
1

Stochastic Cumulative DNN Inference with
RL-Aided Adaptive IoT Device-Edge Collaboration

Kaige Qu, Member, IEEE, Weihua Zhuang, Fellow, IEEE, Wen Wu, Senior Member, IEEE,

Mushu Li, Member, IEEE, Xuemin (Sherman) Shen, Fellow, IEEE, Xu Li, and Weisen Shi

Abstract—The advances in artificial intelligence (AI) and
edge computing enable edge intelligence to support pervasive
intelligent Internet of Things (IoT) applications in the future
wireless networks. We focus on deep neural network (DNN) based
classification tasks, and investigate how to improve the confidence
level and delay performance of DNN inference via device-edge
collaboration. We first develop a stochastic cumulative DNN
inference scheme that aggregates multiple random DNN inference
results and generates a cumulative DNN inference result with
improved confidence level. Then, based on a computation-efficient
DNN model deployment strategy with shared computation be-
tween a locally deployed fast DNN model and a full DNN model
partitioned between the device and edge, a closed-loop adap-
tive device-edge collaboration scheme is developed to support
cumulative DNN inference for multiple devices. We adaptively
determine how to offload DNN inference computation to the edge
and how to allocate transmission and edge computing resources
among multiple devices, for quality-of-service (QoS) satisfaction
in terms of both confidence level and inference delay with
resource and energy efficiency. A reinforcement learning (RL)
approach is used for adaptive offloading decision, which relies on
a resource allocation solution for reward calculation. Simulation
results demonstrate the effectiveness of the adaptive device-edge
collaboration scheme for cumulative DNN inference, in terms
of confidence level improvement, delay violation minimization,
network resource efficiency, and device energy efficiency.

Index Terms—Internet of Things (IoT), edge computing, edge
intelligence, DNN inference, partial offloading, device edge col-
laboration, reinforcement learning (RL).

I. INTRODUCTION

In the future wireless networks, artificial intelligence (AI)

models such as deep neural networks (DNNs) are pervasively

deployed to support diverse intelligent Internet of Things

(IoT) applications such as intelligent surveillance, autonomous

driving, and factory automation [1]–[6]. Many intelligent IoT

applications rely on DNN models for classification. For ex-

ample, in autonomous driving, the nearby objects should be

detected and classified to build an environment model for an

autonomous vehicle [7]. For a general classification task, a

This work was financially supported by research grants from Huawei
Technologies Canada and from the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

Kaige Qu, Weihua Zhuang, Mushu Li, and Xuemin (Sherman) Shen are
with the Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada, N2L 3G1 (emails: {k2qu, wzhuang, m475li,
sshen}@uwaterloo.ca).

Wen Wu is with the Frontier Research Center, Peng Cheng Laboratory,
Shenzhen, Guangdong, China, 518055 (email: wuw02@pcl.ac.cn). This work
was done when Wen Wu was with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.

Xu Li and Weisen Shi are with Huawei Technologies Canada Inc., Ottawa,
ON, Canada, K2K 3J1 (emails: {Xu.LiCA, weisen.shi1}@huawei.com).

pre-trained DNN model processes an input data sample such

as raw sensing data and generates a classification result as

output, which is referred to as DNN inference. The DNN

model output, also referred to as a DNN inference result,

has a random confidence level due to the random amount of

information provided by a single data sample. For example, for

an object moving under the surveillance of a smart camera, one

video frame can be sampled and processed by a DNN model

for object classification. However, due to the random viewing

angle to the object and the random sensing data quality across

different video frames, a DNN inference result based on a

random data sample may not provide satisfactory confidence

level and accuracy for object classification.

As different data samples corresponding to the same object

(e.g., consecutive video frames containing an object) usually

capture different spatial/temporal features, and different DNN

models provide random DNN inference results with different

confidence levels by processing the same data sample, a

potential approach to improving the confidence level of a clas-

sification task is to consider multiple DNN inference results

based on different data samples and DNN models to exploit the

data diversity and model diversity. A straightforward method is

to select a DNN inference result with the maximum confidence

level and ignore other results. Then, if a confidence level

requirement is not satisfied, more data samples should be

collected and more computation should be triggered to obtain

a more accurate DNN inference result. This approach may lead

to high latency if the required confidence level is high, which

may violate a task completion time requirement. Actually, it

is inefficient to completely ignore the DNN inference results

with lower confidence levels, especially for those whose

confidence levels are close to the required threshold. This

observation motivates our investigation on a cumulative DNN
inference scheme for a classification task, that progressively

incorporates the different contributions from multiple random

DNN inference results and improves a cumulative confidence
level for the classification task.

To obtain the multiple DNN inference results that support

cumulative DNN inference with computing resource effi-

ciency, the trade-off between confidence level and comput-

ing demand of different DNN models should be considered.

Typically, more complex DNN models with deeper layers

provide a higher confidence level on average at the cost of high

computing demand. If DNN inference is executed locally, it

is intractable for the resource-limited IoT devices to satisfy a

high confidence level requirement with low latency. An edge-

only solution, which fully offloads the raw data samples with

2

Layer

Cut layer

Layer

Layer

Layer

Layer

Layer

Layer

Input
data

sample
Full inference

result

Fast inference
result

Fast DNN inference

Full DNN inference

Intermediate
data

Enhanced DNN inference

Device
side
Edge
side

Fig. 1: An illustration of computation-efficient DNN model deployment.

a large data size to a resource-rich edge server, suffers from a

long transmission delay. Recently, collaborative inference over

a device-edge-cloud computing hierarchy has been investi-

gated to improve the delay performance, by partially offloading

the DNN model computation to nearby devices, edge server or

cloud [8]–[11]. For example, in a horizontal DNN partitioning

scheme, the inference before and at a selected cut layer is

computed locally at the device, and the remaining inference

after the cut layer (referred to as enhanced DNN inference) is

computed at the edge server based on the intermediate data
generated at the cut layer output, which reduces the total

DNN inference delay [12]–[16]. Benefiting from the delay

improvement via device-edge collaboration, a complex DNN

model providing a high confidence level can be used for real-

time IoT applications. We refer to this complex DNN model

partitioned across device and edge as a full DNN model. To

improve the computing efficiency, we also deploy a compact

DNN model of less layers with a lower confidence level

at the device side, referred to as a fast DNN model, which

shares the local computation with the full DNN model. Such

a computation-efficient DNN model deployment strategy with

device-edge collaboration is illustrated in Fig. 1. If both the

fast and full DNN models are executed for a data sample,

two DNN inference results (referred to as fast and full DNN

inference results respectively) are generated with a limited

computation increase as compared with the original DNN

partitioning scheme.

Consider an edge-assisted multi-device IoT scenario, where

each IoT device has a classification task with quality-of-

service (QoS) requirements in terms of the confidence level

and task delay, and the computation-efficient DNN model

deployment strategy with device-edge collaboration is applied

to each device. For each device, a new input data sample is

first processed locally by a fast DNN model, generating a

fast inference result. The intermediate data at the cut layer

is temporally stored in a local cache at the device, which

is obtained as a by-product during fast DNN inference. A

full inference result is generated by offloading a cached

intermediate data sample to the edge server for enhanced DNN

inference, which consumes network resources for transmission

and edge computing. The fast or full DNN inference results

are sequentially aggregated to obtain a continually updated

Fast DNN
inference

 Cumulative
DNN inference

scheme

Cache

Data
sample

Fast
inference

result

Intermediate
data

Cumulative
DNN inference

result

Enhanced
DNN inference

Learning
agent

Full inference
result

Cumulative
confidence

level

Adaptive offloading decision

Device
side DataControl

signals
Edge
side

Fig. 2: A learning-based control loop supporting cumulative DNN inference
with device-edge collaboration for one device.

cumulative DNN inference result, until the cumulative confi-

dence level reaches a predefined threshold. If the confidence

level requirement is not satisfied within a predefined deadline

in time, a delay violation penalty is applied to the device.

To improve the cumulative confidence level within a given

time and reduce the delay violation probability, it is preferable

to execute more full DNN inference than fast DNN inference,

i.e., offloading is preferred to local computing, as a full infer-

ence result has a higher confidence level on average. However,

more offloading means consuming more transmission and edge

computing resources, both of which are shared among multiple

devices. Moreover, the local energy consumption should be

considered, as the IoT devices are usually battery powered and

thus the energy efficiency is a concern. As the intermediate

data size is relatively small, the local transmission energy for

offloading one intermediate data sample to obtain one full

inference result is usually smaller than the local computing

energy for fast DNN inference. A choice should be made

between using less local energy but more network resources to

offload a cached intermediate data sample for a full inference

result with a higher confidence level, and using more local

energy but no network resources to locally process a new data

sample for a fast inference result with a lower confidence level.

In this paper, a resource and energy efficient adaptive

device-edge collaboration scheme is presented, which supports

cumulative DNN inference among multiple devices in an

edge-assisted intelligent IoT scenario, for confidence level

satisfaction with a minimum delay violation penalty. The main

contributions are summarized as follows:

• A data-driven stochastic cumulative DNN inference

scheme is proposed for classification tasks, to combine

the contributions of multiple fast and full inference re-

sults, based on non-parametric probability density esti-

mation of both the fast and full DNN model outputs;

• A computation-efficient and device-edge collaborative

DNN model deployment strategy is proposed with shared

local computation between fast and full DNN models,

based on which full inference results can be generated

by reusing the intermediate data of fast inference;

• A learning-based control loop is designed to support

the cumulative DNN inference with adaptive device-edge

3

collaboration, as illustrated in Fig. 2. Based on a con-

tinually updated cumulative confidence level, an adaptive

offloading decision sequence is learned to dynamically

trigger the local fast DNN inference or the remote full

DNN inference for each device, until the cumulative

confidence level reaches a predefined threshold;

• A joint offloading and resource allocation problem is

studied, to minimize 1) the total cost accounting for

both network resources and local energy consumption,

and 2) the total delay violation penalty. The problem is

formulated as a Markov decision process (MDP), and a

deep Q-learning solution is proposed with a per-episode

updated extra experience replay.

The rest of this paper is organized as follows. Related works

are reviewed in Section II. The system model is described

in Section III, and a joint offloading and resource allocation

problem is formulated in Section IV. A reinforcement learning

based solution is discussed in Section V. Simulation results are

presented in Section VI, and conclusions are drawn in Sec-

tion VII. Table I summarizes the main mathematical symbols.

II. RELATED WORKS

Collaborative DNN inference has been extensively studied

in recent years. We give a brief overview of the state-of-the-
art collaborative DNN inference schemes that are based on

partial offloading for DNN inference acceleration.

In a typical horizontal DNN partitioning scheme, the

sequential layers of a linear-topology DNN model (e.g.,

AlexNet) are grouped into two subsets which are partitioned at

a selected cut layer. The inference before and at the cut layer

is computed locally at one network device, and the remaining

inference after the cut layer is computed at another network

device. The combination of the two network devices can be

an IoT device and an edge server, two IoT devices, or an

edge server and a cloud server [12]–[14]. For a DNN model

with branches (e.g., GoogleNet), which can be modeled as

a directed acyclic graph, the set of layers can be partitioned

into two or more disjoint subsets at multiple parallel cut layers

and deployed at multiple network devices in the device-edge-

cloud environment [15]–[18]. How to select the cut layer(s) for

an efficient DNN model partitioning between network devices

has been extensively studied to reduce the total inference delay

and (or) the total energy consumption for both communication

and computing, by using delay/energy performance regression

techniques, optimization models, and reinforcement learning

approaches [12]–[19]. Besides the horizontal DNN partitioning

schemes in which the DNN inference is divided into two

serial parts at selected cut layer(s), vertical DNN partitioning

schemes have been extensively investigated, which exploit

the model parallelism and improve the inference delay by

distributing the fine-grained parallel inference workload to

multiple network devices [20]–[23]. In [23], the principles

for input/output splitting of fully-connected (FC) layers and

channel/spatial/filter splitting of convolution (CONV) layers are

introduced in detail.

Typically, a DNN model with deeper layers produces DNN

inference results of a higher accuracy at the cost of a longer

inference delay and a higher inference energy. To reduce

the average inference delay and energy without significantly

sacrificing the accuracy, a DNN model early exit architecture

has been proposed, which adds one or more early exit outputs

to the original DNN model, and allows a DNN inference to

finish at an early exit output as long as the confidence level

is satisfied [24]–[27]. To further enhance the delay perfor-

mance for DNN inference, a new collaborative DNN inference

scheme has been proposed by combining the DNN partitioning

and the model early exit schemes, which dynamically adjusts

the cut layer locations and the early exit locations under a

dynamic network environment, while addressing a trade-off

between accuracy and delay [28].

In summary, most existing works on collaborative DNN

inference focus on the performance enhancement for DNN

inference based on single data sample in reducing the total

delay and (or) energy consumption without degrading the

accuracy. In comparison, our adaptive device-edge collabo-

ration scheme is to support the stochastic cumulative DNN

inference based on multiple DNN inference results over time,

to exploit the data and model diversity and further improve the

accuracy beyond the accuracy limit of a single DNN inference

result. We focus on how to satisfy a cumulative confidence

level requirement within a required time limit, while using a

minimum total network resource consumption and total device

energy consumption across multiple time slots. The underlying

DNN model partitioning and early exit design for a minimum

inference delay and energy is not the focus of this work. We

can use the existing approaches to select a proper cut layer and

an early exit location for our DNN model, which can boost

the overall delay and energy performance in the long run.

III. SYSTEM MODEL

A. Edge-Assisted Intelligent IoT Scenario

Consider an IoT scenario with one access point (AP) and

multiple stationary IoT devices, in a time-slotted system with

time slot duration τ . Let integer k (k ≥ 1) be the time slot

index. The AP is co-located with an edge server. For each

device i in a device set I, we consider both a locally deployed

fast DNN model, and a full DNN model partitioned between

the device and the edge server, with shared layers from an

input layer to a pre-determined cut layer. The cut layer output

is referred to as an intermediate data sample. Let LA and

LU denote the layer sets of the fast and full DNN models

respectively, with subset L0 = LA ∩ LU including all the

shared layers. Let l̂ ∈ L0 denote the cut layer. For the full

DNN model, all the layers in subset L0 are executed locally,

while all the remaining layers in subset LU\L0, corresponding

to enhanced DNN inference, are executed at the edge server.

Each device i initiates a classification task at the beginning

of time slot k = 1, with a task completion time requirement,

denoted by Ti in second and Ki = �Ti

τ � in number of time

slots. For the task, there are multiple input data samples gener-

ated by an embedded data source in the device. For example,

a smart camera can generate consecutive video frames for the

classification of a moving object. Based on these input data

samples, multiple DNN inference results can be generated for

4

TABLE I: List of important notations

Parameters

c(k) Cost during time slot k
dAi Computing delay for fast DNN inference at device i

dEi (k) Computing delay for enhanced DNN inference of device i
during time slot k

dTi (k) Transmission delay for offloading one intermediate data
sample from device i to the AP during time slot k

eAi Local computing energy at device i
eTi (k) Transmission energy for offloading one intermediate data

sample by device i during time slot k
ei(k) Local energy consumption at device i during time slot k
fi (f0) CPU frequency (in cycle/s) of device i (edge server)
Ki Task completion time requirement for device i

Pi(k) Delay violation penalty of device i at time slot k
qi(k) Number of intermediate data samples in local cache of

device i at the beginning of time slot k

w Intermediate data size (output data size of cut layer l̂) in bit
ηT Confidence level requirement

ηi(k) Cumulative confidence level of device i at time slot k
μl Computing demand in CPU cycles for layer l ∈ LA ∪ LU

τ Time slot duration in second

Decision variables

ai(k) Number of intermediate data samples offloaded by device i
during time slot k

βT
i (k) Fraction of bandwidth allocated to device i at time slot k

βE
i (k) Fraction of edge computing resources allocated to device i

during time slot k
ρ(k) Network resource consumption ratio during time slot k

the task at device i over time by the fast and full DNN models.

A local cache is used at each device to temporarily store

the intermediate data samples during each execution of fast

DNN inference. Let qk ∈ R
|I| denote the caching state at

the beginning of time slot k, where the i-th element, qi(k),
represents the number of intermediate data samples stored in

the local cache of device i, with initial state qi(1) = 0. Let

ak ∈ R
|I| denote an integer offloading decision vector during

time slot k, where element ai(k) represents the offloading

decision variable for device i. Specifically, if ai(k) = 0, no

offloading takes place but one new data sample is locally pro-

cessed by fast DNN inference at device i, generating one new

fast inference result, and one new intermediate data sample

is added to the local cache; otherwise, a number of ai(k)
intermediate data samples are offloaded from the local cache

of device i to the edge server for enhanced DNN inference,

generating one or more full inference results. Accordingly, the

caching state qk+1 = {qi(k + 1), ∀i ∈ I} at the beginning of

time slot k + 1, is updated as

qi(k + 1) =

{
qi(k) + 1, ∀i ∈ I if ai(k) = 0

[qi(k)− ai(k)]
+

, ∀i ∈ I if ai(k) > 0.
(1)

At most qi(k) intermediate data samples can be offloaded from

device i during time slot k, i.e.,

0 ≤ ai(k) ≤ qi(k), ∀i ∈ I. (2)

B. DNN Model Layer Parameters

A DNN model for classification usually begins with a

feature extraction module composed mainly of CONV layers

and pooling (e.g., MaxPool) layers, followed by a classifier

composed mainly of FC layers. A pooling layer down-samples

the output of a CONV layer and reduces the data dimension. An

activation layer is usually applied to each CONV and FC layer

output for nonlinearity. The last FC layer is usually activated

with Softmax function, to generate a nonnegative probability

vector adding up to one.

For CONV layer l ∈ LA ∪ LU , let
(
HI

l ,W
I
l , D

I
l

)
and(

HO
l ,WO

l , DO
l

)
denote the dimensions in height, width, and

number of channels, for the input and output feature maps

respectively. To generate the output feature map at layer l, a

number of DO
l filters, each with a dimension of

(
hl, hl, D

I
l

)
,

are applied to the input feature map, by sweeping each filter

over it and calculating the dot products [23], [29]. Each

filter creates a channel in the output feature map. Filter n
(1 ≤ n ≤ DO

l) at layer l performs (hl)
2
DI

l multiplica-

tions and (hl)
2
DI

l − 1 additions, in calculating each of the

HO
l WO

l data elements in the j-th channel of the output feature

map. Thus, a total number of 2 (hl)
2
DI

l − 1 floating-point

operations, including both multiplications and additions, are

required for computing each of the HO
l WO

l DO
l output data

elements at CONV layer l. For FC layer l ∈ LA ∪ LU ,

let XI
l and XO

l denote the input and output dimensions,

respectively. To compute each of the XO
l output data elements,

the XI
l -dimension inputs are multiplied with the corresponding

weights, and the weighted inputs are then summed with a

bias. Hence, XI
l multiplications and XI

l additions are required

for each output data element at FC layer l. Accordingly, a

total number of 2XI
l floating-point operations are required for

computing each of the XO
l output data element at FC layer l.

Let vl denote the number of output data elements at layer

l ∈ LA ∪ LU , given by

vl =

{
HO

l WO
l DO

l , if layer l is a CONV layer

XO
l , if layer l is an FC layer.

(3)

Let πl denote the number of floating-point operations, in-

cluding both multiplications and additions, for computing one

output data element at layer l ∈ LA ∪ LU , given by

πl =

{
2 (hl)

2
DI

l − 1, if layer l is a CONV layer

2XI
l , if layer l is an FC layer.

(4)

Note that πl is set to 0 by default, as other DNN layers such

as the pooling and activation layers have negligible computing

demand in comparison with the CONV and FC layers.

C. Computing Model

Let μl = ϕvlπl denote the computing demand in number

of CPU cycles for layer l ∈ LA ∪LU , where ϕ is the number

of CPU cycles for one floating-point operation. Let fi and f0
denote the CPU frequencies (in cycle/s) of device i and the

edge server respectively.

Let dAi denote the computing delay for one fast DNN

inference at device i, given by

dAi =

∑
l∈LA μl

fi
, ∀i ∈ I. (5)

We should have τ ≥ maxi∈I dAi , to ensure that the fast DNN

inference for one data sample at any device can finish in one

5

time slot. The local computing energy consumption for fast

DNN inference at device i, denoted by eAi , is given by

eAi = κi (fi)
3
dAi = κi (fi)

2
∑
l∈LA

μl, ∀i ∈ I (6)

where κi is the energy efficiency coefficient for device i [30].

For enhanced DNN inference, each device is allocated with

a virtual CPU at the edge server. Let βE(k) ∈ R
|I| denote

an edge computing resource allocation decision vector at time

slot k, with element βE
i (k) representing the fraction of edge

computing resources allocated to the virtual CPU for device

i. We have βE
i (k) = 0 for device i if ai(k) = 0, with

0 ≤ βE
i (k) ≤ ai(k)M, ∀i ∈ I (7)

where M
 1 is a very large constant. The computing delay

for enhanced DNN inference of device i during time slot k,

denoted by dEi (k), is given by

dEi (k) =

∑
l∈LU\L0

μl[
βE
i (k) + ε

]
f0

, ∀i ∈ I (8)

where ε is a very small constant parameter with 0 < ε �
1. Adding such a small value, e.g., 10−6, to βE

i (k) in the

denominator of (8) avoids dEi (k) being undetermined when

no edge computing resources are allocated to device i at time

slot k, i.e., βE
i (k) = 0, while making nearly no difference on

the optimal value of βE
i (k). Let constant C

(1)
i =

∑
l∈LU\L0

μl

f0

be the value of dEi (k) for f0 total edge computing resources.

D. Communication Model

Let w = φvl̂ denote the intermediate data size in bit, where

φ is the number of bits to represent a floating-point number,

and vl̂ is given by (3) if cut layer l̂ is a CONV or FC layer.

In practice, the cut layer is usually selected as a pooling layer

following a CONV layer. In this case, vl̂ is the number of output

data elements after data down-sampling by the pooling layer.

Consider orthogonal frequency division multiple access

(OFDMA) for the uplink wireless transmission between IoT

devices and the AP with total radio spectrum bandwidth B.

Let βT (k) ∈ R
|I| denote the bandwidth allocation decision

vector during time slot k, with element βT
i (k) representing

the fraction of bandwidth allocated to device i. We have

0 ≤ βT
i (k) ≤ ai(k)M, ∀i ∈ I. (9)

The transmission delay for offloading one intermediate data

sample from the local cache of device i to the edge server via

the AP during time slot k, denoted by dTi (k), is given by

dTi (k) =
w[

βT
i (k) + ε

]
B log2

(
1 + pigi

σ2

) , ∀i ∈ I (10)

where pi denotes the transmit power of device i, gi denotes

the constant uplink transmission power gain between device

i and AP, and σ2 represents the noise power. Let constant

C
(2)
i = w

B log2(1+
pigi
σ2)

be the value of dTi (k) when using

whole bandwidth B. We ignore the downlink delay for trans-

mitting the full inference results back to the devices due to

the small data size. The transmission energy consumption for

offloading one intermediate data sample from device i to the

AP during time slot k, denoted by eTi (k), is given by

eTi (k) = pid
T
i (k), ∀i ∈ I. (11)

E. Cumulative DNN Inference Scheme
Consider an M -class classification task, where class label

Y is a random variable with M possible integer outcomes in

{1, . . . ,M}. An input data sample, x, to the fast or full DNN

model is a random sample following an unknown probability

distribution. For example, a grayscale image with resolution

200×200 is a random sample from a 2002-dimension unknown

joint probability distribution of pixel intensity values. A fast

or full DNN model output, i.e., a fast or full inference result,

is represented by an M -dimension estimated class probability

vector, z = {zm}, with zm = Pr (Y = m|x) denoting the

estimated conditional probability of class m ∈ {1, · · · ,M}
given data sample x. The entropy of Y conditioned on x,

calculated as −∑M
m=1 zm log zm, measures the uncertainty of

the DNN inference result z. We use one minus normalized

entropy to represent the confidence level of z, given by

η (z) = 1 +

M∑
m=1

zm log zm
logM

(12)

which has a value between 0 and 1 [24], [25]. Typically, a full

inference result has a higher confidence level on average than

a fast inference result.
Consider multiple DNN inference results for the M -class

classification task. Let zj = {zj,m} denote the j-th DNN

inference result. Let χj ∈ {0, 1} indicate whether zj is

generated by the fast or full DNN inference, with χj = 1
indicating full DNN inference, and χj = 0 otherwise. Let

Zj = {z1, . . . , zj} denote the set of DNN inference results

up to zj . Define the cumulative DNN inference result given Zj

as an M -dimension estimated class probability vector, denoted

by oj = {oj,m}, with oj,m = Pr (Y = m|Zj) representing

the estimated conditional probability of class m given Zj .

For true class m̂, zj,m̂ is referred to as the estimated true

class probability by the j-th DNN inference result, and oj,m̂
is referred to as the cumulative estimated true class probability

given Zj . Based on Bayes’ theorem and under the assumption

of conditional independence among different DNN inference

results given the same true class label, oj,m is written as

oj,m =
Pr (Y = m)

∏j
j′=1 Pr

(
zj′

∣∣∣Y = m
)

Pr (z1, . . . , zj)
(13)

where Pr (Y = m) represents the prior class distribution,

and Pr
(
zj′

∣∣Y = m
)

represents the joint probability density

of the j′-th DNN inference result, i.e., vector zj′ , given

true class label Y = m. Let fAm (z) and fUm (z) denote the

joint probability density functions of the fast and full DNN

inference results given Y = m, respectively. Then, we have

Pr
(
zj′

∣∣Y = m
)
= (1− χj′) f

A
m (zj′) + χj′ f

U
m (zj′) . (14)

We use a data-driven non-parametric probability density es-

timation method, kernel density estimation (KDE), to profile

functions fAm (z) and fUm (z) for each class m. Specifically, we

6

first partition a labeled training dataset into M class-specific

subsets according to the known class labels. With each class-

specific data subset, we collect a subset of fast inference results

and a subset of full inference results by running the fast and

full DNN models. Then, fAm (z) and fUm (z) can be profiled

with the corresponding subset of DNN inference results.

As denominator Pr (z1, . . . , zj) in (13) is unknown, we can

calculate oj,m through normalization based on the property

that
∑M

m=1 oj,m = 1. Hence, (13) can be rewritten as

oj,m =
Pr (Y = m)

∏j
j′=1 Pr

(
zj′

∣∣Y = m
)

∑M
m=1

[
Pr (Y = m)

∏j
j′=1 Pr

(
zj′

∣∣Y = m
)] . (15)

The confidence level of cumulative DNN inference result oj ,

denoted by η (oj), is referred to as the cumulative confidence

level given Zj , and is calculated based on (12).

Note that (15) provides a general model to calculate a

cumulative DNN inference result given an arbitrary number

(e.g., j) of fast or full inference results for an M -class

classification task. In the considered scenario, each device i
obtains either one new fast inference result or at least one full

inference result during time slot k for its task, depending on

offloading decision ai(k). Let ηk ∈ R
|I| denote the cumulative

confidence levels for all devices at the beginning of time slot

k, where element ηi(k) represents the cumulative confidence

level for device i with ηi(1) = 0. A cumulative DNN inference

result is updated at the end of time slot k for each device

i based on (15), by combining all the old inference results

through time slots 1 to k − 1 and the new inference results

obtained during time slot k. Accordingly, the new cumulative

confidence levels, i.e., ηk+1, can be calculated. For each

device i, the update is performed iteratively across multiple

time slots, until the classification task is completed when the

cumulative confidence level reaches a predefined threshold,

ηT . If the threshold, ηT , is reached before or at the required

task completion time limit, Ki, the QoS requirement of device

i is satisfied; otherwise, a delay violation penalty is applied

to the device. Let Pi(k) denote the delay violation penalty

of device i at the end of time slot k. The penalty is zero

for 1 ≤ k < Ki. For k ≥ Ki, if the required confidence

level is not satisfied, i.e., ηi(k) < ηT , the penalty increases

linearly with the number of time slots behind deadline. Let P
be a constant denoting the unit penalty for each time slot with

delay violation. Accordingly, we have

Pi(k) =

{
(k −Ki + 1)

+
P , if ηi(k) < ηT

0, otherwise.
(16)

Computational Complexity: At a data pre-processing stage

before the online execution of the cumulative DNN inference

scheme, the joint probability density functions should be

profiled using the KDE method. Consider an M -class training

dataset including X training data samples for each class. Each

of the fast and full DNN models should be executed by MX
times to generate the subsets of fast and full inference results,

which incurs an O(MX) time complexity. For each class

m, one KDE is required to profile function fAm (z), and one

KDE is required to profile function fUm (z). Each KDE has

a time complexity of O(X2) for kernel function evaluation

and optimal kernel bandwidth selection, all depending on the

number of data points, X [31]. Thus, the total time complexity

for the KDE of both the fast and full inference results of all

classes is O(MX2). For a large dataset, the computational

complexity of KDE can be prohibitive, but there are efficient

algorithms, such as the Fast Fourier Transform method, that

can be used to speed up the computation [31]. When the

cumulative DNN inference scheme is used online, an M -

dimension cumulative DNN inference result is calculated in

each time slot, where each element is calculated based on (15).

Accordingly, the time complexity of the online cumulative

DNN inference scheme in each time slot is O(M).

IV. JOINT OFFLOADING AND RESOURCE ALLOCATION FOR

MULTI-DEVICE CUMULATIVE DNN INFERENCE

A full inference result has a higher average confidence level

than a fast inference result, and more full inference results

generally improve more on the cumulative confidence level

once they are combined. Hence, device i tends to achieve a

higher gain in the cumulative confidence level (i.e., confidence

level gain) during time slot k for a larger value of ai(k), i.e.,

if more intermediate data samples are offloaded to the edge

server and processed by enhanced DNN inference. For each

device to reduce the delay violation penalty at task completion,

offloading more intermediate data samples for edge computing

is preferable in each time slot.
However, more offloading requires more resources for both

transmission and edge computing. In this work, we focus on

the fraction rather than the absolute value of total resource

usage for both transmission and edge computing. The factions

for both have the same range between 0 and 1. We do not

put more emphasis on minimizing the fraction of either the

transmission resource usage or the edge computing resource

usage, but treat them equally. Define a network resource

consumption ratio during time slot k, denoted by ρ(k), which

is a continuous decision variable in [0, 1] representing an upper

limit for the fractions of total transmission and edge computing

resource usage during time slot k. Accordingly, we have∑
i∈I

βT
i (k) ≤ ρ(k) and

∑
i∈I

βE
i (k) ≤ ρ(k). (17)

By minimizing such an upper limit, both the fractions of

total transmission and edge computing resource usage can

be minimized. As the network resources are shared among

multiple devices, only feasible offloading decisions under the

network resource availability can be selected to guarantee the

delay performance in each time slot. Specifically, for device i,
in order to offload ai(k) intermediate data samples to the edge

server and obtain ai(k) full inference results during time slot

k, the total transmission and edge computing delay should not

exceed time slot length τ , given by

ai(k)
[
dTi (k) + dEi (k)

] ≤ τ, ∀i ∈ I. (18)

More offloading also requires more local transmission en-

ergy at the devices for transmitting more intermediate data

samples to the edge server, while no offloading incurs local

computing energy consumption for executing fast DNN in-

ference. Let ξ(k) = {ξi(k), ∀i ∈ I} be an auxiliary binary

7

decision variable set in time slot k, with ξi(k) = 1 indicating

that at least one intermediate data sample is offloaded from

device i, and ξi(k) = 0 otherwise. We have

ai(k)

M
≤ ξi(k) ≤ ai(k), ∀i ∈ I. (19)

Let ei(k) denote the local energy consumption at device i
during time slot k, given by

ei(k) = ξi(k)ai(k)e
T
i (k) + [1− ξi(k)] e

A
i , ∀i ∈ I. (20)

Consider the total cost during time slot k, denoted by c(k),
as the linearly weighted summation of the total local energy

consumption among all devices and the network resource

consumption ratio, with weight ω1 ∈ (0, 1), given by

c(k) = ω1

∑
i∈I

ei(k) + (1− ω1) ρ(k)

= ω1

∑
i∈I

{
ξi(k)ai(k)

piC
(2)
i

βT
i (k) + ε

+ [1− ξi(k)] e
A
i

}

+ (1− ω1) ρ(k). (21)

To support the device-edge collaborative cumulative DNN

inference for multiple devices with QoS satisfaction and cost

efficiency, a joint offloading and resource allocation is neces-

sary, to minimize the long-run total cost and the total delay

violation penalty until the task confidence level requirements

at all devices are satisfied, by jointly determining the integer

offloading decision variables, ak, the binary auxiliary decision

variables, ξ(k), and the continuous resource allocation deci-

sion variables, ρ(k), βT (k) and βE(k), in each time slot k.

The long-run joint offloading and resource allocation problem

can be decoupled into a long-run adaptive offloading problem,

and multiple instantaneous resource allocation subproblems

in each time slot. Given an offloading decision vector, ak,

for time slot k, a resource allocation subproblem in Sub-

section IV-A is solved to first check the feasibility and then

find the optimal resource allocation solutions, ρ∗(k), βT ∗
(k),

and βE∗
(k), with minimal cost c∗(k). For the long-run

adaptive offloading problem, a sequence of feasible offloading

decisions are adaptively determined based on the evolving

network status, by solving a Markov decision process (MDP)

in Subsection IV-B with a reward function incorporating the

minimal cost c∗(k) by optimal resource allocation.

A. Resource Allocation Subproblem
Given an offloading decision vector, ak, for time slot k,

ξ(k) is a known vector determined by (19). Then, a resource

allocation optimization problem is formulated as

min
βT (k),βE(k),ρ(k)

c(k)

s.t. βT
i (k), β

E
i (k), ρ(k) ∈ [0, 1] , ∀i ∈ I (22a)

(7), (9), (17) (22b)

ai(k)C
(2)
i

βT
i (k) + ε

+
ai(k)C

(1)
i

βE
i (k) + ε

≤ τ, ∀i ∈ I. (22c)

Constraint (22a) specifies the lower and upper limits for the

decision variables. The delay requirement in (18) is rewritten

as constraint (22c) with explicit resource allocation decision

variables. Problem (22) is a convex optimization problem

due to the convex objective function and all the convex

inequality constraints. However, both the objective function

and constraint (22c) involve the division by decision variables,

which is not supported by an optimization solver such as

Gurobi [32]. To solve the problem using a Gurobi optimization

solver, we transform the problem to a second-order cone

programming (SOCP) problem with zero optimality gap, by

introducing two auxiliary continuous decision variable sets,

ψ(k) = {ψi(k), ∀i ∈ I} and δ(k) = {δi(k), ∀i ∈ I}, and one

auxiliary continuous decision variable, ζ. An SOCP problem

has a linear objective function and all the constraints are either

linear or (rotated) second-order cone constraints, which is a

convex problem that can be solved in polynomial time using

interior point methods [33]. Let C
(3)
i = ξi(k)ai(k)piC

(2)
i and

C
(4)
i = [1− ξi(k)] e

A
i be two constant values for device i

given ak. Then, the SOCP problem is given by

min
βT (k),βE(k),ζ
ψ(k),δ(k),ρ(k)

ω1

∑
i∈I

[
C

(3)
i ψi(k) + C

(4)
i

]
+ (1− ω1) ρ(k)

s.t. (22a), (22b)

ai(k)
[
C

(2)
i ψi(k) + C

(1)
i δi(k)

]
≤ τ, ∀i ∈ I (23a)[

βT
i (k) + ε

]
ψi(k) ≥ ζ2, ∀i ∈ I (23b)[

βE
i (k) + ε

]
δi(k) ≥ ζ2, ∀i ∈ I (23c)

ζ = 1. (23d)

An optimum of problem (22) is either a unique optimum

or one of multiple optimal solutions to SOCP problem (23).

Specifically, second-order cone constraint (23b) must be active

(i.e., achieving equality) in an SOCP optimum, and an SOCP

optimum with inactive second-order cone constraint (23c) can

always be mapped to another SOCP optimum with active

constraint (23c), without affecting other constraints and the

objective value. Relevant proofs involving the active/inactive

status of second-order cone constraints can be found in [34].

The feasibility of each candidate offloading decision, ak, is

checked by checking the feasibility of the SOCP problem. Let

A denote the set of feasible offloading decisions. The minimal

cost, c∗(k), under each feasible offloading decision, ak, is pre-

calculated by solving the SOCP problem.

B. Adaptive Offloading Problem

We formulate the adaptive offloading problem as an MDP,

where the offloading decisions are adaptively determined for

each device based on the evolving network status, to minimize

the total cost in the long run while reducing the delay violation

penalty. An MDP is represented as a tuple, (S,A, P,R, γ),
where S is the state space, A is the action space, P is the

state transition probability matrix, with P (s′|s,a) denoting

the probability distribution of next state s′ ∈ S given the

current state s ∈ S and action a ∈ A, R : S × A �→ R is

a reward function, and γ is a discount factor in [0, 1). The

goal of an MDP is to maximize an expected total discounted

reward in the long run, by adaptively taking action a ∈ A

8

based on dynamic network state s ∈ S . The state, action, and

reward of the MDP are given as follows.

• State: The cumulative confidence level, ηi(k), for each

device i shows an increasing trend with random fluctu-

ations over time, as more fast or full inference results

are combined. Hence, the dynamics in the cumulative

confidence levels of all devices depend on the sequence

of offloading decisions. An offloading decision at time

slot k, which is to offload more intermediate data samples

from a device whose current cumulative confidence level,

ηi(k), is low and the remaining time to deadline, Ki−k, is

short, potentially brings more benefit in terms of reducing

the total delay violation penalty. Therefore, the current

cumulative confidence levels at each device, ηk, and the

current time slot index, k, should be considered in making

adaptive offloading decisions over time. Moreover, the

caching state at each device, qk, should be considered, as

the number of offloaded intermediate data samples from a

device should not exceed the number of intermediate data

samples currently stored in the local cache. Accordingly,

the state at time slot k, denoted by sk is given by

sk = [qk,ηk, k]; (24)

• Action: The action at time slot k is the integer offloading

decision vector during time slot k, i.e., ak ∈ A, with

the i-th element ai(k) ∈ ak representing the offloading

decision for device i. Let A(s) ⊂ A denote a state-

dependent feasible action subspace, which includes all

actions satisfying constraint (2) at state s. The action at

time slot k should satisfy ak ∈ A(sk);
• Reward: To minimize the total delay violation penalty for

all devices while minimizing the total cost, we consider

a reward, rk, for each time slot k as

rk = − exp (ω2c
∗(k))−

∑
i∈I

Pi(k) (25)

where ω2 is a positive weight, c∗(k) is the minimal cost

obtained by solving the resource allocation subproblem,

and Pi(k) is the delay violation penalty for device i at

the end of time slot k. We use an exponential function of

c∗(k) to increase the cost gaps among different offloading

decisions and make rk more sensitive to the action.

V. DEEP REINFORCEMENT LEARNING SOLUTION

We propose a deep Q-learning algorithm presented in Al-

gorithm 1 to solve the MDP using a reinforcement learning

(RL) approach. Deep Q-learning adopts two deep Q networks

(DQNs) with the same neural network structure, i.e., an eval-

uation DQN (Q) with weights θ and a target DQN (Q̂) with

slowly updated weights θ̂, as approximators for a state-action

value function Q(sk,ak) = E

[∑K−1
k′=k γ

k′−krk′ |sk,ak

]
,

where K is the maximum number of learning steps in an

episode. Both θ and θ̂ are randomly initialized before training

(line 1) and then continually updated. Over every Kθ learning

steps, θ̂ is replaced by θ (line 15).

An RL agent running Algorithm 1 interacts with the in-

telligent IoT environment in a sequence of episodes. Each

Algorithm 1: The proposed deep Q-learning Algo-

rithm with extra replay memory

1 Initialize: θ and θ̂ for evaluation and target DQNs.

2 for each episode do
3 Initialize the state as s1.

4 for each learning step do
5 Observe current state sk, and select action ak

according to an ε-greedy policy.

6 Execute action ak, collect reward rk and next

state sk+1, and determine uk (done signal).

7 Store transition (sk,ak, rk, sk+1, uk) into the

ordinary replay memory and temporary

memory.

8 if done then
9 if total penalty is zero then

10 Pop out all transitions in the temporary

memory to the extra replay memory.

11 Empty out the temporary memory.

12 Sample random mini-batches of transitions

(sn,an, rn, sn+1, un) from both the ordinary

and extra replay memory.

13 Perform a gradient descent step on θ based on

2N transitions according to (26).

14 Update ε as ε×Δε, if ε > ε0.

15 Every Kθ steps, set θ̂ = θ.

16 Output: Trained evaluation and target DQNs.

episode contains a finite and variable number of learning steps,

one learning step for one time slot. An episode starts when

the devices initiate a new group of classification tasks, and

ends when the last device finishes its task with confidence

level satisfaction. At the beginning of each episode, the state

is initialized as s1 = [q1,η1, 1] = [0,0, 1] (line 3). The

total number of time slots in an episode can be smaller

than maxi∈I Ki if all tasks are finished before the required

deadlines, in which case there is no delay violation penalty.

It can also be larger than maxi∈I Ki when there is delay

violation penalty. Let uk be a binary flag indicating if time

slot k is the last time slot in the corresponding episode. If

uk = 1, the episode terminates at time slot k, and a done
signal is generated by the environment.

At the beginning of time slot k within each episode, the

RL agent observes environment state sk and takes action

ak using an ε-greedy policy (line 5), i.e., ak is given by

either argmaxa∈A(sk)
Q(sk,a) with probability 1 − ε based

on the evaluation DQN (Q), or a random action in A(sk)
with probability ε. We use a gradually decreasing exploration

probability, ε, from 1 to a minimum value ε0, with decaying

factor Δε ∈ (0, 1), to transit smoothly from exploration to

exploitation (line 14). Then, the RL agent informs each device

of the new offloading decision based on the action. At the end

of time slot k, the agent calculates reward rk for executing

action ak, and observes new state sk+1. Specifically, the RL

agent collects the new cumulative confidence levels, ηk+1,

9

which are updated based on the cumulative DNN inference

scheme at each device, as illustrated in Fig. 2. The new caching

state, qk+1, can be updated inside the RL agent based on (1).

The done signal, uk, is checked at the end of time slot k
to determine the episode termination (line 6). The signaling

overhead between the RL agent and the devices is negligible

due to a small signaling data size in comparison with the task

data size. Then, the new transition (sk,ak, rk, sk+1, uk) is

added to both an ordinary replay memory which is adopted

in traditional deep Q-learning algorithms and a temporary

memory which is a new component in our algorithm (line 7).

The temporary memory gradually gathers the transitions in

each episode and is emptied out per episode (line 11). Only

if the total delay violation penalty for all transitions in an

episode is zero, the corresponding transitions in the temporary

memory are popped out and stored in another new memory

component, an extra replay memory, before the temporary

memory is emptied out at the end of each episode (lines 9

and 10).

The per-episode updated extra replay memory, along with

the temporary memory, is dedicated for handling the delay

violation penalty which depends on all transitions from the

beginning of an episode. The extra replay memory stores

only transitions in the zero-penalty episodes, which are rare

transitions with QoS satisfaction especially at the early learn-

ing stage. Note that a traditional prioritized experience replay

which prioritizes the transitions with no instantaneous penalty

cannot provide the desired property of zero episode-level

penalty as the proposed extra replay memory [35], [36].

In our problem, all the transitions before task deadline in

all episodes have no instantaneous delay violation penalty

regardless of their reward, but the transitions after the task

deadline have delay violation penalty. Most transitions with

no instantaneous penalty should not be prioritized especially

in the early learning stage, because they may lead to eventual

delay violation at the end of the corresponding episodes. Only

the transitions in an episode whose total penalty is zero should

be prioritized, as in the proposed extra experience replay.

Then, for training the evaluation DQN via a gradient descent

step on θ, a mini-batch of N experiences are sampled from the

ordinary replay memory and a mini-batch of N experiences

are sampled from the extra replay memory (lines 12 and 13),

which improves the sampling frequency for the rare no-penalty

transitions as compared with the traditional deep Q-learning

algorithms. The gradient decent step is given by

θ ← θ + αE [(yk −Q(sk,ak;θ))∇θQ(sk,ak)] (26)

where α is the learning rate and yk is a target value estimated

by target DQN, given by

yk = rk + γ max
a∈A(sk+1)

Q̂(sk+1, a; θ̂). (27)

If an episode terminates at time slot k, yk is set as rk.

Computational Complexity: In the offline training stage, the

time complexity depends on several factors, including the state

and action spaces, the neural network size for the DQNs,

and the number of iterations until convergence. The larger

the state and action spaces, the larger the neural network

TABLE II: System parameters in simulation

Parameters Value

Bandwidth (B) 15 MHz

Noise power (σ2) −104 dBm
Transmit power (pi) 20 dBm

Channel gain (gi) 4× 10−13

Local CPU frequency (fi) 0.45 GHz
Edge server CPU frequency (f0) 20 GHz

Energy efficiency coefficient (κi) 10−28

CPU cycles for a floating-point operation (ϕ) 4
Bits for a floating-point number (φ) 32

size, and the more iterations required for convergence, the

computational complexity for training the deep Q-learning

algorithm increases. In the online execution stage, we use the

trained DQN to select an optimal action with the largest Q
value based on the current state. The time complexity for

calculating the Q values depends on the state and action

spaces, and the neural network size. Given the trained neural

network, the computation through the layers of the DQN in

each time slot incurs a pre-determined time overhead, which is

much smaller than that for implementing the DNN inference of

the classification tasks, due to a much smaller neural network

size. Moreover, the reward calculation for each learning step in

both the offline training and online execution stages depends

on solving an SOCP problem, which has a polynomial time

complexity [33].

VI. SIMULATION RESULTS

A. Simulation Setup

We set up a simulation model with three IoT devices, each

being a smart camera, under the coverage of one AP. A

classification task for each device is to classify a moving object

under its surveillance by using multiple video frames (data

samples). The devices have differentiated task completion time

requirements, which are [9, 11, 13] respectively in number

of time slots. The devices have the same confidence level

requirement, ηT , for their classification tasks. Other system

parameters are given in Table II [30], [37], [38]. We use a

typical video dataset UCF101 integrated in Tensorflow, which

contains videos capturing moving objects belonging to 101
classes. For simplicity, we select 600 videos belonging to 5
classes, referred to as UCF5 video dataset. For each video,

we extract the video frames at a frame sampling rate of 5
frames per second, and randomly select J = 50 video frames

as data samples. All the extracted data samples from the UCF5
video dataset constitute a 5-class image dataset. By randomly

reordering the J data samples from each video by 100 times,

we create 100 different sequences of data samples, each being

a data trace based on which a classification task is performed.

As such, 60000 classification tasks with different data traces

are simulated. Note that the video frames are not disordered

in a real IoT scenario. Here, we disorder the video frames to

create more synthetic data traces for simulation.

Without loss of generality, we consider the same DNN mod-

els for all devices. The full and fast DNN model architecture

and layer parameters (including layer input/output dimensions

10

36*36*32

17*17*256

17*17*32

8*8*384

8*8*384

4096

4096

8*8*256

8*8*256

3*3*256

2304

1000

5

11*11*32

5*5*256

3*3*384

3*3*384

3*3*256

17*17*5

320

8*8*5

5

5*5*5

224*224*3
Input

Main output

Cut layer

Branch output

Fast
DNN

model

Full
DNN

model

Fig. 3: Full and fast DNN model architecture and layer parameters.

and the filter size for each CONV layer) are shown in Fig. 3.

The structure of the full DNN model is based on the well-

known AlexNet model with slight difference customized to

our use case [39]. The full DNN model consists of five CONV
layers, three of which are followed by a MaxPool layer for

data dimension reduction. The 3D output feature map of the

last MaxPool layer is flatten to a 1D input to a sequence

of FC layers. Compared with the original AlexNet model

with default layer parameters, our full DNN model has two

customized modifications. First, instead of applying 96 filters

with size 11 × 11 to the input at the first CONV layer, we

use 32 filters with size 11 × 11, to fit the IoT device with

a limited computing capacity; second, we add an extra FC
layer with 5 neurons at the model output to customize the

AlexNet model to our 5-class image classification problem.

The fast DNN model is composed of two CONV layers, two

MaxPool layers, and one FC layer, where the first group of

CONV and MaxPool layers are shared with the full DNN

model. Due to the layer sharing property, the fast and full

DNN models can be seen as a combined DNN model with

one branch, as illustrated in Fig. 3, which can be trained as a

whole by minimizing the combined loss of both model outputs

based on the 5-class image dataset [24]–[26], [28]. The last

FC layers at each output are activated with Softmax function

to generate an estimated class probability vector, and all other

CONV and FC layers are activated with Relu function. With

the trained DNN models, we generate a set of fast inference

results and a set of full inference results corresponding to the

image dataset, based on which the joint probability density

functions, fAm (z) and fUm (z) for each class m, are profiled by

the KDE in Matlab.

TABLE III: Parameters in deep Q-learning algorithm

Learning parameters Value

Learning rate (α) 10−4

Discount factor (γ) 0.85
Minimum exploration probability (ε0) 0.01
Decaying factor for exploration probability (Δε) 0.9995

Number of steps to replace θ̂ by θ (Kθ) 200
Memory size 2000
Batch size (N) 32

Under the simulation setup, we have constants C
(1)
i = 0.02

and C
(2)
i = 0.115, and set the time slot length as τ =

dAi = 0.288s. At most two intermediate data samples can

be offloaded and finish the enhanced DNN inference during

one time slot. Accordingly, the action space, A, for the deep

Q-learning algorithm includes 10 discrete offloading actions,

i.e., (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0). Both the evaluation and

target DQNs have three hidden layers with (128, 64, 32) neu-

rons and Relu activation functions. We set weight ω2 = 30
and unit penalty P = 400 in the reward function. Other

learning parameters are summarized in Table III. We evaluate

the performance of the deep Q-learning algorithm for three

different values of ηT among {0.93, 0.95, 0.97}. To evaluate

the trade-off between local energy consumption and network

resource consumption, we vary the value of weighting factor

ω1 in (21) among {0.90, 0.95, 0.99}. The three weights are

all close to 1, but they place different priorities on the

two costs. Both ω1 = 0.90 and ω1 = 0.95 place more

priority on minimizing the network resource consumption,

while ω1 = 0.99 places more priority on minimizing the local

energy consumption. We use ω1 = 0.90 by default.

B. Performance Evaluation

We first evaluate performance of the proposed stochastic

cumulative DNN inference scheme and compare with two

benchmark DNN inference schemes. For each classification

task, a DNN inference is performed for each data sample

in the associated data trace containing J data samples, by

using either the full or fast DNN model, which generates J
different DNN inference results for the classification task. In

the proposed scheme, stochastic cumulative DNN inference

is performed by sequentially incorporating all the J DNN

inference results based on (15). At the j-th (1 ≤ j ≤ J)

data sample, the cumulative confidence level based on the

first j data samples in the data trace is recorded. In the

first benchmark scheme, no “cumulation” is considered, and

the confidence level of the DNN inference result based on

each single data sample in the data trace is reordered. In the

second benchmark scheme, a straightforward approach is used

to consider multiple data samples, which selects the DNN

inference result with the maximum confidence level among the

first j data samples and records the maximum confidence level

until the j-th data sample as the cumulative confidence level

at the j-th data sample. Fig. 4 shows the average (cumulative)

confidence level for 60000 simulated classification tasks as

11

0 5 10 15 20 25 30 35 40 45 50
Number of data samples

0

0.2

0.4

0.6

0.8

1

(C
um

ul
at

iv
e)

 c
on

fid
en

ce
 le

ve
l

Benchmark 1
Benchmark 2
Proposed

(a) Full DNN Inference

0 5 10 15 20 25 30 35 40 45 50
Number of data samples

0

0.2

0.4

0.6

0.8

1

(C
um

ul
at

iv
e)

 c
on

fid
en

ce
 le

ve
l

Benchmark 1
Benchmark 2
Proposed

(b) Fast DNN Inference

Fig. 4: Performance comparison between the proposed cumulative DNN inference scheme and benchmarks for both full and fast DNN inference.

the number of data samples increases, when all data samples

are processed by either the full or fast DNN model, for both

the proposed and benchmark DNN inference schemes. The

standard deviations of the results are also plotted for reference.

Due to the lack of data diversity in each single data

sample, the confidence level achieved by the first benchmark

scheme without cumulation is low for both full and fast DNN

inference, showing a constant average confidence level with

a constant standard deviation across different data samples.

Both the proposed scheme and the second benchmark scheme

demonstrate the benefit of data diversity in increasing the

cumulative confidence level for a classification task, as the

average cumulative confidence level shows an increasing trend

and the standard deviation shows a decreasing trend as more

data samples are considered. However, as the number of data

samples increases, in comparison with a gradual increase of

the average cumulative confidence level to 1 by the proposed

scheme, the average cumulative confidence level by the second

benchmark scheme gradually converges to around 0.61 and

0.55 for the full and fast DNN inference respectively. In the

proposed scheme, every newly added data sample contributes

to the gradual increase of the cumulative confidence level

in a stochastic manner, thus leading to an almost certain

estimation when there is a sufficient number of data samples.

However, although the second benchmark scheme takes the

maximum confidence level among multiple data samples into

consideration, the performance is still limited by the “best”

confidence level of a single DNN inference result. As the

number of data samples increases, the DNN inference results

with the best confidence levels are gradually generated, and

the maximal achievable average cumulative confidence level

converges to the best confidence level.

Next, we focus on the performance of the proposed stochas-

tic cumulative DNN inference scheme. We observe that the

increasing speed of the average cumulative confidence level

with full DNN inference is higher than that with fast DNN

inference, demonstrating that the average confidence level gain

with one more full inference result is larger than that with

one more fast inference result. The average confidence level

gain per inference shows a decreasing trend and gradually

approaches zero. The standard deviation is large especially

at a small number of data samples, which gradually decreases

and approaches zero with more data samples, with a higher

decreasing speed for full DNN inference. A large standard de-

viation captures the uncertainty in cumulative DNN inference,

which is due to randomness in the DNN inference results.

As the cumulative DNN inference scheme sequentially

incorporates different random DNN inference results corre-

sponding to each data sample in a data trace, the relationship

between the cumulative confidence level and the number

of data samples changes for different data traces. Fig. 5

shows three different performance metrics for the proposed

cumulative DNN inference scheme with full DNN inference as

the number of data samples, j, increases in three different data

traces. The performance metrics include 1) the cumulative con-

fidence level until data sample j, i.e., η (oj), 2) the estimated

true class probability with single data sample j, i.e., zj,m̂, and

3) the cumulative estimated true class probability until data

sample j, i.e., oj,m̂. Only the results for j ≤ 10 are shown, as

we observe in Fig. 4(a) that the average cumulative confidence

level with full DNN inference is very high with small standard

deviation at j = 10. The vertical dashed lines in Fig. 5 indicate

the data sample positions with false full inference results. For

a false inference result, zj = {zj,m}, the class label with the

maximum estimated probability is not the true class label m̂,

i.e., m̂ �= argmaxMm=1 zj,m, in which case zj,m̂ is usually

small, as demonstrated in the result. Next, we look into each

sub-figure corresponding to different data traces. In Fig. 5(a),

η (oj) keeps increasing from 0 until it approaches 1 with only

four data samples and then remains stable, while oj,m̂ follows

a similar trend as η (oj). We also observe that zj,m̂ is around

or above 0.6 for j ≤ 6, indicating that each inference result for

j ≤ 6 provides correct inference with a good confidence level,

which results in the initial fast increasing speed for η (oj)
and oj,m̂. Although there are two consecutive false inference

results at j = 7 and j = 8, η (oj) remains high, as there have

been sufficient inference results providing correct inference

with a good confidence level before j = 7. In Fig. 5(b), η (oj)
and oj,m̂ also show a roughly gradual increasing trend with one

big drop at j = 2. The drop is due to a false inference result

at j = 2. As there is only one correct inference result with

good confidence level before j = 2, the false inference result

12

0

0.2

0.4

0.6

0.8

1

False

0 1 2 3 4 5 6 7 8 9 10

(a) Using Data Trace 1

0

0.2

0.4

0.6

0.8

1

False

0 1 2 3 4 5 6 7 8 9 10

(b) Using Data Trace 2

0

0.2

0.4

0.6

0.8

1

False

0 1 2 3 4 5 6 7 8 9 10

(c) Using Data Trace 3

Fig. 5: Performance of cumulative DNN inference scheme with full DNN inference for three data traces.

at j = 2 brings a significant negative impact. To counteract the

negative impact brought by false inference and to obtain a high

cumulative confidence level, it requires more data samples

to be aggregated. For data trace 2, four more data samples

with correct inference and good confidence levels after j = 2
are aggregated to have η (o6) approaching 1. An interesting

observation is that the cumulative confidence level remains

high although there is a subsequent false inference at j = 7,

indicating that the cumulative DNN inference scheme is more

robust to false inference if there have been a sufficient number

of data samples and if the current cumulative confidence level

is sufficiently high. In Fig. 5(c), the initial values of η (oj)
and oj,m̂ are small due to two consecutive false inferences at

the beginning. After that, we see a gradual increasing trend

for both η (oj) and oj,m̂. The false inference at j = 5 brings

a small and almost negligible drop in η (oj), and the false

inference result at j = 8 does not degrade the performance,

demonstrating the robustness of the cumulative DNN inference

scheme with a sufficient number of “good” data samples.

For a classification task, define the offloading ratio as the

fraction of full inference results among all DNN inference

results that are combined using the cumulative DNN inference

scheme. Fig. 6 shows two performance metrics, i.e., the

average cumulative confidence level and the accuracy, for

60000 simulated classification tasks as the number of data

samples increases, under a different offloading ratio at 0% (i.e.,

pure fast DNN inference), 20%, 60%, and 100% (i.e., pure full

DNN inference). Here, the accuracy is defined as the average

ratio of correct inference among all the simulated classification

tasks. The standard deviations of the cumulative confidence

levels for offloading ratios at 20% and 60% are also plotted for

reference. With more data samples, both performance metrics

gradually increase to one (100%), with a larger increasing

speed for a larger offloading ratio, demonstrating the benefit

of offloading in terms of both confidence level and accuracy

improvement. As the confidence level represents uncertainty

in a DNN inference result rather than its accuracy, a single

DNN inference result with high confidence level is possible

to be false, if the estimated probability for a wrong class is

high. However, if the cumulative confidence level is high, it

is highly likely that the cumulative DNN inference result is

accurate, as the estimated true class probability is improved

0 2 4 6 8 10 12 14 16 18 20
Number of data samples

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

co
nf

id
en

ce
 le

ve
l

Fast
Offload (20%)
Offload (60%)
Full

(a) Cumulative Confidence Level

0 2 4 6 8 10 12 14 16 18 20
Number of data samples

60%

65%

70%

75%

80%

85%

90%

95%

100%

A
cc

ur
ac

y

Fast
Offload (20%)
Offload (60%)
Full

(b) Accuracy

Fig. 6: Performance of the cumulative DNN inference scheme versus number
of data samples for different offloading ratios.

by aggregating more data samples. Hence, the cumulative

DNN inference reduces the uncertainty in prediction results

and increases the robustness to randomness and even false

detections in the DNN inference results.

Next, we evaluate the performance of the proposed deep

Q-learning algorithm for adaptive offloading decisions. To

determine the state transitions for the cumulative confidence

levels, we use the average cumulative confidence level traces

obtained from the cumulative DNN inference scheme. Fig. 7

shows the convergence performance of the proposed deep Q-

learning algorithm in terms of the training loss versus the

number of learning steps at ω1 = 0.90, for different confidence

level requirements (ηT). As mentioned, weight ω1 = 0.90
places more emphasis on minimizing the network resource

13

0 1 2 3 4 5 6 7
Learning step 104

10-6

10-4

10-2

 100

 102

 104
T

ra
in

in
g

lo
ss

Fig. 7: Training loss for different confidence level requirements at ω1 = 0.90.

0 1000 2000 3000 4000 5000 6000
Episode

-1500

-1250

-1000

-750

-500

-250

0

T
ot

al
 r

ew
ar

d 0 500 1000 1500 2000
-200

-150

-100

-50

Fig. 8: Episodic total reward versus training episode for different confidence
level requirements at ω1 = 0.90.

consumption than local energy consumption. In this case, it

is preferable to execute more fast DNN inference locally to

minimize the total cost. As each fast DNN inference tends

to provide less confidence level gain and at most one fast

inference result can be generated at each device in one time

slot, it requires more time slots to satisfy the confidence level

requirement. Hence, if ηT is large, it is more difficult for

the RL agent to learn the no delay violation penalty behavior

corresponding to confidence level satisfaction before deadline.

Accordingly, with a larger value of ηT , it is more difficult

for the learning algorithm to converge and it takes a longer

time to reduce the training loss to below 10−2. For example,

the training loss for ηT = 0.93 is quickly reduced to below

10−5 at around 30000 learning steps, while the training loss

for ηT = 0.97 is slowly reduced to below 10−2 in a more

than doubled training time. For different confidence level

requirements, we can see that, although the training loss is

very small after convergence, there is still randomness in it

due to the random experience sampling in different learning

steps. Specifically, the training loss in each learning step is

the average loss after a gradient descent step for a randomly

sampled mini-batch of experiences from the replay memory.

Fig. 8 shows the episodic total reward during the training

process at ω1 = 0.90, for different values of ηT . It is observed

that the total reward for ηT = 0.93 increases most quickly and

converges at around 1700 episodes without delay violation

penalty (indicated by negative glitches in the episodic total

reward). In comparison, the total reward for ηT = 0.95
increases in a slightly slower speed and converges after 2000
episodes. The total reward for ηT = 0.97 has the worst

convergence, with huge delay violation penalty before 2000
episodes and significant fluctuations between episodes 2000
and 5000. It finally converges after around 5000 episodes.

After convergence, the delay violation penalty is suppressed,

and a larger total reward (or a lower total cost) is obtained for

a lower confidence level requirement.

Fig. 9 shows the cumulative confidence levels over time

for the three devices with the trained RL agents at different

values of ηT for ω1 = 0.90. We observe that the confidence

level requirements for all the devices are satisfied at (or very

close to) the required deadlines, i.e., in [9, 11, 13] time slots.

As local computing incurs less cost than offloading but has

lower confidence level gain for ω1 = 0.90, the RL agent learns

an offloading decision sequence with minimal offloading that

satisfies the confidence level requirements without delay vi-

olation and with minimum cost. An intuitive solution which

always prioritizes offloading cannot provide such intelligence

in terms of cost minimization. The trained RL agent also

learns how to prioritize the offloading opportunities among

the three devices with different delay requirements. For device

1 with the most stringent delay requirement, the cumulative

confidence level increases faster than the other two devices

due to earlier offloading opportunities.

Due to the priority on minimizing the network resource

consumption at ω1 = 0.90, we see in Fig. 10 that the episodic

average network resource consumption ratio (ρ̄) decreases

with more learning episodes, while the episodic total local

energy shows an increasing trend, demonstrating a trade-off

between the two metrics. For a smaller value of ηT , the

average resource consumption is lower as less offloading is

triggered to satisfy the QoS requirement, but the total energy

is higher due to a larger local computing energy for one fast

DNN inference than the transmission energy for offloading one

intermediate data sample under the simulation setup. Fig. 11

further demonstrates the trade-off between energy and resource

consumption with different weight ω1 at a constant confidence

level requirement ηT = 0.95. For both ω1 = 0.90 and

ω1 = 0.95, we see a decreasing trend in average resource

consumption and an increasing trend in total local energy over

the training process. However, we see an opposite trend for a

large weight ω1 = 0.99, as energy becomes dominant in the

cost. For a smaller ω1 value, the average resource consumption

is lower and the total energy is higher after convergence.

To evaluate the benefit of the extra experience replay in the

proposed deep Q-learning algorithm, we compare the episodic

(smoothed) total reward during the training process of the

proposed algorithm and a benchmark Q-learning algorithm

without extra experience replay at ω0 = 0.90 and ηT = 0.97,

as shown in Fig. 12. A mini-batch of 2N experiences are

sampled from the ordinary replay memory for training at each

learning step in the benchmark. We observe that the total

reward in the proposed algorithm converges after around 5000

14

0 1 2 3 4 5 6 7 8 9 10111213
Time slot index

0

0.2

0.4

0.6

0.8

1
C

um
ul

at
iv

e
co

nf
id

en
ce

 le
ve

l

T
=0.93

Device 1
Device 2
Device 3

(a) ηT = 0.93

0 1 2 3 4 5 6 7 8 9 10111213
Time slot index

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

co
nf

id
en

ce
 le

ve
l

T
=0.95

Device 1
Device 2
Device 3

(b) ηT = 0.95

0 1 2 3 4 5 6 7 8 9 10111213
Time slot index

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

co
nf

id
en

ce
 le

ve
l

T
=0.97

Device 1
Device 2
Device 3

(c) ηT = 0.97

Fig. 9: The increase of cumulative confidence levels over time at different confidence level requirements.

0 2000 4000 6000
Episode

0.1

0.3

0.5

0.7

0.9

(a) Average Resource Consumption

0 2000 4000 6000
Episode

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

T
ot

al
 e

ne
rg

y
(J

)

(b) Total Local Energy

Fig. 10: Cost comparison with different values of ηT for ω1 = 0.90.

0 1 2 3 4
Episode 103

0.1

0.3

0.5

0.7

0.9

(a) Average Resource Consumption

0 1 2 3 4
Episode 103

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

T
ot

al
 e

ne
rg

y
(J

)

(b) Total Local Energy

Fig. 11: Cost comparison with different weight ω1 for ηT = 0.95.

episodes with no penalty at most time instants, while the

penalty in the benchmark is still large after convergence. We

also observe that the total reward in the benchmark increases

earlier due to more training with diverse training experiences

in the early training stage. In the proposed algorithm, the

sampled experiences from the extra replay memory lack

diversity in the early training stage, as the episodes with

no penalty are rare and the number of samples in the extra

replay memory increases slowly. As a result, the training with

sampled experiences from the extra replay memory does not

fully explore the state action space at the early training stage.

However, after the extra replay memory stores sufficient good

samples, the total reward finally converges to a larger value

with negligible delay violation penalty. For the benchmark, the

earlier convergence to a worse solution is because it cannot

put priority on remembering and learning from the special

0 1000 2000 3000 4000 5000 6000
Episode

-1500

-1000

-500

0

500

T
ot

al
 r

ew
ar

d

w/o extra replay memory
wi extra replay memory

4500 5000 5500 6000

-200

-150

-100

Fig. 12: Comparison of episodic total reward versus training episode with and
without extra experience replay.

good samples in the no-penalty episodes. In this case, all

the samples have equal priority, and are gradually replaced

by new samples once the memory is full. To summarize,

we can see that the advantages of the extra replay memory

in improving the sampling efficiency towards the almost no-

penalty convergence results outweigh its disadvantages in the

slower reward increase at the early training stage.

VII. CONCLUSION

In this paper, we develop a device-edge collaborative in-

ference framework in an edge-assisted multi-device intelligent

IoT scenario. A data-driven stochastic DNN inference scheme

is used at each device to improve the confidence level for

DNN-based classification tasks, while an RL-aided adaptive

device-edge collaboration scheme supports the cumulative

DNN inference among multiple devices with QoS satisfac-

tion and cost efficiency. Simulation results demonstrate the

effectiveness of the proposed inference framework including

both the cumulative DNN inference scheme and the adaptive

device-edge collaboration scheme. The former provides a

theoretical foundation for improving the confidence level of

general DNN-based classification tasks by combining multiple

DNN inference results under the performance limit of DNN

models, which is potentially useful in AI applications with an

extremely high reliability requirement such as those in remote

15

surgery and autonomous driving. The latter demonstrates the

benefit of hierarchical computing (e.g., across the device and

edge hierarchy) in terms of cost efficiency and delay satis-

faction, which potentially can be explored for ultra-reliable

low-latency applications in the future wireless networks.

In the future work, we will extend the cumulative DNN

inference scheme from the time domain to the space domain.

For example, when a group of spatially distributed sensors

provide multiple data sources for one classification task, a

spatial cumulative DNN inference scheme is required, and the

sensor access control to AP and edge server is important in

the sensing data collection. We will also consider more general

application scenarios, extending from the device-edge collab-

oration to the device-edge-cloud and edge-edge collaboration

for network-wide efficient resource utilization.

REFERENCES

[1] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6G,” IEEE
Commun. Surv. Tutor., vol. 24, no. 1, pp. 1–30, 2021.

[2] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[3] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger, “Main-
stream: Dynamic stem-sharing for multi-tenant video processing,” in
2018 USENIX Annual Technical Conf. (USENIX ATC ’18), 2018, pp.
29–42.

[4] S. Wang, S. Yang, and C. Zhao, “Surveiledge: Real-time video query
based on collaborative cloud-edge deep learning,” in Proc. IEEE INFO-
COM’20, 2020, pp. 2519–2528.

[5] W. Zhang, D. Yang, H. Peng, W. Wu, W. Quan, H. Zhang, and X. Shen,
“Deep reinforcement learning based resource management for DNN
inference in industrial IoT,” IEEE Trans. Veh. Tech., vol. 70, no. 8,
pp. 7605–7618, 2021.

[6] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Dis-
tributed artificial intelligence empowered by end-edge-cloud computing:
A survey,” IEEE Commun. Surv. Tutor., vol. 25, no. 1, pp. 591–624,
2023.

[7] E. Arnold, M. Dianati, R. de Temple, and S. Fallah, “Cooperative per-
ception for 3D object detection in driving scenarios using infrastructure
sensors,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 1852–1864,
2022.

[8] J. Chen and X. Ran, “Deep learning with edge computing: A review.”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[9] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Commun. Surv. Tutor.,
vol. 22, no. 4, pp. 2167–2191, 2020.

[10] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 2, pp. 869–904, 2020.

[11] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

[12] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Comput. Architect. News, vol. 45,
no. 1, pp. 615–629, 2017.

[13] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint multi-user DNN
partitioning and computational resource allocation for collaborative edge
intelligence,” IEEE Internet Things J., vol. 8, no. 12, pp. 9511–9522,
2021.

[14] Y. Xiao, L. Xiao, K. Wan, H. Yang, Y. Zhang, Y. Wu, and Y. Zhang,
“Reinforcement learning based energy-efficient collaborative inference
for mobile edge computing,” IEEE Trans. Commun., vol. 71, no. 2, pp.
864 – 876, 2023.

[15] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “DeepWear:
Adaptive local offloading for on-wearable deep learning,” IEEE Trans.
Mob. Comput., vol. 19, no. 2, pp. 314–330, 2020.

[16] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in Proc. IEEE INFOCOM’19,
2019, pp. 1423–1431.

[17] M. Xue, H. Wu, G. Peng, and K. Wolter, “DDPQN: An efficient DNN of-
floading strategy in local-edge-cloud collaborative environments,” IEEE
Trans. Serv. Comput., vol. 15, no. 2, pp. 640–655, 2021.

[18] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “EosDNN: An efficient
offloading scheme for DNN inference acceleration in local-edge-cloud
collaborative environments,” IEEE Trans. Green Commun., vol. 6, no. 1,
pp. 248–264, 2021.

[19] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi,
“Split learning over wireless networks: Parallel design and resource
management,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1051–
1066, 2023.

[20] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Co-
operative DNN inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Trans. Netw., vol. 29, no. 2,
pp. 595–608, 2021.

[21] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained IoT edge
clusters,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2348–2359, 2018.

[22] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “Deepslicing:
collaborative and adaptive CNN inference with low latency,” IEEE
Trans. Parallel. Distrib. Syst., vol. 32, no. 9, pp. 2175–2187, 2021.

[23] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Toward collaborative
inferencing of deep neural networks on internet-of-things devices,” IEEE
Internet Things J., vol. 7, no. 6, pp. 4950–4960, 2020.

[24] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in Proc. IEEE
ICPR’16, 2016, pp. 2464–2469.

[25] ——, “Distributed deep neural networks over the cloud, the edge and
end devices,” in Proc. IEEE ICDCS’17, 2017, pp. 328–339.

[26] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Comput. Surv., vol. 55, no. 5, pp. 1–30, 2022.

[27] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading optimization in
edge computing for deep-learning-enabled target tracking by internet of
UAVs,” IEEE Internet Things J., vol. 8, no. 12, pp. 9878–9893, 2020.

[28] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wirel. Commun., vol. 19, no. 1, pp. 447–457, 2020.

[29] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Dis-
tributed inference acceleration with adaptive DNN partitioning and
offloading,” in Proc. IEEE INFOCOM’20, 2020, pp. 854–863.

[30] Z. Lin, S. Bi, and Y.-J. A. Zhang, “Optimizing AI service placement and
resource allocation in mobile edge intelligence systems,” IEEE Trans.
Wirel. Commun., vol. 20, no. 11, pp. 7257–7271, 2021.

[31] V. C. Raykar and R. Duraiswami, “Fast optimal bandwidth selection for
kernel density estimation,” in Proc. 2006 SIAM International Conf. on
Data Mining. SIAM, 2006, pp. 524–528.

[32] “Gurobi Optimizer Reference Manual,” http://www.gurobi.com, 2022,
[Online; accessed 26-March-2023].

[33] E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a primal-
dual interior-point method for conic quadratic optimization,” Mathemat-
ical Programming, vol. 95, pp. 249–277, 2003.

[34] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, “Dynamic
flow migration for embedded services in SDN/NFV-enabled 5G core
networks,” IEEE Trans. Commun., vol. 68, no. 4, pp. 2394–2408, 2020.

[35] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. ICLR’16, May 2016, pp. 1–7.

[36] K. Qu, W. Zhuang, X. Shen, X. Li, and J. Rao, “Dynamic resource
scaling for VNF over nonstationary traffic: A learning approach,” IEEE
Trans. Cogn. Commun. Netw., vol. 7, no. 2, pp. 648–662, 2020.

[37] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-guaranteed
collaborative DNN inference in industrial IoT via deep reinforcement
learning,” IEEE Trans. Industr. Inform., vol. 17, no. 7, pp. 4988–4998,
2020.

[38] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, and X. Shen, “Joint RAN
slicing and computation offloading for autonomous vehicular networks:
a learning-assisted hierarchical approach,” IEEE Open J. Veh. Technol.,
vol. 2, pp. 272–288, 2021.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems (NIPS’12), vol. 25, pp. 1097–1105, 2012.

