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ABSTRACT2

The sixth generation (6G) networks are expected to enable immersive communications and3
bridge the physical and the virtual worlds. Integrating extended reality, holography, and haptics,4
immersive communications will revolutionize how people work, entertain, and communicate by5
enabling lifelike interactions. However, the unprecedented demand for data transmission rate6
and the stringent requirements on latency and reliability create challenges for 6G networks to7
support immersive communications. In this survey article, we present the prospect of immersive8
communications and investigate emerging solutions to the corresponding challenges for 6G.9
First, we introduce use cases of immersive communications, in the fields of entertainment,10
education, and healthcare. Second, we present the concepts of immersive communications,11
including extended reality, haptic communication, and holographic communication, their basic12
implementation procedures, and their requirements on networks in terms of transmission rate,13
latency, and reliability. Third, we summarize the potential solutions to addressing the challenges14
from the aspects of communication, computing, and networking. Finally, we discuss future15
research directions and conclude this study.16

Keywords: 6G Networks, Immersive Communications, Extended Reality, Haptic Communication, Holographic Communication.17

1 INTRODUCTION

Ever since its birth, the communication technology has been a symbol of the modernization of human18
society, and the evolution of communication technology has accompanied the advance of civilization. The19
commercialization of electrical telegraph and telephone during the second industrial revolution boosted20
globalization by facilitating finance and trade overseas (Wenzlhuemer, 2013). The debut of vehicle-mounted21
mobile radio systems (“car phones”) and the analog first generation (1G) mobile telecommunication22
systems from the 1950s to 1980s enabled voice calls on the go (del Peral-Rosado et al., 2018). The second23
generation (2G) mobile communication systems, which introduced roaming and preliminary data services24
in the form of text messages, emerged amidst and as a part of the third industrial revolution (i.e., the25
digital revolution) (Billström et al., 2006). Then, the next two decades witnessed the proliferation of26
mobile Internet and mobile multimedia services brought by the third and fourth generation (3G and 4G)27
mobile communication technology, which revolutionized how people communicate and changed the world.28
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Nowadays, the fifth generation (5G) mobile communication systems are reshaping industries by facilitating29
the fourth industrial revolution (i.e., Industry 4.0) towards smart inter-connectivity and automation (Chen30
et al., 2021a).31

Accustomed to the convenience brought by the latest communication technologies, many people may not32
realize that ordinary daily activities such as video calls or zoom meetings were nothing more than science33
fiction merely three decades ago. Indeed, from the so-called “telephot” in the pioneering novel “Ralph34
124C 41+” to the video call scene in the classic movie “Back to the Future”, the simultaneous transmission35
of live image and sound was considered as a “technology of the future” in the most part of the twentieth36
century (Gooday, 2005; Fowler et al., 1986). When the fantasy of the past has become a reality, a question37
that naturally arises is: what will be the next revolutionary form of communications, potentially in the38
era of the sixth generation (6G)? Fortunately, we may again find clues in science fiction, with examples39
ranging from the famous scene of Princess Leia’s three-dimensional (3D) holographic message in “Star40
Wars” (Conti, 2008) to the virtual world “OASIS” in the metaverse presented in the recent film “Ready41
Player One” (Sparkes, 2021). The fact that such scenes created a long-lasting impact on a vast audience42
reflected people’s desire for more lifelike, immersive, and interactive communications (Xu et al., 2022).43

Unfolding exactly as depicted in science fiction or not, immersive communications will come to reality44
and shift the current communication paradigm in three aspects. First, rather than two-dimensional (2D)45
images displayed on a flat screen, immersive communications will deliver 3D images with parallax46
information. Second, in addition to audiovisual information, immersive communications will involve47
haptic information. Third, the pursuit of immersive experiences will further blur the boundary between the48
physical and the virtual worlds, allowing new forms of interactions across the two worlds. These paradigm49
shifts can significantly enrich communication experiences of users and enable a plethora of new use cases50
such as holographic 3D telepresencing (Zhang et al., 2022a), ultra-realistic online interactive sports (Next51
G Alliance, 2022), and immersive learning in education (Pellas et al., 2020), to name a few. In particular,52
immersive communications can also enable human-machine collaboration in industrial environments and53
propel the next industrial revolution, i.e., industrial 5.0 (Maddikunta et al., 2022). As a result, immersive54
communications are expected to have a profound impact on the landscape of communication industries and55
impact how people study, work, and entertain in the years to come.56

Motivated by the potentials of immersive communications, scientists and engineers over the world have57
been working on the development of related technologies, products, and platforms. Significant progress has58
been made in recent years, including but not limited to advancements in sensor systems and data capture59
techniques (Meyer et al., 2022; Dahiya et al., 2019), data processing and computing frameworks (Song60
et al., 2022; Petkov et al., 2022; Qian et al., 2022), and rendering and display devices (Hirayama61
et al., 2019; Xiong et al., 2021; Schmitz et al., 2020). Some component development of immersive62
communications is progressing faster than others, leading to the establishment of testbeds, prototypes,63
or even commercial products. Virtual reality (VR), as an example, has gained popularity, especially in64
the gaming industry (Jung et al., 2020). Devices such as VR headsets and haptic glove development kits65
are available in the market (Chen et al., 2022; Kugler, 2021), while researchers are building testbeds for66
extended reality (XR) (Huzaifa et al., 2022) and human-machine interaction with haptic feedback (Gokhale67
et al., 2020). As the aforementioned progress and efforts are paving the way for realizing immersive68
communications, advancements in communication and networking technologies will be indispensable.69

Despite the advent of 5G systems and the accompanying advancements in network capabilities, there70
are still many challenges to achieving immersive communications in various aspects of communications,71
networking, and computing. The data rate required to transmit live 3D images can be so large, e.g., on the72
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Table 1. List of main acronyms
1G - 6G First Generation - Sixth Generation 2D Two-dimensional
3D Three-dimensional 3GPP 3rd Generation Partnership Project
AI Artificial Intelligence AR Augmented Reality
D2D Device-to-device DetNet Deterministic Networking
DoF Degree of Freedom FoV Field-of-view
HI Haptic Interface IMU Inertial Measurement Unit
IRS Intelligent Reflecting Surface JND Just-noticeable Difference
LDPC Low-density Parity-check LFV Light-field Video
LIDAR Light Detection and Ranging LoS Line-of-sight
LSTM Long Short-term Memory MEC Mobile Edge Computing
MIMO Multiple-input and Multiple-out MR Mixed Reality
MSE Mean Squared Error MTP Motion-to-photon
MVC Multi-view Coding NOMA Non-orthogonal Multiple Access
O-RAN Open Radio Access Network PoV Persistence of Vision
QoE Quality of Experience QoS Quality of Service
THz Terahertz TSN Time-sensitive Networking
VR Virtual Reality XR Extended Reality

level of terabits per second (Tbps), that even 5G cannot support it, especially for high-resolution and 360◦73
videos. The required end-to-end delay for delivering haptic information can be as low as a few milliseconds74
for a satisfactory user experience (Maier and Ebrahimzadeh, 2019; Sim et al., 2021). The synchronization75
of data streams from multiple cameras or sensors and that of audiovisual and haptic information in76
data transmission also create new challenges. The storing and processing of massive data for immersive77
communications demand new architectures and techniques for caching and computing (Glushakov et al.,78
2020; Taleb et al., 2021; Liu et al., 2021). Moreover, artificial intelligence (AI) is necessary both for79
supporting applications such as human-machine collaboration and user viewpoint/gesture prediction, and80
for orchestrating network resources to satisfy the demanding requirements of immersive communications81
(Tataria et al., 2021; Zawish et al., 2022; Maier et al., 2018).82

Recognizing the importance of immersive communications, its recent developments, and the technical83
challenges, we present a comprehensive review of immersive communications in this article. With a84
focus on the communication, networking, and computing perspectives, we illustrate the challenges and85
potential solutions to immersive communications in the era of 6G communications. In specific, we focus86
on immersive communications by looking into its three main forms, i.e., XR, haptic communication,87
and holographic communication in the remainder of this article. Section 2 introduces representative use88
cases of immersive communications to illustrate its promising prospect. Section 3 presents the concepts,89
basic implementation procedures, and requirements of XR, haptic communication, and holographic90
communication to paint an overall picture of immersive communications. Section 4 focuses on the91
challenges and the state-of-the-art solutions towards realizing each of the three forms of immersive92
communications. Section 5 discusses some open issues regarding immersive communications in 6G, and93
Section 6 concludes this article.94

2 USE CASES

There are many potential use cases for immersive communications, relating to both commercial and95
enterprise scenarios and ranging from gaming to industrial control. In this section, we detail four96
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representative use cases to illustrate the promising prospect of immersive communications. A list of97
representative use cases is given in Table 2.98

2.1 Immersive Gaming and Entertainment99

XR provides the ultimate gaming and entertainment experience by presenting convincing gaming100
environments through XR devices such as VR headsets or smartphones. Players can interact with each101
other without feeling a barrier between the virtual and the physical worlds (Bastug et al., 2017). XR devices102
display the virtual world of the game to players and capture their actions such as eye movements to allow103
them to interact with the virtual world (Elbamby et al., 2018b). With the success of advanced XR gaming104
consoles and headsets, e.g., Oculus and PlayStation VR, as well as games and platforms, e.g., Pokemon Go105
and Roblox, game developers are striving to offer more flexible XR experiences with wireless XR devices106
(Maimone and Wang, 2020). Through wireless XR devices, players can interact freely with other players107
or virtual objects, e.g., in XR sporting (Kim et al., 2018). Furthermore, haptic communication devices108
can be combined with XR to significantly enhance the immersive gaming experience. Transducer arrays,109
which can be attached to XR devices, can capture haptic data from players. As a result, XR devices can110
fuse haptic information into the virtual world and provide haptic feedback to players by mapping motions111
in the game to players’ sensations. Players can use haptic devices, such as gloves, to control objects in the112
game (Hashimoto and Ishibashi, 2006) or synchronize their sensations with other players (Mauve, 2000).113

2.2 Telesurgery114

In telesurgery, surgeons remotely manipulate robotic arms to operate on patients by utilizing control115
panels and real-time display of the surgical scenes. Telesurgery is beneficial in removing the barrier of116
distance among surgeons and patients, tackling the scarcity of surgeons in remote or difficult-to-reach117
areas such as countryside, battlefields and spacecraft, and facilitating the collaboration of surgeons at118
different locations (Choi et al., 2018; Mohan et al., 2021). The assistance of robotic arms can enhance119
the performance of surgeries by detecting and canceling out the physiological tremors of surgeons’ hand120
motions (Kumar et al., 2020), performing delicate surgical operations and minimizing the surgical incision121
areas for reducing blood loss and incision-related complications (Diana and Marescaux, 2015). To guarantee122
the performance of surgeons, the display of surgical scenes to them should be highly precise and informative.123
To this end, 3D video of the surgical scenes with depth information, can be displayed to the surgeons, e.g.,124
by using passive polarized glasses, and an eye-tracking mechanism can be used to quickly center the area125
where the surgeon is viewing in the visual display (Stark et al., 2015). In addition, augmented reality (AR)126
can be leveraged to overlay medical images such as ultrasound images and computed tomography (CT)127
images onto the video of surgical scenes (Liu et al., 2016b). Besides visual information, haptic information128
in the surgeries, such as the texture of tissues and the tension in tying surgical sutures, can be captured by129
the haptic devices on the robotic arms and then transmitted to and reproduced by the haptic devices at the130
surgeons’ side (Patel et al., 2022; El Rassi and El Rassi, 2020).131

2.3 Immersive Learning132

Immersive learning integrates emerging technologies, including XR and haptic technologies, into teaching133
to provide students or trainees an interactive and engaging learning experience (Affan et al., 2021; Laamarti134
et al., 2014). During the recent COVID-19 pandemic, traditional methods of teaching, e.g., online courses,135
encountered the problem of engaging students in the learning process (Jumreornvong et al., 2020; Fitzek136
et al., 2021). To this end, immersive learning, as a potential solution to boost student engagement, is137
receiving increasing attention, especially from primary and secondary schools. With immersive learning,138
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avatars of students and teachers can be created in the virtual world (Gupta et al., 2019), and each student is139
allowed to interact with the avatars of teachers and other students via the senses of sight, hearing, and touch.140
Such interactions can keep students’ attention in learning process. Immersive learning is categorized141
as either asynchronous or synchronous. Training some skills, such as sports skills and cooperative142
tele-operation skills for industrial robots, requires real-time interactions, which can encourage active143
participation in the learning process (Kaluschke et al., 2021; Lee et al., 2021). Utilizing XR, haptic144
communication, and holography communication technologies, teachers can check whether the moves and145
actions of their students are correct, and provide immediate corrections if not, regardless of their physical146
distance from each other. For the skills that do not need real-time interactions, information regarding147
teachers’ positions, velocities, and applied forces can be recorded and displayed to students via XR and148
haptic devices asynchronously (Tan et al., 2020). Such “record-and-replay” strategy can allow a much149
larger number of students to learn at their own pace, despite the absence of real-time interactions (Steinbach150
et al., 2018; Yokokohji et al., 1996a,b).151

2.4 Holographic Teleconference152

Teleconference is a convenient choice for users to remotely collaborate with each other. In the current153
video teleconferencing, remote participants can only be displayed on flat screens, which results in a very154
different perception in a virtual conference from that in an on-site conference. In order to provide an155
immersive experience in teleconferences, holographic teleconferences depict realistic 3D presence for156
people by projecting 3D images of remote participants as holograms (Jiang et al., 2021; Zhang et al., 2022a;157
Zhou et al., 2022b). Specifically, when a remote participant joins the holographic teleconference, 3D158
visual information and the corresponding audio information of the participant can be captured by multiple159
sensors, transmitted, and then reconstructed as a hologram on the side of other participants to provide 3D160
audiovisual information for real-time interactions among participants (Strinati et al., 2019). In this case,161
holographic teleconference can reduce the impact on participants of the separation between the virtual162
and the physical worlds. In addition to the audio and video information, participants in a holographic163
teleconference are able to obtain haptic information from others to achieve an immersive experience with164
the sense of physical contacts (Tataria et al., 2021). For example, a participant with haptic sensors can165
sense a handshake with others, thereby enabling an immersive experience similar to in-person interactions.166

3 IMMERSIVE COMMUNICATIONS: CONCEPTS AND REQUIREMENTS

The use cases for immersive communications and their potential importance in 6G are intuitive.167
Understanding immersive communications beyond the use cases, however, requires answers to the question168
“what are immersive communications?”. Since the research of immersive communications is in an early169
stage, there is no commonly-agreed definition yet.170

We consider immersive communications as a communication paradigm along with the supporting171
technologies that allow users to have lifelike experiences in the physical world, the virtual world, or both,172
with interactions via 3D audiovisual and/or haptic information exchange. In this section, we focus on the173
three main forms of immersive communications as illustrated in Fig. 1, i.e., XR, haptic communication,174
and holographic communication.1 Via introducing the concept, basic implementation procedure, and175
the network requirements for each of the three forms, we aim to sketch an overall picture of immersive176
communications.177

1 Note that the three forms may co-exist since a use case may involve more than one form, and additional forms of immersive communications may exist or
emerge.
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Table 2. Representative use cases of immersive communications

Use Cases References

Gaming (Carroll and Yildirim, 2021; Hu et al., 2019)

E-learning
(Kavanagh et al., 2017; Harvey et al., 2021; Ahmad et al., 2021)
(Freina and Ott, 2015)

Teleconference (Kantonen et al., 2010; Zhang et al., 2022a)

Tele-operation (Lee et al., 2021; Choi et al., 2018; McCloy and Stone, 2001)

E-heath (Jumreornvong et al., 2020; Riva, 2000)

E-commerce (Ornati, 2022; Speicher et al., 2017)

Smart home (Zhu et al., 2020; Lertlakkhanakul et al., 2008)

Manufacturing (Aijaz and Sooriyabandara, 2018)

Tourism and travel (Guttentag, 2010)

Metaverse (Wang et al., 2022b)

3.1 Extended Reality178

In this subsection, we introduce the concept of XR and investigate two respective XR technologies: VR179
and AR. Then, we examine their implementation procedure and service requirements for 6G.180

3.1.1 Concept181

XR covers a range of technologies, including VR, AR, mixed reality (MR), and everything in between182
(Hu et al., 2020). In general, XR combines the physical and virtual worlds through extensive video183
processing and data fusion. Using XR devices, users can interact with virtual avatars and access XR content.184
Under the umbrella of XR, a variety of technologies are defined depending on the level of virtuality. Two185
representative technologies in XR are AR and VR. With the lowest level of virtuality, AR focuses on186
constructing artificial objects according to the objects (e.g., buildings, faces, or vehicles) residing in the187
physical world and enabling users to interact with them. Conversely, with the highest level of virtuality, VR188
creates an entirely artificial scenery and allows users to interact with the objects in a completely artificial189
environment generated by the headsets. In MR, the concepts of VR and AR can be combined to create190
different levels of virtuality. In spite of the variety of XR technologies, the methods to provide immersive191
experiences to users are similar, which combine sensory data with virtual environments to produce artificial192
sceneries, from either the physical or virtual worlds, using headsets or portable display devices.193

The first VR flight simulator was developed in 1970s to train pilots for flights without exposing them to194
risks of flying (Earnshaw, 1993). In the early stage, VR headsets were cumbersome, and processing VR195
content required large supercomputers. Nowadays, VR technologies have gained momentum due to recent196
advances in computing and display technologies. The headsets, such as Oculus head-mounted displays and197
HTC Vive, are affordable and can support ultra-high resolutions (3840×2160 in Pimax 8K) and refresh198
rates (up to 120 Hz) (Hu et al., 2020). At the present time, most VR content is processed and rendered by199
user devices. Rendering content with a high level of virtuality requires extensive computing power. For200
a VR headset, a console is required to supply additional computing power to the headset, while a wired201
connection restricts the user to a workstation. Therefore, wireless VR is the primary focus of VR research202
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Figure 1. Main forms and exemplary use cases of immersive communications.

now (Elbamby et al., 2018a). In addition, multi-sensory XR, as another future vision of XR, integrates203
human senses and perception, including visual, auditory, olfactory, and tactile into XR content, enabling204
a truly immersive experience. This requires the confluence of multiple disciplines, including artificial205
intelligence, computer vision, biology, ultra-low-latency networking, etc., while linking the real and virtual206
worlds (Hu et al., 2021; Wang and Li, 2022).207

3.1.2 Basic Implementation Procedure208

While XR comprises several technologies with different levels of virtuality, its implementation procedure209
can be summarized into three steps: content transmission, rendering, and feedback collection. For each of210
the above three steps, communication networks can play an important role.211

In the step of content transmission, VR content generated by VR content providers is transmitted212
from content servers and VR devices. VR devices play 360° spherical videos, which can be mapped to213
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equirectangular videos. During VR content playback, these equirectangular videos are mapped onto a214
sphere, in which the user is situated at the center, to provide a 3D stereoscopic experience. The key feature215
of VR video is the ultra-high spatial resolution. A VR video has a resolution of up to 12K (11,520 × 6,480),216
while the conventional video normally has a resolution of 4K or less. Transmitting full equirectangular217
videos from content servers requires an ultra-high data rate. Thus, tile-based transmission is usually218
adopted in VR video delivery. As shown in Fig. 2, a content server can divide equirectangular videos219
spatio-temporally into video chunks, i.e., tiled videos, and only the tiled videos within a user’s field-of-view220
(FoV) is delivered (Yadav and Ooi, 2020; Son et al., 2018). In this way, VR content can be delivered in a221
significantly reduced data size. However, the tile-based solution requires VR headsets to detect and estimate222
user viewpoints to determine the region of FoV. Content servers should select which tiled videos to be223
delivered to users based on both the user’s real-time viewpoint and network conditions (Zare et al., 2016).224
In terms of AR, AR devices generate raw content by the sensors at the local devices, such as cameras in225
smartphones (Ren et al., 2020). In contrast to VR devices, which download content from a content server,226
AR devices can upload raw content to the server for further processing. Specifically, raw videos captured227
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by AR devices are clipped into frames with a specific image format, and those frames can be offloaded to228
the server. The processed content is then delivered to and played on the AR devices.229

In the step of content rendering, tiled VR videos transmitted to VR devices are stitched together,230
and computing resources are required to project 2D stereoscopic videos to 3D stereoscopic videos, i.e.,231
generating two different videos for the left and right eyes respectively. This content rendering step can be232
performed on VR devices once all the required content has been received. In addition, due to the limited233
computing capability of VR devices, the workload of content rendering can be offloaded to adjacent edge234
servers enabled by mobile edge computing (MEC) (Dai et al., 2020; Dang and Peng, 2019; Sukhmani235
et al., 2018). Content processing and rendering are more complex in AR than in VR, where AR processing236
procedure is shown in Fig. 3. Once the raw AR content, i.e., video frames, is captured by an AR device,237
a location tracking step determines the device’s location and position according to the captured frames.238
Then, a mapping step establishes a virtual coordinate of the environment based on the result of the tracker,239
and an object recognizing step detects the objects to process in the video frames (Qiao et al., 2018; Ren240
et al., 2019). Based on the identified objects, the augmented data is retrieved from the local cache or241
network servers and attached to the frames accordingly. Specifically, a template matching step attaches the242
augmented data to the frames, and an annotation rendering step renders the processed frames at AR devices.243
The computing workload for conducting the above functions can be fully or partially offloaded from AR244
devices to network servers to minimize computing latency or improve energy efficiency at AR devices.245

After receiving and playing XR content, XR devices collect user feedback to select the content to deliver246
next. VR and AR devices have similar methods for feedback collection, with sensors or cameras attached247
to the devices to capture users’ actions and motions. Moreover, VR requires additional feedback regarding248
the user’s viewpoint. A user’s viewpoint determines which tiled videos to deliver to render the FoV of the249
user. The real-time viewpoint can be captured by motion tracking modules on a VR device. Additionally,250
motion emulation can be used to simulate a user’s viewpoint movement on VR devices. VR devices can251
request the content proactively based on the emulation results to avoid playback performance degradation,252
such as rebuffering (R. Yao and Hoberman, 2017). In addition, for interactive applications such as XR253
gaming, the sensors connected to XR devices, such as inertial measurement units (IMUs), haptic gloves,254
etc., gather inputs from the users. Depending on the inputs, the XR devices can either process the inputs255
locally or upload the inputs to content servers for computing and updating.256

3.1.3 Requirements257

In general, XR has stringent latency requirements for accurate and smooth content playback based on258
user motions. In terms of VR, motion-to-photon (MTP) delay is the most important delay metric, which259
measures the time difference between the user’s viewpoint movement and corresponding reflections at the260
output of the VR headset. If MTP delay is larger than 20 ms, VR users may feel spatially disoriented and261
dizzy, referred to as VR sickness (R. Yao and Hoberman, 2017). Current VR industries target lower MTP262
delay (below 15 ms) for ideal user experience (Mangiante et al., 2017). In addition, for VR applications263
requiring extensive interactions, the requirement of response time for rendering the interactions into VR264
content can be longer than the MTP delay requirement. For example, in VR gaming, a latency of up to265
50 ms for responding to player actions can be noticeable yet currently acceptable (Zhang et al., 2017). In266
terms of AR, the content is mainly captured by local devices. The MTP delay in AR can be minimized by267
playing the raw content captured by AR devices before the content is processed. However, users’ immersive268
experiences can be adversely affected by delayed processing for rendering the user’s motions into AR269
content. The delay requirements for reproducing user interactions in AR content are 75 ms for online270
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gaming and 250 ms for telemetry based on the sensitivity of the human vestibular system (Mohan et al.,271
2020).272

Furthermore, in order to achieve low content delivery latency, an ultra-high data transmission rate273
is required for delivering XR content. Specifically, users view VR videos on headsets placed a few274
centimeters from their faces. Therefore, high-resolution videos are required for VR applications to improve275
user experience. Although tile-based content transmission can reduce the data size in VR content delivery,276
data rate requirements can still be 2.35 gigabits per second (Gbps) or above for VR video delivery, which277
is more than 100 times higher than the data rate for current high-definition video streaming (Mangiante278
et al., 2017). For interactive XR applications, such as VR gaming and AR, extensive video processing is279
required. The computing capability of both network servers and user devices dominates the performance of280
interactive XR applications, and limited computing capability in the network can be another bottleneck for281
XR content delivery (Elbamby et al., 2018b).282

3.2 Haptic Communication283

In this subsection, we first provide the concepts of haptics and haptic communication. Then, we detail the284
implementation procedure and service requirements of haptic communication in the 6G era.285

3.2.1 Concept286

The term haptics initially referred to interactions between humans and objects in the physical world287
that involve the sense of touch, e.g., swiping a phone screen (Steinbach et al., 2012). The development of288
tele-operation technologies over the past few decades have expanded the definition of haptics to all forms289
of interactions involving the sense of touch, including interactions between humans and virtual objects in290
the virtual world or the tele-operated machines in the physical world (Tan et al., 2020; O’malley and Gupta,291
2008). The information conveying the sense of touch in such interactions is referred to as haptic information.292
The sense of touch relates to different types of mechanoreceptors in human skin and muscles, and the293
haptic information can be broadly classified into tactile and kinesthetic information (Abiri et al., 2019).294
Specifically, tactile information is related to the sense of surface texture, friction, and temperature felt by the295
human skin when in contact with objects, and kinesthetic information is related to the sense of position and296
motion of limbs along with the associated forces (Srinivasan and Basdogan, 1997; Steinbach et al., 2012).297
A device that supports such haptic interactions and the transmission of haptic information is referred to as298
haptic interface (HI) or haptic device (Culbertson et al., 2018). An HI is comprised of haptic sensors and299
haptic actuators responsible for capturing and displaying haptic information, respectively (Antonakoglou300
et al., 2018). An HI can capture and display a variety of haptic information, and the number of independent301
coordinates used by the HI to specify the haptic information is referred to as the degrees of freedom (DoF)302
of the HI (Promwongsa et al., 2020).303

Haptic communication refers to the process in which humans communicate and interact through the304
sense of touch over a communication network (Steinbach et al., 2012). The communication network305
supporting haptic communication is named as Tactile Internet in some existing works (Ali-Yahiya and306
Monnet, 2022).2 With the use of HIs and the transmission of haptic information over communication307
networks, users can interact with virtual objects in the virtual world or remotely operate machines in the308
physical world (Steinbach et al., 2012). The transmission of haptic information can be unilateral, bilateral,309
or multilateral, depending on the number of users participating in the transmission. In the cases of one310

2 Haptic communication and the Tactile Internet are related as a service and a medium as in the case of voice over IP (VoIP) services and the Internet (Aijaz
et al., 2016).
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Figure 4. Implementation procedure of bilateral haptic communication.
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Figure 5. Implementation procedure of multilateral haptic communication.

user manipulating a remote machine or two users interacting with each other, the haptic communication311
is unilateral (i.e., an HI either sends or receives haptic information) or bilateral (i.e., an HI both sends312
and receives haptic information). In other cases, haptic information can be transmitted multilaterally,313
e.g., in cooperative tele-operations involving multiple users. This is because the behavior of each user314
may have an effect on other users, resulting in interconnections and couplings in the exchanges of haptic315
information (Shahbazi et al., 2018; Feth et al., 2009). Since haptic communication centers on humans,316
some studies examine the human-in-the-loop nature of haptic communication and predict a paradigm shift317
from content delivery to skillset delivery, as a result of the emergence of haptic communication (Simsek318
et al., 2016; Ali-Yahiya and Monnet, 2022).319

3.2.2 Basic Implementation Procedure320

The implementation procedure of haptic communication depends on how the haptic information is321
transmitted. For bilateral haptic communication, the implementation procedure mainly consists of four322
steps: haptic information acquisition, data reduction, data transmission, and haptic display, as shown in323
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Fig. 4.3 In the first step, haptic information, including tactile and kinesthetic information, can be acquired324
by haptic sensors in HIs. In terms of tactile information, force sensors, thermistors, and laser scanners are325
mainly used in the measurement or evaluation of friction and hardness, warmth, and macroscopic roughness,326
respectively (Liu et al., 2017; Lederman and Klatzky, 2009; Okamoto et al., 2012; Fishel and Loeb, 2012).327
Haptic sensors such as IMUs are responsible for the acquisition of kinesthetic information, e.g., tracking the328
position, velocity, and angular velocity of sensors positioned at different parts of a human (Steinbach et al.,329
2018). The haptic sensors of interest can be dynamically selected, and only the haptic information captured330
by the selected haptic sensors needs to be collected for efficient haptic information acquisition (Van331
Den Berg et al., 2017). Due to the potentially high DoF of an HI, data reduction is adopted in the332
second step to reduce the amount of haptic data without degrading the users’ immersive experience333
too much. Specifically, waveform-based representation and feature extraction algorithms can be used in334
the compression of tactile information, and perceptual coding techniques based on perceptual masking335
phenomenon can be applied for compressing kinesthetic information (Jayasankar et al., 2021; Steinbach336
et al., 2010). In addition, predictive methods (also called predictive coding techniques) can be leveraged337
to reduce the amount of transmitted haptic data by inferring upcoming haptic information (Steinbach338
et al., 2018). Haptic data reduction can be carried out at either HIs or network servers (Fitzek et al.,339
2021; Steinbach et al., 2012). Existing methods of haptic data reduction are detailed in Section 4.2. In340
the third step, the haptic data is transmitted over a communication network, resulting in a haptic data341
stream between the two HIs. The haptic data stream can consist of multiple haptic data substreams, each342
of which corresponds to a type of haptic information. Data traffic patterns and QoS requirements can343
vary across different haptic data substreams due to the differences in the sensitivity of human perception,344
such as reaction time and the range of perception (Fitzek et al., 2021). The respective QoS requirements345
of haptic data substreams should be satisfied, and the haptic data substreams should be synchronized in346
transmission. Moreover, a haptic data stream should be synchronized with audiovisual data streams in the347
case of immersive communications involving multiple modalities (Cizmeci et al., 2017). In the last step,348
i.e., haptic display, haptic actuators in the HI stimulate human mechanoreceptors to create realistic haptic349
sensations when an HI receives haptic data (Wang et al., 2019). In general, haptic display includes tactile350
display, e.g., adjusting the temperature, and kinesthetic display, e.g., creating motion and changing muscle351
tension (Ozioko et al., 2020; Steinbach et al., 2018; Pacchierotti et al., 2017). In the case when haptic data352
transmission is unreliable or delayed, predictive methods can be leveraged at the receiver side to estimate353
the haptic data not received timely for smooth haptic display.354

In the case of multilateral haptic communication, three additional steps take place besides the355
aforementioned four steps, especially for cooperative tele-operation applications (Feth et al., 2009). The356
implementation procedure of multilateral haptic communication is shown in Fig. 5, and the three additional357
steps are highlighted with green rectangles. First, even if there is no direct haptic interaction between two358
users, they can still share haptic information (Takagi et al., 2017). The data format and content of the359
transmitted haptic information in such haptic information sharing may differ from those of the transmitted360
haptic information in direct haptic interactions (Shahbazi et al., 2018). Second, it is necessary to properly361
fuse the haptic information from multiple users, e.g., the weighted sum, when their behaviors affect other362
users (Thanh et al., 2012; Fujimoto et al., 2008). Third, when one user’s behavior affects multiple users at363
the same time, distributing haptic information to multiple users according to their different behaviors is364
required to achieve precise haptic display for individual users, e.g., different reaction forces are applied to365
tele-operators (Chen et al., 2016).366

3 In unilateral haptic communication, either the step of haptic information acquisition or the step of haptic display is skipped depending on whether an HI is
sending or receiving haptic information.
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3.2.3 Requirements367

The data transmission rate requirement of haptic communication is determined by the packet rate and size368
of haptic data. The packet rate is the number of packets transmitted by an HI per second, which depends369
on the information update rate. For the smoothness and fidelity of haptic perception, haptic information370
typically needs to be updated at a rate above 1,000 times per second (Choi and Tan, 2004). If each update371
of haptic information is packetized and transmitted, the corresponding packet rate of haptic data is above372
1,000 packets per second (Xu et al., 2015). The packet size of haptic data largely depends on the DoF of the373
haptic data (Holland et al., 2019). For kinesthetic data, controlling one movable component (e.g., a joint)374
on a tele-operator (e.g., a robotic arm) needs six coordinates to be specified to achieve 6 DoF, with three375
coordinates specifying the transitional motion in the 3D space and the other three specifying the rotational376
motion including roll, pitch and yaw, respectively (Promwongsa et al., 2020). Since a human hand consists377
of multiple movable components (e.g., finger joints and wrist joints), its kinesthetic data can be described378
by a 24-DoF model (Cobos et al., 2008). In addition, for reproducing tactile information with high fidelity,379
a dense array of haptic sensors/actuators needs to be deployed on a user (Hoggan et al., 2007). For example,380
for reproducing vibrotactile data, four actuators are deployed around one fingertip (Baik et al., 2020). As a381
result, tactile data can involve even higher DoF than kinesthetic data (Holland et al., 2019).382

The delay tolerance of haptic communication can be as low as 1 ms since the packet rate of haptic383
data can be above 1,000 packets per second (Fettweis et al., 2014). In practice, the delay requirement384
of haptic communication is determined by factors including the perceptual sensitivity of receivers, the385
dynamics of haptic interaction, and specific operation or interaction. First, higher perceptual sensitivity386
for haptic information generally indicates the need for a higher packet rate and thus a stricter delay387
requirement (Chaudhuri and Bhardwaj, 2018). For example, while touring a virtual museum of natural388
history, archaeologists can have a stricter delay requirement than the majority of visitors due to their389
higher perception sensitivities of artifacts and specimens. Second, similarly, higher dynamics of haptic390
interaction generally call for a higher packet rate and a lower delay. Specifically, the delay requirement391
when such dynamics is high (e.g., in tele-soccer), medium (e.g., in telerehabilitation) and low (e.g., in392
tele-maintenance) is 1-10 ms, 10-100 ms and 100-1,000 ms, respectively (Holland et al., 2019). Third, a393
delay below 2 ms is required for remote machine manipulation, while a delay below 50 ms is required for394
remote machine monitoring and maintenance (Aijaz and Sooriyabandara, 2018).395

The reliability of haptic communication can be evaluated in terms of bit error rate, packet loss rate,396
delay-bound violation probability, or prediction error when haptic data prediction is adopted (Promwongsa397
et al., 2020). The requirement for the reliability depends on factors such as the specific communication398
scenario and whether or not haptic reduction is used. First, in terms of delay-bound violation probability,399
the reliability of haptic communication in immersive gaming is required to be above 99.9% (Holland400
et al., 2019). In contrast, when critical operation tasks are performed based on haptic information, higher401
reliability of haptic communication is required. For example, the reliability of above 99.999% is required402
for haptic communication in telesurgery and remote machine manipulation, (Gupta et al., 2019; Aijaz and403
Sooriyabandara, 2018). Second, when haptic data reduction is adopted, the same packet loss or bit error404
rate can cause more degradation in the haptic information (Steinbach et al., 2010). As a result, the use of405
haptic data reduction can result in a stricter requirement for the reliability of haptic communication. For406
example, the reliability above 99.999% is required in immersive gaming when haptic data reduction is407
adopted (Holland et al., 2019).408
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3.3 Holography and Holographic Communication409

In this subsection, we introduce holography and holographic communication, beginning from presenting410
the concept and different types of holography, followed by the basic implementation procedure of411
holographic communication, and ending with the data transmission rate and delay requirements.412

3.3.1 Concepts413

As the name suggests, holographic communication depends on holography technology, which has made414
significant progress in the past decade. There are different stages in the development of holography415
technology. Optical holography generates holograms via recording and recreating optical wavefront, and416
the corresponding holograms are recorded interference patterns (e.g., on photographic emulsions) of417
an “object wave” and a “reference wave”. When the recorded interference pattern is illuminated by the418
reference wave, a 3D light field can be recreated using diffraction. The original idea of hologram was419
developed in 1940s, and real breakthrough was made in 1960s thanks to the development of laser (Gabor,420
1972). Later, with advances in electronic devices, digital holography emerged, which uses image sensors421
to capture interference patterns. In digital holography, recording is done optically, while a 3D image is422
reproduced via numerical calculation of light wave diffraction using methods such as Fourier transform423
(Tahara et al., 2018). The latest development of holography is computer-generated holography, in which424
both the interference pattern and the 3D image in display are generated digitally using a computer (Sahin425
et al., 2021). With computer-generated holography, the object to be displayed does not have to be physically426
present, which yields great flexibility at the cost of high computational complexity (Shimobaba et al., 2022).427
Despite of the advance in recent years, generating dynamic 3D holograms in real time is challenging. As a428
result, alternative approaches to displaying 3D images emerge, which are sometimes referred to as “false429
holography”. Such approaches use glass panes or other “tricks” to create illusions of 3D images (Jones et al.,430
2007; Kerrigan, 2018). Among the false holography techniques, volumetric display has attracted significant431
interest in the field of computer-aided design and medical imaging (Favalora, 2005). Volumetric display,432
an umbrella term for many different techniques, renders volume-filling 3D images via the generation,433
absorption, and scattering of illumination in a confined space, e.g., a cube or cone (Yang et al., 2016). The434
study of volumetric display is active with exciting experiments (Smalley et al., 2018), and commercial435
products are also available (Gibney, 2019). Other approaches to imitate 3D display include the use of436
multiple projectors and a human-size retroreflective cylinder (Gotsch et al., 2018).437

Based on either true holography or “false holography”, holographic communication is about transferring438
data representing dynamic 3D images of a physical object over a network and displaying the object in439
3D at the receiver.4 Integrating 3D data capturing, processing, transmission, and rendering, holographic440
communication is expected to enable exciting new services in 6G (Strinati et al., 2019; Clemm et al., 2020).441
At the moment, there is no consensus on the scope of holographic communication in the literature, and442
some researchers consider the transferring and rendering of 3D data in AR/VR as a type of holographic443
communication (Essaili et al., 2022). In this review, holographic communication refers to data transfer444
for autostereoscopic 3D display, i.e., 3D images that can be viewed by naked eye without the aid of445
eyewear or headsets and, ideally, are different when viewed from different positions, angles, or tilts. The446
3D display at the receiver can be rendered via real holography, false holography such as volumetric display,447
or other techniques as long as the objective of autostereoscopic 3D display is achieved. Similar to existing448

4 Note that the term “holographic communication” is also used in the literature of massive MIMO and IRS but with a different and unrelated meaning (Dardari
and Decarli, 2021).
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Figure 6. Implementation procedure of holographic communication.

multimedia communications, the content of holographic communication can be either generated in real449
time or recorded, and the communication mode can be unicast, multicast, or broadcast.450

3.3.2 Basic Implementation Procedure451

Although various approaches for holographic communication differ in the implementation procedure, the452
general process includes the steps of data capture, processing, transmission, and rendering.453

Except for computer-generated holography, a capture system is required to record 3D images of a physical454
object. An ideal capture system for holographic communication would capture the light field, i.e., all the455
information of each light ray, in the target scene (Jiang et al., 2021). In practice, capture is conducted with456
visual sensors such as a camera array (Nakamura et al., 2019) or light detection and ranging (LIDAR)457
sensors (Fratz et al., 2021). The depth information of the object of interest is either directly captured (e.g.,458
in the case of a capture system with LIDAR sensors) or computed in the subsequent data processing step459
(e.g., in the case of a capture system with a camera array). The performance of the visual capture system460
depends on factors such as the number of sensors and the camera sampling rate (Jiang et al., 2021).461

In the data processing step, the depth information of target objects in the scene is computed (if not462
directly captured), and the output from capture sensors is fused to form a composite 3D representation of463
the captured scene (Javidi et al., 2005). For example, in digital holography, a computer can process 2D464
images taken from different angles and tilts by a camera array to form a single 3D representation of the465
captured scene (Essaili et al., 2022). The fusion of images may help achieve visualization enhancement466
in the rendered 3D images such as improvement in the resolution and contrast (Javidi et al., 2005),467
and it can be conducted either solely at the transmitter side or with the help of an edge server. In468
addition, the data processing step is responsible for the compression of the fused data to speed up the469
transmission and reconstruction, and reduce the required data transmission rate and storage in holographic470
communication (Kurbatova et al., 2015; Cheremkhin and Kurbatova, 2019). The compressed data for the471
3D representation is then encoded and transmitted over a network.472

At the receiver side, the received data is decoded using one or multiple chosen codecs and decompressed.473
The captured scene is then reconstructed, possibly with the help of an edge server, and rendered on a474
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display device. An ideal display device for holographic communication would regenerate the light field in475
the captured scene to create an illusion that the user is placed in the scene. In practice, creating such an476
illustration is difficult as it requires each point (e.g., each pixel) of the display device to emanate different477
light rays in different directions. However, given the limitations of human perception, the feeling of visual478
immersion can be created by using equipment such as a cylindrical light field display (Gotsch et al., 2018),479
a persistence of vision (PoV) display (Gately et al., 2011), or a static volumetric display device (Kumagai480
et al., 2021). Such devices render 3D images by using a large curved display to fill the user’s FoV, exploiting481
the phenomena of a lingering afterimage on the retina, and dynamic turning on/off of voxels in a confined482
3D space, among other methods for creating illusions of 3D images.483

It is worth noting that holographic communication may also involve audio data capture, processing,484
and rendering. In such a case, capturing the sound field in the target scene and ensuring audio and485
video synchronization are important for users to enjoy an immersive holographic communication486
experience (Jiang et al., 2021).487

3.3.3 Requirements488

Holograms mainly come in two types, namely volumetric-based holograms and image-based holograms.489
The transmission of the two types of holograms requires different data rates, ranging from hundreds of490
Mbps up to Tbps (Clemm et al., 2020). For volumetric-based holograms, a physical object is represented491
as a set of 3D pixels or voxels, such as a point cloud. Transmitting a point cloud targeting an object492
requires a data rate on the level of hundreds of Mbps to several Gbps, depending on the resolution of the493
3D content (FG-NET2030, 2020). For example, to fully represent a human, the point cloud in each frame494
typically consists of 105 to 106 points, while each point needs 15 bytes of data to represent the color and 3D495
coordinate of the point. In the case of 30 frames per second, the data rate requirement is between 300 Mbps496
and 3 Gbps (Essaili et al., 2022; Selinis et al., 2020). For image-based holograms, such as light-field video497
(LFV), an object is presented by an array of images captured at different angles, tilts, and/or positions. An498
LFV-based hologram can be more precise as compared with a volumetric-based hologram, especially in499
high resolution when a large number of images from different tilts, angles, and positions are used per frame500
(Jiang et al., 2021). For example, if the 3D representation of an object requires a separate image every501
0.3◦, a hologram with an FoV angle range of 30◦ and a tilt range of 10◦ needs 3,300 separate 2D images.502
In order to transmit an LFV-based hologram for a human-sized object, the required data rate should be503
between 100 Gbps and 2 Tbps (Clemm et al., 2020).504

To support real-time holographic communication, the overall delay, including data capturing, processing,505
transmission, and rendering delay, should be less than 100 ms (He et al., 2023). In addition to low delay,506
synchronization is important to holographic communication. Generally, the hologram of objects or humans507
may be sampled by multiple sensors from different angles and different distances. In this case, data508
from different sensors should be synchronized in transmission (Strinati et al., 2019). Taking holographic509
teleconference as an example, as multiple participants can join the teleconference from different locations,510
multi-source synchronization is necessary for them to have good quality of experience (QoE) in holographic511
communication. Otherwise, a part of the rendered hologram can be slightly ahead or behind relative to the512
rest of hologram for some users, resulting in poor QoE (Lesniak and Tucker, 2018). Moreover, holographic513
communication can involve multi-sensory information, e.g., the haptic, audio, and video information (Taleb514
et al., 2021). In this case, the synchronization of different sensory information in transmission is also515
important for a participant to see the hologram, hear the voice, as well as receive touch-sensory feedback516
from others without a degradation of the immersive experience due to out-of-sync issues. For holographic517
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communication involving the transmission of audiovisual and haptic data, the tolerable difference in the518
delay of different types of data should be lower than 80 ms for satisfactory QoE (Montagud et al., 2018).519

Table 3. Requirements of use cases in immersive communications

Use Cases Requirements

XR

360° video playback
< 20 ms MTP delay (R. Yao and
Hoberman, 2017), 2.35 Gbps data rate
(Mangiante et al., 2017)

Interactive applications (e.g., VR gaming)
< 50 ms response time (Zhang et al.,
2017)

Collaborative virtual applications (e.g.,
teleconference)

< 150 ms virtual feedback (Jay et al.,
2007) 12.5 Tbps/km2 upload capacity

Haptics

Telesurgery
> 99.999% reliability, < 1 ms delay
(Gupta et al., 2019)

Remote machine manipulation
> 99.999% reliability, < 2 ms delay (Aijaz
and Sooriyabandara, 2018)

Haptic interaction-based rehabilitation
> 99.999% reliability, < 50 ms delay
(Holland et al., 2019)

Holography

Volumetric-based hologram (e.g., point
cloud)

> 300 Mbps data rate (Essaili et al., 2022;
Selinis et al., 2020)

Image-based hologram (e.g., LFV) > 100 Gbps data rate (Clemm et al., 2020)
Real-time holographic video transmission < 100 ms delay (He et al., 2023)

4 IMMERSIVE COMMUNICATIONS: CHALLENGES AND SOLUTIONS

After introducing the concepts, implementation procedures, and requirements of immersive520
communications, we now discuss challenges in XR, haptic communication, and holographic521
communication, as well as the state-of-the-art solutions, with the most important ones summarized522
in Fig. 7. Note that our review here focuses on the challenges and solutions related to the communication,523
computing, and networking aspects of immersive communications.524

4.1 Extended Reality525

The main challenge of XR is delivering the required content to users on time, given the limited526
transmission resources and computing capability in a network. A variety of network functions and527
resources contribute to the performance of content delivery. Systematic solutions involving data processing,528
rendering, transmission, etc., have been developed to address these challenges. We summarize the solutions529
for implementing XR in three aspects: content selection, transmission improvement, and computing530
optimization.531

4.1.1 Content Selection532

The fundamental step in supporting XR applications is to identify which content needs to be processed533
and transmitted. This step focuses on minimizing the overall data size of the content to deliver at the cost534
of tolerable performance degradation, thus reducing the delivery time.535
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Figure 7. Potential solutions to immersive communications.

In VR services, proactive content delivery is commonly used to meet MTP delay requirements. Thus, in536
tile-based content transmission, the primary research challenge is how to predict user viewpoints accurately537
so as to determine which tiled videos to deliver to users. The prediction of user viewpoints can be achieved538
by sequential learning and data analysis methods based on the user’s viewpoint trajectory, such as linear539
regression (He et al., 2018; Nasrabadi et al., 2020), and long short-term memory (LSTM) (Hou et al.,540
2018). A lightweight viewpoint prediction function can be deployed at the VR headset for local viewpoint541
prediction. Alternatively, the viewpoint trajectory can be updated to a network server (e.g., edge server),542
in which a more advanced machine learning model can be applied for accurate prediction (Hou et al.,543
2021). If the viewpoints are predicted by the network server, the prediction can be conducted based on not544
only current viewpoint trajectories for a group of users (Sun et al., 2020) but also the historical viewpoint545
trajectory data to further improve the prediction accuracy (Xu et al., 2018b; Feng et al., 2019). Although546
viewpoint prediction enables proactive tile-based content delivery, perfect prediction cannot be achieved547
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due to the dynamics of user viewpoint movement. Even if viewpoints are known in advance, dynamic548
network environments such as data traffic load and processing time require adaptive resource management549
to ensure playback performance. With stochastic decision-making methods, such as reinforcement learning,550
it is possible to identify the dynamics of user viewpoint movement and determine which tiled videos to551
deliver to the corresponding VR device (Hu et al., 2022).552

AR devices capture raw content, i.e., video frames, which can be offloaded to network servers for553
prompt content processing. Once the raw content is offloaded, the server detects and processes the554
objects within video frames captured by users’ cameras, then returns the processed content to the AR555
devices. Though it is easier to satisfy the MTP delay requirement in AR than VR, accurate and rapid556
content processing (e.g., object detection) requires sufficient bandwidth to provide low-latency two-way557
transmission for satisfactory QoE. To balance transmission bandwidth usage for computing offloading and558
content processing performance, current solutions mainly focus on using machine learning techniques to559
adjust the number of frames offloaded by an AR device per unit time, based on the network environment and560
AR device movement. Specifically, offloading more video frames to a network server can improve object561
detection accuracy, especially when the AR device moves quickly and generates new content frequently.562
However, the bandwidth usage increases accordingly due to a large number of frames to offload (Liu et al.,563
2018a). Taking AR device mobility and network dynamics into account, adaptive frame rate adjustment is564
investigated in (Chen et al., 2021b). A deep reinforcement learning approach is used to study how mobility565
dynamics affect AR service performance and to determine the optimal uploading frame rate for maximal566
object detection accuracy and playback fluency.567

XR content is expected to be further enriched in the era of 6G. Digital twins can incorporate AI to collect568
environmental information, characterize physical objects, and construct digital models of the physical569
objects accordingly. Digital models from digital twins can be used for XR applications as a new type570
of XR content that can be accessed by XR devices (Zhang et al., 2022b). For example, in an industrial571
Internet-of-Things scenario, designers and workers can use XR devices to interact with the digital models572
of machines and products in a simulated virtual environment. In addition, XR devices can collect the573
interactions from designers and workers. Based on the interactions, digital twins can adaptively configure574
their settings, such as data collection frequency (Aheleroff et al., 2021). The combination of XR and digital575
twins can support emerging applications such as metaverse. However, synchronizing among the physical576
world, digital twins, and XR content requires considerable network resources. Game theoretic methods577
are adopted in (Han et al., 2022) to adjust the synchronization rate between the physical world and digital578
twins based on the demand of virtual service providers that provide content to XR devices. A network579
slicing-based solution is proposed for providing metaverse services (Liu et al., 2022), which allocates580
multi-dimensional resources for content synchronization to improve the fidelity of digital twins and the581
QoE of XR users.582

4.1.2 Transmission Improvement583

As discussed in Subsection 3.1.3, the main bottleneck for VR video delivery is a limited data rate.584
Therefore, a straightforward solution to overcome the bottleneck is to increase the data rate with advanced585
communication techniques. As a key technology in 5G, millimeter wave (mmWave) communications can586
facilitate VR content delivery due to their high data rate and ultra-low propagation latency (Abari et al.,587
2016). In 6G, the transmission rate can be further improved by the physical layer technologies of terahertz588
(THz) transmission and intelligent reflecting surface (IRS), which can be applied in VR video delivery,589
especially between an edge server and VR devices (Chaccour et al., 2020; Du et al., 2020). However,590
communication links using ultra-high frequency bands, such as mmWave and THz, are prone to outage591
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as they require line-of-sight (LoS) channels. Physical obstacles in the environment, including the user’s592
body, may break the communication links and severely degrade the communication quality. To address this593
issue, a sub-6 GHz frequency band can be used as a backup if the mmWave or THz bands does not provide594
satisfactory channel quality. However, dynamic frequency band switching can result in a time-varying595
data transmission rate, thereby degrading the content delivery performance. The work (Liu et al., 2019b)596
models communication link state transitions corresponding to switching different frequency bands (e.g.,597
mmWave and sub-6 GHz bands) in VR content delivery as a Markov chain. Content processing policies598
are adjusted to compensate for transmission delays when channel state transitions occur. In addition to599
adapting to channel dynamics, the reliability of mmWave or THz communication links can be improved600
by establishing multiple communication links between a device and several edge servers for VR content601
delivery (Yang et al., 2022a; Gu et al., 2022).602

In addition, at the network layer, a network virtualization-based solution is proposed for VR content603
delivery, in which network controllers can create private logic networks for VR applications to satisfy their604
service requirements and dynamically adapt the routing schemes according to the mode of content delivery605
(i.e., uni-cast or multi-cast) (Huawei Technologies Co., 2016). The transmission protocols are designed606
according to the features of VR content delivery. The transmission protocol based on quick UDP Internet607
connections (QUIC) is proposed in (Yen et al., 2019) to prioritize important tiled videos, such as the videos608
in the center of the user’s FoV or the videos to be played soon, in transmission over a QUIC connection, in609
order to minimize the ratio of missing tiles in VR video playback.610

4.1.3 Computing Optimization611

Supporting wireless XR requires networks to have sufficient computing capability for processing and612
rendering the content, especially for interactive applications such as VR gaming. Processing the content613
locally at the XR devices can be time-consuming and energy-inefficient due to their limited computing614
capability. Instead, the computing workload can be fully or partially offloaded to network servers, and615
multi-tier computing can be a potential solution to reduce computing time and bandwidth consumption616
when providing computing services to XR devices. Accordingly, computing strategies should base on the617
features of diverse network servers to improve resource utilization and service performance.618

In MEC, edge servers can provide additional computing capability for resource-limited devices to reduce619
content processing latency for mobile XR content delivery. Specifically, in VR, edge servers can project620
monoscopic videos to stereoscopic videos when content is transmitted from the content provider’s cloud621
server to VR devices. Such MEC-assisted content delivery can reduce bandwidth consumption compared to622
delivering stereoscopic videos from the cloud server directly, and computing time can be reduced compared623
to projecting the videos at the local devices (Mangiante et al., 2017). In AR, devices can offload captured624
content to an edge server to minimize processing latency (Siriwardhana et al., 2021). In addition, edge625
servers can cache the processed XR content to further reduce the content delivery and processing time626
(Sukhmani et al., 2018). Joint computing, caching, and communication resource management for VR video627
delivery is investigated in (Sun et al., 2019; Dang and Peng, 2019), which studies the tradeoff between628
computing and caching resource allocation for minimizing content delivery delay, given stochastic content629
processing time and popularity. Deep reinforcement learning methods are adopted to allocate computing630
resources at an edge server for individual content delivery requests in (Liu et al., 2019b; Liu and Deng,631
2021), aiming to minimize content delivery delay while adapting to dynamic network environments and632
user viewpoint movement.633
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Nonetheless, the computing capability at edge servers may not always be sufficient for processing XR634
content. Compared to cloud servers, edge servers usually have limited storage resources for caching635
XR content. Targeting 6G, a multi-tier computing architecture provides a potential solution for further636
accelerating XR content delivery by coordinating computing and storage resources among cloud servers,637
fog servers (e.g., servers at the gateway), and edge servers across the network. By integrating computing638
resources across the entire network, content processing workloads can be optimally distributed among639
multiple servers, and storage capacity among servers can be utilized to satisfy offloaded computing640
demands. However, optimizing XR performance by multi-tier computing can be complicated when there641
are a multitude of computing offloading and caching options to choose from. The computing and caching642
resource coordination between the cloud server and edge servers is studied in (Mehrabi et al., 2021) and643
(Al-Abbasi et al., 2019). Based on the information of a static network environment, e.g., transmission rate644
and XR computing demand, mixed integer nonlinear programming is investigated. Considering dynamic645
network environments and user mobility, the work (Zhou et al., 2022a) utilizes digital twins of end users646
to characterize network dynamics and statuses. The meta-learning method is adopted to jointly allocate647
computing and caching resources at servers on different tiers of a network for context-based applications,648
including XR, based on the captured network statuses from digital twins.649

In addition to jointly allocating computing and caching resources at network servers, computing650
performance can be further enhanced by scheduling computing tasks at edge servers. Edge servers651
can provide location-based content to users, which can contribute to computing optimization for XR652
applications. Specifically, in AR, users at close locations may offload and require similar content, and653
therefore, raw content offloaded from the nearby users can be processed together for improving computing654
efficiency (Jia and Liang, 2018). Furthermore, rendering pipelines can be optimized based on real-655
time communication and computing performance of network servers and local devices when part of656
the workloads for content rendering are offloaded. A collaborative rendering pipeline is investigated in657
(Xie et al., 2021), which dynamically arranges the execution order of sub-tasks in content rendering on658
both the edge server and XR devices, based on network characteristics, to facilitate parallel computing and659
improve content rendering efficiency.660

4.2 Haptic Communication661

The main challenge in haptic communication is to satisfy the stringent delay and reliability requirements662
in the delivery of haptic data, especially when the data packet rate is high. To tackle this challenge, solutions663
have been developed in three aspects, including haptic data reduction to reduce the packet size or the packet664
rate, advanced communication and networking techniques to reduce delay and improve reliability, and665
haptic data prediction to compensate for excessive delay and packet loss over communication networks.666

4.2.1 Haptic Data Reduction667

To improve the fidelity of haptic perception, the number of haptic sensors/actuators deployed on an HI has668
been increasing (Steinbach et al., 2018). For example, electronic skin (e-skin) can be attached to prosthetic669
limbs for sensing haptic information, or to human skin for virtual social interaction (Yu et al., 2019; Dahiya,670
2019). To reproduce the function of human skin, sensors/actuators need to be densely deployed on e-skin,671
for example, 25 sensors/actuators per 1 cm2 (Liu et al., 2020). In addition, the required packet rate for672
haptic data can be above 1,000 packets per second. As a result, with a large number of devices and a high673
packet rate, the required data rate of haptic communication can be high. To tackle this challenge, one674
solution is haptic data reduction, which is to reduce the packet size or rate of haptic data.675
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For reducing the packet size of haptic data, floating-point compression in the time domain or quantization676
of haptic data in the frequency domain can be exploited. In floating-point compression, one degree of677
freedom in the haptic information (e.g., the direction of the transitional movement in an axis) can be678
represented by a 32-bit floating-point number, and only the bits different from those in the previous679
haptic data are transmitted (You and Sung, 2008). Using time-frequency transformation algorithms such680
as discrete cosine transform, a sequence of haptic data packets in the time domain can be transformed681
into the data in the frequency domain, which are then quantized and transmitted (Tanaka and Ohnishi,682
2009; Zeng et al., 2020). For reducing the packet rate of haptic data, the perceptual masking phenomenon683
is widely exploited, which suggests that a human cannot perceive the difference of haptic information684
below the just-noticeable difference (JND). According to the Weber’s law, the JND of haptic information is685
proportional to the currently perceived value of the information, and the proportion is referred to as the686
Weber fraction (Steinbach et al., 2018). In this regard, the perceptual haptic reduction method is to transmit687
an updated haptic data packet only when the difference is larger than a threshold (e.g., JND) (Steinbach688
et al., 2010). Moreover, the perceptual masking phenomenon in both time and frequency domains can be689
jointly exploited to achieve a higher data reduction ratio and lower data deviation (Wei et al., 2022).690

The use of haptic data reduction should adapt to the type of haptic data, the delay requirement and the691
reliability requirement for haptic communication. First, haptic data can exhibit different Weber fractions692
in the JND, e. g., 7% ∼ 15% for force data and 13% ∼ 28% for stiffness data, which results in different693
thresholds in perceptual haptic reduction (Chaudhuri and Bhardwaj, 2018). Second, data reduction in the694
frequency domain results in high processing delay since it is based on a sequence of data packets in the time695
domain. It is suitable for use cases with high delay tolerance, such as the passive perception and exploration696
of remote/virtual objects (Sachs et al., 2018). In contrast, data reduction in the time domain, implemented697
in real time, is suitable for use cases with low delay tolerance such as immersive gaming, which involves698
extensive interactions between the players (Holland et al., 2019). Third, haptic data reduction may not be699
suitable for use cases requiring high reliability. As discussed in Subsection 3.2.3, with the use of haptic700
data reduction, the required reliability of haptic communication increases. In this regard, for use cases with701
a high-reliability requirement (e.g., 99.999% for telesurgery), the reliability requirement can be difficult to702
satisfy if haptic data reduction is used.703

4.2.2 Communication and Networking Solutions704

To satisfy the ideal communication delay of below 1 ms for haptic communication, physical-layer705
delay of less than 0.1 ms is desired (Aijaz et al., 2016). For reducing the queuing delay, haptic data706
may be allowed to preempt the data of other types in the downlink transmission (Ji et al., 2018). For707
uplink transmission, a grant-based user scheduling mechanism can take 0.3-0.4 ms for exchanging the708
scheduling request and transmission grant (Ji et al., 2018). Besides such delay, the signaling overhead,709
resulting from network control or grant-based scheduling, reduces the efficiency of data transmission (Ding710
et al., 2021). Therefore, grant-free user scheduling has been exploited, which periodically pre-reserves711
transmission resources to avoid real-time scheduling, and the same resources can be pre-reserved to712
multiple haptic devices for improving resource utilization (Ali et al., 2021; Gao et al., 2021). For improving713
the communication reliability of haptic communication, several approaches have been adopted in the714
literature. First, considering the small size of a haptic data packet, short block-length channel codes with715
strong error correction capabilities, such as low-density parity-check (LDPC) codes and short polar codes,716
have been investigated for haptic communication (Yuan et al., 2022; Miloslavskaya and Vucetic, 2020).717
Second, spatial diversity can be exploited by massive multiple-input and multiple-output (MIMO), IRS,718
and multi-connectivity techniques (Tarneberg et al., 2017; Tang et al., 2020; Anwar et al., 2021). Third,719
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time diversity can be exploited by a K-repetition mechanism, in which a haptic device can automatically720
transmit K repetitions of a packet over consecutive slots, thereby avoiding the delay caused by waiting for721
a retransmission request from the receiver (Yang et al., 2021).722

To guarantee low delay and high reliability for haptic communication, network slicing, which allows723
multiple isolated virtual networks to be constructed over a shared physical network infrastructure, has724
been exploited (Polachan et al., 2020). The perceptual masking phenomenon of haptic information, as725
introduced in Subsection 4.2.1, can be exploited to accurately capture the maximum tolerable delay726
of haptic communication requests, which facilitates resource reservation in the network slice for haptic727
communication (Ge et al., 2019). For multiple tele-operation slices, diverse stability control capabilities728
of tele-operators in the presence of delay should be considered for customized transmission resource729
reservation (Liu et al., 2018b). Moreover, by exploiting AI-based learning methods, traffic patterns of730
haptic devices can be accurately captured, and efficient resource reservation can then be facilitated (Shen731
et al., 2020).732

4.2.3 Haptic Data Prediction733

The delay requirement of haptic communication can impose a constraint on the distance between two734
users. For example, to satisfy a delay requirement of 10 ms, the distance between a transmitter HI and a735
receiver HI must be smaller than 3,000 km since the propagation speed is upper-bounded by the speed736
of light. This can create an issue for applications such as VR gaming with haptic interactions of players737
across continents. In addition, it is impossible to eliminate the loss of data packets or the violation of738
delay requirement in haptic communication (Aijaz and Sooriyabandara, 2018). To improve user experience739
considering the above facts, haptic data prediction can be exploited.740

For haptic data prediction, model-based or model-free prediction algorithms can take historical haptic741
data and other correlated data as the input. In tele-operation, the force feedback from the tele-operator is742
predicted by evaluating the previous force feedback through an auto-regressive model (Sakr et al., 2007).743
In the tele-operated needle insertion, the force/torque feedback from the patient is predicted by inputting744
the force/torque commands of the surgeon to the hidden Markov model (HMM) (Boabang et al., 2020).745
Audiovisual data collected in the interaction with a surface material are input to a neural network-based746
semantic learning algorithm to predict the texture of the surface material (Wei et al., 2021).747

Haptic data can be predicted either at the receiver side or at the transmitter side to compensate for an748
excessive delay or packet loss. The receiver can predict the haptic data from the transmitter when an749
excessive delay occurs (Maier and Ebrahimzadeh, 2019). For example, digital twin-based prediction can be750
used by the receiver for real-time interactions (El Saddik, 2018). Alternatively, the transmitter can predict751
its future haptic data and transmit the predicted data to compensate for the transmission delay (Hou et al.,752
2019). In this case, the prediction of whether haptic interaction is about to occur can assist to determine753
whether the haptic data prediction and the subsequent transmission are necessary (Mondal et al., 2020).754

Haptic data prediction algorithms, such as AI-based ones, can be computing-intensive. To this end, they755
can be implemented using computing resources in the network to satisfy the stringent delay requirements756
(Simsek et al., 2016; Sukhmani et al., 2018). In a tele-operation scenario, each of the two interacting757
haptic devices is associated with one edge server which caches the haptic interaction data, trains and758
implements the LSTM network-based prediction algorithm, and delivers the predicted haptic data to its759
associated haptic device (Li et al., 2021b). Furthermore, with close proximity, auxiliary robots can be760
deployed around haptic devices to implement haptic data prediction and deliver the results to the devices761
using device-to-device (D2D) communications (Yu et al., 2022).762
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In addition to compensating for the delay or packet loss, haptic data prediction can be used to reduce the763
packet rate of haptic data (Antonakoglou et al., 2018). Specifically, the haptic transmitter can implement the764
haptic data prediction and evaluate the prediction deviation, and only transmit the data when the prediction765
deviation is higher than the JND of the receiver. If the haptic data has not been transmitted, the receiver can766
predict it based on the prediction algorithm shared with the transmitter.767

4.3 Holographic Communication768

In holographic communication, users are able to view 3D holograms from different angles, tilts, and769
positions. As a result, a hologram synthesized with information from more viewpoints can produce more770
detailed and continuous visual information for users, thereby creating a more realistic immersive experience771
(Liu et al., 2019a). This however requires the transmission of a large amount of data. The main challenge in772
holographic communication is its stringent data rate and delay requirements. In this subsection, we focus773
on potential solutions for tackling this challenge in the aspects of data processing, communication and774
networking.775

4.3.1 Content Selection, Compression and Prediction776

A high data rate is essential for holographic communication, and the demand for data rate can vary from777
hundreds of Mbps to several Tbps depending on the type of transmitted data, e.g., volumetric-based or778
image-based holograms. One way to relax the data rate requirement is to reduce the data size, for example,779
by transmitting only the most essential parts of a hologram through viewpoint-based content selection in780
holographic communication (Clemm et al., 2020). Since some parts of the hologram may not be observed781
depending on the user’s viewpoint and position, as well as the presence of obstacles, those parts may782
not need to be transmitted. However, two issues remain even with the selective transmission. First, for783
an immersive experience in holographic communication, the 6 DoF (yaw, pitch, roll, up/down, left/right,784
forward/backward) need to be considered when a user views a hologram, which makes content selection785
based on the user’s viewpoint a complex problem. In addition, without head-mount devices such as VR786
headsets, tracking the position and viewpoint of the user is challenging and requires mechanisms such as787
full-body tracking (Xu et al., 2018a) or eye tracking (Zhang et al., 2019a).788

Another solution for reducing the required data rate is to apply data compression. For a 2D real-time789
video, current media codecs can achieve a compression ratios from 250:1 to 1,000:1 (Selinis et al., 2020;790
Essaili et al., 2022). Similarly, format conversion and data compression can be applied to reduce the791
data size in holographic communication. The authors in (Mekuria et al., 2017) propose a lossy real-time792
color-encoding method by exploiting the inter-frame redundancy of point clouds. Moreover, considering793
the strong correlation among different views in a hologram, multi-view coding (MVC) for LFV-based794
streaming is proposed in (Xiang et al., 2016), which improves the compression rate by analyzing both795
the horizontal and vertical correlations of images in adjacent angles and tilts. Meanwhile, many efforts796
have been made by standardization groups for the compression of holograms. For example, the Moving797
Picture Experts Group (MPEG) defined the video point cloud compression (V-PCC) by converting point798
clouds into two separate video sequences that capture the geometry and texture information, respectively799
(Schwarz et al., 2019). The Joint Photographic Experts Group (JPEG) intended to provide a standard800
representation framework to facilitate the compression of LFV- or point cloud-based content for holographic801
communication (Schelkens et al., 2019).802

Retransmissions due to data packet loss result in additional delay. To avoid the retransmission delay,803
the lost data packets can be recovered based on predicted data according to historical information of an804
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object such as its trajectory. For example, packets can be recovered from an LSTM-based prediction of805
human actions and movements in 3D (Liu et al., 2016a) or a short-term prediction by analyzing the actions,806
movements, or gestures of users (Manolova et al., 2021). By predicting content, data packets can be807
generated at the receiver side in the event of packet loss to reduce the delay in holographic communication808
(Strinati et al., 2019).809

4.3.2 Communication and Networking Solutions810

In addition to data processing, some communication and networking solutions have been investigated811
for satisfying delay and data rate requirements of holographic communication, including computing812
architecture, transport protocol, and physical layer technology.813

In holographic communication, data captured from different sensors needs to be processed to form a 3D814
representation of the object, which is then rendered and reconstructed at the receiver side (Javidi et al., 2005).815
However, the limited computing capability of local devices may lead to a long processing delay due to the816
high workload of data fusion and rendering (Hu et al., 2017). Cloud computing is introduced to support817
high computing workloads for data processing in holographic communication. However, transmitting818
massive data to the cloud may result in a high communication delay (Wang et al., 2022a), which is not819
suitable for real-time holographic communication. One promising solution is to offload computing tasks to820
MEC servers for data processing, since MEC servers possess considerable computing capability and are821
placed close to users (Gupta et al., 2021). Thanks to network function virtualization (NFV), functions such822
as data fusion, data compression, and data rendering can be virtualized and flexibly deployed for MEC823
servers. In this case, captured data from different sources can be aggregated, fused, and synchronized at an824
MEC server before rendering (Qian et al., 2022). Moreover, a multi-tier computing scheme is proposed for825
6G networks, which can be utilized for holographic communication by integrating computing resources826
at cloud servers, MEC servers, and local devices, to achieve a low delay for data transmission and high827
computing capacity for data processing with collaboration among different servers (Yang et al., 2018;828
Wang et al., 2022a). By integrating computing resources on different tiers, content can be processed at829
different servers to effectively utilize computing resources, and flexible computing resource management830
should be developed to facilitate multi-tier computing for holographic communication. For example, split831
rendering is introduced for an MEC server and a local device to cooperatively decode and render holograms832
according to the content (Essaili et al., 2022).833

To satisfy the stringent delay and high reliability requirements of holographic communication, transport834
layer optimizations are also crucial. Current transport protocols, such as transmission control protocol (TCP)835
and user datagram protocol (UDP), can hardly satisfy the requirements of holographic communication.836
To improve the reliability and delay performance in real-time communication, new protocols based on837
UDP are introduced, such as QUIC over HTTP/3 (Seufert et al., 2019). Currently, the research on QUIC838
mainly focuses on traditional 2D video streaming services, while QUIC can serve as a potential solution839
for holographic communication, providing a quality-managed low-delay streaming option (Clemm et al.,840
2020). Moreover, the transmission of a hologram may consist of multiple substreams corresponding to841
different viewpoints, while the QoS requirement and the priority of each substream may be different. In842
this case, the transmission of the most essential substreams needs to be prioritized. To achieve this target, a843
new transport protocol is designed in (Rozen-Schiff et al., 2021) for holographic communication to satisfy844
different QoS requirements of different flows by providing flow-level granular control. In addition, an845
adaptive retransmission mechanism based on TCP is designed to reduce retransmissions by analyzing846
and differentiating packets (Clemm et al., 2020). For example, only important data, such as the data used847
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for rendering the part of the hologram in the center of the user’s FoV, will be retransmitted if the related848
packets are lost, to reduce retransmissions.849

Finally, physical layer solutions are important to supporting a high data rate for holographic850
communication. In order to transmit high-resolution LFV-based holograms, holographic communication851
requires a data rate of several Tbps, while current 5G networks cannot support it (Shahraki et al., 2021;852
David and Berndt, 2018). Featuring higher frequency and larger bandwidth compared with mmWave in 5G,853
THz communications have the potential to support holographic communication with Tbps-level data rate854
(Elayan et al., 2019; Chen et al., 2019). To overcome the severe propagation loss of THz communication,855
dense deployment of access points and extremely narrow beams can be adopted to improve connection856
density and communication reliability (Zhang et al., 2019b). Considering the absorption and reflection857
properties in the THz regime (Aazhang et al., 2019), the deployment of the THz base stations and the858
prediction of user motion require further investigation to provide sustainable LoS links for holographic859
communication (Chaccour et al., 2022).860

5 IMMERSIVE COMMUNICATION: OPEN ISSUES AND FUTURE DIRECTIONS

Despite an increasing amount of studies and solutions for supporting XR, haptic communication, and861
holographic communication, there exist many open issues to address before immersive communications862
can popularize. To name a few, synchronization of multi-modal communications, user QoE modeling863
and enhancement, and intelligent network management for immersive communications remain to be864
challenging problems. In this section, we present some major open issues in immersive communications865
and potential future directions to address these issues.866

5.1 Multi-Modal Communications867

While immersive communications have the potential to enhance user engagement and facilitate immersive868
interactions, effective network resource management for ensuring synchronized multi-modal perception in869
highly dynamic network environments is an open issue. The synchronization of multi-modal perception870
consists of two aspects: inter-stream (cross-modal) and intra-stream. First, the transmission of auditory,871
visual, and haptic data results in multiple data streams that should be synchronized in order to prevent872
motion sickness. For example, the time interval between perceived visual and tactile movement should873
not exceed 1 ms (Van Den Berg et al., 2017). Second, to enhance the immersive experience, a data stream874
can include multiple data substreams corresponding to different sensations, e.g., temperature and pressure,875
which also need synchronization. Data substreams corresponding to different DoF of an HI should be876
synchronized to maintain the stable perception of simultaneity, and data substreams transmitted from877
LIDAR sensors placed at different locations should be synchronized to render a 3D hologram precisely.878
There are many works that enable either intra-stream or inter-stream synchronization from the perspective879
of a single network layer (Zhang et al., 2018; Cizmeci et al., 2017). However, in order to synchronize880
multi-modal perception, both network-related and application-related information is necessary. This is881
because network resource management for multi-modal communications is affected by not only different882
data packet formats, data traffic patterns, and QoS requirements, but also different sensitivities of human883
perception. The cross-layer design of network protocols for multi-modal communications, which can884
support information sharing among different layers for efficient use of network resources, is a potential885
solution (She et al., 2020; Kumar and Muhammad, 2018). A higher-layer approach to synchronizing multi-886
modal information can benefit from information on network conditions at lower layers, e.g., adaptively887
changing the priority of modalities in transport-layer multiplexing according to real-time physical-layer888

Frontiers 26



Shen et al. Towards Immersive Communications in 6G

data rates. In addition, lower-layer approaches can take into account application-related information for889
efficient network resource management, e.g., timely adjusting the amount of radio resources allocated to a890
user in response to the dynamic sensitivity of the user’s perception.891

5.2 AI-Native Immersive Communications892

AI techniques have demonstrated outstanding performance in identifying data correlations and analyzing893
device dynamics. As a result, some application functions using AI techniques, i.e., AI-enabled functions,894
have been developed for exploring unknown device states in immersive communications, such as viewpoint895
predictions in VR devices and haptic data prediction (Wu et al., 2022). To support increased service896
demands on immersive communications in 6G, AI-enabled functions will be deployed at network servers,897
i.e., cloud and edge servers (Li et al., 2021a). Accordingly, the network should support the entire lifecycle898
of AI for the functions, including data collection, data pre-processing, AI model training, inference,899
and AI model evaluation. By taking AI-enabled functions as the built-in component for supporting900
immersive communications, several potential future research directions should be investigated. First, AI-901
enabled functions can be configured according to network management policies for supporting immersive902
communications. For example, in haptic communication, the prediction horizon, i.e., the time window for903
the predicted information, of tactile and kinesthetic information can be adjusted adaptively according to904
real-time network communication delay, AI-based prediction accuracy, and service reliability requirements.905
Second, efficient data management schemes can be developed, in which low-signaling-overhead and906
grant-free network management can be achieved by sharing the data obtained from AI-enabled functions.907
For example, in VR video delivery, network controllers can use a viewpoint prediction model or results908
from the viewpoint prediction function and allocate sufficient downlink communication resources to users909
with highly dynamic viewpoint movements. Additionally, effective resource management solutions should910
be developed to support AI model training in real-time, so that AI-enabled functions can be updated911
according to user behavior dynamics, where sufficient network resources should be allocated for supporting912
data collection and processing at edge and cloud servers.913

5.3 Time-Sensitive and Deterministic Networking914

The existing solutions mentioned in Section 4 can help reduce transmission delay in immersive915
communications. However, satisfying the stringent delay and reliability requirements of XR, haptic916
communication, and holographic communication, especially ms-level end-to-end delay, remains a challenge.917
Fortunately, the ongoing efforts of 3GPP, IEEE, and IETF in supporting time-sensitive networking (TSN)918
and deterministic networking (DetNet) (Messenger, 2018; Nasrallah et al., 2019) provide solutions to meet919
the requirements of immersive communications (Rost and Kolding, 2022). The current efforts largely focus920
on the link and network layers (i.e., layers 2 and 3) and mostly target industrial networks (Rost and Kolding,921
2022). Therefore, the corresponding solutions may not be readily applicable to all use cases of immersive922
communications. Potential future directions of TSN and DetNet for immersive communications include923
the followings. First, a comprehensive solution integrating existing TSN and DetNet designs for delay924
minimization can be important to immersive communications. For example, the joint design of coordinated925
sensing/capturing and communication (on the physical layer), traffic shaping and scheduling (on the926
link layer), flow identification and packet treatment (on the network layer), and viewpoint/haptic data927
prediction (on the application layer) can help reduce the end-to-end delay in immersive communications.928
Second, instead of treating different data streams in a mutli-modal communication separately, joint929
prioritization and resource orchestration for different types of data given their respective delay and jitter930
requirements is another promising direction. Third, integrating environment-aware and service-oriented931
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network management paradigms can potentially enable TSN and DetNet for immersive communications.932
An example is to incorporate adaptive radio access network (RAN) function splitting, network slicing,933
and AI-driven network management to minimize delay and jitter by customizing for a specific service and934
adapting to the network environment.935

5.4 QoE-Oriented Networking936

While QoS provisioning from a network perspective benefits the transmission of XR content, haptic937
information, and holograms, as detailed in Section 4, evaluating and guaranteeing individual users’938
QoE is crucial in providing them an immersive experience. This is because many factors, besides939
communication network conditions, can affect user experience in immersive communications, including940
coding, compression, and human perception. Therefore, QoE-oriented networking from users’ perspective is941
a promising network management paradigm to support immersive communications in the 6G era, including942
two potential aspects: personalized QoE modeling and QoE-oriented network resource management.943
First, existing works on immersive communications have limitations on personalizing QoE models for944
individual users. Conventional QoE modeling are based on either subjective tests or objective quality945
assessments (Tasaka, 2022). The former, conducted in relatively static laboratory environments, is costly946
and inapplicable in dynamic network environments, whereas the latter, evaluated by empirical human947
perception models, does not differentiate individual users (Barakabitze et al., 2019; Ruan and Xie, 2021).948
Finding a way to model personalized QoE while adapting to dynamic network environments remains an949
open issue. Second, managing network resources to guarantee the QoE of individual users in immersive950
communications necessitates user-level information. Even if several users request the same service, they951
may have different resource demands for improving their QoE (Kougioumtzidis et al., 2022). For example,952
due to the difference in the sensitivity of haptic perception, e.g., reaction time, the haptic sensors of953
interest and the scan time for each haptic sensor may differ in supporting different users, yielding different954
communication and computing resource demands (Coutinho and Boukerche, 2022). In the 6G era, the955
paradigm of digital twins can be a potential solution for QoE-oriented networking. Specifically, individual956
users can be characterized by creating user digital twins, including user data profiles that contain extensive957
well-organized user data, and a variety of digital twin functions that support flexible and customized data958
collection and analysis (Shen et al., 2021). Both personalized QoE modeling and QoE-oriented network959
resource management for immersive communications can benefit from extensive timely updated and960
fine-grained user-level information (Wang et al., 2021).961

5.5 New Network Architecture962

Network architecture innovation is indispensable for a widespread realization of immersive963
communications, and innovations building on recent developments for 6G architecture are promising future964
directions. The need for new architectures manifests in several aspects. First, the computing-intensive nature965
of immersive communications, rooted from processing and compressing 3D data, predicting of viewpoints966
and haptics data, and reconstructing 3D objects, demands a network architecture with extensive computing967
resources and reliable computing service provisioning. As a result, a heterogeneous network with multi-tier968
computing architecture (Yang, 2019; Zhou et al., 2022a), featuring on-demand and collaborative computing969
task offloading and scheduling across the network, is important to immersive communications yet open to970
investigation at the moment. Second, as networks become increasingly complex and the requirements of971
immersive communications become exceedingly stringent, supporting immersive communications in 6G972
requires a network architecture with unprecedented scalability, flexibility, and adaptivity. A 6G architecture973
integrating digital twins, network slicing, and pervasive AI (Shen et al., 2021) can be a foundation to974
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immersive communications. Third, considering the diverse delay requirements of different XR, haptic975
communication, and holographic communication use cases, the Open-RAN (O-RAN) architecture featuring976
realtime, near-realtime, and non-realtime layers can benefit service differentiation in RAN management977
for immersive communications (Abdalla et al., 2022). Last, considering different user preferences and978
diverse user devices, a new architecture enabling user-centric networking, such as the everyone-centric979
architecture in (Yang et al., 2022b), has a potential to empower immersive communications. However, as980
none of the above architectures is developed specifically for immersive communications, new designs and981
customizations based on them for supporting immersive communications are open for investigation.982

6 CONCLUSION

In this article, we have delved into immersive communications towards 6G and presented a comprehensive983
review of the related concepts, representative use cases, technical challenges and potential solutions, and984
future directions. Focusing on XR, haptic communication, and holographic communication, we have985
illustrated their general procedures, network requirements, and recent developments in the context of a986
vision for 6G. Despite abundant emerging use cases and exciting recent advancements, we have shown that987
many challenges are yet to be conquered before the envisioned prosperity of immersive communications can988
occur. In particular, the exceeding transmission rate, delay, and reliability requirements, further complicated989
by the multi-modal and computing-intensive features of immersive communications, indicate the necessity990
of an unprecedented amount of communication and computing resources as well as novel paradigms such991
as AI-native communication, multi-tier computing, and user-centric networking.992

The paradigm shift to immersive communications is truly exciting and inspiring, especially when viewed993
in the context of the evolution toward 6G. Many opportunities exist, and more will emerge for researchers994
and engineers in the fields of communications, networking, and computer science to realize immersive995
communications. We hope this review inspires further interest among fellow researchers and provides996
fundamental knowledge on related research, thereby contributing to this much-anticipated paradigm shift997
and making immersive communications the next reality.998
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del Peral-Rosado, J. A., Raulefs, R., López-Salcedo, J. A., and Seco-Granados, G. (2018). Survey of1113
cellular mobile radio localization methods: From 1G to 5G. IEEE Communications Surveys & Tutorials1114
20, 1124–1148. doi:10.1109/COMST.2017.27851811115

Diana, M. and Marescaux, J. (2015). Robotic surgery. Journal of British Surgery 102, e15–e28. doi:10.1116
1002/bjs.97111117

Ding, J., Nemati, M., Pokhrel, S. R., Park, O.-S., Choi, J., and Adachi, F. (2021). Enabling grant-free1118
URLLC: An overview of principle and enhancements by massive MIMO. IEEE Internet of Things1119
Journal 9, 384–400. doi:10.1109/JIOT.2021.31072421120

Du, J., Yu, F. R., Lu, G., Wang, J., Jiang, J., and Chu, X. (2020). MEC-assisted immersive VR video1121
streaming over Terahertz wireless networks: A deep reinforcement learning approach. IEEE Internet of1122
Things Journal 7, 9517–9529. doi:10.1109/JIOT.2020.30034491123

Earnshaw, R. A. (1993). Virtual reality systems (San Diego, CA: Academic press)1124

El Rassi, I. and El Rassi, J.-M. (2020). A review of haptic feedback in tele-operated robotic surgery.1125
Journal of Medical Engineering & Technology 44, 247–254. doi:10.1080/03091902.2020.17723911126

El Saddik, A. (2018). Digital twins: The convergence of multimedia technologies. IEEE Multimedia 25,1127
87–92. doi:10.1109/MMUL.2018.0231211671128

Elayan, H., Amin, O., Shihada, B., Shubair, R. M., and Alouini, M.-S. (2019). Terahertz band: The last1129
piece of RF spectrum puzzle for communication systems. IEEE Open Journal of the Communications1130
Society 1, 1–32. doi:10.1109/OJCOMS.2019.29536331131

Elbamby, M. S., Perfecto, C., Bennis, M., and Doppler, K. (2018a). Edge computing meets millimeter-wave1132
enabled VR: Paving the way to cutting the cord. In IEEE Wireless Communications and Networking1133
Conference (IEEE), 1–61134

Elbamby, M. S., Perfecto, C., Bennis, M., and Doppler, K. (2018b). Toward low-latency and ultra-reliable1135
virtual reality. IEEE Network 32, 78–84. doi:10.1109/MNET.2018.17002681136

Essaili, A. E., Thorson, S., Jude, A., Ewert, J. C., Tyudina, N., Caltenco, H., et al.1137
(2022). Holographic communication in 5G networks. Ericsson Technology Review.1138

Frontiers 32



Shen et al. Towards Immersive Communications in 6G

Available online at: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/1139
articles/holographic-communication-in-5g-networks [accessed August 25, 2022]1140

Favalora, G. (2005). Volumetric 3D displays and application infrastructure. Computer 38, 37–44.1141
doi:10.1109/MC.2005.2761142

Feng, X., Swaminathan, V., and Wei, S. (2019). Viewport prediction for live 360-degree mobile video1143
streaming using user-content hybrid motion tracking. Proceedings of the ACM on Interactive, Mobile,1144
Wearable and Ubiquitous Technologies 3, 1–22. doi:10.1145/33289141145

Feth, D., Tran, B. A., Groten, R., Peer, A., and Buss, M. (2009). Shared-control paradigms in multi-operator-1146
single-robot teleoperation. In Human centered robot systems: Cognition, interaction, technology, eds.1147
H. Ritter, G. Sagerer, R. Dillmann, and M. Buss (Berlin, Heidelberg: Springer). 53–621148

Fettweis, G., Boche, H., Wiegand, T., Zielinski, E., Schotten, H., Merz, P., et al. (2014). The tactile1149
Internet-ITU-T technology watch report. Available online at: https://www.itu.int/dms pub/itu-t/opb/gen/1150
T-GEN-TWATCH-2014-1-PDF-E.pdf [accessed July 20, 2022]1151

FG-NET2030 (2020). Representative use cases and key network requirements for network 2030. Available1152
online at: http://handle.itu.int/11.1002/pub/815125f5-en [accessed June 16, 2022]1153

Fishel, J. A. and Loeb, G. E. (2012). Bayesian exploration for intelligent identification of textures. Frontiers1154
in Neurorobotics 6. doi:10.3389/fnbot.2012.000041155

Fitzek, F. H., Li, S.-C., Speidel, S., Strufe, T., Simsek, M., and Reisslein, M. (2021). Tactile Internet: With1156
human-in-the-loop (London: Academic Press)1157

Fowler, M. S., Halprin, A., and Schlichting, J. D. (1986). Back to the future: A model for1158
telecommunications. Federal Communications Law Journal 38, 145–2001159

Fratz, M., Seyler, T., Bertz, A., and Carl, D. (2021). Digital holography in production: An overview. Light:1160
Advanced Manufacturing 2, 283–295. doi:10.37188/lam.2021.0151161

Freina, L. and Ott, M. (2015). A literature review on immersive virtual reality in education: State of the1162
art and perspectives. In The International Scientific Conference eLearning and Software for Education1163
(Carol I National Defence University Publishing House), 133–1411164

Fujimoto, T., Ishibashi, Y., and Sugawara, S. (2008). Influences of inter-stream synchronization error on1165
collaborative work in haptic and visual environments. In IEEE Symposium on Haptic Interfaces for1166
Virtual Environment and Teleoperator Systems (IEEE), 113–1191167

Gabor, D. (1972). Holography, 1948-1971. Science 177, 299–313. doi:10.1126/science.177.4046.2991168

Gao, J., Zhuang, W., Li, M., Shen, X., and Li, X. (2021). MAC for machine-type communications in1169
industrial IoT—Part I: Protocol design and analysis. IEEE Internet of Things Journal 8, 9945–9957.1170
doi:10.1109/JIOT.2021.30511811171

Gately, M., Zhai, Y., Yeary, M., Petrich, E., and Sawalha, L. (2011). A three-dimensional swept volume1172
display based on LED arrays. Journal of Display Technology 7, 503–514. doi:10.1109/JDT.2011.1173
21574551174

Ge, X., Zhou, R., and Li, Q. (2019). 5G NFV-based tactile Internet for mission-critical IoT services. IEEE1175
Internet of Things Journal 7, 6150–6163. doi:10.1109/JIOT.2019.29580631176

Gibney, E. (2019). Star wars-style 3D images created from single speck of foam. Nature 575, 272–274.1177
doi:10.1038/d41586-019-03454-y1178

Glushakov, M., Zhang, Y., Han, Y., Scargill, T. J., Lan, G., and Gorlatova, M. (2020). Invited paper:1179
Edge-based provisioning of holographic content for contextual and personalized augmented reality.1180
In Proceedings of the IEEE International Conference on Pervasive Computing and Communications1181
Workshops (IEEE), 1–61182

Frontiers 33

https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/holographic-communication-in-5g-networks
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/holographic-communication-in-5g-networks
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/holographic-communication-in-5g-networks
https://www.itu.int/dms_pub/itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.pdf
https://www.itu.int/dms_pub/itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.pdf
https://www.itu.int/dms_pub/itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.pdf
http://handle.itu.int/11.1002/pub/815125f5-en


Shen et al. Towards Immersive Communications in 6G

Gokhale, V., Kroep, K., Rao, V. S., Verburg, J., and Yechangunja, R. (2020). Tixt: An extensible testbed1183
for tactile Internet communication. IEEE Internet of Things Magazine 3, 32–37. doi:10.1109/IOTM.1184
0001.19000751185

Gooday, G. J. (2005). Electrical futures past. Endeavour 29, 150–155. doi:10.1016/j.endeavour.2005.07.1186
0071187

Gotsch, D., Zhang, X., Merritt, T., and Vertegaal, R. (2018). Telehuman2: A cylindrical light field1188
teleconferencing system for life-size 3D human telepresence. In Proceedings of the CHI Conference on1189
Human Factors in Computing Systems (ACM), 1–101190

Gu, Z., Lu, H., Hong, P., and Zhang, Y. (2022). Reliability enhancement for VR delivery in mobile-1191
edge empowered dual-connectivity sub-6 GHz and mmWave HetNets. IEEE Transactions on Wireless1192
Communications 21, 2210–2226. doi:10.1109/TWC.2021.31100991193

Gupta, R., Reebadiya, D., and Tanwar, S. (2021). 6G-enabled edge intelligence for ultra-reliable low1194
latency applications: Vision and mission. Computer Standards & Interfaces 77, 103521. doi:10.1016/j.1195
csi.2021.1035211196

Gupta, R., Tanwar, S., Tyagi, S., and Kumar, N. (2019). Tactile-Internet-based telesurgery system for1197
healthcare 4.0: An architecture, research challenges, and future directions. IEEE Network 33, 22–29.1198
doi:10.1109/MNET.001.19000631199

Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism management1200
31, 637–651. doi:10.1016/j.tourman.2009.07.0031201

Han, Y., Niyato, D., Leung, C., Kim, D. I., Zhu, K., Feng, S., et al. (2022). A dynamic hierarchical1202
framework for IoT-assisted digital twin synchronization in the Metaverse. IEEE Internet of Things1203
Journal to be published, 1–18. doi:10.1109/JIOT.2022.32010821204
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