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Abstract—With the increasing popularity of plug-in electric
vehicles (PEV), charging infrastructure becomes widely available
and offers multiple services to PEV users. Each charging service
has a distinct quality of service (QoS) level that matches user
expectations. The charging service demand is interdependent,
i.e., the demand for one service is often affected by the prices of
others. Dynamic pricing of charging services is a coordination
mechanism for QoS satisfaction of service classes. In this paper,
we propose a differentiated pricing mechanism for a multiservice
PEV charging infrastructure (EVCI). The proposed framework
motivates PEV users to avoid over-utilization of particular service
classes. Currently, most of dynamic pricing schemes require full
knowledge of the customer-side information; however, such infor-
mation is stochastic, non-stationary, and expensive to collect at
scale. Our proposed pricing mechanism utilizes model-free deep
reinforcement learning (RL) to learn and improve automatically
without an explicit model of the environment. We formulate our
framework to adopt the twin delayed deep deterministic policy
gradient (TD3) algorithm. The simulation results demonstrate
that the proposed RL-based differentiated pricing scheme can
adaptively adjust service pricing for a multiservice EVCI to
maximize charging facility utilization while ensuring service
quality satisfaction.

Index Terms—PEV charging infrastructure, service differenti-
ation, dynamic pricing, deep reinforcement learning.

NOMENCLATURE

Indices and Sets
A Set of all RL agent’s actions.
T Set of time segments over a day, indexed by t.
N Set of all facilities in EVCI, indexed by n.
M Set of service classes in the EVCI, indexed by m.
P Set of all parking lots in the EVCI.
F Set of all fast-charging stations in the EVCI.
O Set of all on-road wireless chargers in the EVCI.
Parameters
qm Targeted minimum QoS level of service class m.
cn Number of chargers allocated in facility n.
Kn Maximum number of PEVs in facility n including

charging and waiting.
βn Self-elasticity parameter with respect to the service

price at facility n.
γm Self-elasticity parameter with respect to the service

QoS at class m.
βn,n̂ Cross-elasticity parameter with respect to the ser-

vice price at facility n̂.

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada. (e-mail:
aabdalra@uwaterloo.ca; wzhuang@uwaterloo.ca). This work was financially
supported by a research grant from the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

γm,m̂ Cross-elasticity parameter with respect to the ser-
vice QoS at class m̂.

γ Discount factor.
τ Soft target update factor.
Variables
λt,n PEV charging demand at facility n at time t.
Nt,n The average number of admitted PEVs to charging

facility n at time t.
π Pricing policy.
pn,t Normalized charging price at facility n at time t.
Qn,t Service performance metric at facility n at time t.
Qπ Action-value function for each state-action pair

following policy π.

I. INTRODUCTION

TRANSPORTATION electrification through the adoption
of plug-in electric vehicles (PEVs) is gaining more pop-

ularity due to the increased awareness of its environmental
and economic benefits. The number of PEVs around the
globe exceeded 5.1 million in 2018, with an approximately
60% year-on-year growth rate [1]. Along with the growing
number of PEVs, public PEV charging infrastructures (EVCIs)
have become widely available to accommodate the raising
PEV charging demand. EVCIs consist of various types of
charging technologies, which can be either with a plug-in cable
or wireless charging [2], [3]. Plug-in chargers are classified
into three main charging levels, which are AC level 1, AC
level 2, and DC fast charging [4]. Charging levels vary in
terms of charging power capability; hence charging time of
a PEV depends on the type of used charger. On the other
hand, wireless chargers can dynamically charge PEVs on-
roads through wireless power transfer technology [5].

The increasing PEV penetration rate comes with challenges.
One challenge results from of the high PEV charging power,
which introduces a substantial load on the power system. This
load can negatively impact the power distribution system in
various aspects, especially with voltage deviations and power
losses [6]. Another challenge comes from the long charging
duration of PEVs at charging facilities. As users spend a
long time charging their PEV batteries at a charging facility,
other PEV users need to wait for a longer time before getting
a charging service at that facility. Also, PEV users can be
blocked from a charging facility if the facility is at its full
capacity. Long waiting times and a high blocking rate degrade
PEV user satisfaction and hence charging quality-of-service
(QoS).

To overcome the challenges, coordination of PEV charging
demands has become indispensable to meet the PEV user
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requirements, while minimizing the negative impacts on the
power grid. PEV charging demand management is classified
into two main categories: centralized and decentralized (dis-
tributed) coordinations [7]. In the centralized coordination, a
central controller directly controls the charging process of the
participated PEVs. This approach can optimize the PEV charg-
ing process. However, it requires sophisticated communication
and control systems to monitor and coordinate the charging
process of a large number of PEVs. In the decentralized
coordination, a dynamic pricing mechanism can be leveraged
to coordinate the PEVs charging process and influence the
behaviors of PEV users. The price-setting should simultane-
ously achieve the following objectives [8]: 1) to preserve the
QoS of charging facilities to maximize users’ satisfaction; 2)
to alleviate the negative impacts on the power system; and 3)
to maximize the utilization of charging facilities.

Recently, significant progress has been made in developing
pricing schemes that account for the uncertainty of PEV charg-
ing demand, while considering the fluctuations in electricity
price and power grid conditions. The preliminary pricing
schemes do not deal with the multiple services offered by
EVCIs and the multiple QoS classes associated with these
services. In a multiservice EVCI, a set of charging services is
offered, and each service is provided by a type of charging
facility with a certain QoS class. Different service classes
vary in the PEV charging rate, average waiting time, and
charging method (i.e., either with a plug-in cable or wireless
charging). Thereby, users’ dwelling time during the PEV
charging depends on the charging service class. Each service
class has a minimum level of QoS that must be preserved
during the operation to ensure the PEV user satisfaction and
the profitability of charging service.

In addition to the mentioned challenges, two issues remain
to be addressed in the contemporary modeling approach of
dynamic pricing for PEV charging demand. First, existing
dynamic pricing models rely on simplified assumptions and
can be unrealistic, such as full knowledge of the customer-
side information including the current charging demand and
the influence of pricing decisions on future user behaviors.
Even if the demand is modeled as a random variable, the as-
sumption of complete information about the expected demand
is unrealistic. Second, PEV charging demand coordination is a
complex non-stationary and stochastic process. Typically, PEV
charging demand can change over time-of-day, day-of-the-
week, seasons, or due to an increased or decreased desirability
of particular charging technology. Applying abstract dynamic
pricing models in this environment cannot ensure optimality,
as any change of variables can lead to model misspecification,
resulting in unreliable estimation of the system operation
and/or revenue loss. To overcome the limitations, reinforce-
ment learning (RL) emerges as one of the most promising
tools for the decision-making problem in an unknown en-
vironment. RL is capable of learning from the interactions
with a dynamically changing environment. Moreover, RL can
provide locally optimal solutions for complex and non-linear
optimization problems without requiring a pre-specified model
of the environment.

Driven by the challenges, we propose a new way to use

deep RL algorithms in the context of dynamic pricing of
charging services. The proposed pricing mechanism preserves
different QoS classes at a multiservice EVCI. Additionally,
the proposed approach is able to learn a pricing policy, while
the complete customer-side information is not available. The
major contributions of this study are as follows:

1) We propose a differentiated pricing mechanism that
discourages over-utilization of a charging service, in
addition to enhancing the performance of charging fa-
cilities in meeting the expectation of PEV users. To-
wards this end, the problem is formulated as a social
welfare maximization problem, where the objective is
to maximize the demand for charging services while
maintaining the targeted QoS in all service classes;

2) The proposed framework is based on the twin-delayed
deep deterministic policy gradient (TD3) algorithm,
which is a model-free RL approach using actor-critic
methods. In the proposed approach, deep neural net-
works are trained to determine a pricing policy while
interacting with the unknown environment. The neural
networks take the current EVCI state as input and
generate pricing signals that coordinate the anticipated
PEV charging demand.

The rest of this paper is organized as follows. The related
work is discusses in Section II. Section III presents system
model, along with a discussion of the PEV charging demand
and charging facility models. We formulate the dynamic
pricing problem in Section IV, and present an RL approach to
solve this problem in Section V. Numerical results are given in
Section V to evaluate the proposed framework. Finally, Section
VI draws some conclusions from this study and presents a
possible future extension for our framework.

II. RELATED WORK

This section provides an overview of the research areas
relevant to this study, which is divided into two parts. The first
part discusses dynamic pricing mechanisms for PEV charging
demand coordination, while the second part presents a survey
of adopting RL algorithms in optimizing the dynamic pricing
policies.

A. Dynamic Pricing for PEV Charging Demand Coordination

Dynamic pricing is a decentralized coordination and load
management method for the PEV charging demand. In litera-
ture, significant efforts have been devoted to the coordination
of PEV charging demand through dynamic pricing. Dynamic
pricing signals for PEV charging coordination can be derived
based on three modeling approaches, namely, game-theoretic
approaches, stochastic optimization methods, and queuing-
based models.

Game theory-based dynamic pricing is widely employed to
map the relation among multiple entities, where each entity
maximizes its own profit [8]–[11]. For instance, the relation
between charging station operator and PEV users can be
modeled as a single-leader-multi-follower Stackelberg game
[8]. The station operator is modeled as a leader whose main
interest is to optimize the service price to maximize its profit
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with the same amount of energy resources. The PEV users
are modeled as followers who maximize their own level of
satisfaction by selecting a nearby charging station with low
charging cost. Game theory is then used to derive a dynamic
pricing scheme that balances the PEV load demand among
the adjacent charging stations. Game theory-based approaches
assume that there exists a high fidelity communication infras-
tructure, in which each charging facility can communicate with
PEV users to influence their preferences.

Optimization models can be used to determine the dynamic
pricing of the PEV charging service [12] [13]. For instance,
stochastic dynamic programming can be used to determine
charging prices [12]. This model considers multiple uncer-
tainties, such as in PEV charging demand, the intermittency of
renewable energy sources, and the electricity price fluctuation.
Optimization-based models assume that the charging service
provider can perform an online prediction of charging demand
functions, which characterize customers response to price
fluctuations.

Queuing models can be used to estimate the PEV charging
demand and then derive a dynamic pricing expression to co-
ordinate the PEV charging service [14] [15]. For instance, the
impact of wireless charging load demand and PEV mobility on
the location marginal price (LMP) of electricity is investigated
in [14]. The BCMP queuing network model is used to estimate
the charging demand of PEVs, considering the PEVs mobility.
Then, a dynamic pricing scheme is optimized to adjust the re-
tail price of wireless charging. Queuing-based models assume
the availability of accurate statistics regarding PEV mobility
patterns, energy consumption, and battery characteristics.

Based on the preceding discussion, the existing works study
various aspects of the dynamic pricing of charging services.
The existing pricing schemes treated all types of charging
facilities equally. In practice, however, a PEV charging infras-
tructure includes various types of facilities such as on-road
wireless chargers, fast charging stations, and slow chargers at
parking lots. Each type of charging facility has a unique QoS
capability and usage pattern. In order to provide differential
QoS, a differential pricing is needed to discourage over-
utilization of a certain type of charging service. Thus, a
differential pricing mechanism should be developed to set the
price for each charging service, which offers the necessary
incentives for PEV users to choose the charging service that
matches their requirements. Consequently, the QoS levels of
charging facilities are maintained.

B. Reinforcement Learning for Dynamic Pricing

RL is an area of machine learning, which deals with goal-
directed learning based on the interaction between an active
decision-making agent and its unknown environment, while
the agent seeks to maximize a numerical reward signal [16].
Using deep RL algorithms, neural networks are trained off-line
in a simulated environment. Then, the neural networks can be
exploited on-line in the practical system.

Recently, there has been a collection of research works
studying how to optimize dynamic pricing policies using
reinforcement learning. For example, dynamic pricing of in-

terdependent perishable products can be optimized using Q-
learning [17]. Given an initial inventory for the products, this
approach is to maximize the revenue by dynamically adjusting
the pricing policy over a finite sale horizon when the demand
function is stochastic and unknown. RL algorithms can be used
in the context of demand response [18]–[21]. For instant, Q-
learning can help to reduce supply-demand mismatches by
dynamically deciding the retail electricity price, considering
both the service provider profit and customers’ cost [18]. In
[19], deep Q-learning and deep policy gradient are used for
on-line optimization of building energy consumption, where
the objective is either to minimize the energy cost or to flatten
the net energy profile.

Comparing with conventional dynamic pricing methods,
RL-based methods offer two main advantages [21], [22]:
1) RL-based methods do not require strict models of the
system. RL can provide a locally optimal solution to the
decision problem when the full knowledge of the system is
not available; 2) RL-based methods are capable of responding
to a dynamically changing environment. When the operating
state changes, RL can dynamically change the decision policy
without requiring any additional information.

In this work, inspired by the recent research outcomes, we
present a dynamic pricing algorithm for differentiated PEV
charging services using deep RL.

III. SYSTEM MODEL

Consider an EVCI with M classes of charging services
managed by a charging service provider (CSP). Let M =
{1, 2, . . . ,M} denote the available service class in the system,
where i < j indicates i is a higher service class than j (i.e., i
has more strict QoS requirements than j). Each service class is
specified by a minimum QoS level that is to be maintained all
the time. The EVCI consists of a set charging facilities denoted
by N = {1, 2, . . . , N}, which is composed of three subsets:
subset P for parking lots (PLs) with AC chargers, subset F for
DC fast-charging stations (FCSs), and subset W for on-road
wireless chargers (OWCs). Each service class is offered by
a number of charging facilities, where n → m indicates that
charging facility n provides charging service of class m. The
business hours of charging facilities can be partitioned into T
time slots with equal duration ∆t, where T = {1, 2, . . . , T}
denotes the set of all time slots over a business day.

Charging facility n (n ∈ N) with service class m (m ∈M)
provides a charging service with minimum QoS qm ∈ [0, 1]
and associated with normalized charging price pn,t ∈ [0, 1] for
all t ∈ T. The CSP announces one-time (stationary) minimum
QoS level of each service class at the beginning of the
planning horizon, q = (q1, . . . , qM ). To maintain these QoS
classes, the CSP adjusts the pricing policy of charging services
periodically at the beginning of each time slot. Thereby, at time
slot t, the CSP adopts a pricing policy represented in the price
vector pt = (p1,t, . . . , pN,t).

PEV users compare prices, QoS, and other service attributes
(e.g., location of the charging facility, type of charging tech-
nology) of all services and choose a charging service at one
charging facility offering the particular service class. The
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offered charging services are substitutable because the demand
for one service class not only depends on its own price but
also depends on the prices of other services in the EVCI. Also,
the charging service classes are vertically differentiated, which
means that customers always prefer a higher service class if
the charging prices are the same among different classes [23].
Thereby, any change in the price of one service can impact
the demand for other services in the system.

A. PEV Charging Demand Model

PEV demand for charging services is assumed sensitive to
both the charging service price and the QoS guarantees. This
assumption is only used in the simulated environment for RL
agent training. However, the proposed RL approach is adaptive
and able to learn the actual PEV user behaviors based on
the interaction with the environment. To represent the PEV
charging demand at each charging facility, we use the linear
demand model [24]. Based on this model, the time-varying
charging demand (arrival rate), λn,t, at charging facility n in
time slot t is a linear function of all prices and service levels
of charging facilities, given by

λn,t(p,q) = Λn,t − βnpn,t +
∑
n̂6=n

βn,n̂pn̂,t + γmqm,t

−
∑
m̂ 6=m

γm,m̂qm̂,t, n→ m, ∀n, n̂ ∈ N, ∀m, m̂ ∈M
(1)

where Λn,t (> 0) denotes PEV arrival rate to charging facility
n at time t at the base price, which is accepted by all users.
This arrival rate can be estimated based on the traffic volume
intercepted at the charging facility [2]; βn and γm are positive
parameters denoting self-elasticity, which indicate the relative
change in the demand for a charging service that would result
from a change in the service price and quality, respectively;
βn,n̂ and γm,m̂ are positive parameters representing cross-
elasticity, which reflect the change in the service demand as
a result of the change in the prices and service levels of
other charging facilities, respectively. The demand for charging
service at facility n should be more sensitive to its own price
changes than those for the other services. Thus, the elasticity
parameters have the relation βn >

∑
n̂ 6=n βn,n̂. The demand

function is assumed to satisfy the monotonicity properties [25],
as follows

∂λn,t(p,q)

∂pn,t
≤ 0,

∂λn,t(p,q)

∂pn̂,t
≥ 0,

∂λn,t(p,q)

∂qm,t
≥ 0,

∂λn,t(p,q)

∂qm̂,t
≤ 0, ∀n, n̂ ∈ N.

(2)

The assumption means that, if the CSP increases pn,t (or
decreases qm), the demand for charging service at facility n
decreases; however, if the CSP increases pn̂,t (or decreases
qm̂,t), the demand at charging facility n increases. Note that
PEV users’ demand at facility n for service class m is assumed
depending on the announced QoS level of service class qm
rather than its actual service level in the facility.

B. Charging Station Model

The capacity of any charging facility in the EVCI is
finite. Thereby, charging facilities can be modeled as a finite

queueing system [3], where arriving PEV users are rejected
(blocked) at times when the charging facility is full. Also, PEV
users may wait until service becomes available if all chargers
are busy and there is waiting space available. PEVs arrivals
to a charging facility follow a non-homogeneous Poisson
arrival process, which is a non-stationary counting process
with a deterministic arrival rate λn,t [3]. As discussed in
Subsection III-A, this arrival rate depends on various factors
such as traffic volume and users’ response to changes in p
and q. The charging time of PEVs at a charging facility
is assumed independently and exponentially distributed, with
service rate µ that depends according to the chargers’ power
capability at the charging facility [2]. Each charging facility
has cn independent and identical chargers (servers) that serve
PEV users on the first-come-first-served rule. The maximum
number of PEVs that can be admitted to charging facility n
is denoted by Kn.

Let Nt,n denotes the average number of admitted PEVs to
charging facility n (n ∈ N) at time t, which reflects the facility
utilization. The number of admitted PEVs can be expressed as

0 ≤ Nt,n ≤ Kn. (3)
Due to the finite capacity of charging facilities, high con-
gestion (overload) may occur at a facility if the number of
admitted PEVs approaches the maximum facility capacity.
Then, the newly arrived PEVs may suffer from a low QoS level
in terms of long waiting time or service rejection (blocking).
Thereby, we define QoS metric Qn,t ∈ [0, 1] to measure the
service performance at charging facility n at time t, which is
related to the weighted sum of the blocking and delay rates.
We define the QoS metric as

Qt,n = 1− αPKt,n − βP{Wt,n > 0} (4)
where α and β are weighting factors to reflect the impact
of service blocking and service delay respectively on the
satisfaction level of PEV users, with α + β = 1; PKt,n

and P{Wt,n > 0} denote the blocking and delay probabilities
of the charging facility, respectively. Both Nt,n and Qn,t
represent the state of the charging facility in terms of the
facility utilization and service quality.

IV. DYNAMIC PRICING FOR DIFFERENTIATED PEV
CHARGING SERVICES

Price-based coordination mechanisms can be leveraged to
dynamically meet the QoS requirements of charging facilities,
while maximizing social welfare which is the sum of utilities
over all users and service providers. In a multiservice charging
infrastructure, a differentiated pricing scheme is required to
provide different QoS classes. Thus, a PEV user has incentives
to use a charging service that matches their needs. The
differentiated pricing scheme can enhance the performance of
charging facilities in meeting the expectation of PEV users by
discouraging the over-utilization of some charging services.

Our objective in this research is to develop a differentiated
dynamic pricing scheme that accounts for the interactions be-
tween two players, which are the CSP and the non-cooperative
PEV users. On one hand, PEV users want to choose the
charging service that maximizes their utilities, when making
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the charging decisions. The utilities depend on various random
variables, including the current state-of-charge (SoC) of PEV
battery, the charging price, and the user’s value of time, which
indicates how much a user appreciates time-saving during
the charging process. On the other hand, the CSP wants to
maximize revenue while achieving targeted QoS. Towards this
goal, the CSP aims to shape charging demand profiles by
incentivizing PEV users to behave in ways that improve the
overall utilization and performance of the EVCI. The most
effective incentive comes in the form of lower service prices
charged to PEV users. The CSP can offer lower charging prices
at a less congested facility to incentivize PEV users to be
rerouted to that facility. Thus, using a differentiated pricing
policy, the CSP dynamically adjusts the charging prices for all
facilities based on the current and anticipated demand patterns.

Choosing the right price for a PEV charging service is
challenging. Determining a pricing policy requires information
not only about how much the current PEV user values each
charging service but also about what the future demand will
be. In order to develop the differentiated pricing scheme,
some assumptions are necessary: 1) The PEV charging in-
frastructure includes a limited set of service classes, and
each service is offered by a set of charging facilities as
discussed in our system model; 2) There is no competition
between charging facilities with different QoS classes; 3)
PEV charging demand is elastic and price-responsive; 4) The
CSP periodically collects performance statistics regarding the
utilization and service quality from all charging facilities in
the EVCI; 5) PEV users are informed about the real-time
service prices at all charging facilities in the EVCI, which
can be facilitated by web applications offered to PEV users;
6) The targeted minimum QoS level of each class of charging
services is predetermined based on user preferences, which
can be collected from market surveys.

The differentiated pricing policy can be represented as a
social welfare maximization problem, where the objective
is to maximize the utilization of charging facilities while
maintaining the minimum targeted QoS in all service classes.
The differentiated pricing problem can be formulated as

max
p

T∑
t=1

N∑
n=1

λn,t(p,q) (5a)

s.t. Qt,n ≤ qm, n→ m,∀n ∈ N, ∀m ∈M, ∀t ∈ T.
(5b)

Optimizing this pricing policy must explicitly incorporate
the stochasticity and non-stationarity of the PEV charging
demand. Also, the pricing policy must be forward-looking
by setting the price signals in anticipation of future demand
patterns. As indicated in (5), determining the pricing policy
requires full knowledge of the customer-side information
including the current charging demand and the influence of
pricing decisions on future user behaviors. However, due to
the lack of complete information and the non-stationarity
of system variables, conventional abstract models cannot be
adopted to determine the pricing policy. Thereby, we propose
an RL approach to learn the pricing mechanism. Based on
the proposed approach, the CSP can adjust the pricing signals

in real-time without requiring a pre-specified model of the
environment.

V. RL APPROACH FOR DIFFERENTIATED PRICING

Determining a differentiated pricing policy is a real-time
decision-making problem in an unknown environment. Here,
we present an RL approach to decide the pricing policy based
on learning while interacting with the environment. Towards
this goal, the differentiated pricing problem is firstly formu-
lated as a discrete finite-horizon Markov decision process
(MDP) [16]. Then, the twin delayed deep deterministic policy
gradient (TD3) algorithm is used to train neural networks
that generate the pricing policy, without requiring the full
knowledge of system dynamics and uncertainties. Finally,
we present the implementation details of the TD3 algorithm
along with the associated hyperparameter, neural network
architectures, and the reward function design.

A. Markov Decision Process

Fig. 1: MDP framework for differentiated pricing.

As shown in Fig. 1, MDP for the differentiated pricing
problem is a formalization of the interaction between an
agent and the environment [16]. The agent is the learner and
decision-maker that selects actions. The environment responds
to the agent’s actions, presents new situations to the agent, and
gives a numerical value to the agent as a reward to evaluate
the agent’s actions. The MDP is defined by the following key
components:
• A set of states, S, that reflects the current state of the

EVCI. At each discrete time step t, system state st ∈ S
is denoted as st = (t,Nt,1,Qt,1, . . . ,Nt,N ,Qt,N ). As
discussed in Subsection III-B, the system state represents
the utilization and QoS of all charging facilities in the
EVCI;

• A set of actions, A, that is selected by the agent based on
the current system state and the anticipated future PEV
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charging demand. The selected actions affect the charging
demand on the next time slot. At discrete time t, the agent
selects an action, at ∈ A, based on its policy π : S 7→
A. This action is a vector of length equal to N with
elements normalized to the range [−1, 1]. The CSP maps
this action into pricing vector pt+1 that sets the charging
price (money value) for all facilities at time slot t+ 1;

• State-transition probabilities p : S × S × A 7→ [0, 1],
where p(st+1|st, at) indicates the likelihood that action
at results in the transition from state st to next state st+1;

• Reward function r : S × A 7→ R, where r(st, at)
computes an immediate reward signal for executing ac-
tion at when the system is at state st. The agent’s
goal is to maximize not only the immediate rewards
but also the cumulative discounted future rewards Rt =∑T
i=t γ

i−tr(si, ai), where γ ∈ [0, 1) is a discount factor
indicating the priority of short-term rewards.

One episode of the MDP forms a finite sequence or a
trajectory in the form (s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT ).
Determining optimal policy π∗ can be done using the action-
value function Qπ ∈ R|S|×|A|, which is defined as the
discounted expected total reward when taking action at at state
st and thereafter following policy π [16]. The Q-function can
be formulated as

Qπ(s, a) = Eπ
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
. (6)

The optimal Q-function for each state-action pair is
Q∗(s, a) = max

π
Qπ(s, a), and the optimal policy that returns

the highest valued action can be obtained by [26]
π∗(s) = arg max

a∈A
Q∗(s, a). (7)

B. Adopting TD3 Algorithm for Differentiated Pricing

Optimizing a policy based on the MDP can be done using
either policy iteration or value iteration if system transition
dynamics (probabilities) are known [20]. However, system
dynamics are unknown and need to be estimated through
interactions with the environment. RL can adopt the model-
free approach, in which the RL agent learns to optimize an
action for each state without requiring a complete and perfect
model of the environment. One of the most common model-
free algorithms in RL is Q-learning, which uses a table to
store and update Q values while exploring the environment.
However, Q-learning is only applicable when the action space
is finite and discrete [27]. In the context of differentiated
pricing for charging services, both the state and action spaces
are continuous, and discretization of the states and actions
introduces a dimensionality problem [20]. Instead, here we
resort to the TD3 algorithm [28], which is a model-free off-
policy actor-critic algorithm that can learn policies in a high-
dimensional continuous action space.

The TD3 algorithm builds on the deterministic policy
gradient (DPG) algorithm, along with deep neural networks.
Different from Q-learning, Q-table is replaced by deep neural
networks (NN) that act as a function estimator, which achieves
better generalization for continuous state and action spaces
via deriving unknown correlations from previous experience.

However, NN training can be unstable, if the used RL-
algorithm continuously overestimates Q-values. These estima-
tion errors build up over time and can lead to suboptimal
policy updates and divergent behavior. TD3 addresses this
issue by reducing the overestimation bias problem of Q-
values. As a result, TD3 achieves higher performance and
improves the learning speed when compared with other deep
RL algorithms [28]. TD3 belongs to the actor-critic methods,
which directly optimize policy π(s) in addition to learning
Q-function Qπ(s, a). Policy optimization, known as the actor,
directly maps the states to actions. The Q-function, known as
the critic, assigns a value that evaluates the policy’s action
given the system state and the selected action.

As shown in Fig. 1, the TD3 architecture consists of two
critic (Q-value) networks and one actor (policy) network. Each
NN is characterized by a set of parameters that consist of the
NN weights and biases. The parameters of the critic networks
are denoted by φ1 and φ2, and the parameters of the actor
network are denoted by vector θ. Since learning of NN can be
unstable, target networks are needed to slowly keep track of
the updates in the (online) critic and actor networks. Thereby,
TD3 uses two target critic networks with parameters φ̀1 and
φ̀2, and a target actor network with parameters θ̀. During
learning, the RL agent collects and stores a set of transitions
in experience replay buffer R. Each transition has the form
of 4-tuple (s, a, r, s̀), which denotes state, action, reward,
and next state, respectively. Then, a mini-batch is uniformly
sampled at each step to train the actor and critic networks.
Training NN using mini-batches ensures that the selected
samples are independently and identically distributed, which
in turn facilitates an efficient optimization of NN parameters.

The TD3 concurrently updates two critic networks, Qφ1
and

Qφ2
, using the recursive Bellman equation

Qπ(st, at) = r(st, at) + γQπ(st+1, π(st+1)). (8)
To approximate the optimal Q-function, the mean-squared
Bellman error function is utilized to indicate how closely Qφ1

and Qφ2
satisfy the Bellman equation, as follow

L(φi,R) = E(s,a,r,s̀)vR

[
(Qφi(s, a)− y(r, s̀))2

]
, i = 1, 2 (9a)

y(r, s̀) = r(s, a) + γ min
i=1,2

Qφ̀i
(s̀, πθ̀(s̀) + ε). (9b)

Note that, in (9b), the TD3 uses the smallest of the two Q-
values to form the targets in the Bellman error loss functions.
This practice, which is called clipped double Q-learning, helps
in reducing the overestimation bias problem of Q-values [28].
Also, the target policy is smoothed by adding a small Gaussian
noise component, ε, to the target action, which prevents over-
fitting on the narrow peaks of Q-values. Optimizing the policy
can be done by training the actor network to give the action
that maximizes the expected Q-function as

max
θ

= EsvR
[
Qφ1

(s, πθ(s)

]
. (10)

The parameters of the actor network are updated through the
gradient ascent of the expected return ∇θJ(θ) with respect to
actor parameters only, as given by [29]

∇θJ(θ) = EsvR
[
∇aQφ1(s, a)|a=π(s)∇θπθ(s)

]
. (11)

To improve training stability and reduce the accumulation
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of errors resulting from temporal difference learning, the actor
network is updated once every two updates of the critic
networks [28]. The stability of NN learning is also improved
by adopting soft target update [27], in which the parameters
of the target networks are slowly updated to track the changes
in the online actor and critic networks by some portion τ , as
follows

φ̀i ← τφi + (1− τ)φ̀i, i = 1, 2 (12a)

θ̀ ← τθ + (1− τ)θ̀. (12b)
To remove the dependence on the randomly initialized param-
eters of NN, actions are sampled uniformly from the action
space (pure exploratory policy) for limited time steps at the
beginning of the training process. Subsequently, the TD3 starts
exploiting what NN learned and exploring the environment
by adding an uncorrelated mean-zero Gaussian noise to the
selected action. The added noise is clipped to conform with
the action space bounds. It is proved, in [28], that the clipped
double Q-learning approach converges in the finite MDP
setting. As with most deep RL algorithms, the convergence of
TD3 is not guaranteed. This is because TD3 uses NNs as non-
linear function approximators, which nullify any convergence
guarantees [27]; however, experimental results on various test
environments demonstrate that the TD3 algorithm converges
without the need for any modifications [28]. Algorithm 1
summarizes the TD3 algorithm as adopted in our application.

Algorithm 1 TD3 for differentiated pricing
1: Randomly initialize critic networks parameters φ1,φ2, and actor

network parameters θ
2: Set the target NN parameters equal the online NN parameters
φ̀1 ← φ1, φ̀2 ← φ2, θ̀ ← θ

3: Initialize empty replay buffer R with size 100k
4: for Episode = 1, 15k do
5: Receive initial observation state s
6: for t = 1, T do
7: if Episode ≤ 100 then
8: Randomly select actions a = U(−1, 1)
9: else

10: Select actions according to the current policy and add
exploration noise a← πθ(s) + ε, where ε ∼ N (0, 0.1)

11: end if
12: Execute action a, observe reward r and next state s̀
13: Store transition tuple (s, a, r, s̀) in R
14: Randomly sample a mini-batch of N transitions from R
15: Compute greedy actions for next states using target actor

network and add clipped Gaussian noise
à← πθ̀(s̀) + ε, where ε ∼ clip(N (0, 0.2),−0.5, 0.5)

16: Compute targets y ← r(s, a) + γ min
i=1,2

Qφ̀i
(s̀, à))

17: Update critic networks parameters using gradient descent
φi ← arg min

φi

1
N

∑
(s,a,r,s̀)vN

(y −Qφi(s, a))2, i = 1, 2

18: if Episode mod 2 = 0 then
19: Update actor network parameters using gradient ascent

∇θJ(θ) = 1
N

∑
svN

[
∇aQφ1(s, a)|a=π(s)∇θπθ(s)

]
.

20: Update target networks
φ̀i ← τφi + (1− τ)φ̀i, i = 1, 2
θ̀ ← τθ + (1− τ)θ̀

21: end if
22: end for
23: end for

C. Implementation Details

1) States and actions: As described in Section III and
Subsection V-A, the system state (observation space) is a
combination of state variables that include time-of-day t, and
the utilization and current QoS of each charging facility in
the EVCI. The agent’s action represents continuous control of
the charging service prices in all charging facilities. At each
time slot t, the RL agent generates a pricing action, at, based
on the current state of the EVCI, st, and the expected future
charging demand. The selected pricing action, at, influences
the behaviors of PEV users in the next time slot t + 1. The
length of the state tuple is 2N + 1, and all elements in the
state tuple are normalized to range [0, 1]. The action space is a
tuple of size N , and all elements in the tuple are normalized to
range [−1, 1]. Normalization of action and observation spaces
facilitates the convergence of the TD3 algorithm.

2) Network architecture and hyper-parameters: The TD3
has a pair of critic networks along with a single actor network.
Each neural network consists of two fully-connected hidden
layers with 400 and 300 units, respectively. Rectified linear
(ReLU) activation units are used for all hidden units. For the
critic networks, the size of input layers is equal to the sum
of the observation space size and the action space size. Critic
network outputs consist of a single linear unit per network,
representing the Q-value. For the actor network, the input layer
size is equal to the observation space size, and the output layer
size is equal to the action space size. Actor network output
consists of tanh activation units.

Adam optimizer [30] is used to optimize the parameters of
actor and critic networks, with a learning rate of 10−4 and
10−3 for actor and critic networks, respectively. The mini-
batch size is chosen to be 64, and the experience replay
memory can hold up to 105 state transitions. We use a
discount factor of γ = 0.99, and a soft target update factor
of τ = 0.005. For policy exploration, we use uncorrelated
additive Gaussian action space noiseN (0, 0.1) with zero mean
and 0.1 standard deviation. Target policy is smoothed by
adding Gaussian noise N (0, 0.2), clipped to (−0.5, 0.5), to
the selected action from the target network.

3) Reward function: The performance of RL algorithms is
highly impacted by the reward function. To achieve the desired
behavior, a reward function must be designed in a way to
guide the agent towards the goal. Reward functions can be
designed to follow two main forms: sparse reward and shaped
reward [31]. In sparse reward functions, the agent is given a
positive reward if it achieves the desired goal and zero rewards
otherwise. Although sparse reward functions are easy to design
for most of the tasks, it does not motivate the RL agent to learn
and may need a lot of training to converge to an acceptable
policy. To motivate the agent’s learning, reward shaping is
usually used to give more rewards to the agent in the states
that are closer to the target state. Shaped reward functions are
difficult to design. This is because a shaped reward function
can bias learning towards undesirable behaviors if it is not
carefully designed. To achieve the proposed objective in (5),
we design the following reward function
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rt(st, at) =
1

N

N∑
n=1

Nt,n
N∏
n=1

Ct,n (13a)

Ct,n =

exp
[
−300(qm + ζ −Qt,n)2

]
, if qm + ζ < Qt,n

1 , otherwise.
(13b)

The reward function consists of two parts representing the
differentiated pricing problem in (5). The first part imitates
the objective function in (5a) and incentivizes the RL agent to
increase facility utilization. As Nt,n increases, the RL agent
receives more rewards. The second part mimics constraint
(5b), where Ct,n penalizes the reward signal if the current
QoS at a charging facility is less than the targeted QoS. To
encourage learning of a pricing policy that guarantees the
targeted QoS all the time, a safeguard constant ζ = 2% is
added to the targeted QoS.

4) Training and validation processes: The training pro-
ceeds episodically for 15× 103 episodes. Each episode repre-
sents one business day that is simulated from an initial state at
time t = 1 until the end of the daily time horizon at t = T . To
prevent overfitting and to achieve good generalization, neural
networks are trained on simulated environments that vary in
each training run. Each simulated environment differs in the
random seeds that is sampled uniformly from 50 random
seeds. The performance of the training process is evaluated
using daily cumulative rewards, which is the total rewards that
the RL agent receives over a day. As expected, the cumulative
reward rapidly increases at the beginning of training, then
increases at a much slower rate as the training goes on. During
training, the pricing policy is evaluated periodically without
exploration noise. Different from the training process, the
validation process always uses an environment with the same
random seed, which is different from the training seeds. The
neural network that achieves the best performance (maximum
cumulative reward) in the evaluation process is selected to
form the final pricing policy.

VI. NUMERICAL RESULTS

In this section, we evaluate our proposed differentiated
pricing framework and demonstrate the applicability of the
TD3 algorithm in optimizing dynamic pricing policies. Firstly,
we present a numerical example that highlights the relationship
among the pricing signals, and charging facility utilization and
QoS. Then, we demonstrate the scalability of our proposed
framework on a larger EVCI, with more realistic architecture
and demand properties. The daily time horizon is divided
into 24 time-slots each of which lasts for one hour. The
CSP determines a dynamic pricing policy for each charging
facility to maximize the utilization of charging facilities, while
maintaining the targeted QoS. The CSP does not make any
assumptions regarding the PEV charging demand or the impact
of pricing signals on PEV user behaviors (beyond the assump-
tions made in Section IV). In the numerical examples, the RL
agent selects pricing actions to impact charging demand in
a simulated EVCI environment. The simulated environment
responds to the agent’s actions by presenting the new state

of the environment, in addition to a numerical reward signal
that evaluates the agent’s actions. Thereby, the RL agent
does not have any predefined model of the environment.
Instead, NNs are trained to optimize the pricing decisions
based on interactions with the environment. The simulations
are implemented under Python 3.7 environment on a laptop
computer with a 2.3-GHz Intel(R) Core(TM) i5-8300H CPU,
8 GB of memory, and NVIDIA GeForce GTX 1050 Ti GPU
unit.

A. Example 1: Two Charging Facilities

In this example, the CSP finds a pricing policy for two
charging facilities. For clarity of illustration, PEV charging
demands in these facilities are assumed sensitive only to the
pricing signals. The numbers of chargers and waiting positions
in both facilities are the same, with seven chargers and three
waiting-positions. The service rate in both charging facilities
equals to 3 PEV/h. As discussed in Subsection III-B, PEV
arrivals to charging facilities are modeled as nonhomogeneous
Poisson process, and the arrival rates are given by Λ1,t =
21 + 10 sin(2πt/24) and Λ2,t = 21 + 10 cos(2πt/24). For the
two facilities, the charging price is normalized to range [0, 1],
where zero represents the base price and one is the maximum
allowable charging price. The CSP objective is to optimize a
differentiated pricing policy that maintains two QoS classes,
with PEV charging service completion targets at 80% and 90%
for the first and second charging facilities, respectively.

To evaluate the efficacy of the proposed approach, we
use a genetic algorithm (GA) as a benchmark to solve the
optimization problem in (5). GA is a heuristic search algorithm
that finds a high-quality solution to the optimization problems
by randomly evaluating several points in the search space. GA
obtains a population of the evaluated points and converges to
a local optimum by relying on biologically inspired operators
such as mutation, crossover, and selection [32], [33]. In the
GA-based solution, the CSP is assumed to have complete
information regarding customer-side information and the in-
fluence of price signals on the future EV charging demand.
Moreover, the GA uses a fitness function similar to the reward
function in (13). We use the normalized cross-correlation
(NCC) coefficient to evaluate the degree of similarity between
the RL-based pricing and the GA-based solution. The NCC
is confined to the range [−1, 1], where 1 indicates a perfect
correlation and -1 indicates anticorrelation [34].

We first consider an independent demand scenario, where
PEV charging demand in a facility is only dependent on the
charging price at that facility. In this scenario, self-elasticity
and cross-elasticity parameters are set to β1 = β2 = 20 and
β1,2 = β2,1 = 0, respectively. The simulated environment
is represented by two finite queuing systems, as described in
Section III. For each facility, a QoS index is calculated based
on (4), with parameters α = 0.75 and β = 0.25. The reward
function is given in (13), with ζ = 0.02. Figs. 2a and 2b show
the pricing policy based on both our RL approach and the GA
solution. For both charging facilities, the RL agent optimizes
pricing policies that anticipate the nonstationary stochastic
charging demand. When evaluating the similarity between the
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(a) PEV arrivals and pricing for facility 1
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(b) PEV arrivals and pricing for facility 2
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(c) Facility 1 utilization and QoS
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(d) Facility 2 utilization and QoS
Fig. 2: Pricing policy for independent demand scenario

RL-based pricing signals and the GA-based pricing, we can
find NCC coefficients of 0.92 and 0.99 for facility 1 and
facility 2, respectively. The impact of RL pricing policy on the
performance of charging facilities is evaluated in Figs. 2c and
2d, where the resulting facility utilization and QoS are shown.
It can be noted that the generated pricing policy preserves the
targeted QoS in both facilities. Furthermore, facility 1 has a
higher utilization than facility 2, because the targeted QoS in
facility 1 is less than facility 2.

Another scenario is considered, where PEV charging de-
mand in the charging facilities are interdependent. Thereby,
the charging demand at one facility not only depends on
its price but also on the charging price in the other facil-
ity. Self-elasticity and cross-elasticity parameters are set to
β1 = β2 = 20 and β1,2 = β2,1 = 10, respectively. As
shown in Figs. 3a and 3b, the RL-based pricing policies are
adapted to address the interdependence in charging demand
between the two facilities. In Fig. 3b, it can be noted that the
charging price of facility 2 is higher than that in Fig. 2b in
response to the increasing demand in facility 1. To evaluate
the similarity between the RL-based pricing and the GA
solution, NCC coefficients are observed to be 0.90 and 0.98
for facility 1 and facility 2, respectively. The generated RL
pricing policy is capable of maximizing the facility utilization
while maintaining the targeted QoS levels, as shown in Figs.
3c and 3d. Thus, our RL-based pricing can adjust the pricing
policies automatically according to the changes in customer
behaviors without any preliminary settings.

It is observed in Fig. 3d that the achieved QoS level is
slightly less than the targeted QoS level. This is because the
RL algorithm is tested on a stochastic environment, which in
turn can be in a state that is far away from the long-term
stochastic average. Throughout the RL training, the NNs are
optimized to generate a general policy that can always select
locally optimal actions. However, the selection of optimal
actions does not necessarily hold for any arbitrary state in the
stochastic environment, which can exhibit unusual behaviors,
making the selection of optimal actions problematic.

The convergence of the TD3 algorithm is shown in Fig.
4. At the beginning of the training, the RL agent explores
the environment by sampling the selected actions uniformly
from the action space. The pure exploratory policy removes the
dependence on the randomly initialized NN parameters. Then,
the RL agent exploits what NNs learned from interactions
with the environment by adding an uncorrelated Gaussian
noise to the selected NN action. As shown in Fig. 4, as the
iteration goes by, the cumulative reward gradually increases
and converges.

This example demonstrates that the RL approach can learn
and optimize the dynamic pricing strategies, while interacting
with an unknown environment. Based on the proposed ap-
proach, deep neural networks are trained to receive the current
state of the EVCI and generate pricing signals that coordinate
the future PEV charging demand.
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(b) PEV arrivals and pricing for facility 2
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(c) Facility 1 utilization and QoS
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(d) Facility 2 utilization and QoS
Fig. 3: Pricing policy for interdependent demand scenario
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Fig. 4: Convergence process of TD3 algorithm

B. Example 2: Large-Scale Scenario

To validate our approach on a relatively larger EVCI, with
more realistic charging demand properties, we select the well-
known Nguyen-Dupuis road transportation network [35]. The
topology and traffic demand attributes of the Nguyen-Dupuis
network are introduced in [2]. We consider EVCI that consists
of three service classes:
• The first service class is offered by two OWCs, called

OWC-1 and OWC-2, which are located at links 5 and 16,
respectively. The targeted QoS for the first class is 95%,
and 4 chargers are allocated in each OWC. The mean
charging time in OWCs is set to 15 minutes. Usually,
charging service price is set as an hourly rate, which is
billed by the minute based on the usage time and the
type of charging service [36]. The charging price for the
first class service is set to range [20, 40] $/h, with self-
elasticity parameter setting to 0.15;

• The second service class is offered by two FCSs, with

targeted QoS levels set at 90%. One FCS, called FCS-
1, is placed at node 10, and contains 5 chargers and
2 waiting positions. The second FCS, called FCS-2, is
located at node 12, and contains 11 chargers and 2 waiting
positions. The mean charging time in FCSs is set to 30
minutes. The charging price for the second class service
is set to range [17, 35] $/h, with self-elasticity parameter
set to 0.6;

• The third service class is offered by one PL, located
at node 3. The targeted QoS for PL is 85%. The PL
contains 30 chargers and 10 waiting positions. The mean
charging time in PL is set to 3 hours. Charging price for
the third class service is set to range [13, 25] $/h, with
self-elasticity parameter set to 2.5.

Service quality elasticity parameters, γm and γm,m̂, for all
service classes are set to 3 and 1, respectively. We implement
our RL approach to determine the charging prices for each
facility in the EVCI. For compactness, we utilize box-plots
to visualize the variability in the pricing policy, i.e., the
distribution of the EVCI prices and performance over a day
are visualized instead of the time-varying visualization. Box-
plots provide a simplified approach for ease of performance
comparison among multiple charging facilities. Fig. 5a shows
the PEV arrival distributions to charging facilities, which
represent the demand for the charging services. Fig. 5b shows
the pricing signal distribution for each charging facility. It can
be noted that charging prices change in the whole specified
price range, and the median prices (shown in dashed line)
for OWCs are higher than that in FCSs and PL. As shown
in Fig. 5c, the pricing policy achieves a 100% QoS level for
all service classes most of the time, except for a few outliers
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Fig. 5: Pricing policy for EVCI

of low QoS (shown in + sign). However, for each charging
facility, the lowest achieved QoS level is higher than the
specified QoS target. Thus, our proposed approach preserves
the targeted QoS for multiple service classes without requiring
a strict model of PEV charging demand. Fig. 5d shows that
the utilization at OWCs is less than that of both FCSs and PL.
This is because the targeted QoS at OWCs is higher than that
in FCSs and PL. The generated pricing policy offers incentives
in the form of low charging prices that motivate PEV users
to use a charging service matching their needs. Furthermore,
our pricing mechanism increases the prices to discourage over-
utilization of charging services with high QoS targets.

The simulation results indicate that the proposed approach
dynamically decides the pricing signals for a multiservice
EVCI based on the targeted QoS and usage patterns of each
service class. Our differentiated pricing mechanism provides
insight into how to make a trade-off between facility utilization
and service QoS. Offering lower service prices at charging
facilities incentivizes more PEV users to be admitted for
service and therefore increases facility utilization, at the cost
of potentially reduced QoS due to service congestion. On
the other hand, service prices can be increased to achieve
higher QoS at charging facilities, but high prices may lead
to a decrease in facility utilization. The proposed approach
dynamically adjusts the pricing signals to incentive PEV users
in adapting their service requests according to the EVCI
usage pattern. Also, the generated pricing signals maintain the
targeted QoS levels for multiple service classes when the PEV
charging demand is a nonstationary stochastic process.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study decentralized coordination of PEV
charging demand and propose a differentiated pricing mecha-
nism for a multiservice EVCI. The objective of the proposed
pricing mechanism is to maximize the utilization of charging
facilities while preserving the targeted QoS level for each
service class. A deep RL approach is leveraged to generate
pricing policies without requiring a pre-specified model of
PEV charging demand. The adopted RL approach can learn
and optimize pricing strategies while interacting with the
environment. Firstly, the differentiated pricing problem is
formulated as a finite-discrete MDP. Then, TD3 algorithm is
employed to train neural networks to encode the current EVCI
state into pricing signals. The numerical results show that our
differentiated pricing mechanism can coordinate the operation
of a multiservice EVCI by preserving the targeted QoS for
each service class. Thereby, the CSP can dynamically adjust
pricing signals to incentivize PEV users to behave in ways that
improve the overall utilization and performance of the EVCI.

The proposed differentiated dynamic pricing mechanism can
be extended to minimize the negative impacts on the power
grid. Various charging services can impact the power system
differently. This is because each charging service class has a
unique charging rate, thereby the load demand of the facilities
varies according to the facility type. To minimize the negative
impacts on the power system, differentiated pricing should
motivate the PEV users to follow the valley-filling strategy.
Consequently, PEV users are encouraged to shift the request
of charging services to the time periods and the service classes
which can be safely accommodated by the power grid.
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