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Abstract—Network function virtualization is a key enabling
technology in future wireless networks for flexible and efficient
sharing of network resources. Due to the increasing heterogeneity
of network resource providers, a blockchain-based distributed
architecture is a promising solution to enable reliable and
transparent virtualized network function (VNF) management.
However, since on-chain storage and computation are costive, it
becomes a challenging task to achieve efficient VNF management
with blockchain. In this paper, we first introduce a consortium
blockchain for collaborative VNF management among network
resource providers. Then, we propose an authenticated VNF
dictionary that can be stored as a succinct authenticator on
blockchain to support rich VNF query functionalities and ef-
ficient verifications of query results. Moreover, we design a
dictionary pruning strategy to securely generate a compact
authenticator for a given query, which reduces unnecessary
memory accesses of the original dictionary when VNF queries
are represented as arithmetic circuits. Finally, we conduct ex-
tensive experiments with a consortium blockchain network. The
experimental results demonstrate that our pruning strategy is
efficient for both on-chain and off-chain VNF management.

Index Terms—Network function virtualization (NFV),
blockchain, authenticated dictionary, dictionary pruning.

I. INTRODUCTION

Future wireless network is envisioned to have a highly
dynamic and heterogeneous architecture that integrates a wide
range of radio access technologies and physical network
resources [1]. To achieve flexible, efficient, and cost-effective
sharing of physical network resources, network function vir-
tualization (NFV) is a key enabling technology [2]. More
specifically, network resource providers (including wireless
operators, edge, and cloud servers) abstract network functions
into virtualized functions (VNFs) [3], such as firewall or
packet inspection function at the cloud [4]. To support a par-
ticular application, a network slice can be formed that consists
of a chain of VNFs, a network topology on VNF nodes,
switches, and links, and networking protocol supports [5]–
[7]. Service-level agreement (SLA) corresponds to Quality of
Service (QoS) requirements that a user expects from a service
provider. In NFV-enabled network management, an SLC for a
particular service should specify a network slice with sufficient
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computing, storage, and transmission resources. To this end,
network virtualization can achieve flexible programming of
service functionalities and efficient resource management in
the future wireless networks.

With the development of the NFV techniques, it is critical to
have a reliable and secure NFV controller to orchestrate VNFs
and manage network slices for different network applications
[8]. Due to the increasing heterogeneity in wireless net-
works, NFV is envisioned to have a multi-provider and multi-
tenant paradigm [9]. As a result, compared with a centralized
controller, distributed controllers are a more practical and
promising solution to provide reliable and transparent VNF
management [10], [11]. Recently, extensive research efforts
have been directed towards building the distributed VNF
management using the emerging blockchain technology [11]–
[16]. Blockchain is a distributed ledger maintained by a peer-
to-peer network [17], [18]. With consensus protocols and light-
weight cryptography, blockchain provides a consistent and
shared view of the ledger among blockchain nodes. Moreover,
smart contract technique [19] provides programing capability
to securely and automatically update ledger states when con-
ditions or terms are met. On the one hand, a blockchain-based
VNF management can boost trustworthiness among network
stakeholders to collaboratively manage VNFs and reduce the
risk of single point failure of a centralized VNF controller
[20]. On the other hand, it can enhance service fairness by
implementing and monitoring service agreements on smart
contracts [21].

At the heart of blockchain-based VNF management is VNF
dictionary management. A VNF dictionary consists of useful
information of VNFs, including VNF name, location, capabil-
ities, version, and available resources [14]. Network resource
providers can collaboratively manage a VNF dictionary on the
blockchain and use the smart contract to support on-demand
VNF placement, resource allocation, and slice configurations.
As a result, the VNF dictionary should support rich lookup
functionalities and efficient dictionary updates. Unfortunately,
existing blockchain-based solutions for VNF management
often directly store the VNF dictionary on the blockchain
storage. First, a blockchain node must maintain local copies
of the ledger and verify each ledger update. As the size of the
VNF dictionary can increase dramatically, the cost of directly
storing and querying the dictionary on-chain can be expensive
[22]. Second, the on-chain storage is open to the blockchain
nodes, while some VNF information can be sensitive and
should be kept private, such as VNF location and subscription.
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To address the challenges, authenticated dictionary [23]
on blockchain can be applied for the VNF management.
Specifically, the VNF dictionary can be digested as a succinct
cryptographic authenticator to be stored on the blockchain.
Later, VNF lookups over the dictionary can be conducted off-
chain and results can be verified efficiently on-chain with the
authenticator and a succinct proof. Succinct non-interactive
argument of knowledge (snark) [24]–[27] can support verifi-
able dictionary lookups represented by arithmetic circuits with
a succinct dictionary authenticator. Moreover, verifications of
snark proofs are efficient, which makes it a suitable candidate
to construct blockchain-based VNF dictionary. At the same
time, the snark-based authenticated dictionary may increase
the computation overhead for generating a proof of correct
VNF lookups. The is because the snark-based solution cannot
efficiently support flexible programming of lookup functions.

In this paper, we present an authenticated and prunable dic-
tionary for blockchain-based VNF management (Block-VNF).
We utilize a consortium blockchain as a shared ledger between
network stakeholders to conduct VNF management. We build
a snark-based authenticated VNF dictionary to address the
on-chain efficiency challenges. Most importantly, we identify
and formulate the dictionary pruning problem in the snark-
based dictionary management, and propose a highly efficient
dictionary pruning solution based on Merkle tree. The main
contributions of this paper are summarized as follows:

• We propose an authenticated and transparent VNF dic-
tionary based on vector commitments and snarks on
a consortium blockchain. By enabling succinct digests
of the dictionary in blockchain with verifiable query
proofs, our solution addresses the efficiency challenges
for blockchain-based VNF management;

• We adopt a network of snark systems for verifiable
VNF query. First, a pruning function can be executed
with a sanrk system, and an aggregated authenticator of
matched VNF functions can be generated. Second, the
aggregated authenticator for a pruned dictionary can be
used by another snark system for fine-grained VNF query.
By doing so, we avoid a large number of unnecessary
memory accesses to the original VNF dictionary;

• We design a verifiable mechanism for generating an ag-
gregated authenticator based on the Merkle tree. Specif-
ically, we let VNF providers pre-compute individual
authenticator for each VNF function and store a succinct
Merkle root for all VNF authenticators on blockchain.
The aggregated authenticator of matched VNFs against
the pruning operation can be verified with a Merkle proof
and a snark proof. Moreover, on-chain verification over-
head is further reduced by enabling efficient verifications
of incorrect proofs in VNF management;

• Our security analysis demonstrates that Block-VNF
achieves veritable VNF lookup. We conduct extensive
experiments based on a real-world consortium blockchain
network and snark implementations. Our experimental
results demonstrate that our pruning solution obtains a
significant performance gain in computational overhead
when generating verifiable VNF lookup results.

The remainder of this paper is organized as follows. In
Section II, we summarize the related works. In Section III,
we present the building blocks of Block-VNF, including vector
commitments and succinct non-interactive argument of knowl-
edge (snark). We present system model and threat model, and
formulate verifiable VNF lookup in Section IV. We discuss
our design techniques and present detailed constructions in
Section V. In Section VI, we demonstrate security properties
of Blod-VNF. In Section VII, we present experimental results.
Finally, we conclude this work in Section VIII.

II. RELATED WORKS

In this section, we summarize existing studies in blockchain-
based VNF management, and blockchain-based authenticated
dictionary.

A. Blockchain-based VNF Management

There were extensive studies on efficient resource manage-
ment for VNFs, for vehicular networks [5], [8] and Internet
of Things [7]. More specifically, abstractions of network
functionalities as VNFs can help a network controller to
improve the overall resource utilization efficiency. In a multi-
provider multi-tenant setting with a preference of distributed
VNF controlers, using blockchain as a broker was first studied
in [28] to enable dynamic and automatic VNF management.
Later, a framework for blockchain-based VNF auction was
studied in [13]–[15]. VNF management was modeled as an
auction process and blockchain was utilized to build a regu-
latable auction framework. In their works, VNF information of
network resource providers was recorded on the blockchain,
and a smart contract was utilized to manage VNF requests. A
blockchain-based auditing architecture for VNF management
was proposed in [16]. The blockchain was utilized as a trusted
log system to record activities of VNF stakeholders.

Early attempts explored the VNF management solutions
on blockchain for auction and regulatory purposes. Since the
existing solutions usually adopted blockchain as a trusted
and distributed database, the expensive on-chain storage and
computation overhead was not fully considered.

B. Blockchain-based Authenticated Dictionary

Blockchain-based verifiable dictionary enabled transparent
certificate [23], where an accumulator-based authenticator was
stored on the blockchain to achieve the membership proof of
certificate issuance. Existing accumulator-based solutions fo-
cused on an efficiently searchable blockchain-based dictionary
[29], [30]. Specifically, an authenticated data structure based
on cryptographic accumulator was constructed [30] and the
searchable index based on symmetric searchable encryption
(SSE) or hidden vector encryption (HVE) was adopted [29],
to support keyword query and range query.

In an account-based blockchain architecture, a blockchain-
based dictionary plays an important role. Compared with
a blockchain architecture based on the unspent transaction
output (UTOX) model, the account-based blockchain uses an
account dictionary, such as a Merkle tree, to record public keys
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and balances of blockchain accounts. Due to the inefficient
proof size of the Merkle tree, it was proposed to utilize vector
commitments [31] to construct the account-based blockchain.
Specifically, the Pedersen-like commitments were used to store
account information, which can be succinctly opened at a
subset of vector positions [32] based on efficient polyno-
mial evaluations. The vector commitment-based mechanism
usually required verifications in plaintext. The commitment
schemes can also be combined with the snark techniques for
efficient proof verifications [33], [34]. For blockchain-based
VNF management, the VNF lookup should be flexible and
require efficient on/off-chain lookup operations.

Zk-snark can translate arithmetic circuits into a proof system
with succinct and efficient verifications. Zk-snark was first
proposed in [35], which utilizes a quadratic arithmetic program
(QAP) to represent circuit evaluations with installation in
bilinear groups. Later, a toolchain that compiled a subset of C
programs to QAP was proposed in [24], [25], [36]. The proof
size of QAP-based snark was further reduced in [37]. Zk-snark
can be combined with Pedersen-like vector commitments to
construct an authenticated dictionary. In [38], it was observed
that, for the zk-snark with structured generators, an offline di-
gest of inputs can be adopted to support general computations.
Composite arguments [39] or commit-and-prove snarks [40]
were studied, where either the input or the output of a snark
system can be replaced by a cryptographic commitment. By
doing so, the snark system can be compatible with other zero-
knowledge proof systems for achieving rich functionalities in
practice.

In the snark-based authenticated dictionary, a challenging
issue came from the random access memory (RAM) for
circuit-based computations. In a non-RAM snark system [24],
[25], only static memory access was supported in a subset
of C programs. As a result, dynamic array access or loop
breaks cannot be achieved, which results in a linear search of
all dictionary entities. RAM-enabled zk-snark was studied in
[26], [27], which usually relied on a permutation proof system
that may increase the circuit complexity. By contrast, Block-
VNF addresses the inefficiency of the snark-based dictionary
for VNF management via a dictionary pruning strategy.

III. BUILDING BLOCKS OF Block-VNF

In this section, we summarize the building blocks of
Block-VNF, including vector commitments and succinct non-
interactive arguments.

TABLE I: Abbreviations

NFV Network function virtualization
VNF Virtualized network function
SLA Service Level Agreement

VNF-P VNF provider
VNF-T VNF tenant
VNF-M VNF manager

SA Supervising authority
SN Supervising node

TABLE II: Notations

λ Security parameter
G Multiplicative groups
Zp A ring of integers with a prime order, p
vn n-dimension vector

[m,n] Integers from m to n
R A relation with instance x and witness w
C Arithmetic circuit
Q Quadratic arithmetic program
ΩQ A snark system for Q
Iio Input and output wires of C
Iim Intermediate wires of C

EK/V K Evaluation/Verification Key
Vi n-dimension VNF information vector

D = {Vi}m VNF dictionary of m VNF vectors
F VNF lookup function

Q/R VNF query vector and query result
AutD Authenticator of D

A. Notations

Denote G = (G1,G2,GT ) with a prime order p and an
efficient bilinear paring e : G1 × G2 → GT . Denote g as a
generator from G and the tilde form g̃ as a generator from
G2. We use [m,n] to represent integers from m to n, and
vn = (v1, v2, ..., vn) ∈ Zn

P to represent an n-dimension vector
from ZP . Key abbreviations and notations are listed in Table
I and II, respectively.

B. Vector Commitments

Cryptographic commitment schemes [41] are widely used
to generate commitment of secret values. Given a vector, vn,
and a set of generators, (g0, g1, ..., gn), a vector commitment
can be constructed as a Pedersen-like commitment [32], [42]:

C = gr0

n∏
i=1

gvii , (1)

where r is a random number from ZP . The following two
properties are usually considered for vector commitment:

• Binding – If the generators are randomly chosen, each
position in the commitment is bound to a specific value
and cannot be efficiently opened to different values.

• Computational Hiding – The committed values cannot
be derived from the commitments by a computationally-
bounded adversary.

C. Succinct Non-interactive Argument

Succinct Non-interactive ARgument of knowledge (snark)
[24], [40] enables a prover (P) to convince a verifier (V) that
an instance (x,w) holds on a relation (R). It is succinct, if
the argument size is related only to the security parameter
λ, regardless of the complexity of R. It is non-interactive if
the argument is a one-move proof system. In the following,
we introduce the snark system for relations represented by
arithmetic circuits.
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1) Arithmetic Circuit: An arithmetic circuit (C) consists
of addition/multiplication gates interconnected as a directed
acyclic graph. An arithmetic circuit can be used to evaluate a
function (F) at points (x1, x2, ...., xn), where (x1, x2, ...., xn)
are the inputs of C and F(x1, x2, ...., xn) is the output of C.
Given circuit C with assigned values of input wires, a verifier
can evaluate the circuit with an increasing complexity with the
number of (multiplication) gates in the circuit.

2) Quadratic Arithmetic Program (QAP): Evaluation of C
is formulated as checking the divisibility of its equivalent QAP
(Q) [35]. We denote the number of multiplication gates in
C as d, which is also the degree of Q. We denote v as the
number of wires in C, which can be further divided into two
sets: (1) Iio = (c1, c2, ..., cu), input/output wires of C; (2)
Iim = (cu+1, cu+2, ..., cv), wires of the intermediate multi-
plication gates. Q computes polynomials: {Ak(x)}, {Bk(x)}
and {Ck(x)}, k ∈ [0, 1, ..., v], as well as a target polynomial
t(x) [25].

Given {Ak(x)}, {Bk(x)}, {Ck(x)}, and t(x), Iio is a valid
assignment of C iff Iim can be found, such that t(x) divides
p(x):

p(x) =(A0(x) +

v∑
i=1

ciAi(x))× (B0(x) +

v∑
i=1

ciBi(x))

− (C0(x) +

v∑
i=1

ciCi(x)).

(2)

It should be noted that the polynomials in {Ak(x)} that
correspond to the input/output wires should be instantiated as
linearly independent [25]. By doing so, the consistency check
in the later snark system can be more efficient for a verifier.

3) Succinct Non-interactive Argument of Knowledge: The
QAP formulates evaluation of circuit C as checking the divis-
ibility of Q, which can be efficiently instantiated in bilinear
groups with a snark system, ΩQ. Recall the constructions from
the Pinocchio framework [24] in asymmetric groups with an
augmented QAP generation [25], [39]. Prover P can evaluate
C with input/output Iio and generate a proof, π. Verifier V can
efficiently check whether Iio is a valid assignment of C with
π. Specifically, a snark system includes three algorithms:

• Setup(G,F) → (EK,V K) – The algorithm takes into
bilinear group G and function F represented by arith-
metic circuit C, to output an evaluation key (EK) and
a verification key (V K). Specifically, the algorithm con-
verts C into QAP Q and encodes polynomials Ak(x),
Bk(x), and Ck(x) at a trapdoor secret (s).

• Prove(xI , EK) → (xO, π) – The algorithm takes a vector
(xI) of inputs and the evaluation key, and evaluates circuit
C with xI to obtain values of intermediate wires xM and
output wires xO. It also generates proof π;

• Verify(xI , xO, V K, π) → (0, 1) – The algorithm takes
the input vector, output vector, the verification key, and
the proof. It outputs either accept or reject.

Detailed constructions can be found in [24], [25].

Fig. 1: System Model

IV. SYSTEM MODEL, THREAT MODEL AND DESIGN
GOALS

In this section, we present system model and threat model
of Block-VNF with design goals.

A. System Model

In Fig. 1, there are five entities in Block-VNF: VNF Provider
(VNF-P), VNF Tenant (VNF-T), VNF Manager (VNF-M),
Supervising Authority (SA) and a consortium blockchain:

• VNF-P is an owner of virtual network resources [16], e.g.
a wireless operator that controls radio spectrum resources.
VNF-P lists its VNFs at the repository of VNF-M [15]
to provide VNF repository services for VNF-T;

• VNF-T is a user of VNFs, and enjoys on-demand and
pay-as-you-go network services from VNF-M, which
may consist of a set of VNFs from different VNF-Ps.
For example, an HD map service may consist of VNFs
deployed at edge servers or base stations;

• VNF-M can be a third-party company, e.g., a cloud
datacenter [16]. Specifically, VNF-M acts as a broker
between VNF-P and VNF-T [13] for VNF repository
services;

• SA is a set of supervising nodes (SN) belonging to
multiple network stakeholders, e.g., wireless operators
and cloud centers in future wireless networks. SA is
responsible for maintaining a consortium blockchain and
for setting up public parameters.

• A consortium blockchain is maintained by SA. It is
responsible for listing VNFs and recording VNF query
instances.

Block-VNF works with the following steps: (1) Setup – SA
sets up a consortium blockchain and public system parameters;
(2) VNF Listing – VNF-Ps register their VNFs at VNF-M,
build a VNF dictionary with an authenticator, and upload
the authenticator onto the blockchain; (3) VNF Lookup –
VNF-Ts query the VNF dictionary based on VNFs’ locations,
functionalities, resources, prices, etc. VNF-M processes the
VNF queries from VNF-Ts and returns verifiable query results.
VNF-Ts can verify the query results off the blockchain and
send complaints to the blockchain if an incorrect query result
is identified. In the following, we define the VNF dictionary
and VNF query.
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Definition 1 – VNF dictionary D is a collection of VNF
information vectors Vi:

D = {Vi = (attr1, attr2, ..., attrn)}i∈[1,m]. (3)

The dictionary consists of m VNF information vectors. Each
vector, Vi, consists of n attributes, including id, availability,
configurations, price, and so on. The attributes are represented
by integer values for numeric attributes or keyword attributes.
Specifically, an attribute can be a non-zero integer for the
availability, or an integer encoding of a string.

Definition 2 – VNF lookup F is a function defined as
follows:

F : (D, Q) → R. (4)

In Equ. 4, D is the VNF dictionary, and Q = (q1, q2, ..., qn)
is an n-dimension query vector that specifies VNF re-
quirements, including functionalities, locations, comput-
ing/storage/bandwidth resources, prices, and so on. The lookup
function executes Q over D, and outputs a lookup result
R = (id1, id2, ..., idm∗) of m∗ identifiers of matched VNFs,
where m∗ is the number of matched VNFs.

B. Threat Model
Block-VNF focuses on security issues of the VNF query

services, to increase the transparency and audibility of the
VNF management. SA is honest and trustworthy in Block-
VNF, which ensures the security of the system setup and the
blockchain. VNF-Ps are audited by SA and follow pre-defined
service agreements. They faithfully provide VNF information,
and construct a VNF dictionary and the authenticator. VNF-Ts
are rational users, who correctly construct their VNF queries
and accept query results if the queries are correctly executed
over the VNF dictionary. VNF-M is a third-party broker. Since
VNF queries are executed locally by VNF-M, it may not
always follow the pre-determined query rules for VNF lookup
services [16]. For example, VNF-M can deliberatively allocate
VNFs of high prices with a higher priority.

C. Design Goal
Under the system model and the threat model, we identify

design goals of Block-VNF.
Verifiable VNF Lookup – In a distributed environment

where VNF-Ps and VNF-Ts come from different domains and
VNF queries are executed off-chain by VNF-M, a reliable
and transparent auditing framework for VNF management is
required [23]. Within this framework, VNF lookup should
be verifiable with two properties: (1) Input authenticity – D
and Q should be authenticated by VNF-Ps and VNF-Ts; (2)
Execution correctness – F should be correctly executed over
D and Q with a pre-determined matching rule.

Efficient VNF Management – First, on-chain costs for stor-
ing a VNF authenticator and verifying VNF queries should
be low; Second, off-chain processing of VNF queries with
generations of correctness proofs should be efficient.

V. THE PROPOSED Block-VNF SCHEME

In this section, we discuss design challenges, and present
detailed constructions of Block-VNF.

The lookup function can be represented by an arithmetic
circuit to be instantiated using the setup function of the snark
algorithm by SA. Later, VNF-M can evaluate VNF query Q
on VNF dictionary D, and generate a result with a proof.
The lookup result can be efficiently and securely verified
using the verification function of the snark. Unfortunately, the
straightforward solution can significantly decrease the prover
efficiency when the size of D is large. First, on the VNF-T
(verifier) side, the verification requires the inputs of the whole
dictionary in plaintext, which can incur heavy verification cost.
Second, on VNF-M (prover) side, when the lookup function
is represented by an arithmetic circuit, it is difficult to have
an efficient snark-based dictionary lookup as discussed in the
related works. To address the challenges, we present Block-
VNF, which consists of three phases: System Setup, VNF
Listing, and VNF Lookup.

A. System Setup

To address the first challenge, we let the VNF-P pre-
compute an authenticator, AutD, of D using the vector com-
mitment technique. The authenticator can serve as a digest of
D to be used in the proof verification. As a result, we obtain
a modified snark [40] as follows:

• Setup(G,F) → (CK,EK, V K) – The algorithm addi-
tionally generates a set of commitment keys CK for the
dictionary;

• Commit(D, CK) → AutD – The algorithm generates a
commitment AutD for the dictionary;

• Prove(xQ,D, EK) → (xO, π) – It takes the evaluation
key, the query vector, and the dictionary, and generates a
result xO with proof π. Note that input xI is split into D
and a query xQ.

• Verify(AutD, xQ, xO, V K, π) → (0, 1) – Based on the
dictionary commitment, query xQ, matching results xO,
the verification key, and the proof, the algorithm makes
a decision either to accept or to reject.

With the modified snark system, SA can securely set up the
system:

First, SA sets up a consortium blockchain based on Hyper-
ledger Fabric. All VNF-Ps, VNF-Ts, and VNF-M can obtain
an identity to communicate with the blockchain and each other
from Hyperledger Fabric’s membership service. In Block-VNF,
we assume all communications between the VNF-Ps, VNF-Ts,
VNF-M, and the blockchain are secure and authenticated.

Second, SA sets up a dictionary template for the
modified snark. Based on Definition 1, attribute domain
(attr1, attr2, ..., attrn) of a VNF information vector (Vi) can
be divided into two parts: keyword attribute and numeric
attribute. To represent keywords as integers, SA defines a
dictionary (W) that maps each keyword to an integer (wx).
vy is an integer that represents a numeric attribute. As a result,
dictionary D is refined as:

D = {Vi = ({wx ∈ W}x∈[1,n1], {vy}y∈[n1+1,n])}i∈[1,m],
(5)

where n is the dimension of VNF information vector Vi, n1 is
the number of keyword attributes in Vi, and m is the number
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of VNFs in D. It should be mentioned that one numeric value
of each Vi can be set as a unique random number, such as
the VNF ID. By doing so, different VNFs can have different
VNF information vectors.

A VNF query, Q = (q1, q2, ..., qn), can also be divided into
two sets: keyword query and range query. For the keyword
query, qi is represented by an integer from W . A range query
can be represented by [a, b], where a, b are two integers. Given
D and Q, VNF lookup function F in Definition 2 checks
each item in Q against that in each VNF of D. We take a
VNF information vector Vj to illustrate the lookup process.
Specifically, for keyword query qx, x ∈ [1, n1], the lookup
function checks if qx = wx ∈ Vj ; for range query qy =
[a, b], y ∈ [n1 + 1, n], the lookup function checks if vy ∈ Vj

lies in [a, b]. VNF Vj is matched with Q if all the checks pass.
To address the second challenge for the prover inefficiency

of the existing snark with/without the RAM, we propose
a dictionary pruning strategy. The strategy is based on an
observation that there usually exists a key query item, q∗, in
query Q that can significantly prune dictionary D to a smaller
dictionary, D′. More specifically, SA breaks original function
F into three functions:

F1 : (D, q∗) → R1,F2 : (D′, Q) → R2,

P rune(D, AutD, R1) → (D′, AutD′ , πp).
(6)

In Equ. 6, F1 takes original dictionary D and key query item
q∗ ∈ Q. For each Vi ∈ D, F1 checks that if q∗ is matched
and outputs indexes of m∗ matched VNFs in R1; F2 takes
query Q and pruned dictionary D′ based on q∗. It outputs the
indexes of final VNFs in R2.

For the pruning function Prune, based on the original
dictionary (D), its authenticator (AutD) and the result R1,
the function generates a pruned dictionary (D′) with its
authenticator (AutD′), and a correctness proof (πp). There
also exists a polynomial-time verifying function that takes the
authenticators, result R1, and the proof to check if the pruning
function is correctly conducted.

SA defines two modified snark systems: Ω1 and Ω2 for
functions F1 and F2, respectively. SA chooses system security
parameter λ and bilinear groups G = (G1,G2,GT ) with a
bilinear pairing (e) and a prime order (p). SA chooses two
random generators, g ∈ G1 and g̃ ∈ G2, and a collision-resist
hash function H : (0, 1)∗ → (0, 1)512, such as SHA-512. SA
instantiates functions F1 and F2 by running Setup algorithm
of the modified snark:

Setup(G,F1) → (CK1, EK1, V K1)

Setup(G,F2) → (CK2, EK2, V K2).
(7)

For Ω1, inputs of Prove function include q∗ and D; For Ω2,
inputs of Prove function include Q and D′;

Finally, SA publishes λ,G, g, g̃, e, p,H, V K1, V K2 on the
blockchain, and sends CK1 and CK2 to VNF-Ps, and EK1
and EK2 to VNF-M. To support efficient verifications, CK1
and CK2 should be instantiated from an augmented QAP
with linearly independent generators; Otherwise, they can
be instantiated from an external commitment scheme and
be linked with the modified snark system with a CP-link
algorithm [40]. Details of the pruning function are presented

in the next subsections.

B. VNF Listing

To design the pruning function, we have some strawman
solutions from the existing works. We start with the design of
the pruning function using a modified snark. The snark can
check the key query item q∗, and directly copy the satisfied
VNF information vectors into the new dictionary. However,
such a mechanism is not efficient since this still requires
RAM to the matched VNF information vectors in the original
dictionary. Since AutD and AutD′ are vector commitments
from bilinear groups, we may model the pruning function as a
subvector commitment scheme [42]. However, the state-of-the-
art subvector proposals are mainly designed for membership
testing, which are difficult to encode the pruning strategy based
on q∗. Moreover, verification of the subvector commitments
requires the inputs of the dictionary and a large size of public
parameters.

As a result, it is a challenging task to design a pruning
function only from the two authenticators, which either re-
quires an efficient snark system with RAM or an efficient
vector commitment scheme. To address the challenge, we
construct an auxiliary dictionary, Daux, that stores each VNF
information vector Vi of D as an individual authenticator. The
modified snark scheme Ω1 conducts the key query on D, and
generates indexes of VNF information vectors that satisfy q∗

in R1. With the output indexes and Daux, a new authenticator,
AutD′ , can be verifiably generated based on Merkle tree [43].
By doing so, we reduce the computation cost at VNF-M for
conducting the pruning operation. In the following, we present
detailed constructions of D, AutD and Daux.

For illustrative simplicity, we consider a single VNF-P in
constructing D, which can be easily extended to multiple
VNF-Ps by allocating each of VNF-Ps a set of entries in
the dictionary. The VNF-P constructs VNF dictionary D =
{Vi}i∈[1,m] for its VNFs. The VNF-P uses CK1 ∈ Gm∗n

1

to commit dictionary D. We denote m∗
max as the maximum

number of VNFs in D′. Therefore, we have CK2 ∈ Gm∗
max∗n

1 ,
since D′ is at most m∗

max∗n dimension. The VNF-P computes:

AutD =

m∏
i=1

n∏
j=1

(CK1[i][j])Vi[j],

AutVi,j
=

n∏
x=1

(CK2[j][x])Vi[x],∀Vi ∈ D, j ∈ [1,m∗
max],

Authi,j = H(i||j||AutVi,j ),∀Vi ∈ D, j ∈ [1,m∗
max].

(8)

CK1[i][j] represents a generator in CK1 for the j-th attribute
in the i-th VNF information vector in D. Vi[j] is the value of
j-th attribute in Vi. CK2[j][x] represents a generator for the x-
th attribute in the j-th VNF information vector in D′. AutVi,j

is an individual authenticator for Vi ∈ D if Vi is the j-th VNF
in D′. Since the VNF-P does not know the exact position of
Vi in D′ before the pruning function is executed, the VNF-P
needs to pre-compute m∗

max authenticators for each Vi ∈ D.
As a result, there are total m∗m∗

max individual authenticators.



7

The VNF-P then generates a Merkle tree for all m ∗m∗
max

authenticators. For illustrative simplicity, assume that m ∗
m∗

max = 2h−1 is the exponentiation of 2 and h is the height
of the Merkle tree. If not, we can pack items to Authi,j

to
make it a fully balanced binary tree. The VNF-P computes a
Merkle hash tree for all Authi,j

to obtain a Merkle tree as
the auxiliary dictionary Daux and a root Root. An illustrative
construction of the dictionary and authenticators is shown in
Fig. 2.

Finally, the VNF-P sends D, Daux, and
AutVi,j

, i ∈ [1,m], j ∈ [1,m∗
max] to VNF-M. The VNF-P

uploads the AutD and Root onto the blockchain.

C. VNF Lookup

We present detailed constructions of the VNF lookup,
including Query Construction, Query Processing, and Query
Verification.

1) Query Construction: A VNF-T constructs a VNF query:

Q = (q∗, {wi}i∈[1,n1], {[aj , bj ]}j∈[n1+1,n]), (9)

where wi is a keyword query (e.g., location, functionalities),
and [aj , bj ] is a range query (e.g., computing resource, and
bandwidth resource). We consider (a fixed) one of wi as key
item query q∗. The VNF-T sends query Q to a VNF lookup
contract on the blockchain. The contract checks the query
completeness and adds the query, the ID of the VNF-T, and a
processing flag on the blockchain. The ID is used to uniquely
identify the query and the flag is used to record the status of
the query processing.

2) Query Processing: The Merkle-tree-based auxiliary dic-
tionary can introduce additional communication overhead for
on-chain verification of proof πp for the pruning function.
To reduce the on-chain verification overhead, we enable ef-
ficient off-chain verifications with on-chain complaints for
incorrect proofs [21] in the lookup contract. Specifically, VNF-
M processes the VNF query and sends the results with proofs
off-chain to the VNF-T. The VNF-T verifies the results and
proofs, and only makes complaints on the blockchain when
any verification fails.

Upon receiving Q, VNF-M first searches dictionary D with
q∗ using F1. VNF-M generates a result and a proof using the
snark system Ω1 as follows:

Ω1.P rove(D, q∗, EK1) → (R1, π1). (10)

As the definition of the modified snark system, inputs of
Prove of Ω1 include D and q∗. Output R1 consists of indexes
of m∗ VNFs (in an increasing order) that match the key query
q∗. We denote R1 = (i1, i2, ...im∗), where Vix,x is the ix-th
VNF in D and is the x-th VNF in R1. Then, VNF-M constructs
a pruned dictionary authenticator as follows:

AutD′ =

m∗∏
x=1

AutVix,x
. (11)

VNF-M computes a Merkle proof πp as in Algorithm 1.
The algorithm is used to demonstrate that the authenticators of
VNFs in R1 are consistent with the committed authenticators

from the VNF-P. Specifically, the algorithm finds a Merkle
path for each authenticator of Vi in R1 from Daux and returns
the siblings along the path, which is essentially a membership
proof of Merkle tree.

A pruned dictionary D′ is constructed from all VNF infor-
mation vectors indicated by R1. After that, VNF-M performs
query Q over D′ using F2. VNF-M generates a final result
R2 with a proof π2 using the snark system Ω2 as follows:

Ω2.P rove(D′, Q,EK2) → (R2, π2). (12)

R2 consists of indexes of VNFs from R1 (in an increasing
order) that match the query Q.

Finally, VNF-M sends π1, π2, πp, R1, {AutVix,x
}ix∈R1

and
R2 to the VNF-T via a secure and authenticated channel.

Algorithm 1: Merkle Tree Proof
Input: Daux, R1

Output: Proof πp

for ∀i ∈ R1 do
Identify Vi as jth VNF in R1

Find a path from Authi,j
∈ Daux to the root

Add siblings of nodes on the path to πp

3) Query Verification: The VNF-T retrieves AutD and
Root from the blockchain, and runs the following verifica-
tions:

Ω1.V erify(AutD, q∗, R1, V K1, π1),

Ω2.V erify(AutD′ , Q,R2, V K2, π2),

AutD′ =

m∗∏
x=1

AutVix,x
.

(13)

The VNF-T also re-constructs the Merkle root from πp and
{AutVix,x

, and checks if the reconstructed root is equal to
Root. If all the verifications pass, the VNF-T sends the query
information and a correctness confirmation to the VNF lookup
contract. The contract checks that the confirmation and the
original query are sent from the same VNF-T. If all checks
pass, the contract concludes the query is processed correctly.

If any of the proofs fails, the VNF-T can send the received
proof with the corresponding result to the lookup contract.
Since communications between the VNF-T and VNF-M are
authenticated, the contract can check that the proof and the
result are sent from VNF-M. After that, the contract runs
the corresponding verification function to check the received
proof. If the verification by the contract fails, the contract
concludes the query is not processed correctly and enforces
associated accountability against VNF-M.

Remarks. (1) All communications between the VNF-T and
VNF-M are authenticated, which can thus serve as the ev-
idence in case of any complaint; (2) VNF-M can generate
commitments of R1 and R2 similar to AutD. With R1 and
R2, VNF-T can locally verify that the commitments of R1

and R2 are correctly computed. By doing so, the verifications
of proofs π1 and π2 require less on-chain communication
overhead; (3) For the Merkle proof, if an incorrect proof
for a VNF is detected, the VNF-T only needs to upload the
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Fig. 2: An Illustration of VNF Dictionaries

corresponding proof and result (instead of the whole proof)
to the blockchain. This can significantly reduce the on-chain
verification overhead.

Discussions. (1) The modified snark system can be in-
stantiated from online-offline snark systems, such as variants
of Pinocchio [25] [36] or [37]; (2) To generate relation-
independent dictionary authenticators, the modified snark sys-
tem can also be instantiated from external generators with a
CP-link scheme [40].

VI. SECURITY ANALYSIS

In this section, we first analyze the security of components
in Block-VNF, including blockchain, vector/Merkle commit-
ment, snark, and the pruning function. Then, we summarize
how the security of verifiable VNF lookup is achieved.

A. Blockchain Security

Blockchain security ensures that (1) the on-chain storage
cannot be maliciously modified, and (2) a valid transaction
will be included in the ledger within a certain time. To achieve
the blockchain security, different blockchain architectures can
utilize different consensus protocols. In Block-VNF, we adopt
a consortium blockchain architecture, i.e., Hyperledger Fabric
[18]. Specifically, Hyperledger Fabric supports plug-in consen-
sus protocols, such as Byzantine Fault Tolerant (BFT). Since
Block-VNF relies on authenticated network stakeholders to
maintain the consortium blockchain, the most of the stake-
holders are honest and the blockchain security is achieved.

B. Security of Vector/Merkle Commitments

For the vector commitment, it should be computationally-
infeasible for an adversary to find two different vectors that
generate the same authenticator if the commitment keys are
randomly constructed. In Block-VNF, commitment keys are
from the common reference strings of the modified snark sys-
tem. We can instantiate the snark system with strong binding
[40], or use an augmented QAP with linearly independent
polynomials for I/O wires [25]. Otherwise, we can also use
external vector commitments with a CP-link algorithm for
the snark system. Most importantly, the commitment keys are

correctly set up by SA and VNF authenticators are honestly
computed and stored on the blockchain by VNF-P. Even if
the generators are not necessarily independent, it still does not
affect the security of the snark system as long as the soundness
property holds [40] and the authenticators are honestly com-
puted and stored. For the hiding, it is not required in Block-DM
since we do not consider zero-knowledge property of the snark
system.

For Merkle commitment, given a Merkle root, an efficient
adversary cannot open a specific leaf node to two different
values. Otherwise, the adversary can break the collision resis-
tance of the hash functions for computing the Merkle root.

C. Security of snark
In Block-VNF, we utilize the modified snark system. Its

security is defined as:

Pr


V erify(AutD, Q,R, V K, π) = 1 :
Setup(G,F) → (CK,EK, V K)∧
Commit(D, CK) → AutD∧
F : (D, Q) ↛ R∧
AF (D, Q,EK) → (R, π)

 = neg(λ).

(14)

Commit is a function that honestly computes a dictionary
authenticator. AF is an adversarial function that aims to forge
invalid results and proof. The above definition is similar to
the Soundness definition of QAP-based snarks [24], [25].
Therefore, the security of the snark is guaranteed if (1) the
Setup algorithm is run by a trusted party or a multi-party
computation protocol [44]; (2) the snark system is sound,
where an efficient adversary cannot forge a valid tuple that
passes the verification algorithm but is not an instance of the
relation; (3) The Pedersen-like commitment AutD is honestly
computed (by VNF-P). Since VNF-Ts are rational, they will
accept results and proofs if they are correct. We do not require
zero knowledge of the modified snark to be activated in Block-
VNF.

D. Security of Pruning Function
Similar to the modified snark, the pruning function should

be verifiable. That is, given a key query item, a Merkle root
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of authenticators of individual VNFs, a result of the pruning
function, and a Merkle proof, an aggregated authenticator of
VNFs in the pruned dictionary can be verified.

The security of the pruning function comes from three as-
pects: (1) Dictionary authenticator AutD and a corresponding
Merkle root Root for individual authenticators of VNFs are
securely set up by the VNF-P and stored on the immutable
blockchain storage; (2) The security of modified snark Ω1 en-
sures that result R1 is correctly computed over D with q∗.That
is, indexes of matched VNFs in R1 are verifiable; (3) Given
that R1 and Root are authentic, a computationally-bounded
adversary cannot return invalid individual authenticators or
forge proof πp unless the adversary can break the security
of the Merkle commitment.

E. Security of VNF Lookup

The security of VNF lookup consists of two aspects: input
authenticity and execution correctness.

Input Authenticity: First, all submitted queries, Q, from
VNF-Ts are authenticated since communications among VNF-
Ts and VNF-M are secure and authenticated. Second, authenti-
cator AutD and Merkle root Root are truthfully computed and
uploaded to the blockchain by VNF-P. Since the blockchain
storage is immutable, the input of function F1 is also authen-
ticated. Due to the security of the pruning function, inputs
AutD′ and Q of function F2 are also authenticated.

Execution Correctness: First, since functions F1 and F2

are instantiated from secure snark systems Ω1 and Ω2, the
execution correctness of the two functions is ensured. A
computationally-bounded adversary cannot forge invalid re-
sults to pass verifications unless he can break the security of
the snark system. Second, due to the security of the pruning
function, the execution correctness of the pruning function is
also ensured.

VII. PERFORMANCE EVALUATION

First, we give comprehensive evaluations of snark systems
Ω1 and Ω2. The performance metrics include computational
time of setup, prover, and verifier, public parameter size, and
the memory usage. Second, we present the computation and
communication overhead of the pruning function with Merkle
proof. Third, we give the correlated analysis on the query accu-
racy with the snark systems. To demonstrate the efficiency of
the proposed pruning strategy, we compare the performance
between a VNF query without the pruning function and a
VNF query with the pruning function. Finally, to demonstrate
the feasibility of Block-VNF on the blockchain, we set up a
consortium blockchain network and evaluate Block-VNF with
different network settings.

A. Off-chain Experiments

We implement xjsnark [26] as a program-to-circuit compiler
and libsanrk [45] as a circuit-to-snark compiler in a pro-
precessing mode [25] with alt-BN128 curve. We conduct our
experiments on a laptop with 2.30GHz processor and 8GB
memory. We set the dimension of VNF information vector

Vi as 20, which includes 10 numeric values and 10 keyword
values. Similarly, query Q is set to a vector of 10 keyword
values and 10 ranges. We set q∗ as VNF availability, and let
F1 check if the corresponding attribute for q∗ in each VNF
vector is non-zero. Query function F2 is implemented as a one-
by-one comparison between each qi ∈ Q and attri ∈ Vi. For
range values, the function checks that if the item of each VNF
in a pruned dictionary D′ lies in the range of corresponding
range values in Q; For keyword values, the function checks
if the query has the same value compared with each VNF
in D′. The outputs of both snark systems are a vector with
the same size of their input dictionaries. Verifications of both
snark systems are implemented with D or D′ as inputs rather
than their authenticators.

1) Snark Complexity: In Fig. 3a, we plot the computation
overhead of the setup, prover and verifier of the snark system
for initial function F without implementing our dictionary
pruning strategy, which changes the number of VNF functions
(denoted as m) in D from 29 to 212. While the most expensive
cost is the setup phase, the verifier overhead is around 100
ms. This is because the setup phase needs to compute the
QAP and a large number of public parameters. It should be
mentioned that the setup phase is conducted once. We present
the performance of the snark systems Ω1 and Ω2 in Fig. 3b and
Fig. 3c, respectively. In Fig. 3b, the number of VNF functions
in D still changes from 29 to 212. Since the prover only needs
to conduct comparisons at one out of 20 items between each
VNF information vector and the query vector, the dictionary
pruning incurs much fewer prover overhead as compared with
that in Fig. 3a. In Fig. 3c, we test snark system Ω2 against
the number of remaining VNFs after the pruning. Since the
size of the pruned dictionary is significantly smaller than the
original dictionary, the snark system Ω2 is much more efficient
as compared with that in Fig. 3a.

In Table III, IV, and V, the QAP degree refers to the
number of multiplication gates in the generated circuit, that
can represent the complexity of associated functions. The
memory usage includes both the physical and swap memory.
We convert bits to KBs and MBs, where 1 KB = 8,000 bit
and 1 MB = 1,000 KB. The function complexity of Ω1 and
Ω2 is much less than the VNF lookup without the dictionary
pruning, and all performance metrics increase with the number
of VNFs. The PK size is much larger than VK size, which is
important for achieving efficient proof verifications. The size
of VK is affected by the total number of inputs and outputs.
It leads to the same values in Table III and IV with the same
number of VNFs, since we output results for all VNFs in
the two functions. The computation complexity increases with
m for Ω1 while the complexity increases with m∗n for Ω2,
where m is the number of VNFs in the original dictionary
and m∗ is the number of VNFs in the pruned dictionary. n is
the dimension of Vi and is set to 20. In Table IV and V, we
present the performance of Ω1 and Ω2 with different pruning
efficiency, which is the ratio between the sizes of the original
dictionary and the pruned dictionary. As m∗n is larger than m
in our experiments, the complexity of Ω2 is higher than that of
Ω1. Since the memory usage increases with the computation
complexity, the snark system in Table V takes more memory
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Fig. 3: Computation Overhead of Snark

as in Table IV.

TABLE III: VNF Lookup Without Pruning

Height 9 10 11 12
QAP Degree (106) 0.4 0.8 1.6 3.1

PK (MB) 113 226 452 904
VK (KB) 430 859 1717 3432

Memory (MB) 1170 2424 4305 8591

TABLE IV: Snark System Ω1

Height 9 10 11 12
QAP Degree (103) 16 33 66 131

PK (KB) 1131 2262 4522 9042
VK (KB) 430 859 1717 3431

Memory (MB) 38 63 89 180

TABLE V: Snark System Ω2

m∗ 100 150 200 250
QAP Degree (103) 82 131 164 197

PK (MB) 22 34 44 55
VK (KB) 85 127 169 211

Memory (MB) 382 494 720 881

2) Merkle Tree Complexity: For the Merkle tree, we adopt
SHA512 hash function in Java Pairing Based Cryptography
(JPBC) [46] on the same laptop. We test the Merkle tree setup
cost with the height of the Merkle tree (h). The computation
overhead in the setup phase increases with h but is still
very low compared with the computation overhead of the
snark systems. More specifically, it takes a few milliseconds
to generate a Merkle tree when h = 15. For the Merkle
proof generation and the verification, the computation cost
is negligible. This is because calculating hash functions are
extremely efficient. In Fig. 4, we report the proof size against
the number of VNFs in the pruned dictionary and the height
of the Merkle tree. We take the worst-case scenario where the
size is roughly O(m∗(h − 1)), where m∗ is the number of
VNFs in the pruned dictionary. As shown in Fig. 4, the proof
size is reasonable with a few KBs.
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Fig. 4: Proof Size of Merkle Tree

3) Query Accuracy: Block-VNF achieves the same query
accuracy compared with the non-verifiable setting. First, the
VNF lookup function consists of keyword or numeric compar-
isons between a VNF query and the original VNF dictionary,
which can be realized by a circuit without loss of accuracy.
Second, the VNF lookup function is performed over the orig-
inal VNF dictionary to output query results. The authenticator
is a succinct digest of the original dictionary and is only used
in the verification of the query results.

B. Performance Comparison

We compare the straightforward lookup strategy without
the pruning and our pruning strategy at the prover and the
verifier. For the verifier, both strategies have cost around
a few milliseconds due to the verification efficiency of the
snark and the Merkle proof. However, at the prover side,
the proposed pruning strategy is much more efficient. In
Fig. 5, we calculate the computational cost of our pruning
strategy as the summation of prover cost in Ω1 and Ω2

(when the number of VNFs in the pruned dictionary is 150
and 200, respectively). The Merkle tree proof generation is
extremely efficient and is thus omitted in the comparison.
As we can see, our strategy has a significant efficiency gain,
which essentially depends on the pruning ratio m∗/m. The
reason is that the pruning strategy reduces many unnecessary
but computationally-expensive comparisons between the query
vector and the original dictionary.
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C. On-chain Experiments

We set up a real-world consortium blockchain network
based on Hyperledger Fabric [18] on the same laptop in
a Linux system. Specifically, we use the RAFT consensus
protocol [18] with an ordering node. We test the verification of
a single Merkle proof in different settings: two organizations,
two peers; three organizations, three peers; two organizations,
four peers. Specifically, we write the verification algorithm as
a function in the chaincode. The function stores the Merkle
root and receives Merkle proofs from a peer node. We send a
function call and measure the response time of the blockchain
network.

In Fig. 6a, we show the response time when there are two
organizations and each organization has a peer node in the
network. We change the Merkle tree height from 12 to 15,
which slightly increases the proof size by one hash element.
As we can see, the response time does not depend on the
height but is mostly affected by the blockchain network. In
Fig. 6b, we fix the tree height to 13 and plot the response
time with different network settings. As the number of peer
nodes increases in the network, the response time in our
experiments increases due to the increasing number of required
endorsements. However, the proposed mechanism does not
depend on a specific blockchain architecture and thus can
be tailored to the blockchain designs with other consensus
protocols.

VIII. CONCLUSION

In this paper, we have designed an authenticated and
prunable dictionary for blockchain-based VNF management

in future wireless networks, which achieves rich VNF query
functionalities and succinct on-chain storage and computing
overhead. Our dictionary pruning strategy resolves the RAM
issue and significantly reduces the computational overhead
in processing VNF queries with a significant performance
increase in comparison with the snark-based solution without
pruning. The design and constructions of the authenticated
and prunable dictionary can be of independent interests for
other blockchain-based network resource managements. In
the future, we will further explore blockchain-based VNF
configurations and slice formations for NFV-enabled wireless
networks.
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