stored on
the blockchain to preserve on-chain VNF privacy. On-chain
query privacy could be enhanced by only uploading signed
query commitments onto the blockchain.

Enclave Attestation and Key Provisioning. The manager
needs to run an SGX enclave locally to produce a succinct
proof of the dictionary pruning operation. The goal of the

enclave is to verify the correctness of authenticators for
VNFs in I1. The enclave takes the results of S1, associated
authenticators and Merkle proofs, and decides to either accept
or reject the dictionary pruning results.

To preserve the functional correctness and authenticity of
the enclave, an attestation of the enclave and a signing key
provisioning are necessary1. We briefly discuss a method as
follows: First, the manager launches the remote attestation
process with a trusted attestation entity. Second, the attestation
entity verifies the attestation report, and establishes a secure
channel with the enclave. Note that the codes and initial data
of the enclave can be checked by code-review community to
ensure its functionality. Third, the enclave can generate a pair
of ECDSA signing keys (ske, pke), securely seals the private
key on the local storage, and securely provision the public key
to the attestation entity. Then, the attestation entity can upload
pke onto the blockchain. We note that the detailed designs of
attestation and key provisioning is out of scope of this paper.
Moreover, frequent signing key updates of the enclave can be
designed and the signing key can also be provisioned by the
attestation entity only at run time without being sealed on local
storage.

VNF Query on Blockchain. (Fig. 5) First, a user generates
a VNF query Q and uploads the query Q to the blockchain via
a secure and authenticated channel. The blockchain verifies the
user identity and the well-formedness of the query, and stores
the query on its storage. To further preserve query privacy,
the user can send the query to the manager via a secure
channel and stores a commitment of the query on the chain
in case of future disputes. Second, upon seeing the query on
the blockchain, the manager retrieves Q to its local storage.

Third, the manager runs S1 over the key query item (q∗ ∈
Q) and D to get I1 and a proof (π1). The manager then runs
S2 with VNF information vectors of VNFs in I1 and Q to
output I2 and a proof (π2). For each VNF in I1, the manager
generates a Merkle proof that its corresponding authenticator
Vi,j,k is digested in the Merkle root R. The manager sends
all VNF authenticators (Vi,j,k) for VNFs in I1 with Merkle
proofs, the Merkle root (R) and Q to the enclave. From I1,
the enclave learns the indexes and order of each VNF in I1.
Then, the enclave verifies all Merkle proofs for corresponding
authenticators. If all verifications pass, the enclave computes
an aggregated authenticator, given by

Ae =
∏

Ai,j,k, Vi,j is kth in I1. (8)

The enclave sets me = (Q, I1, Ae, R) and generates signature
πe = E.Sign(me, ske) using its locally sealed key ske. The
enclave outputs (me, πe) to the manager. The manager sends
(Q, I1, I2, π1, π2, Ae, πe) to the blockchain via a secure and
authenticated channel.

Finally, upon receiving the message from the manager, the
blockchain verifies the following statements:

• Q and R in me match the stored MHT root R and the
query on the blockchain, to ensure that correct Merkle
root and query are taken into the enclave;

1Key Provisioning, Secure Signing, and Verifiable Remote Attestation using
Intel® SGX. https://github.com/initc3/sgx-iot-gateway
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• (I1, q
∗, AD) is a valid instance for S1 using S.Verify

algorithm with CRS1 and π1, where AD is the dictionary
authenticator stored on the blockchain;

• (I2, Q,Ae) is a valid instance for S2 using S.Verify
algorithm with CRS2 and π2;

• πe is a valid signature using E.Verify algorithm on
me and the stored public key pke, to ensure that the
dictionary pruning message (me) comes from the attested
enclave.

If all the statements are true, the blockchain confirms that
the query results are correct; If any statement is not true, the
query results are not correct and according actions can be taken
to the misbehaving manager.

V. SECURITY ANALYSIS

In this section, we first discuss the security properties of
SGX and SNARG. Then, we present the security analysis of
the verifiable VNF query scheme in BVNF+.

A. SGX Security

BVNF+ requires the SGX to provide the following security
features. First, SGX can provide the attestation service to
verify the code and initial data of an enclave and to establish
a secure channel for secret provisioning [40]. The attestation
service can be provided by an trusted entity or a distributed
attestation service [41]. Second, SGX can ensure that the data
confidentiality and computation integrity of the enclave within
its secure memory [42]. Third, SGX should have a data sealing
mechanism to securely store data on local storage and only
the exact enclave can unseal the stored data later. Note that
sophisticated attacks on SGX, such as rollback attacks and
side-channel attacks, and their countermeasures are out of
scope of this paper.

B. SNARG Security

SNARG security ensures that, given the inputs and outputs
of a function, CRS and a proof, the verification algorithm
outputs accept if and only if the inputs and outputs are valid for
the function [22], [36]. The correct execution of the computing
comes from the following two aspects: First, the CRS is
securely set up by a trusted entity or a distributed committee,
which ensures that the CRS is used for the desired function
and the trapdoor secret used in generating the CRS is securely
destroyed. Second, with the secure CRS, a computationally-
bounded adversary cannot break the soundness of the SNARG

under knowledge-based assumptions to forge an invalid state-
ment that passes the verification [22], [36].

For the input authenticity of the commit-and-prove SNARG
[23], part of the inputs (i.e., VNF dictionary in BVNF+) is
digested as an authenticator to be used in the verifications.
This additionally requires that the commitment keys for the
authenticator should be linearly independent generators, and
that the authenticator is honestly computed with the inputs
(i.e., by VNF providers in BVNF+). At the same time, more
randomness can be added in generating the authenticator,
which should not affect the function execution.

C. Verifiable VNF Query

From the perspective of vc, the VNF query should achieve
input authentication of the VNF dictionary, and correct execu-
tion of the query algorithm. BVNF+ adopts a SNARG system
for the key item query and an SGX enclave for verifying
Merkle proofs and generating an aggregated authenticator.

For the first SNARG, dictionary authenticators are generated
faithfully by VNF providers, and are uploaded and aggregated
on the blockchain’s immutable storage. Then, any VNF query
generated by users is uploaded onto the blockchain with an
authenticated channel. This ensures the authenticity of VNF
dictionaries and queries. Later, only valid query results can
pass the verification algorithm of the first SNARG where
trusted CRS is also available on the blockchain’s immutable
storage.

For the pruning enclave, VNF authenticators for the second
SNARG (S2) are generated faithfully by VNF providers. At
the same time, an MHT is constructed with the leaf node as
the hash of each authenticator, the VNF index and the order in
I1. Both VNF authenticators and the MHT roots are stored and
aggregated on the secure blockchain storage. For a VNF query
Q with authenticators for the second SNARG, the enclave
identifies the indexes of each VNF and its positions in I1.
With the Merkle proofs of VNFs in I1 and Merkle root R, the
enclave can verify if each VNF authenticator is in the right
position of the MHT. A computationally-bounded adversary
cannot forge valid Merkle proofs unless it can break the
collision-resistance property of the hash function. Moreover,
the enclave is attested and a public key is securely sent to
the attestation entity. Since the corresponding private key is
sealed at the local storage, only the same enclave can unseal
the private signing key to sign on me = (Q, I1, Ae, R) and
obtain signature πe.

In the verification phase, the blockchain checks the results
of Q and I1 with CRS1. Due to the trustworthiness or CRS1

and the soundness of the SNARG, I1 is secure and cannot be
forged. Then, the blockchain checks πe with the public key
provided by the attestation entity and R,Q in me are consis-
tent with its storage. This ensures that the enclave is attested
and uses a valid MHT root for verifying the exact proofs
for I1. Assuming the security of the SGX discussed above,
authenticator Ae from me is correctly computed by a trusted
enclave that runs the pruning function. However, additional
implementation considerations may be required, such as the
signing key update with an additional key derivation function
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and key provisioning at enclave runtime. The blockchain can
also provide trusted state information to increase the SGX
security [43]. With the authenticity of Q,Ae and the trusted
CRS2 on the blockchain, the final query results I2 can be
verified with the verification algorithm of the second SNARG,
S2. The security of S2 also comes from the soundness of the
SNARG.

In summary, BVNF+ achieves verifiable VNF query defined
in Subsection II.C, under the condition that the security
properties of SGX and SNARG hold.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
BVNF+. The experimental results provide on/off-chain exe-
cution benchmarks. Moreover, we compare the computation
and communication overheads between the designed SGX-
based and the non-SGX-based dictionary pruning mechanisms
to demonstrate the efficiency of BVNF+.

A. Off-chain Performance
Our testing environment is a laptop with 2.3GHz processor

and 8GB memory. The system is 64-bit Ubuntu 16.04. For the
SGX, we implement SGX release 2.8.2 For hash function, we
implement the sgx sha256 msg function from the default
SGX security library: sgx tcrypto. For the SNARG, we
implement the circuit builder3 from xjsnark that translates
JAVA codes into circuit. Moreover, we implement the circuit-
to-snark interface from libsnark library4 with QAP-based
instantiations [28], [36] using bn128 curve.

We test the verifiable VNF query presented in Subsection
IV-A. In our experiments, we set the query item of Q as
30, which includes 10 keyword queries, 10 range queries, 5
membership queries, and 5 prefix queries. Each membership
item includes 5 words and each prefix query item also includes
5 words. We artificially set the item values in the dictionary
and query as integers. We run the query against each VNF
in the dictionary and report the computation and storage
overhead. As shown in Fig. 6a, the computational overheads
for setup and prover linearly increase with the size of the
dictionary while the verifications remain very efficient, around
a few milliseconds. As shown in Fig. 6b, the size of the
proving key is larger compared with the verification key. At
the same time, the size of the verification key increases since
we output matching results for each VNF in the dictionary in
our experiments. The high prover overhead is caused by many
unnecessary accesses of the original dictionary. To address the
issue, a two-level SNARG system and the pruning strategy can
be adopted to reduce the unnecessary memory access [26].

B. Performance Gain with SGX-based Pruning
For the communication overheads, the SGX-based pruning

verifies the Merkle proofs with the enclave, and signs the veri-
fication result with an ECDSA signature. Therefore, the SGX-
based approach reduces the verification of multiple Merkle

2https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-
2.8-release

3https://github.com/akosba/xjsnark
4https://github.com/akosba/libsnark
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proofs into a single verification of the ECDSA signature [26].
We set the height of MHT as 14 and the size of a SHA256 hash
is 32 byte. As shown in Fig. 7, the theoretical communication
cost of Merkle proofs increases with the number of VNFs in
I1, while the SGX-based approach achieves a constant 64-byte
signature.

TABLE II: SNARG-based hash verification

Setup Prover Verifier
13.4s 3.12s 0.24s

For the computation overhead, we report the performance
gain when generating pruning proof with the SGX-based
method. To achieve the similar efficient verifications of the
pruning results, our baseline is to use the SNARG for ver-
ifying Merkle proofs. As shown in Table II, proving the
verification of a single SHA256 furcation with small input
size (64 byte) requires more than 3 seconds, while verifying
pruning results can consist of hundreds of verifications of
SHA256 hash functions. For the SGX-based pruning, we
simulate the verifications of Merkle proofs by repeatedly
running hash functions within the enclave. The input of each
hash function is a 256-bit integer. The height of Merkle tree
is set at 14 or 15. As shown in Fig. 8, when the number
of Merkle proofs increases, the computational overhead for
verifying the proofs increases linearly, but is limited to a
few milliseconds. We separately test the computation cost of
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generating an ECDSA signature within the enclave, which
takes roughly 0.523 milliseconds. Therefore, compared with
the SNARG-based pruning verification, the designed SGX-
based pruning achieves the same succinct proof size but a
notable improvement in computation overheads.

C. On-chain Performance

TABLE III: On-chain storage overhead

Authenticators Proof
np(|G1|+ |Zp|) |π1|+ |π2|+ |πe|

Storage Overheads. The BVNF+ adopts Pedersen com-
mitment and Merkle tree to store digests of VNF dictionary
and VNF authenticators. As shown in Table III, it requires
only |G1| + |Zp| on-chain storage overheads for each VNF
provider. Compared with directly storing VNF dictionary on
the blockchain, BVNF+ has constant storage overhead for
individual provider. For the CRS, only verification keys are
required to be stored on the blockchain, which incurs a few
bytes as shown in Fig. 6. For the proof of a single VNF query,
it consists of two SNARG proofs and one SGX proof (an
ECDSA signature), which is also constant regardless of the
size of the VNF dictionary. Each SNARG proof is 286 bytes
and the ECDSA signature is 64 bytes.

Computation Overheads. We implement the test-network5

of Hyperledger Fabric (Release 2.1) [18] with Java native
security package for ECDSA signature. The test network
consists of two organizations and one ordering service. We
simulate the verifications of an SGX report by verification of
an ECDSA signature with a short message. More specifically,
we implement the verification of a message with an ECDSA
signature as a chaincode function. Each organization consists
of either 1 or 2 peer nodes that install the same chaincode
package. The public key of the signature is written in the
chaincode, while the message and the signature are transmitted
through function calls. We present the response time of such

5https://github.com/hyperledger/fabric-samples
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a function call, using the ‘peer chaincode invoke’ function in
Hyperledger Fabric. We test the response time in two settings:
two organizations with two peer nodes and two organizations
with 4 peer nodes. As shown in Fig. 9, the response time is
significantly affected by the number of nodes in the network
compared with the computation cost of verifying an ECDSA
signature. It should be noted that our design is independent
of the underlying blockchain architecture, and thus can be
adapted to any blockchain architecture with different consen-
sus protocols.

In summary, BVNF+ achieves efficient on-chain storage
and computation overheads regardless of the size of VNF
dictionary. At the same time, our SGX-based dictionary prun-
ing mechanism significantly reduces the off-chain proving
overheads and proof size, in comparison with the state-of-the-
art works.

VII. RELATED WORKS

In this section, we first discuss the recent advances on
emerging networking technologies for metaverse. Then, we
present related works on blockchain-based VNF management
to highlight their design differences compared with BVNF+.

A. Emerging Networking Technologies for Metaverse

A comprehensive survey of metaverse fundamentals was
presented in [1]. Multiple enabling technologies for metaverse
were discussed including ubiquitous computing, blockchain,
AI, and networking. Emerging communication and networking
technologies for metaverse were studied in [4] and [2]. More
specifically, communication technologies, such as space-air-
ground integrated access network and NB-IoT, can provide
ubiquitous, seamless and reliable access services in metaverse.
Future networking architectures will further integrate intelli-
gent computing unit, such as cloud or edge servers, for AI-
based network control. For example, a prototype of cloud-edge
networking architecture was developed and verified for multi-
player interactions in metaverse [44]. NFV-enabled networking
architecture can provide efficient and flexible management of
network resources [32], and provision human-centric service
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configurations for differentiated metaverse applications. The
NFV architecture is also promising to enhance the QoE man-
agement for human-centric multi-media services [6], including
VR/AR, and to provide tree-like service function chains for
multi-player transmissions in metaverse [5].

Exiting works have shed light on the design of human-
centric networking architecture, especially NFV-enabled ar-
chitecture, for metaverse applications. On the other hand, the
existing proposals mainly rely on a centralized controller for
NFV management. In practice, it is not an easy task for all
providers from different trust domains to agree on a single
trusted entity to manage their service information. Therefore,
a distributed VNF management architecture with multiple
providers is urgently desired.

B. Blockchain-based VNF Management

In a distributed environment with multiple network re-
source providers, e.g., metaverse, a decentralized architecture
is preferred for transparent and reliable VNF-based network
management [45]. In this regard, the blockchain was pro-
posed to act as a secure VNF broker for 5G services [9] to
help construct end-to-end network slices for various users. A
blockchain-based approach can avoid the risk of single-point
failure to build trust among VNF providers for transparent
and fair VNF management. Smart contract technology was
adopted for automatic slice configuration and marketing in
[19], where a verification mechanism for checking VNF image
integrity was designed. The optimal network resource pricing
and demand management on the blockchain were studied in
[8]. The blockchain serves as a trusted platform for publish-
ing network management information. Furthermore, a two-
stage pricing game was formulated and a deep reinforcement
learning-based mechanism was proposed for dynamic pricing
and demand responses. On the accountability of SLA man-
agement, a blockchain-based architecture, named BEAT was
proposed in [10], where the TEE was adopted for securely
recording management status on network operators. The TEEs
were also utilized for privacy-preserving resource management
on the blockchain with a newly proposed consensus protocol
[11].

Due to the expensive on-chain resources, the on-chain
computation and storage efficiency of blockchain-based ap-
proaches can be further improved. Therefore, BVNF+ focuses
on the on-chain efficiency challenge of VNF management, and
has a hybrid vc framework for versatile and efficient VNF
query.

Verifiable data queries on the blockchain were designed in
[46], [27], [47]. In [46], an MHT-based authenticated data
structure was proposed for cloud query services. In [27],
verifiable range queries were constructed for the blockchain
storage based on cryptographic accumulators with inter-block
and intra-block authenticated data structures. Pedersen com-
mitments were constructed as authenticated digests of data,
which can be used for verifiable general computations [23].
Succinct non-interactive argument (SNARG) [22], [28], [29] is
the vc framework compatible with the Pedersen commitments
to support circuit-based computations. One essential property

of SNARG is the succinct result verification, which makes
it suitable for on-chain verifications. However, the on-chain
efficiency of SNARG comes at the cost of significantly in-
creased off-chain proving overheads. In [26], a blockchain-
based prunable and authenticated dictionary was proposed
for verifiable VNF management. The proposal significantly
reduces the prover overheads with efficient on-chain computa-
tions. Recently, secure hardware is driving extensive attentions
for building vc frameworks. Intel Software Guard Extensions
was used to build secure database systems to protect the
sensitive data indexes and logs in secure memories [24], [25],
[30]. By doing so, data queries can be executed in a verifiable
and secure manner. Authenticated key-value stores based on
SGX were proposed in [48] for data query authentication.
The SGX provides the secure environment for smart contract
execution that can save computation overheads for re-doing
contract verifications by multiple blockchain miners. An SGX-
based computing framework for the blockchain was designed
in [43] considering many attacks and defenses, such as side-
channel, timer fails, etc. However, the SGX-based solution
has limited size of protected memory, which can increase the
management cost for conducting verifiable VNF queries with
a large VNF dictionary.

In BVNF+, we design a versatile VNF query scheme for
collaborative VNF management in metaverse. By exploiting
the strength of the cryptographic-based and SGX-based vc
mechanisms, we design a two-level VNF query framework
with modular operation decompositions and efficient inter-
plays between SNARG and SGX. Our designs support the
multi-provider dictionary generation and aggregation, achieve
efficient on-chain verifications, and significantly reduce the
communication overhead of the Merkle-tree based pruning
approach with limited use of the SGX memory.

VIII. CONCLUSION

In this paper, we have proposed a blockchain-based col-
laborative and verifiable VNF management scheme for meta-
verse, which can support human-centric VNF queries and
slice configurations for diversified and differentiated metaverse
applications. We have addressed the on-chain efficiency chal-
lenges by designing an on/off-chain computation model for
blockchain-based VNF management. Moreover, our modular
designs with SNARG- and SGX-based VNF queries have
significantly reduced the off-chain computation cost of the
verifiable dictionary pruning operations. The designs, imple-
mentations, and evaluations of BVNF+ shed light on the
reliable and efficient management for multi-provider slice con-
figurations, promoting trustworthy and reliable collaborations
among distributed metaverse stakeholders. In the future, we
will further investigate the fairness issue of VNF management
in metaverse. Efficient discovery and regulation enforcement
against users or providers supplementing fake information
should be investigated in the distributed metaverse environ-
ment.
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