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Abstract—Sixth-generation (6G) cellular systems will have
an inherent vulnerability to physical (PHY)-layer attacks and
privacy leakage, due to the large-scale heterogeneous networks
with booming time-sensitive applications. Important wireless
techniques including non-orthogonal multiple access, mobile
edge computing, millimeter-wave, massive multiple-input and
multiple-output, visible light communication, terahertz, and intel-
ligent reflecting surface can improve the spectrum efficiency and
quality-of-service but will raise challenges for the 6G PHY and
cross-layer security and privacy protection. Existing optimization
based PHY and cross-layer security and privacy protection
schemes such as the convex optimization method have to rely
on accurate attack patterns and strategies and thus suffer from
performance degradation in 6G systems that have shorter com-
munication latency, more devices and higher spectrum efficiency
than 5G. Reinforcement learning (RL) algorithms help wireless
devices optimize their security policies to enhance the security
performance in dynamic networks against smart attacks without
depending on the attack model. Therefore, this article provides
a comprehensive survey on the RL based 6G PHY cross-layer
security and privacy protection. In this article, we investigate the
potential attacks in 6G systems and discuss the PHY cross-layer
security solutions. A brief overview of reinforcement learning
algorithms is provided. Afterward, we review the RL based PHY-
layer security and privacy protection and discuss how to apply
RL algorithms in 6G security scenarios, especially focusing on
the game with jammers, eavesdroppers, spoofers and inference
attackers. The RL based security solutions for unmanned aerial
vehicles (UAVs) and cross-layer scenarios are also reviewed. The
future research directions are identified and the corresponding
RL based potential solutions are discussed for 6G.

Index Terms—6G, PHY-layer security, privacy, reinforcement
learning, secure communications, UAVs, cross-layer security.
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I. INTRODUCTION

Sixth-generation (6G) cellular systems will increase the
network connectivity and coverage to support flourishing
real-time Internet of Everything (IoE) applications such as
telemedicine, tactile Internet, autonomous driving, intelligence
disaster prediction, and surreal virtual reality (VR) compared
with 5G [1]. Thus, the 6G security performance will be
degraded by the physical (PHY)-layer attacks (e.g., jamming,
spoofing, and eavesdropping) and the network attacks such
as denial-of-service (DoS) attacks, man-in-the-middle attacks,
and selfish attacks [2]–[4]. With more strict communication
latency (e.g., 10 ∼ 100 𝜇s in [5]), 10 times more Internet
of Things (IoT) devices and 5 ∼ 10 times higher spectrum
efficiency than 5G, 6G will have more challenges in the PHY-
layer security and privacy protection [6], [7]. In particular, the
communication techniques as 6G candidates, including non-
orthogonal multiple access (NOMA) [8], mobile edge com-
puting (MEC) [9], visible light communication (VLC) [10],
terahertz (THz) [11], intelligent reflecting surface (IRS) [12],
millimeter-wave (mmWave) [13], and massive multiple-input
and multiple-output (MIMO), have to address the security
threats, such as jamming attacks in VLC and THz systems
[14], [15], and selfish attacks in MEC [16].

By exploiting the physical properties of the communi-
cation channels or the unforgeable features of the device
hardware components, PHY-layer security solutions such as
anti-jamming [17], secure communications [18] and PHY-layer
authentication [19] incorporate with the higher-layer security
techniques such as cryptography and authentication in [20]
to enhance the security performance against the PHY-layer
attacks. Compared with the higher-layer security techniques,
PHY-layer security makes use of the time-varying and random
nature of wireless channels instead of the encryption keys
to enhance the security performance and thus reduce the
communication and computational overhead in cellular sys-
tems [21]. For example, a lightweight anti-jamming massive
MIMO system in [17] applies convex optimization to optimize
the base station (BS) transmit power under the Gaussian
channel and jamming model to improve the achievable rate
against reactive jamming attacks in wireless networks. The
PHY-layer spoofing detection in [19] applies the maximum
likelihood estimation to discriminate the radio transmitters in
the Rayleigh fading channel model but the detection accuracy
degrades in dynamic wireless networks.

As another important technique for 6G, the cross-layer
security designs the solutions at both the PHY-layer and the
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higher layers (such as the link layer, the network layer, and
the application layer), to resist the cross-layer attacks including
eavesdropping [22], distributed DoS (DDoS) attacks [23], and
man-in-the-middle attacks [24]. For instance, the security-
aware cross-layer scheme in [22] uses the dual decomposition
method to formulate a secrecy energy-efficient maximization
problem following the average packet dropping probability
and total energy consumption constraints against the passive
eavesdropper that can steal the data at the media access control
(MAC) layer and the PHY-layer. However, most of the PHY-
layer and the cross-layer security solutions rely on the accurate
attack patterns or strategies, thus suffering from performance
degradation with an unknown attack model, and increasing
heterogeneity and complexity of 6G systems, under smart
attackers that can change their attack strategies intelligently.

Reinforcement learning (RL) algorithms as a potential solu-
tion, such as Q-learning, policy hill climbing (PHC), Dyna-Q,
post-decision state (PDS) and double-Q [25], enable wireless
devices to quickly optimize their security policies based on
observations of the environment, instead of relying on an
accurate attack model as in the optimization-based security
methods or the labeled training data as in supervised learning.
Thus, they can improve the security and privacy protection
performance of dynamic 6G systems against more intelligent
PHY-layer and cross-layer attackers [26]. For example, the
secure healthcare transmission in [27] that applies both Dyna-
Q and PDS to optimize the offloading policy exploits the state
that consists of the sensing data size, the battery level and the
radio channel state to improve the privacy level without being
aware of the eavesdropping strategies. However, these tabular
RL based security schemes have slower learning efficiency
under a large feasible action set with a large number of mobile
users and access points (APs), and the required optimization
time increases with the network scale, the number of antennas
and the amount of the available communication resource.

Being successfully applied in the video and strategy board
games such as Alpha-Go, deep RL including deep Q-network
(DQN) [28], asynchronous advantage actor-critic (A3C) [29],
deep deterministic policy gradient (DDPG) [30] and proximal
policy optimization (PPO) [31] designs deep neural networks
(DNNs), including convolutional neural networks (CNNs) and
recurrent neural networks, to accelerate the learning speed
of PHY-layer security in large-scale systems. For instance,
the secure VLC system in [32] applies DDPG to choose the
beamforming vector and significantly increases the secrecy
rate against passive eavesdropping. Nevertheless, the deep
RL based schemes depend on the accurate state and reward
signals after performing each security policy and the sufficient
computational resources to support deep learning, which are
not always available in cellular systems [33].

There are instructive surveys on the RL based 5G and
beyond techniques such as power control, computational of-
floading and edge caching in [34]–[36], the machine learning
based 6G security techniques in [5], [6] and the 6G security
and privacy in [1], [37]. Particularly, the 6G security survey in
[6] focuses on unsupervised learning and deep learning instead
of RL and addresses the poisoning attacks and reverse attacks
instead of the PHY-layer attacks. Another 6G security survey

TABLE I
SUMMARY OF ABBREVIATIONS

Abbreviations Definitions
6G Sixth-generation
IoE Internet of Everything
VR Virtual reality
PHY Physical
DoS Denial-of-service
IoT Internet of Things
NOMA Non-orthogonal multiple access
MEC Mobile edge computing
VLC Visible light communication
THz Terahertz
IRS Intelligent reflecting surface
MmWave Millimeter-wave
MIMO Multiple-input and multiple-output
BS Base station
DDoS Distributed denial of service
MAC Media access control
RL Reinforcement learning
PHC Policy hill climbing
PDS Post-decision state
AP Access point
DQN Deep Q-network
A3C Asynchronous advantage actor-critic
DDPG Deep deterministic policy gradient
PPO Proximal policy optimization
DNN Deep neural network
CNN Convolutional neural network
UAV Unmanned aerial vehicle
RFID Radio-frequency identification
QoS Quality of service
MDP Markov decision process
SARSA State-action-reward-state-action
MCS Mobile crowdsensing
NEC Neural episodic control
DDQN Double DQN
A2C Advantage actor-critic
DND Differentiable neural dictionary
DIAL Differentiable inter-agent learning

MADDPG
Multi-agent deep deterministic
policy gradient

BER Bit error rate
CMDP Constrained MDP
SINR Signal-to-interference-plus-noise ratio
Conv. Convolutional
FC Fully connected
AN Artificial noise
RSSI Received signal strength indicator
DP Differential privacy
PoW Proof of work
PSNR Peak signal-to-noise ratio
SDN Software-defined networking
MAML Model-agnostic meta-learning
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in [1] provides a brief overview of the security and privacy
at the PHY-layer, the connection layer and the service layer
and discusses the impact of the artificial intelligence on 6G
systems rather than the application of RL in the PHY-layer
and cross-layer security and privacy protection scenarios.

In this article, we review important potential security and
privacy leakage threats for 6G and discuss the RL algorithms
that have been applied to enhance wireless security. We
investigate RL based security and privacy protection schemes
and show how to apply RL algorithms to optimize the 6G
security policy, such as the security resource allocation and
authentication parameters against jamming, eavesdropping,
spoofing, inference attacks and selfish attacks. This article
focuses on the RL based PHY-layer security for 6G systems
with NOMA, MEC, VLC, THz, IRS, mmWave and mas-
sive MIMO, and points out the remaining challenges to be
addressed. As a newly developed technique, the RL based
security and privacy for unmanned aerial vehicles (UAVs) is
reviewed, including the anti-jamming communications, secure
communications and data privacy-aware communications. We
also discuss the application of RL in PHY cross-layer security
solutions for 6G and the corresponding challenges. The secu-
rity performance degradation due to the partial observation,
dangerous exploration, communication overhead, and high
curse of dimensionality of the 6G security scenarios can be
addressed by the promising solutions including meta-learning,
transfer learning, federated learning, safe RL and multi-agent
RL.

The remaining part of this survey is organized as follows.
We summarize the 6G potential security threats in Section II
and review the typical RL algorithms in Section III, followed
by the RL based PHY-layer security and privacy protection
solutions in Sections IV-VIII. We discuss the future research
directions in Section IX and summarize this survey in Section
X. The abbreviations of this article are summarized in Table
I.

II. SECURITY THREATS IN 6G SYSTEMS

Due to more restricted requirements (e.g., higher mobility,
data rate, spectrum efficiency, network energy efficiency and
area traffic capacity) and booming real-time IoE applications
such as UAVs, 6G systems with communication techniques
such as VLC, THz and IRS are more vulnerable to PHY-
layer attacks including jamming, identity-based attacks, and
eavesdropping, and the higher-layer attacks (e.g., DoS attacks,
man-in-the-middle attacks, and selfish attacks) than the exist-
ing cellular systems [38]. Besides, the attackers that exist in
4G or 5G are more harmful to 6G systems due to the more
open, distributed, and intelligent networks. As shown in Fig. 1,
the attackers can intercept the legitimate signals in VLC, THz,
and mmWave, send jamming or spoofing signals to block the
transmission of NOMA, massive MIMO, MEC and IRS, and
thus result in DoS attacks, and inject fake messages to cause
severe privacy leakage.

A. Jamming
Jammers send replayed, fake or random signals to block

the ongoing signals between the mobile users and BSs or APs

with the goal of degrading their transmission quality, depleting
the device energy, and launching further attacks such as DoS
attacks and man-in-the-middle attacks [39]. Typical jamming
includes proactive jamming and reactive jamming.

1) Proactive jamming: Jammers send jamming signals to
degrade the message reception performance without observing
the ongoing transmission status. Proactive jamming contains
constant jamming, sweep jamming and random jamming.

• Constant jamming: A jammer uses a radio device such
as a waveform generator to send jamming signals on a
number of frequency channels at some specific time but
suffers from jamming energy waste in the absence of the
victim transmissions [40].

• Random jamming: The jamming signals are sent on a
frequency band randomly chosen in random time dura-
tion. The random jamming pattern makes this type of
jamming more energy-efficient compared with constant
jamming.

• Sweep jamming: A jammer switches channels periodi-
cally and simultaneously and sends jamming signals in
the next periodic instead of jamming immediately. This
type of jamming results in a large number of retransmis-
sions and thus exhausts the device energy [41].

2) Reactive jamming: A reactive jammer uses a radio
receiver to observe the ongoing transmission states and sends
jamming signals according to the spectrum sensing results
to improve the jamming efficiency. For example, an attacker
sends jamming signals on the channel that has the preamble
or pilots of the legitimate packets. The pilot contamination as
a special case can significantly reduce the achievable rate for
massive MIMO systems [17].

• Smart jamming: By using smart radio devices such as
the universal software radio peripheral, an attacker can
observe the ongoing transmission and induce wireless
devices to apply the specifical defense strategy, whose
communication performance can be improved by RL
such as Q-learning and DQN that optimizes the jam-
ming frequency and power levels. For example, the RL
based smart jammers use the observed channel status
as the basis to optimize the jamming power to degrade
the transmission performance of NOMA systems [42].
Another smart jammer as designed in [43] builds a deep
learning classifier to predict the next transmission with
the previously observed channel transmission information
and then jams the system accordingly.

B. Identity-based Attacks

Attackers impersonate legitimate mobile users with their
identities, abuse multiple user identities, and generate
pseudonymous identities or manipulate fake identities to obtain
illegal access to the mobile users and BSs/APs [15]. This
type of attack such as spoofing and Sybil attacks can send
spoofing signals such as wrong reports or spam to fool users,
emulate a large number of legitimate users to prevent legal
access and thus launch further attacks, e.g., replay attacks and
DoS attacks.
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Fig. 1. Security threats and privacy model in 6G systems.

• Spoofing attacks: The attacker sends spoofing messages
with the fake identities of the other wireless devices,
such as the MAC addresses, radio-frequency identifica-
tion (RFID) tags and IP addresses of the other mobile
users, BSs and APs to obtain illegal advantages [44]. As
illustrated in Fig. 1, a fake edge attacker impersonates the
edge device to send fake computational results and the
rogue AP attacker aims to access the data of the mobile
users.

• Sybil attacks: This type of attacker impersonates a
number of users to win majority votes and obtain other
advantages, which will cause message collisions, wrong
warnings and privacy leakage in 6G systems [45]. For
example, the Sybil attacker with a large number of
pseudonymous identities spreads spam and advertise-
ments and even disseminates malware and fishing web-
sites to other users for stealing user private information
in IoT systems [46].

C. Eavesdropping

Eavesdroppers can intercept or steal data during the VLC,
THz and mmWave transmission, including passive and active
eavesdropping [15].

• Passive eavesdropping: The attacker aims to intercept
the ongoing data without degrading the message reception
performance of users and applies the traffic analysis to
infer user privacy such as the communication pattern and
the user location based on the number of the transmitted
packets, the inter-packet duration and the traffic direction-
ality [47].

• Active eavesdropping: The active eavesdropper not only
receives the legal signals but also uses radio devices to
send jamming signals to interrupt the ongoing message
reception, raise the device transmit power and thus steal
more data to infer user private information [48].

D. DoS Attacks

DoS attackers continuously send service requests or jam-
ming signals to flood the servers and edge devices to prevent
legal mobile devices from obtaining 6G network services [49].

In particular, a DDoS attacker impersonates a large number
of network devices with their IP addresses, injects the forged
service request messages continuously and generates malicious
traffic with the mobile botnets to flood the unnecessary re-
quests and interrupt the legal services [50]. As illustrated in
Fig. 1, the attacker compromises a number of mobile devices
and controls them to send multiple computing requests to the
edge device and thus shut down the edge computing services.

E. Man-in-the-middle Attacks

The attacker eavesdrops on the transmission status in the
communication channel, intercepts the ongoing transmitted
messages between two users, modifies the intercepted mes-
sages and injects the manipulated messages into the 6G
systems to deceive or even control radio devices [51], which
aims to fool the receiver and thus obtain some user sensitive
information to gain illegal profits [52]. As shown in Fig. 1,
the attacker in mmWave systems intercepts the messages of
the transmitter, replaces the intercepted messages with fake
messages and then sends them to the receiver.

F. Selfish Attacks

Selfish users and edge devices sometimes refuse to help
relay to save their limited bandwidth, energy, buffer resources
and privacy, and manipulate the service records of the other
devices in the reputation-based 6G systems for their own inter-
ests [53]. Potential impact includes the increased transmission
latency and energy consumption, the degraded transmission
quality and the service failure [54]. For example, a selfish
edge device sends false computational results to the mobile
devices or uses less computational resources than promised to
save its computational resources [55].

G. Privacy Leakage

The 6G systems will be required to protect the privacy
leakage from linking attacks, inference attacks, differential
attacks and reconstruction attacks [56]. According to [57], user
privacy consists of identity, data and location privacy.

• Identity privacy: The user private identity information
such as the name, home address, phone number and
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private keys is easily exposed to attackers due to the
increased number of mobile users [58]. For example, a
man-in-the-middle attacker can falsify the request of a
mobile user to obtain the user private key.

• Data privacy: The increasing data-intensive applications
in 6G systems such as the smart metering and healthcare
services make the user data such as the body sensing data
expose to malicious attacks [2]. For instance, an inference
attacker applies association rules and Bayesian reasoning
to analyze the house status or economic status based on
the intercepted meter consumption data.

• Location privacy: The user location can indicate the user
behavior, preferences, personal habits and beliefs [59].
For example, an adversary can analyze the frequency and
duration of the visit to the hospital to infer the type of
illnesses of users, sell the health information for illegal
profits and sometimes even cause crimes.

In summary, 6G systems need to address PHY-layer attacks
such as jamming, spoofing and eavesdropping as well as
higher-layer attacks such as man-in-the-middle attacks, selfish
attacks, linking attacks, inference attacks, differential attacks
and reconstruction attacks. With the rapid advancement in
artificial intelligence, smart attackers can observe the defense
states and improve the attack patterns accordingly, raising new
challenges to security in 6G systems.

III. OVERVIEW AND TUTORIAL OF REINFORCEMENT
LEARNING

Machine learning techniques (such as supervised learning,
unsupervised learning, and RL) will enable dynamic and
heterogeneous 6G systems to improve the security and privacy
protection performance [5], [16], [60]. In particular, supervised
learning (such as support vector machine and logistic regres-
sion) has been applied in [5] to improve the intrusion detection
accuracy, but the performance degrades in the dynamic sys-
tems without sufficient training data. Unsupervised learning
such as K-means has been applied in the anomaly detection, as
in [61], [62], to improve the detection accuracy without relying
on any training data, but cannot always satisfy the quality of
service (QoS) requirements of security applications. On the
other hand, the RL based security solutions do not rely on the
labeled dataset or prior knowledge of the attack and network
model [25].

Mostly developed for video and strategy board games such
as Alpha-Go, RL is promising to enhance wireless security
for UAV networks, vehicular ad hoc networks, IoT systems
and cellular systems [60]. In a finite Markov decision process
(MDP), RL maintains the Q-table that outputs the long-term
expected reward (i.e., Q-values), the mixed policy values that
output the policy probability, and DNNs that output the Q-
values, the state values or the advantage values, as shown
in Fig. 2. More specifically, the learning agent (such as a
smartphone or a wireless device) observes the environment that
contains the wireless communication systems (e.g., mmWave,
IRS, THz and VLC systems), the PHY-layer attackers such as
jammers and eavesdroppers and the higher-layer attackers such
as DoS attackers. The observation is used to formulate the state

that represents the network status and security performance
(such as the outage probability and the packet loss ratio)
resulting from the previous actions and states. The learning
agent uses the state as the basis to optimize its action (such
as the security protocol and parameters) via trial-and-error
in the learning process, and receives the reward such as the
transmission quality or the privacy protection level from the
environment after performing the chosen action.

State Action

Policy distribution

Deep neural network

···

··· ···

···

···

··· ···

···

Q-table

Mixed policy values 

Q-values

Policy probability

Q-values
State values
Advantage values

Learning agent

Environment

Reward

Fig. 2. Illustration of reinforcement learning in wireless communications.

Typical single-agent RL algorithms containing the tabular-
based RL and deep RL have been proved to enable the agent
to maximize the long-term expected reward without relying
on the known network model of the dynamic environments
and the attacker policy. More specifically, the tabular-based
RL algorithms (such as Q-learning) use arrays or tables with
one entry for each state-action pair to obtain approximations
of value functions such as the Q-values and the mixed policy
values of the learning agents in the small-scale systems with
finite and discrete state space and action set. On the other
hand, the deep RL includes the value-based RL that learns
the value function (e.g., the Q-values) based on the temporal
difference learning and the policy gradient RL that learns the
policy distribution or mixed policies from the neural network
function approximators [63].

A. Tabular-based Reinforcement Learning

Important tabular-based RL algorithms in wireless security
applications include Q-learning, PHC, Dyna-Q, PDS, state-
action-reward-state-action (SARSA)-Q, and double-Q. As il-
lustrated in Fig. 3, the value functions such as the Q-values or
the mixed policy values are the basis to choose the security
action for the given state. These algorithms usually work well
under low-dimensional discrete action-state space.

• Q-learning: As the first model-free RL algorithm that
does not rely on the transition probability distribution
associated with the corresponding MDP, Q-learning de-
pends on a fixed policy distribution or the 𝜖-greedy
algorithm in the action selection from a small action
set and updates the Q-values with an iterative Bellman
equation every time slot [64]. For example, the mobile
device with limited computational resources can apply
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Fig. 3. Important reinforcement learning algorithms.

Q-learning to optimize the security policy in a discrete
action set (such as the transmit power level in anti-
jamming communications and the authentication mode in
PHY-layer authentication systems) under the discrete state
space. Without relying on any known model, Q-learning
suffers from a slow learning speed under dynamic and
complex environments, and the optimization policy that
maximizes the Q-values can be easily estimated by the
attacker that knows enough.

• PHC: As an extension of Q-learning, PHC combines
the mixed policy values that represent the probability to
select an action in the learning process with Q-values,
and introduces randomness in the action selection to fool
attackers for wireless security applications [65]. Each
mixed policy value is initialized with the average of all
the feasible actions and updated in each time slot by
increasing the probability of the action that is expected
to maximize the Q-values with a weighted value, and
decreasing the other probabilities with the weighted value
averaged over all the feasible actions. For instance, the
UAV as an agent applies PHC to choose the relay policy
with mixed policy and thus fool the smart jammer in the
vehicular communication system [66].

• Dyna-Q: As a model-based RL, Dyna-Q designs a Dyna
architecture to simulate virtual learning experiences for
planning and provide more policy learning [25]. More
specifically, the Dyna architecture simulates a number of
state-action pairs from the action set and state space in
every time slot and calculates the corresponding reward
to obtain the virtual learning experiences. Both the virtual
learning experiences and the real experiences are used to
update the Q-values, yielding faster policy optimization
than Q-learning. Dyna-Q has been used to improve the
learning efficiency in the selection of the power allo-
cation in the anti-jamming NOMA communication, the

authentication mode and test threshold in the PHY-layer
authentication [44], [67], the network coding policy in
the secure communication [68], and the offloading policy
in the privacy-aware communication [27].

• PDS: By exploiting the environment knowledge such as
the channel state transition, PDS saves the unnecessary
learning samples or interactions with the environment
based on the known information such as the channel
gain of the legitimate users and thus accelerates learning
in complicated networks with large state spaces [69].
For instance, vehicles can apply PDS to optimize their
sensing strategy based on the known channel variance
in dynamic mobile crowdsensing (MCS) systems against
selfish attacks [70].

• SARSA-Q: As an on-policy temporal difference algo-
rithm, SARSA-Q selects the action similar to Q-learning
while updating the Q-values with the current state-action
pair rather than the maximum Q-values of the next state-
action pair [71]. The wireless devices with insufficient en-
ergy and computational resources (e.g., the IoT devices)
can use SARSA-Q to improve the privacy protection
performance for 6G systems against inference attacks,
in which the Q-values of the available privacy policies
under the current state are used to formulate the policy
distribution.

• Double-Q: Double-Q uses two estimators to randomly
update one of the two Q-tables, in order to reduce the
over-estimation of the Q-values and thus avoids achieving
suboptimal policies [72]. For example, the mobile devices
in PHY-layer authentication systems can quantize the test
threshold from zero to 1 and choose the authentication
mode and the test threshold with the chosen Q-table.
However, it requires a larger storage space compared with
Q-learning.

In summary, the tabular-based RL algorithms have been
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TABLE II
COMPARISON OF RL ALGORITHMS

RL algorithms Mixed policy value Model-free On-policy Continuous
action set Value-based Policy gradient

Q-learning [64] × ✓ × × ✓ ×
PHC [65] ✓ ✓ × × ✓ ×
Dyna-Q [25] × × × × ✓ ×
PDS [69] × × × × ✓ ×
SARSA-Q [71] × ✓ ✓ × ✓ ×
Double-Q [72] × ✓ × × ✓ ×
DQN [28] × ✓ × × ✓ ×
NEC [73] × ✓ × × ✓ ×
DDQN [74] × ✓ × × ✓ ×
A2C [29] ✓ ✓ ✓ ✓ × ✓
A3C [29] ✓ ✓ ✓ ✓ × ✓
PPO [31] ✓ ✓ ✓ ✓ × ✓
DDPG [75] × ✓ × ✓ ✓ ✓

analyzed thoroughly and their efficacy in the MDPs with
relatively low-dimensional action-state space has been verified
in wireless security applications [42], [44], [55]. Based on the
discrete action-state set, these algorithms have to address the
performance degradation due to the state quantization errors,
especially in a complicated dynamic 6G system under multiple
attacks.

B. Deep Reinforcement Learning

By combining deep learning, deep RL applies DNNs such
as CNNs to extract the state features and compress the high-
dimensional state-action space for higher learning efficiency
in heterogeneous 6G systems. As summarized in Table II, the
value-based RL includes DQN, neural episodic control (NEC),
double DQN (DDQN), and the policy gradient RL consists of
advantage actor-critic (A2C), A3C, and PPO. In particular,
DDPG belongs to both the value-based RL and the policy
gradient RL. All these deep RL algorithms are important for
wireless security applications.

• DQN: Based on a CNN to compress the state space and
a target CNN to improve the policy selection stability
under the highly correlated state, DQN applies the 𝜖-
greedy to evaluate the outputs of the former CNN, i.e.,
the Q-values of the feasible policies under the current
state [28]. Different from Q-learning, this algorithm helps
wireless devices with sufficient computational resources
choose the security policy in a discrete action set without
quantizing the state space and thus improves the security
performance in a more complicated system.

• NEC: In this algorithm, an online CNN generates keys
of the differentiable neural dictionary (DND) (i.e., a key-
value memory module), instead of directly generating Q-
values for all the available policies under the current state.
The previous experiences in the DNDs are exploited to
reduce the learning sample complexity compared with
DQN [73]. As an example, NEC can be applied in the
NOMA system with a large number of multi-antenna

users to choose the transmission policy that consists of the
user subchannel and the BS transmit power against active
eavesdropping, in which the BS involves several DNDs
with size equaling to the feasible transmission policies.

• DDQN: Compared with DQN, this algorithm designs a
target network with the same network architecture as
the online network to evaluate the target Q-values of
the action that maximizes the long-term expected reward
under the next state and thus reduces the probability
to achieve the local optimal policies [74]. For example,
DDQN can enable the MEC system in [76] to optimize
the edge selection, offloading and caching policies, and
the NOMA system with a large number of users and
BS with multiple antennas in [77] to choose the number
of spreading codes without relying on the known attack
interval.

• A2C: As an on-policy RL algorithm, A2C consists of a
critic network that estimates the value function of the state
and an actor network to estimate the advantage function
of the action and output the policy distribution [29]. Both
the two neural networks are updated with the imme-
diate experiences rather than the previous experiences.
This algorithm uses the mixed policy and introduces
randomness in the action selection to fool the adversary,
e.g., in the mmWave anti-jamming system with a large
number of mmWave propagation channels, the BS can
apply A2C to optimize the beamforming policy to fool the
jammer with omni-directional antennas and thus improve
the communication performance.

• A3C: This algorithm uses a global network and multiple
subnetworks to improve the policy optimization speed and
thus reduces the sample and computational complexity
[29]. A global network that samples a number of ex-
periences from the subnetworks is used to update the
weights asynchronously to increase the diversity of train-
ing data. Each subnetwork copies the weights from the
global network to update their networks independently.
For instance, the MEC server that has enough resources to
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support deep learning can apply A3C to optimize the user
offloading policy and transmit power, and the security
strategy such as the block size and thus protect the user
data privacy.

• PPO: As a mixed policy and on-policy algorithm that
can deal with both the discrete and continuous action
set [31], PPO applies Kullback-Leibler divergence to
evaluate the chosen policies and uses the importance
sampling technique to update the network weights with
the previous experiences instead of randomly sampling
from the memory pool to reduce the storage overhead
compared with DQN. The mobile devices with limited
storage resources in 6G cross-layer security applications
such as the wireless area body networks and MEC sys-
tems can apply PPO to optimize the friendly jamming,
the offloading policy and the cross-layer security policy
such as the encryption key length of data based on the
output multivariate Gaussian policy distribution against
active eavesdropping [78], [79].

• DDPG: An online actor network is used to directly
generate the action rather than the policy distribution to
avoid the estimation errors, and an online critic network
is used to update the weights of the online actor network
to avoid tracking suboptimal policies [30], [75]. Different
from PPO that outputs the policy distribution and updates
the network parameters, this algorithm uses two target
networks with the sampling experiences from the memory
pool to provide more experiences to update the online
networks, and thus avoids the instability exploration in the
learning process. By dealing with the continuous action
set such as the UAV yaw angle in [80], this algorithm
reduces the action quantization errors of the value-based
RL such as DQN and NEC. As another important applica-
tion, the DDPG based PHY-layer security system directly
outputs the anti-jamming or secure communication poli-
cies (such as the transmit power, encryption key size, and
mobility strategy), thus improving the policy optimization
accuracy of the PPO based approach in [79].

The deep RL algorithms enable the learning agent that has
sufficient computational resources to support deep learning to
improve the PHY-layer security performance in complicated
systems. These algorithms have been applied to choose the
transmit power and channel, the authentication mode and
parameters, the encryption key parameters and the protection
level [81]–[86].

C. Multi-agent Reinforcement Learning

Multi-agent RL enables multiple learning agents such as
wireless devices to share their experiences with similar tasks
by communication, teaching or imitation for faster learning
and better performance in large-scale networks [87]. Multi-
agent RL algorithms such as win or learn fast PHC (WoLF-
PHC), differentiable inter-agent learning (DIAL) and multi-
agent deep deterministic policy gradient (MADDPG) reduce
the task failure for the agents newly entering the system due
to the experience exchange with the existing agents.

• WoLF-PHC: By combining PHC with the win or learn
fast principle, WoLF-PHC depends on the average policy
distribution of all the agents in the learning process [65].
The learning agent updates the policy distribution by
adding the probability of current action with the winning
learning rate ranging from zero to one if the probability
to choose the action is larger than the average probability
over all the feasible actions, and updates it with the losing
learning rate otherwise. Each learning agent chooses its
action independently without communication with the
other agents. For example, the UAV and the vehicle
in the anti-jamming air-to-ground communication system
such as [88] apply WoLF-PHC to choose their transmit
power levels with mixed policies based on the historical
transmission quality, which aims to induce the smart
attacker to use the incorrect jamming policies that result
in higher overhead.

• DIAL: Deep recurrent Q-networks are used to reduce the
storage in a large-scale system and the agents share their
policy gradient parameters and observations to avoid the
backpropagation errors and thus reduce the unnecessary
random policy exploration [89]. This algorithm enables
each agent to use a Q-network to generate the Q-values
and use a communication network to share the current
observations or the previous chosen actions to other
agents with feedback signals. For instance, the PHY-
layer authentication system in [44] can apply DIAL to
choose the authentication mode and test threshold from
the action set based on the shared experiences of each
mobile device. The reward function can be formulated as
the sum of the authentication accuracy minus the latency
of all the mobile devices.

• MADDPG: This algorithm shares the observations and
actions among the agents rather than the network weights
in the network update process [90]. Each agent uses its
own observations as the input of the actor network that
directly outputs the action, and uses the observations
and the actions of the other agents as the input of
the critic network that updates the weights of the actor
network. As a potential application, MADDPG can help
improve the secure communication performance in the
selection of the friendly jamming power levels for the
massive MIMO system with hundreds of multi-antenna
users against eavesdropping.

The multi-agent RL provides additional experiences and
distributed hyperparameter tuning to achieve collaborative
intelligence for agents with sufficient computing and stor-
age resources in large-scale systems such as device-to-device
underlay cellular networks and MEC-assisted vehicular ad
hoc networks. A number of multi-agent RL algorithms are
applied to optimize the user scheduling, the UAV trajectory,
the transmit power of users, and the spectrum, computing and
caching resources [91]–[94].

D. Safe Reinforcement Learning

Safe RL uses a security criterion in the reward, including
the worst-case criterion, the risk-sensitive criterion and the
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constrained criterion. By designing a risk modulation such as
providing initial knowledge, teacher advice and risk-directed
exploration in the policy selection process, this RL algorithm
avoids choosing the risky actions that result in network se-
curity disaster (e.g., the communication failure [95] and the
device damage [96]).

• Security criterion in the reward: The RL algorithm
incorporates the security factor such as the outage proba-
bility in the anti-jamming communications and designs a
punishment term such as the variance of the Q-values, the
probability to an error state, and the security constraints
in the reward for the dangerous policies that fail to finish
the tasks. For example, the RL with convex constraints in
[96] incorporates the constraints as a penalty signal into
the reward function and uses policy gradient methods to
optimize the policy under the security constraints such
as rock avoidance in the Mars Rover game. Safe RL
can also help optimize the cross-layer security policy
without exploring vulnerable policies that cannot satisfy
the security constraints such as the QoS requirements.
For instance, the mobile device uses an outage probability
constraint as the security criterion to design a punishment
function in the selection of the encryption key size and
transmit power [79].

• Risk based exploration: The security criterion, such as
the risk level of each state-action pair in terms of the
security performance metrics, is evaluated and used as
the basis to formulate the security policy distribution
[97]. For example, safe DQN in [95] designs a security
criterion based on the outage probability or the bit error
rate (BER) of each state-action pair to evaluate the long-
term expected risk values (i.e., E-values) and formulates
a Boltzmann policy distribution based on both the long-
term expected risk values and Q-values.

Safe RL enables the mobile devices to choose their policy
with the goal of maximizing the long-term expected reward
in the constrained MDP (CMDP) with various security con-
straints such as the task computational latency requirements in
MEC [98]. Nevertheless, the wireless devices have to incor-
porate the policies of other devices to design an appropriate
security criterion in the learning exploration for a large-scale
system with multiple various tasks.

E. Transfer Learning Based Reinforcement Learning

Transfer learning algorithms such as intra-agent transfer
RL and inter-agent transfer RL [99] enable RL to exploit
the experiences in similar scenarios to initialize or update
the learning parameters for faster policy optimization [100].
For example, a progressive RL algorithm enables the mobile
device to learn the security experiences of a set of tasks
and abstract the knowledge to a higher-level representation
to initialize the Q-values and the DNN weights [101].

• Intra-agent transfer RL: A learning agent uses the
experiences in the same or similar tasks to initialize the
learning parameters [102]. For example, a wireless device
in [42], [66] initializes the long-term expected reward and
the mix-strategy policy distribution based on the reward,

action and state of the previous similar anti-jamming
tasks, which improves the learning speed without sharing
experiences with the other agents.

• Inter-agent transfer RL: A learning agent integrates
its own experiences with the experiences shared by the
other agents in similar tasks to accelerate learning for the
large-scale network. For example, the transfer learning
framework in [103] uses an abstract knowledge base for
the agent that executes an underlying task to extract the
previous actions of the similar tasks and uses an advisor
to provide additional learning experiences for the agent.

Transfer RL algorithms help improve the learning efficiency
in multi-task or multi-agent systems such as MEC and cell-
free massive MIMO systems [55]. However, the intra-agent
transfer RL fails to exploit the experiences of the other agents
performing the same task in the environment. Besides, the
exchange of experiences among agents sometimes causes a
high communication overhead and even user data privacy
leakage.

F. Hierarchical Reinforcement Learning

Hierarchical RL such as hierarchical DQN and feudal
hierarchical RL applies a hierarchical control architecture to
exploit the temporal abstraction, in order to compress the large
action set and improve the exploration efficiency for the semi-
MDPs [104].

• Hierarchical DQN: The multi-goal problem in DQN
suffers from sparse and delayed reward signals over high-
dimensional state spaces, which can be addressed by
using the hierarchical action-value functions or Q-values.
More specifically, the feasible actions are divided into
two sub-actions: the first sub-action is chosen based on
the first layer Q-values, and the second sub-action is
selected according to the second layer Q-values and the
chosen first sub-action [105]. For instance, the top-level of
the PHY-layer authentication scheme in [106] inputs the
state of the detection accuracy and the message priority,
and outputs the top Q-values to choose the authentication
mode. The bottom-level inputs the state and the chosen
mode that is the authentication basis, and outputs the
bottom Q-values to select the authentication parameter.

• Feudal hierarchical RL: By combining the hierarchical
structure that divides the task into two levels (i.e., a top
level and a lower level) with the feudal RL that deals
with a multi-goal task scenario and consists of several
managers and workers, this algorithm uses a manager
in the top level and a worker in the lower level to
optimize the policy, and applies a differentiable neural
network with two levels of hierarchy to improve the back-
propagation efficacy. The CNN is replaced with dilated
long short-term memory in the top-level of the manager
for higher learning efficiency in the long-term multi-goal
tasks [107]. In this algorithm, the manager sets goals
for the top level at a lower temporal resolution in a
delayed state-space, and the worker follows the goal of
the manager. Specifically, the manager calculates the state
representation and uses an approximate transition policy
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TABLE III
RL BASED ANTI-JAMMING COMMUNICATION SCHEMES

Learning agent Policy Reward RL algorithms Applications

BS

Power allocation SINR
User sum rate

Q-learning
Dyna-Q [42]

NOMAPower allocation
Antenna selection
Subband selection

User sum rate
Energy consumption Hierarchical DQN [108]

Mobile device
Edge selection
Offloading rate
Power allocation

BER
Computational latency
Energy consumption

Safe-Q
DDPG [98] MEC

BS Power allocation
IRS phase shifts

Energy consumption
Outage probability
Achivable data rate

WoLF-PHC [109]
IRS

UAV UAV location
IRS beamforming vector

Transmission rate
Computational overhead DDPG [110]

BS Beamforming vector
Power allocation

BER
User sum rate
Outage probability

A2C [111] MmWave

BS

Power allocation

SINR
User sum rate
Energy consumption

PHC [112]

Massive MIMO

User

Achievable rate
Energy efficiency DQN [17]

Sum rate
Energy consumption MADDPG [113]

gradient to train its abstract goal in a lower resolution that
is used to guide the policy selection of the worker. With
the external observation, state and goal of the manager
as the input, the worker chooses the action at a higher
temporal resolution.

Hierarchical RL solves the course of dimensionality issues
in typical RL algorithms and improves the policy optimization
efficiency. Nevertheless, how to incorporate the policy priority
in the hierarchical structure is critical for wireless devices
whose security policies have different priorities.

In summary, the tabular-based RL such as Q-learning, Dyna-
Q and PDS can improve the security performance for small-
scale networks with discrete action set and state space, deep
RL further improves the learning efficiency in more com-
plicated and dynamic networks with high-dimensional state
space, and multi-agent RL enables each wireless devices to fast
choose their security policies in the large-scale networks. On
the other hand, safe RL will help reduce dangerous exploration
for 6G security and further avoid communication failure and
device damage. The learning speed of the typical deep RL can
be accelerated by transfer learning based RL and hierarchical
RL. The basis for choosing the RL algorithms in a 6G security
and privacy protection scenario includes the network scale,
attack capacity, dimensions of the state space, resources of
learning agents, QoS requirements, etc.

IV. RL BASED ANTI-JAMMING COMMUNICATIONS

RL based radio resource allocation such as the transmission
power allocation helps improve the anti-jamming communica-

tion performance for 6G systems with NOMA, MEC, IRS,
mmWave, and massive MIMO, as summarized in Table III.

A. NOMA

NOMA systems support BSs to transmit messages to all the
users in the same frequency subband, which are vulnerable to
jamming. Convex optimization and Lagrangian optimization
enable the BS or user to optimize the power allocation and
the channel selection against jamming, based on the accurate
jammer channel state, locations and patterns [108], which are
rarely known by practical NOMA systems. The RL based anti-
jamming NOMA communication is optimized based on the
state, which can be the channel states, the data rate and the
transmission quality such as the signal-to-interference-plus-
noise ratio (SINR), instead of the jamming model. The reward
depends on the BER of the received messages, the throughput,
the packet loss rate, the outage probability and the energy
consumption.

For example, the Q-learning based NOMA power alloca-
tion in [42] optimizes the power allocation for each user
with multiple antennas, based on the state containing the
SINR of the received signal instead of the accurate jamming
model and strategies as in the optimization-based scheme.
The reward function is formulated with the user sum rate
and the SINR against jamming. A transfer learning technique
called hotbooting exploits similar communication experiences
to initialize the Q-values for faster initial learning. A Dyna
architecture is designed to generate hypothetical experiences
to update the Q-values for higher learning efficiency. In the
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Fig. 4. Deep RL based mobile offloading against jamming and interference.

simulations with 10-antenna BS with transmit power up to
20 W against a jammer that applies Q-learning to choose the
jamming power up to 20 W, the RL based schemes exceed
the benchmark Q-learning based OMA scheme. For example,
the scheme has 10% higher SINR, 12% higher sum rate
and 15% higher reward compared with the benchmark for
the user with 8 antennas against the smart jammer with 2
antennas. Nevertheless, the anti-jamming performance should
be further improved for large-scale NOMA systems with high-
dimensional state space.

In another RL based anti-jamming NOMA communication
system, a three-level hierarchical DQN helps optimize the BS
subband selection, antenna selection and power allocation of
the NOMA system Dual-SIC-JAT, as presented in [108], to
further improve the user sum rate and learning efficiency and
reduce the BS energy consumption in a more complicated
system than [42]. More specifically, in the first level DQN,
the transmit subband is chosen from the available subbands
based on the state consisting of the jamming power and the
SINR of the BS signals received by the users. In the second
level, the transmit antenna is selected based on the chosen
subband and the state. The third level chooses the transmit
power coefficient for each user based on the chosen transmit
subband and antenna and the state in this time slot. The users
with limited computing capacity cannot support the complex
DQN, thus having anti-jamming performance degradation in
the uplink communication.

B. MEC
The optimal anti-jamming MEC communication policy re-

lies on the jammer location, the jamming policy, the task
generation model at the mobile devices, and the jammer chan-
nel states, which are rarely obtained by the mobile devices.
Therefore, the anti-jamming MEC system in [98] combines
safe exploration with Q-learning to choose the edge device, the
transmit power and the offloading rate. The state includes the
popularity of each subtask, the bandwidth between the mobile
device and the edge device, and the previous transmission
quality and computational overhead. The reward is formulated
with the BER of the messages from the mobile device, the
total computational latency and the energy consumption of
the mobile device.

The computational latency as an RL security criterion is
used to evaluate the risk values in the policy selection to
avoid choosing risky policies related to task failure. The anti-
jamming offloading game is formulated between the jammer
and the mobile device and the Nash equilibrium is derived
for the case that the mobile device generates a large number
of tasks and has to offload all the tasks to the edge device
with a good channel condition. In the simulations, a mobile
device generates 300 Kb tasks in every time slot and is
connected to three edge devices with 2.5 to 10 MHz radio
bandwidth against a Q-learning based jammer with jamming
power ranging from zero to 100 mW. The results show that
this scheme reduces 23.4% of the computational latency, saves
25.9% energy consumption, improves the reward by 46.5%
compared with SEGUE scheme in [114] after 1500 time slots,
and converges to the performance bound.

As illustrated in Fig. 4, DDPG is applied for the mobile
device with sufficient computational resources to further re-
duce the task latency and the energy consumption in the
continuous action set. Four CNNs (i.e., the actor network, the
critic network, and the two target networks) are designed to
choose the offloading policy, each having two convolutional
(Conv.) layers and four fully connected (FC) layers. More
specifically, the state sequence including the current state and
the three previous state-action pairs is reshaped into a 93 × 1
matrix and then input to the actor network that outputs a 3-
dimensional vector corresponding to the power allocation, the
edge selection and the offloading rate. The state sequence,
chosen offloading policy, and reward are used to formulate the
offloading experience, which is saved into the experience pool
in every time slot. By randomly sampling several offloading
experiences, a minibatch is formulated as input to the critic
network, which outputs the Q-value of the chosen offloading
policy under current state sequence. This scheme further
reduces the computational latency to 92.6 ms to satisfy the
requirement of the MMORPG game PlaneShift. However, this
scheme does not consider the impact of the other mobile
devices on the anti-jamming communication performance,
which has performance degradation in a cooperative MEC
system.
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C. IRS

The IRS is equipped with a large number of low-cost
passive reflecting elements with flexible reflection amplitude
and shift phase. It enhances the desired signal and weakens the
undesirable signal to resist jamming [109]. The selection of
the optimal number of reflecting elements and the IRS phase
shift of each element that determines the transmission quality,
such as the BER, depends on the accurate jamming channel
states and jamming policies.

The IRS-aided anti-jamming communication system in
[109] applies WoLF-PHC and fuzzy state aggregation to
choose the BS transmit power and the IRS phase shifts against
smart jamming. The system formulates the reward based on
the achievable data rate, the BS energy consumption and the
outage probability. The transmission policy depends on the
state that consists of the received jamming power, the SINR
of the signals received by the users and the BS-user channel
gain. In the simulations, an eight-antenna BS sends messages
with up to 40 dBm transmit power to the four users aided by
an IRS with 20 ∼ 100 elements against an eight-antenna smart
jammer, which moves randomly near the users and applies Q-
learning to choose its jamming power ranging from 15 to 40
dBm. The results verify the performance gain of this scheme
in terms of the system rate and SINR protection level over the
fast Q-learning based anti-jamming scheme. This scheme can
have performance degradation and even transmission failure in
a more complicated IRS-aided 6G system with a large number
of available states and policies.

Intra-agent transfer RL can further improve the learning
speed of [109]. For example, the IRS system with reflection
beamforming [110] can apply transfer learning based DDPG
to jointly optimize the UAV location and the IRS beamforming
vector for each element with the goal of maximizing the
long-term expected reward including the transmission rate and
computational overhead. The state consists of the signal SINR,
the IRS channel states, and the jamming power and is input
to the DDPG including both an online actor network and
an online critic network. Each network has two Conv. layers
and two FC layers, whose weights are initialized based on
the similar anti-jamming experiences from the IRS controller
exploited by transfer learning. This scheme relies on an IRS
controller with sufficient energy and computational resources.
It can suffer from high computational complexity and latency
in the resource-constrained IRS system.

D. MmWave

MmWave systems with a spectrum ranging between 30 GHz
and 300 GHz such as the mmWave MIMO system as proposed
in [111] can apply RL to optimize the beamforming vector
and power allocation without relying on the knowledge of the
jamming policies such as the interval and channel states, and
the number of jammers. Deep reinforcement learning such as
A2C can further improve the anti-jamming performance for
the mmWave multiuser system with a high-dimensional state,
e.g., the transmitter with 15 mmWave propagation channels
against a jammer with two omni-directional antennas. More
specifically, the state that consists of the BER of the BS

messages and the channel gain vector among the BS and
the users is input to both the actor network and the critic
network each of which has three FC layers. The actor network
outputs the advantage function of the state-action pairs and
the critic network outputs the value function of the state. The
policy distribution based on both the advantage function and
the value function is used to choose the BS transmit power
and the beamforming vector from the multi-antenna BS to
the multi-antenna users to increase the reward including the
average BER of the BS messages, the outage probability and
the sum rate. As for implementation, the multi-antenna BS
in the mmWave system must have sufficient energy resources
to support deep learning and to optimize the anti-jamming
communication policy faster than the changing rate of network
topology.

E. Massive MIMO

Massive MIMO systems have a large number of antennas
and support multiple users in different locations, which result
in large variations of received signal strength among different
users, and make the users and BSs vulnerable to jamming
attacks. Power allocation has been widely used in both the
downlink communication [115] and uplink communication
[17], [113], [116] for massive MIMO systems to resist the jam-
mers that have the accurate BS and user location information.
However, these schemes rely on the perfect knowledge of the
channel states of the user-BS and jammer-user/BS links, and
thus have performance degradation under the dynamic network
topology.

As a novel RL based anti-jamming communication scheme
without knowing the jamming model and channel model,
the massive MIMO BS [112] applies PHC to optimize the
transmit power based on the jamming power and the SINR
vector of the signal received by the users to improve the
reward that relies on the SINR, the user sum rate and the
BS energy consumption. By using transfer learning and data
mining technique, this scheme further improves the learning
efficiency with the exploited anti-jamming experiences from
several simulated scenarios. In the simulations, the BS with 16
radio-frequency chains and 48 ∼ 256 transmit antennas sends
the messages to 16 single-antenna users with power ranging
from 1 ∼ 10 W against a smart jammer with a single antenna.
Simulation results show that this scheme increases the SINR
by 14.0%, the sum rate by 18.0%, and the reward by 40.0%
compared with the benchmark power control and rate adaption
scheme. Nevertheless, this scheme suffers from a high curse
of dimensionality in the massive MIMO system with a large
number of users and multi-antenna BSs, which causes a high
outage probability.

RL helps improve the achievable rate and save the user
energy efficiency of the massive MIMO uplink transmission
system in [17] without depending on the location and fre-
quency of the single-antenna jammer. In particular, DQN
involving two CNNs each of which has two Conv. layers and
two FC layers can accelerate the learning speed for the high-
dimensional state space in a system with multi-antenna BSs
and a large number of users, e.g., a massive MIMO system
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with a BS that has more than 400 antennas. Specifically, the
state contains the message type (such as the control message
transmitted on the control channel), the SINR received at
each antenna of the BS, the jamming power and the channel
gain vector of the user to all the antennas of the BS. The
previous state-action pairs and the current state are used to
formulate the state sequence, which is reshaped into the online
CNN that generates the Q-values estimated via the neural
network function approximators to choose the user transmit
power ranging between zero to 5 dB. The target network is
updated with given time duration to avoid the unstable power
allocation policy explorations. This scheme can improve the
immediate reward that is the sum of the achievable rate and
energy efficiency, but may suffer from a transmission failure
with the delayed feedback after performing the chosen policy.

Multi-agent RL can further improve the anti-jamming per-
formance of the massive MIMO with a large number of users.
For example, the MADDPG based massive spatially correlated
MIMO system can apply the minimum mean-squared error
based jamming suppression scheme as presented in [113],
which jointly optimizes the transmit power of each user in both
the training phase and the data transmission phase to the BS
without the prior knowledge of the jammer-BS channel states.
More specifically, each user incorporates its own observation
that can be the user-BS channel gain and the user signal SINR
at the BS, and the anti-jamming experiences shared by the
other users in the system as the state in this time slot, which
are input to the actor network that outputs the corresponding
transmit power level. The states and power levels of all the
users are used to update the global critic network to increase
the system reward including the energy consumption and the
sum rate. However, this scheme highly relies on the shared
experiences from other users and has severe learning efficiency
degradation with selfish and malicious users.

In summary, the RL based anti-jamming solutions can
improve the communication reliability for NOMA, MEC, IRS
and massive MIMO systems. The jamming resistance of a
mmWave system can be enhanced by deep RL based on
accurate channel estimation, but the performance degrades
with partial observations of the network and jamming states,
and the delayed feedback of the communication performance
from the environment.

V. RL BASED SECURE COMMUNICATIONS

RL enables users and BSs with NOMA, MEC, VLC, THz,
IRS, mmWave and massive MIMO to optimize the policy such
as the power allocation, beamforming, artificial noise (AN)
strategy, relay selection, precoding and the IRS phase shifts.
The goal is to improve the secure communication performance
such as the secrecy rate and the BER, as summarized in Table
IV.

A. NOMA

RL based secure NOMA system can optimize the com-
munication policy (such as the subchannel selection of each
user and the BS transmit power) from the 𝑁 feasible actions
without depending on the wiretap channel states and thus

improve the communication performance. The reward function
can be the sum of the secrecy rate minus the intercept
probability that represents the fraction of the successfully
intercepted data by an attacker among all the data received at
the legitimate receiver, the outage probability and the energy
consumption. A typical NOMA system such as [123] has
a large number of secondary users with multiple antennas,
yielding a high-dimensional state space in the learning process,
which significantly degrades the learning efficiency of RL
algorithms such as Q learning. Therefore, a four-layer CNN
connecting to 𝑁 DNDs further improves the learning speed
similar to NEC. More specifically, the state consisting of
the transmit power of the primary BSs and users and the
received signal strength indicator (RSSI) at all the secondary
users is compressed with the pooling layers and input to the
CNN. The CNN has network weights initialized with transfer
learning techniques such as hotbooting in [42] and outputs
the DND keys, which are input to each DND. Each DND
outputs a Q-value corresponding to a transmission policy under
the state in this time slot to increase the NOMA reward,
but cannot avoid the vulnerable communication policies that
degrade the message reception at the BS and even cause user-
BS transmission failures.

Another RL based secure NOMA system can apply a deep
RL algorithm such as safe DQN to choose the BS transmit
power and the AN beamforming vector to further increase
the reward based on the secrecy rate, the eavesdropping rate
and the energy consumption of [123]. To satisfy the user QoS
requirement (e.g., the transmission rate for all the users in
[18]), a security criterion can be designed based on the QoS
requirement to avoid exploring the dangerous communication
policies that result in severe data leakage. For example, the risk
value is set as the indicator function that represents whether the
sum secrecy rate is less than the QoS requirement. The state
contains the estimated wiretap channel state, the channel state
information among users, the system energy efficiency and
the inter-user interference signal strength. The state is input to
both the Q-network and the E-network each consisting of three
FC layers, i.e., an input layer with a size equal to the state
dimensions, a hidden layer having a size based on the learning
samples and state dimensions, and an output layer with a size
equal to the number of available transmission policies. The Q-
network outputs the Q-values of the transmission policy of the
secure users, while the E-network outputs the long-term risk
values under the current state. Both the Q-values and the long-
term risk values formulate the Boltzmann policy distribution
to improve the secure performance of the NOMA system.

B. MEC

MEC can apply convex optimization and unsupervised
learning to optimize the secure communication policies such
as the transmit power and the mobility policy [124]–[127],
the offloading policy [78], [128], and the edge computational
resource allocation [129]. The optimal MEC secure commu-
nication policies rely on the eavesdropper location and policy
and the wiretap channel states, which are rarely obtained by
the mobile devices and the edge devices. Therefore, the RL
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TABLE IV
RL BASED SECURE COMMUNICATIONS

Learning agent Policy Reward RL algorithms Applications

MEC server [117]

Offloading policy
Blockchain strategy
Computing resource
Radio bandwidth allocation

Smart contract fee
Computation latency
Energy consumption

DDPG MEC

Transmitter [32] Beamforming vector BER
Secrecy rate

Q-learning
DDPG VLC

BS [118]
Power allocation
IRS phase shifts
Beamforming vector

Achievable rate
Secrecy rate
Energy consumption
Outage probability
QoS requirements

PDS
DQN

IRS

Relay node [119] IRS phase shifts Secrecy rate
Throughput A3C

BS [120]
Beam width
Power allocation
User association

Achievable rate
Energy consumption Risk-sensitive RL

MmWave

Vehicle [121] Power allocation
Communication mode

Transmission latency
Network throughput DDQN

BS [122]
Precoding matrix
AN shaping matrix
Power allocation

Packet delay
Secrecy rate A3C Massive MIMO

based MEC secure communication schemes improve the per-
formance such as the secrecy rate and the intercept probability
against eavesdropping [117].

The blockchain-aided secure MEC system in [117] applies
DDPG involving an actor network and a critic network to
determine the offloading policy of the 𝐿 mobile devices,
the resource allocation of the edge device and the smart
contract (i.e., a self-operating computer program running on
the blockchain platform) without relying on the eavesdropping
pattern. The state including the transmission data rate, the
task data size, the total number of CPU cycles and the rest
bandwidth resources of the edge device is input to the actor
network with three hidden layers, which directly outputs the
offloading policy, the computing resource and radio bandwidth
allocation, and the blockchain strategy. The goal of the edge
device with sufficient computational resources is to maximize
the long-term expected reward based on the smart contract
fee, computation latency, and energy consumption against an
eavesdropper at a fixed location. In a MEC network that
contains an edge server with 15 MB bandwidth resource and
2 ∼ 30 mobile devices each of which generates 2 MB tasks
in each time slot, this scheme reduces the offloading cost by
21.9% compared with the DQN-based offloading scheme.

The deep RL based UAV-enabled secure MEC systems can
improve the secrecy capacity without relying on the perfect
knowledge of the eavesdropper locations, as compared with
[117]. For example, the MEC system can apply DQN to
choose both the transmission policy (e.g., the transmit power
and the AN strategy) and the offloading policy such as the
edge selection and the offloading data size to maximize the
long-term expected reward that consists of the secrecy capac-

ity, the energy efficiency, the computational latency and the
transmission latency. To address the performance degradation
due to the policy quantization under a large-scale network
(e.g., 100 mobile devices in a 400 × 400 m2 square area in
[124]), the edge device uses DDPG involving an actor network
and a critic network, each with four FC layers to reduce
the computational complexity, to improve the MEC secure
communication performance. Intra-agent transfer learning can
be used to exploit secure experiences to initialize the weights
of the actor network, and a critic network is used to update the
weights to accelerate the initial policy learning process. The
state contains the battery level, the estimated eavesdropping
rate, the radio bandwidth to the mobile devices, the energy
consumption and the computational latency. With the state as
the input, the first layer of the actor network chooses the secure
MEC policy that consists of the edge device location, the
friendly jamming power, the transmit power and the offloading
rate. However, this potential scheme is based on how to
quantize the edge device location, friendly jamming power,
and transmit power for smaller quantization errors as well as
shorter exploration time in the learning process.

To further improve the secure communication performance
of the large-scale MEC as in [78], deep RL such as PPO can be
applied to optimize the friendly jamming power and offloading
policy. The reward function depends on the secrecy capacity,
the energy consumption and the computational latency. Both
the actor and critic networks are also used in this scheme,
which have the same architecture including an input layer,
a hidden layer and an output layer to replace the Conv.
layers for less computational complexity. The state includes
the eavesdropping channel state, the computational latency,
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Fig. 5. Deep RL based VLC secure communications.

and the energy consumption. With the state as the input, the
actor network outputs the policy distribution based on the
multivariate Gaussian distribution, while the critic network
estimates the state values of the policy to update the actor
network weights.

C. VLC

The friendly jamming based VLC secure communication
scheme in [130] determines the optical jamming policy based
on the channel gain of the source-eavesdropper link that is
rarely known in advance. Therefore, the RL based VLC se-
cure communication system in [32] chooses the beamforming
policy for the legitimate user without relying on the known
wiretap channel states against a passive eavesdropper at a fixed
location. The scheme applies both Q-learning and DDPG to
optimize the secure communication policy based on the state
that consists of the channel state information of the transmitter,
the BER of the messages and the secrecy rate to increase the
reward, including the secrecy rate and the BER.

The DDPG architecture with two networks is shown in
Fig. 5. The actor network that consists of two Conv. layers
and two FC layers with the state as the input outputs the
secure communication policy (i.e., the beamforming vector)
with the Ornstein-Uhlenbeck noise. The transmitter chooses a
learning rate that is much smaller than one to soft update the
weights of the target actor network by copying the weights
of the online actor network. It ensures that the output of
the target actor network changes slowly, thus improving the
learning stability and robustness. The critic network with the
sampled experiences from the minibatch as the input estimates
the chosen policy to update the weights of the actor network.
Experiments are performed based on a 5 × 5 × 3 m3 room
equipped with 36 light-emitting diodes, in which a transmitter
located at 85 cm height sends the streaming content to a
receiver located at 3 m height with 60◦ receiver field-of-
view against a passive eavesdropper located at 85 cm hight
verify the performance gain over the benchmark scheme. For
example, the scheme improves the secrecy rate by 116.3%

to 2.033 bps/Hz, decreases the BER by 85.5% to 4.5‰ and
increases the reward by 2.39 times compared with the fixed
friendly jamming scheme after 5000 time slots. The deep RL
version further improves the secrecy rate by 29.7%, decreases
the BER by 79.3% and increases the reward by 29.8%.

In the deep RL based secure multiple input single output
VLC system similar to [131], a two-level hierarchical DQN is
designed for the transmitter with sufficient energy and com-
putational resources to optimize the beamforming vector and
jamming power of the user with 𝐽 LED transmitters to increase
the reward, including the peak SINR of the legitimate signals
and the secrecy rate. More specifically, the state containing
the channel gain vector from the transmitters to the receiver,
the peak SINR at both the legitimate user and the passive
eavesdropper and the secrecy capacity is input to the first level.
Consisting of three FC layers, the first level of DQN outputs 𝐽
Q-values to choose the beamforming vector. The second level
selects the friendly jamming power based on the state and the
chosen beamforming vector.

D. THz

The secure THz communication systems [132]–[135] re-
quire the full knowledge of the eavesdropping probability,
the user distribution and density, the labelled path data and
the eavesdropper location. Therefore, the THz communication
system can apply RL such as Dyna-Q, PDS and PPO to
optimize the transmission parameters such as the transmit
power without knowing the wiretap channel states against both
passive and active eavesdropping. For example, the state is
formulated with the evaluated secrecy rate, the measured BER
and the estimated channel states of the receivers. The state
is used in the optimization of the propagation paths and the
transmit power in terms of the eavesdropping rate and the
energy consumption.

The RL based secure THz communication helps improve
the secrecy capacity of [133] that exploits the unique spectrum
features of frequency-dependent molecular absorption against
passive eavesdropping. In this scheme, the state that consists
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of the SINR at the receiver, the maximal covert data rate
and the estimated intercept probability is used as the input
of A2C with an actor network and a critic network each of
which has three FC layers. More specifically, the actor network
estimates the advantage function of the baseband waveform,
the transmit power and the carrier frequency, and the critic
network evaluates the current value function that relies on the
eavesdropping rate and the secrecy outage probability. The
policy distribution is formulated based on both the advantage
function and the value function to avoid local optimum policies
in the learning process.

E. IRS

The reflecting beamforming coefficient that determines the
secrecy rate relies on the channel state information of the
attackers and the attack frequency or pattern [136]–[138].
For example, the secure communication scheme in [137]
applies alternating optimization and semidefinite relaxation to
jointly optimize the AP transmit beamforming and the IRS
reflect beamforming against a single-antenna eavesdropper.
Nevertheless, this scheme assumes the quasi-static flat-fading
channel model and thus suffers from performance degradation
in dynamic and complicated networks. Therefore, an RL
based IRS-assisted MIMO secure communication scheme is
presented in [118] to further improve the secrecy rate in
dynamic systems.

This scheme combines PDS with DQN involving a multi-
layer perceptron network to optimize the IRS phase shifts, the
BS transmit power and the beamforming vector based on the
state that consists of the channel states of all users, the secrecy
rate, the data rate, the jamming power and the transmission
quality against passive eavesdropping. The achievable rate, the
secrecy rate, the energy consumption, the outage probability
and the QoS requirements are used to form the reward func-
tion, as illustrated in Fig. 6. Simulations are performed in the
system with a 4-antenna BS with power ranging from 15 to

40 dBm aided by an IRS with 10 ∼ 60 elements and two
single-antenna mobile users based on the log-distance path
loss model against two single-antenna passive eavesdroppers.
The results show that this scheme improves the secrecy rate by
17.2% and the QoS satisfaction level by 8.7% with 0.7 channel
state information coefficient of the two mobile users compared
with the DQN-based beamforming scheme. However, this
scheme may suffer from severe communication performance
degradation due to the high-dimensional state space and the
significant increase in the available policies for the IRS-aided
system with a large number of users.

The multi-agent RL based IRS-aided secure communication
in [119] applies distributed A3C to choose the IRS phase
shifts for the source and the transmission link for each relay
and improves the learning performance of the single-agent RL
based scheme in [118]. The state that consists of the buffer
states, the channel states of the relay nodes and the channel
state information among the relay nodes, source and IRS is
used in the optimization of the secrecy rate and throughput
following a delay constraint. In a secure cooperative network
aided by an IRS with 32 elements that consists of five relays
against a passive eavesdropper, this scheme improves the
average secrecy rate by 60.0% and the throughput by 65.0%
compared with the max-ratio scheme. This scheme highly
relies on the shared experiences from the other relay nodes
and thus may waste a large number of random exploration
time slots, if the system has malicious or selfish nodes.

The intra-agent transfer RL based secure IRS-aided MIMO
system applies transfer learning to accelerate the learning
speed of [119], improves the secrecy rate, and reduces the
BS energy consumption of the alternating optimization based
scheme in [139]. At the beginning of the learning process,
the BS exploits the secure communication experiences in the
previous tasks to initialize the learning parameters of deep
RL, such as the network weights, the learning rate and the
discount factor. The BS transmit power, the AN strategy and
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the IRS phase shifts are chosen with a four-layer PPO based on
the state that contains the outage probability and the intercept
probability rather than the wiretap channel states.

A three-level hierarchical DQN can further improve the
secure communication performance of the IRS-aided MIMO
system in [140] with a large number of users. More specif-
ically, the optimal transmit beamforming vector, AN covari-
ance matrix at the AP and IRS phase shifts maximizes the
long-term expected reward that depends on the sum rate,
the eavesdropping rate, the intercept probability and the AP
energy consumption. The state that includes the received signal
strength at the legitimate users, the outage probability and the
eavesdropping data size is input to the first level DQN that
outputs the Q-values of the feasible power levels to choose
the transmit power. The second level chooses the jamming
power to send AN signals to the passive eavesdropper based
on the state and the chosen transmit power. In the third level,
the policy distribution of the IRS phase shifts is formulated
based on the state and the chosen transmit power and jamming
power from the two higher levels.

A DDPG based IRS-aided system is designed to jointly
optimize the BS transmit power, AN covariance matrix, and
IRS phase shifts of the MIMO system in [141] to reduce
the quantization errors of the action set without relying on
the wiretap channel states and the eavesdropper location. The
secure communication policy is chosen by the online actor
network of DDPG based on the state that consists of the
channel gain vector among the BS, IRS and users, the data
priority and the eavesdropping rate to improve the reward,
including the secrecy rate, the BS energy consumption and the
outage probability. In the network update process, the online
critic network updates the weights of the online actor network
with the evaluated Q-values, and two target DNNs are soft
updated for more stable exploration under the correlated states.

F. MmWave
The mmWave secure communication policy includes the

precoding [142], [143], beamforming [144], [145], channel
frequency selection [146], relay selection [147], power al-
location [148] and friendly jamming [147]. It relies on the
perfect knowledge of the attacker mode or pattern that is
rarely obtained by practical BSs, and thus the secrecy rate
sharply decreases under active eavesdropping that combines
sniffing with jamming. Therefore, an RL based downlink
mmWave system in [120] applies a distributed risk-sensitive
reinforcement learning to choose the beam width, transmit
power, and user association under the discrete action set and
state space. More specifically, the state consists of the network
queuing status and the downlink channel states. The reward
depends on the BS energy consumption and the achievable
rate of the associated users. In the simulations based on the
64×4 downlink transmission with 24 small cells, this scheme
improves the network reliability by 11.1%, increases the
availability by 20.0% and accelerates the policy optimization
speed by 5 times compared with the Q-learning based scheme
in a range of 0.5 × 0.5 km2.

The mmWave vehicular communication in [121] applies
DDQN that consists of an online network and a target network

with the same architecture to choose the transmit power, and
the communication mode that includes the cellular mode, the
dedicated mode and the reuse mode from all the available
policies under each potential state without dangerous explo-
ration avoidance. The state consists of the vehicle-to-vehicle
channel states, the vehicle-to-infrastructure interference, the
neighboring channel selection, the transmission load and the
QoS requirement. The reward relies on the transmission la-
tency and the network throughput. The online network has an
input layer with 82 neurons, three hidden layers and an output
layer with 9 neurons. In a vehicular network with 30 resource
blocks, this scheme decreases the sum throughput from 165
to 148 bps as the vehicle speed changes from 10 to 60 km/h,
which is 55.8% higher than the benchmark.

In the secure mmWave beamforming system with a fre-
quency diverse array as presented in [144], CNNs combined
with DND can be used to optimize the frequency offset
increment vectors of the transmitter. The state can be the
channel gain vector of the transmitter-receiver link, the secrecy
rate requirement and the SINR against a sensitive eavesdropper
that can intercept user data via a sidelobe. The reward includes
the secrecy outage probability, the intercept probability and the
energy consumption. The state sequence rather than the state
is input to the CNN with two Conv. layers and two FC layers,
and the DNDs output the Q-values of the available policies in
the action set.

The RL based secure mmWave communication can apply
A2C to choose the codeword rate and the transmit power
of both the source and the relay to improve the secrecy
throughput and save the system energy consumption of the
convex optimization based scheme presented in [147]. The
state that consists of the data priority, the source-relay distance,
the signal SINR at both the relay and the destination and
the intercept probability is input to the actor network of A2C
involving three FC layers. With the same network architecture
as the actor network, the critic network evaluates the long-
term expected reward of the chosen transmission policy under
the state in this time slot.

G. Massive MIMO

In massive MIMO systems, secure communication based on
AN or friendly jamming applies convex optimization to choose
both the source and relay transmit power levels [149]–[151],
the transmission duration [150], and the downlink precoding
[152]. For example, the secure massive MIMO communication
in [152] assumes the accurate wiretap channel states against
active eavesdropping that combines pilot spoofing attack and
uplink jamming. However, this system has severe performance
degradation under the unknown eavesdropping probability,
location and channel states. Therefore, a RL based secure
massive MIMO system is proposed in [122] without depending
on the known attacker location.

In this system, A3C with a policy network and a value
network each with two FC layers is applied to choose the pre-
coding matrix, the AN shaping matrix and the power allocation
to users. The state consists of the estimated eavesdropping
channel states and the uplink channel matrix. The reward
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TABLE V
RL BASED PHY-LAYER AUTHENTICATION

Learning agent Policy Reward RL algorithms Attacks
Estimated attack rate
Precision rate
Recall rate

Test threshold Detection accuracy
Communication overhead DDPG [153] Spoofing attacks

Number of users
Detection latency
Miss detection rate
False alarm rate

Spreading codes Detection accuracy DDQN [77] Spoofing attacks

Authentication accuracy
Attack rate
Message priority

Authentication mode
Test threshold Authentication accuracy Dyna-Q

NEC [44] Spoofing attacks

Attack features
Types of the attackers
Attack strength

Edge detection mode Detection accuracy
Communication delay DQN [154] DDoS

Sybil attacks

Signal coverage probability
Message type
Number of messages

AP deployment
False alarm rate
Miss detection rate
Authentication latency

DQN [155]

DoS
Injection attacks
Spoofing attacks
Man-in-the-middle
attacks

Received signal strength
User location
Estimated attack rate
Authentication accuracy

Test threshold Detection accuracy PPO [156] Spoofing attacks
Injection attacks

function is the sum secrecy rate and cumulated packet delay,
while neglecting the user energy consumption. Simulation
results in a 256 × 1 MIMO system with four users each of
which has 40 dBm transmit power and 10 MHz bandwidth
against a single-antenna eavesdropper show that the scheme
reduces the cumulated packet delay by about 25.0% compared
with the benchmark randomized policy scheme.

The RL based massive MIMO secure communication with
decode-and-forward applies safe Q-learning to optimize the
relay power selection to increase the secrecy capacity of [150].
More specifically, the state that contains the BER of messages,
the channel state vector between the relay and the destination,
and the eavesdropping rate is used as the basis to update the
Q-values. The secrecy outage capacity is used as a security
criterion to evaluate the risk level of the chosen relay power,
which is used to update the E-values. Instead of using an 𝜖-
greedy based policy distribution, both the Q-values and the
E-values are used to formulate a Bolztman policy distribution
to avoid dangerous relay power levels that result in severe data
leakage.

Multi-agent RL such as MADDPG improves the secure
communication policy optimization efficiency of the AN-
assisted massive MIMO systems with a large number of
multi-antenna APs and users (e.g., 150 APs in [149]). The
transmit power of each AP is chosen to improve the ergodic
secrecy rate, reduce the BER of messages and save the AP
energy against the multi-antenna active eavesdroppers. The
observation of each AP consists of the uplink channel gain
vector among users, the number of neighboring APs, the data
priority and the jamming signal strength, which is input to

the actor network. More specifically, each AP has an actor
network that relies on its own observation and directly outputs
the transmit power. On the other hand, a global critic network
based on the observations and chosen transmit power levels
of all the APs evaluates the corresponding Q-values and thus
updates the weights of each actor network.

In summary, deep RL algorithms such as DQN, A3C and
DDPG have been used to improve the secure communication
performance of MEC, VLC, IRS, mmWave and massive
MIMO systems. Besides, the anti-eavesdropping performance
such as the secrecy rate of NOMA and THz communication
can be improved by the tabular RL algorithms such as Dyna-
Q and PDS, the policy gradient RL including PPO and A2C
and the multi-agent RL such as MADDPG without the full
knowledge of the attack patterns.

VI. RL BASED PHY-LAYER AUTHENTICATION

Physical features of the 6G signals such as the channel states
and the signal phase offsets can be exploited as the fingerprints
of the radio transmitter and reduce the communication and
computational overhead of the 6G authentication compared
with the authentication solely relying on cryptography, trust
and certificate. As summarized in Table V, RL enables the
wireless devices in the communication systems with NOMA,
MEC, mmWave and massive MIMO to optimize the authen-
tication/detection mode and parameters, the offloading policy,
the resource allocation, and the block size and interval to
resist spoofing attacks without knowing the accurate attack
frequency or location [44].
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A. NOMA

Deep RL such as DQN can help choose the test threshold
for the NOMA systems with high-dimensional state space
(e.g., the 256 × 256 system with 100 channel wavelengths
as presented in [153]) without knowing the time interval of
spoofing messages. Specifically, the NOMA system uses the
current state including the estimated attack rate, the precision
rate and the recall rate as the input of DQN having an input
layer with three neurons, a hidden layer with 64 neurons
and an output layer with size depending on the quantized
test threshold levels. The DQN outputs the Q-values for each
state-action pair in the current time slot, which are used to
choose the test threshold according to the 𝜖-greedy algorithm.
Furthermore, DDPG can reduce the quantization error of the
test threshold in a continuous action set, thus improving the
detection performance of DQN. More specifically, the BS
inputs the state that includes the estimated attack rate, the
precision rate and the recall rate to the online actor network
of DDPG that outputs the test threshold ranging from zero
to 1. The authentication experience including the current
state, the next state, the chosen test threshold and the reward
that involves the detection accuracy and the communication
overhead is used as the input of the critic network that
updates the weights of the actor network. Nevertheless, this
potential scheme uses the characteristic of the massive MIMO
mmWave channel to achieve principal component analysis
detection, thus suffering from low accuracy under lightweight
IoT systems that cannot simultaneously support mmWave and
massive MIMO techniques.

The DDQN based spoofing detection enables the BS in the
NOMA system as presented in [77] to choose the number of
spreading codes for each user against the spoofing attackers
that can send the same pilot sequence as the legitimate
user. More specifically, the previous 𝐵 states each of which
consists of the number of users, the detection latency, the miss
detection rate and the false alarm rate are used to formulate
the state sequence, which is reshaped into the online CNN
with two Conv. layers and four FC layers. The target network
evaluates the estimated Q-values that rely on the reconstruction
and detection accuracy to avoid the over-estimation error of
the online network. This scheme aims to improve the reward
including the detection accuracy and latency for the single-
antenna users.

B. MEC

The RL based authentication system in [44] applies Dyna-
Q to optimize both the authentication mode or feature and
the authentication threshold in the PHY-layer based hypothesis
test, in which the mobile device has |A| feasible authentication
policies. The state is formulated based on the quantized
authentication accuracy averaged over 200 time slots from
the feedback channel, the attack rate estimated by the mobile
device in the legitimate vehicle and the message priority.
The mobile device with sufficient computational resources
to execute deep learning combines NEC with the intra-agent
transfer learning techniques such as the hotbooting to further
improve the authentication accuracy. As illustrated in Fig. 7,
the NEC consisting two Conv. layers, two FC layers and DNDs
outputs the policy distribution of the |A| feasible authentication
policies. Experiments based on a vehicle moving at a speed of
30 km/h carrying both the mobile device and the edge device
surrounded by five radio devices with power changing from 50
mW to 3 W, and a rogue edge device moving at 36 km/h with
transmit power 100 mW verify the efficacy of the scheme. For
example, the false alarm rate and the miss detection rate are
decreased by 52.3% and 79.4% respectively compared with the
Q-learning based PHY-layer authentication. The system has
higher accuracy with the mobile device and the edge device
in the same vehicle, but has lower accuracy and higher latency
if the edge device locates outside the vehicle that carries the
mobile device.

The RL based vehicular authentication system in [154]
applies DQN that defines the loss function as the temporal
difference error of the Q-value between two successive it-
erations to choose the edge detection mode against DDoS,
Sybil attacks and rogue APs in vehicular ad hoc networks.
The state consists of the attack features, the types of at-
tackers and the attack strength, and the reward depends
on the detection accuracy and the communication delay.
The detection based on the service function chain with the
channel monitoring, attacking signature abstraction, signature
matching and signature normalization verifies the performance
gain over the greedy algorithm by reducing about 80.0%
computational cost. This scheme can seamlessly integrate the
signature-based and feature-based intrusion detection methods
and support various communication types, including vehicle-
to-infrastructure, vehicle-to-vehicle and vehicle-to-everything
detection scenarios. It may have slow learning speed and
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even overestimation of the Q-values in a more dynamic and
heterogeneous vehicular network.

C. Mmwave

In the RL based mmWave authentication that extracts the
spatial-temporal information of the beam pattern as the radio
fingerprints similar to [155], transfer learning based DQN
optimizes the AP deployment, in order to increase the reward,
including the false alarm rate, the miss detection rate and the
authentication latency. The state includes the signal coverage
probability, the message type and the number of messages that
are falsely accepted/rejected by the user. More specifically, a
four-layer DNN architecture is designed to output the Q-values
of the feasible AP deployment policies, which are used to
formulate the policy distribution. In the initial learning process,
the user uses transfer learning to exploit the authentication ex-
periences from similar scenarios and thus initializes the DNN
parameters such as the network weights and the learning rate.
However, an accurate quantization method for all the possible
AP deployments should be in place before implementing this
scheme in practical mmWave systems, as the performance
degrades with policy quantization errors.

D. Massive MIMO

The RL based PHY-layer authentication that uses the chan-
nel amplitude and the transmitter hardware impairments re-
duces both the miss detection rate and the false alarm rate of
the massive MIMO system in [156] against a spoofer, which
attempts to steal user data or to inject some fake aggressive
information into the network with the MAC address of the
legitimate user. Specifically, a three-layer DNN based PPO
optimizes the test threshold based on the state that includes
the received signal strength of the BS at each antenna, the
user location, the estimated attack rate and the authentication
accuracy. This scheme updates the PPO network weights
based on the importance sampling technique with the previous
experiences rather than the experience replay technique for less
sample complexity. Nevertheless, its authentication accuracy
degrades under the smart spoofer with multiple antennas that
can choose its spoofing strategies by predicting the ongoing
defense policy of the massive MIMO system.

In summary, the RL based PHY-layer authentication reduces
the false alarm rate, miss detection rate, and communication
latency of MEC systems under the discrete action set and state
space. As for future direction, deep RL such as DQN and PPO
can be used to help improve the authentication accuracy as
well as the communication efficiency for NOMA, mmWave
and massive MIMO systems against smart spoofing attacks.

VII. RL BASED DATA PRIVACY-AWARE SECURE
COMMUNICATIONS

The privacy-aware communication systems can use RL to
choose the device mobility, the offloading policy and the
privacy budget without relying on the knowledge of the
attacker location and the attack frequency, in order to resist
the background knowledge attacks, eavesdropping, inference

attacks and differential attacks for 6G systems with NOMA,
MEC, mmWave and massive MIMO. Recently, identity-based
authentication [168], [169], differential privacy (DP) [157],
[170], [171] and encryption [172] depend on trusted third-
party auditors to protect privacy, but the communication and
computational overheads are too high for the 6G devices with
restricted computing and energy resources. This challenge
can be addressed by the RL based data privacy-aware secure
communications [27], [158]–[160], in which the value-based
RL such as PDS and DQN chooses the privacy policy in a
discrete action set, while the policy gradient RL (e.g., PPO and
DDPG) deals with the continuous action set, as summarized
in Table VI. The policy, state and reward for the RL based
data privacy protection for 6G systems are illustrated in Fig.
8.

A. NOMA

NOMA communication systems can apply RL algorithms
to protect legitimate data from stealing by the adversary
that can eavesdrop on the transmission channel as well as
intercept the transmitted messages. For instance, the NOMA-
enabled industrial IoT system in [162] combines hierarchical
federated learning with deep RL to protect user data privacy
without the knowledge of communication models among the
IoT devices, the edge servers and the cloud server. In this
system, the typical DDPG is applied in IoT devices to optimize
the transmit power for uploading the learning parameters,
allocation of computing resources to the learning tasks, and
orchestration policy based on the state instead of the data
leakage model. The state including the channel states of the
legitimate links, orchestration policies of other IoT devices,
and computing capability, is input to the actor network. Both
the actor and critic networks consist of five FC layers, in
which the actor network directly outputs the privacy policy
and the critic network outputs the target Q-values to evaluate
the chosen policy. This scheme aims to maximize the long-
term expected reward that depends on the latency, energy
consumption, transmission power, and computing capability
of IoT devices. In the simulations based on three cells each
having three IoT devices with up to 10 GHz computing
capacity and 1 W transmit power, this scheme reduces about
17.9% energy consumption than the benchmark, but has a low
model accuracy with hundreds of IoT devices.

Deep RL such as DDPG is applied in the NOMA system in
[163] to optimize the authentication decision at the receiver
such as the test threshold from the continuous action set
ranging from zero to one. This scheme uses the authentication
tag as well as the channel responses from the users to the
BSs to improve both the user privacy protection performance
and the authentication accuracy. The state includes the channel
responses, the number of users, the distance vector from the
users to the BS, the arrival interval of the underlying mes-
sage, the RSSI and the previous authentication performance.
It is input to DDPG with an actor network choosing the
authentication policy and a critic network updating the network
weights, in which each network has the same architecture, i.e.,
three FC layers. This scheme aims to improve the robustness,
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TABLE VI
RL BASED DATA PRIVACY-AWARE SECURE COMMUNICATIONS

Learning agent Policy Reward RL algorithms Attacks

IoT device [27] Offloading rate
Local processing rate

Privacy level
Queuing cost
Computational overhead

PDS
Dyna-Q Inference attacks

Edge device [55] Offloading policy
Resource allocation

Edge profits
Attack rate
Latency
Energy consumption

Safe DQN
Q-learning

Selfish edge attacks
Fake service
record attacks

Smart edge [157] Laplace noise
Accuracy
Data utility
Privacy level

PPO Inference attacks

Movie recommendation
system [158] Privacy budget Privacy protection level

QoS requirement DDQN Inference attacks

Mobile terminal [159] Moving strategy Geographical fairness
Energy consumption DDPG

Selfish attacks
DoS attacks
DDoS attacks

IoT device [160] Payment strategy Cost of participant DQN
Q-learning Selfish attacks

Mobile device [161]
Offloading policy
Power allocation
Block size and interval

MEC computation rate
Transaction throughput A3C Eavesdropping

IoT device [162]
Transmit power
Resource allocation
Orchestration policy

Latency
Energy consumption
Ttransmission power
Computing capability

DDPG Eavesdropping

BS [163] Authentication decision Privacy protection level
Authentication accuracy DDPG Eavesdropping

User [164] Authentication threshold Propagation delay
Privacy level DDQN Inference attacks

User [165] Matching parameters

Classification accuracy
False positive rate
Authentication accuracy
Privacy loss level
Attack success rate

PPO Spoofing attacks

BS [166] Beamforming policy Privacy protection level
QoS requirement DDPG Eavesdropping

Server [167] Transmission strategy

Model classification
Accuracy
Data privacy level
Transmission latency

DQN Eavesdropping

compatibility, privacy, and security performance. It relies on
the accurate observation and immediate feedback from the
environment in each time slot.

B. MEC

Value-based RL enables mobile devices or IoT devices
to choose the edge device, the payment strategy, and the
computational resource from the discrete action set for data
protection in MEC systems. For example, the MEC based
healthcare data privacy protection scheme as proposed in [27]
designs a model based RL algorithm to optimize the offloading
rate and the local processing rate from a quantized action
set against inference attacks. The state consists of the newly

generated healthcare data size, the data priority, the channel
state, the harvested energy, the battery level and the amount
of data in the buffer. By combining PDS, Dyna architecture
with transfer learning, this scheme evaluates the reward based
on the privacy level, the queuing cost, and the communication
and computational overhead. For the IoT device that generates
30 Kb of healthcare data each second, the scheme improves
the privacy level by 36.6%, reduces the latency by 68.8% and
the energy consumption by 9.6%, and saves the convergence
time by 40.0% compared with the CMDP based offloading
scheme after 2200 time slots. The performance effectiveness
may degrade under a MEC system with high-dimensional state
space, which even results in the curse of dimensionality, thus
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Fig. 8. RL based data privacy protection for 6G systems.

having an extremely slow learning speed.

To further accelerate the policy optimization speed in [27],
the IoT privacy-aware communication system in [160] applies
DQN with two Conv. layers and two FC layers at the MCS
platform to choose the payment strategy based on the first state
that consists of the privacy protection levels of the available
IoT devices, and applies Q-learning at the IoT devices to select
their privacy budgets of the sensing data based on the second
state, including the previous privacy level and the platform
payment. This scheme improves the privacy protection level
and reduces the aggregated error of the platform in a data
aggregation crowdsensing system with 60 ∼ 300 IoT devices
against selfish attacks. For example, this scheme decreases the
average aggregated error of the platform by 12.9% and thus
increases the reward of the platform by 15.4% compared with
the random strategy scheme at the 5000-th time slot. However,
it has to deal with the quantization error issues of the action
set and the vulnerable exploration during the whole learning
process.

The blockchain-assisted MEC system in [55] applies RL
to optimize the offloading policy and computational resource
allocation against selfish edge attacks and fake service record
attacks. It uses a risk value function to avoid choosing the
risky policies related severe privacy leakage compared with
[27]. More specifically, the transfer learning based Q-learning
is applied to choose the number of edge CPUs to compute the
tasks from each mobile device based on the offloading data
size and the reputation of each mobile device. This scheme
uses the historical reputation vector and the computational
latency of each edge device to calculate the current reputation

and applies blockchain to record the reputation of the available
edge devices. The proof of work (PoW) mechanism is used as
the basis to choose the miner in the blockchain. Safe DQN can
further increase the reward based on the edge profits, the attack
rate, and the task computational performance, as illustrated
in Fig. 9. More specifically, the edge device compares the
SINR of the signals sent by the mobile device with the QoS
requirement and sets the risk value as one if the SINR is
smaller than the QoS requirement and zero otherwise. This
scheme uses the current and previous risk values to evaluate
the E-values similar to [95] and thus enables safe exploration
during the offloading process. In the simulations, three mobile
devices generate the computational tasks at 10 Mbps, process
the local tasks at 200 Kbps, and are connected to three edge
devices each with 10 CPUs over the channel with up to 10
Mbps bandwidth. This scheme reduces the response latency
by 9.5%, saves the energy consumption of the edge devices
by 9.1% and increases the reward by 35.1% compared with
the benchmark scheme after 500-th time slot. However, this
scheme does not account for the impact of data size and time
slot on the transaction throughput of blockchain.

The movie recommendation system [158] combines DP
with reinforcement learning to protect user data privacy with-
out knowing the accurate inference model. More specifically,
this scheme applies DDQN that has two neural networks with
the same architecture each of which consists of four FC layers
to optimize the privacy budget. The state includes the item
sensitivity level and similarities, and the privacy protection
level. This scheme aims to increase the user privacy protection
level and satisfy the QoS requirement. In the simulations based
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on a public movie recommendation dataset MovieLens 1M
that stores 3952 movies each with 19 categories, this scheme
reduces more than 28.8% privacy loss and increases more than
20.3% compared with the benchmark perturbation mechanism
as proposed in [173] with the 0.2 ∼ 0.7 attack probability. The
learning efficiency and user data privacy level of this scheme
may degrade, if each user involves an inaccurate quantized
action set.

The policy gradient RL algorithms such as DDPG, A2C,
A3C and PPO have been applied in the data privacy-aware
communication systems with continuous action set to address
the quantization error issues. These algorithms directly gener-
ate the privacy policy instead of the policy distribution from
the CNN function approximators in DQN. For instance, in
the privacy-aware industrial IoT communication system as
proposed in [159], the smart mobile terminal uses Ethereum
blockchain to protect the sensing data from selfish, DoS and
DDoS attacks, and applies DDPG to optimize the moving
distance and direction of the mobile terminals in the individual
offloading without cooperation. The state in this scheme con-
tains the location of the point-of-interests and the obstacles,
the coordinates of the mobile terminals, the current battery
level of the mobile terminals and the sensing latency of the
previous point-of-interests. The mobile terminal evaluates the
reward that depends on the amount of the collected data, the
geographical fairness among the point-of-interests and the en-
ergy consumption of the mobile terminals. Simulations based
on three Ethereum nodes against an attacker that performs both
DoS and DDoS attacks and sends 3306 abnormal requests in
each time slot verify the performance gain of the proposed
scheme over the benchmark.

The A3C based blockchain-enabled MEC system in [161]
formulates the state that consists of the channel conditions,
the available computing resources, the number of stakes and
the trust value of relay nodes to choose the offloading policy,
the power allocation, and the block size and interval for the
discrete MDP with the reward that depends on the MEC
computation rate and the blockchain transaction throughput.
The A3C consists of six worker agents and a global network

implemented in a central parameter server, in which a global
network is used to synchronously update the network weights
of the six worker agents, and each worker agent outputs the
policy function via a softmax layer and estimates the value
function via a linear layer. This scheme increases 50.0%
computation rate and 5.9% transaction throughput compared
with the fixed block interval scheme in the simulations based
on a block-enable MEC system for 30 mobile devices with up
to 1 W transmit power and 1 GHz CPU-cycle frequency, five
relay nodes and six worker agents with 200 average transaction
size and 8 MB block size. This scheme aims to protect the
user data from the adversary, while it ignores the data privacy
from the MEC server to the mobile devices.

Deep reinforcement learning such as PPO and DDPG helps
improve the data utility of the DP-based offloading scheme
in [157] that applies Laplace noise at the edge server to
protect sensitive data. More specifically, PPO can enable the
edge server to optimize the Laplace noise based on the state,
including the data size, the sensitive level, the privacy level and
the QoS to improve the long-term expected reward, including
the accuracy, and the data utility and privacy. The MEC system
does not consider the differences of the privacy protection
level among different users, as each user may pay attention to
different private contents, and has various privacy requirements
for its own data at different time slots.

In another example of the RL based data privacy-aware
communication similar to the MCS system in [172], multi-
agent RL such as DIAL can be applied to enable each user
to share their observations such as the data type and the
historical data accuracy for faster optimization to increase the
reward that relies on the privacy protection level, the data
confidentiality and integrity, the transmission latency, and the
computational overhead. As this potential scheme requires
each user to share their observations, it suffers from a high
communication and computational overhead and the curse of
dimensionality under the high-dimensional state space and
action set.
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C. MmWave

The user identity and behavior privacy protection in
mmWave systems can be improved by RL without relying on
any training data. For example, the authentication threshold in
the hypothesis test of the deep learning based authentication
in [164] can be chosen based on DDQN to protect the behav-
ior information of the radio frequency signals with reduced
computational complexity. The state consists of the RSSI,
channel state information, information-related amplitude and
propagation delay for both the identity and behavior, and
previous privacy level. Based on the current state as well as
the state sequence consisting of the historical authentication
thresholds and reward as the input, the online network with a
hidden layer outputs the Q-values of all the feasible threshold
levels. The target network designed with the same architecture
updates the weights of the online network to avoid over-
estimation. The reward function can be formulated as the
weighted sum of the recognition accuracy, the authentication
accuracy, and the privacy loss.

To improve the privacy protection level of the multi-user
mmWave systems, the multi-user authentication system in
[165] uses a clustering method to resist spoofing attacks by
capturing the self-driving heartbeat motions of users. However,
the performance degrades in more complicated systems with
a large number of multi-antenna users due to the higher
latency in the clustering process. The PPO consisting of an
actor network and a critic network can be applied to help
optimize the matching parameters based on the state that can
be the number of users, intermediate frequency signals, range
resolution among users, and angle of arrival. The reward is
the sum of the classification accuracy, false positive rate,
authentication accuracy, and privacy protection level. The actor
network with three FC layers outputs the mean vector of all
the available matching parameters, which is used to formulate
a multivariate Gaussian policy distribution for selecting the
matching parameters. The critic network outputs the state
value to evaluate the chosen matching parameters according
to the Kullback-Leibler divergence technique.

D. Massive MIMO

Massive MIMO systems with a huge number of transmit
antennas support multiple users located in different areas, and
must protect the user data privacy from attackers with the
QoS guarantee. For instance, the multi-cell massive MIMO
communication system in [166] uses the time-fraction-wise
beamforming technique to satisfy the user QoS and data
privacy protection requirements based on an accurate attack
model and prior knowledge of channel state information. Deep
RL such as DDPG can help optimize the beamforming policy
without knowing the prior information as in [166] to further
improve the privacy protection performance of the dynamic
systems. The state including the RSSI, inter-user interference
power level, previous data protection level, and locations of
all the users is applied to the actor network of DDPG. The
chosen beamforming policy, the current state and the reward
are saved into the experience memory pool. The BS applies
the experience replay technique to randomly choose a piece of

experiences from the experience memory pool, and uses these
experiences as the input of the critic network that outputs the
Q-values based on the energy efficiency and the throughput to
evaluate the chosen policy.

Federated learning can further improve the data protection
performance of the deep RL based time-division-duplex mas-
sive MIMO communication system in [166]. For example, the
federated learning based compressive sensing scheme in [167]
can combine DQN to choose the transmission strategy such
as the amount of the uploaded learning parameters, without
knowing the change model of channel impulse response from
the 𝐾 devices to the server and the wiretap model. The state
based on the estimated legitimate channel impulse response,
local training data size, and previous data eavesdropping rate,
model accuracy and latency is input to the designed DQN
with four FC layers, where the second and third layers are the
hidden layers. The transmission strategy is chosen based on
the Q-values of the feasible transmission policies under the
current state according to the 𝜖-greedy algorithm. According
to the chosen policy, each device transmits its parameters
to the server, and the server applies the stochastic gradient
descent algorithm to train the global model, and sends the
corresponding parameters to the participating devices. After
receiving the feedback from the devices, the server obtains the
immediate reward including the model classification accuracy,
data privacy level of the devices, and transmission latency.

In summary, the data privacy-aware communications with
the value-based RL have to quantize the privacy policy and
thus may achieve a local optimum policy, due to the policy
quantization errors. On the other hand, the policy gradient
RL based data privacy-aware communication schemes achieve
better privacy protection performance in the continuous action
set, but suffer from low data efficiency and poor robustness in
the learning process.

VIII. RL BASED LOCATION PRIVACY PROTECTION

Existing location privacy protection that depends on
anonymization [182], blockchain-assisted consensus approach
[183], information-theoretic approach [184], [185] and DP
technique [186] suffers from performance degradation in a
dynamic 6G system with unknown attacker mobility model.
For example, the DP-based IoT location protection scheme in
[186] uses Laplace noise to perturb the user sensitive location.
However, the privacy budget in this scheme is chosen based
on the frequent pattern records of all the users in the system,
which are hard to be obtained by the IoT device. Therefore,
DQN and DDPG, as important RL algorithms, have been used
to improve the location privacy protection level for MEC,
IRS, mmWave and massive MIMO systems against inference
attacks, eavesdropping, selfish attacks and backdoor attacks,
without knowledge of the attacker locations and attack patterns
[176], [177], as summarized in Table VII.

A. MEC

The mobile devices with sufficient computational resources
can apply DQN and deep PDS-learning to optimize the edge
selection for location privacy protection under a discrete action
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TABLE VII
RL BASED LOCATION PRIVACY PROTECTION

State Policy Reward RL algorithms Attacks

Blockchain data size
Channel states
Hash power
Computing payment

Offloading policy

User data rate
Location protection level
Edge devices payment
Computational latency
Energy consumption

DQN [174] Inference attacks

Battery level
Energy consumption

Edge device
Offloading policy

Task dropping probability
Privacy loss rate PDS [175] Eavesdropping

Vehicle driving direction
Required caching resources

Caching policy
Delivery policy

Location protection level
Successful caching rate
Energy consumption
Content delivery latency

DDPG [176] Selfish attacks

Vehicle location
Sensitivity level
Attack strength history

Privacy budget
Perturbation angle

Privacy level
QoS loss DDPG [177] Inference attacks

Perturbed channel states
Energy demand vector

Transfer power vector
IRS phase shifts

QoS
Location protection level DDPG [178] Inference attacks

Current human activities
Sampling data size
Task type
Feature dimensions

Classification threshold

Recognition accuracy
Tracking accuracy
Latency
Location protection level

Dyna-Q [179] Inference attacks

Number of users
Attack probability
Current datasets
Data confidence

Beamforming policy

Data confidence
Location protection level
Benign rate
Accuracy

DQN [180] Backdoor attacks

User-BS channel states
Number of users
Corresponding antennas
Attack probability

Privacy budget

Mean squared error
Symbol error rate
Execution time
Location protection level

DDPG [181] Inference attacks

set. For example, the RL based privacy-aware MEC communi-
cation [174] applies DQN with two hidden layers to determine
whether to offload tasks to the available edge devices against
the attacker that can predict the newly generated task size
to infer the MEC server location and usage patterns. This
scheme quantizes the action set as the number of feasible
offloading decisions for each IoT device, which offloads the
task to the edge device if the offloading decision is one, and
processes the task locally otherwise. In this scheme, the state
consists of the blockchain data size, the channel states among
the mobile device and edge devices, the hash power and the
computing payment. The reward depends on the user data rate,
the user location protection level, the payment received by
the edge devices, the computational latency, and the energy
consumption of the mobile device. In the simulations, the
Biokin sensors are used as IoT devices to collect health data
such as motion data 50 ∼ 150 KB every second and send these
data to the 10 mobile devices as miners for medical services.
The mobile devices with 10 KB block size offload data to the
MEC server with a computational capacity of 1 0 GHz/sec and
50 mW static circuit power via Wi-Fi wireless communication
following IEEE 802.11g. The results show that the proposed
scheme improves the privacy level by 12.7% as compared with
the benchmark CMDP scheme, but suffers from a low learning

accuracy under the time-varying and continuous action set.
Another location privacy-aware IoT offloading scheme

named PAO as proposed in [175] applies deep PDS-learning
to choose the edge devices and offloading policy from the
action set that includes all the available edge devices and
the quantized offloading policy levels. The DQN that consists
of six FC layers uses the state as the input, including the
battery level and the offloading energy consumption of the IoT
device. This scheme assumes that the channel model from a
mobile device to an edge MEC server follows a log-normal
distribution. For the IoT device that generates 1000 bits of data
at 1/700 of the computing speed of the three MEC servers with
1 MHz uplink bandwidth, PAO saves the convergence time by
86.7%, reduces the task dropping probability by 25.0% and
decreases the privacy loss rate by 15.2% as compared with the
DQN based offloading scheme, after 200 time slots from the
beginning of the game against the attacker.

DDPG helps the vehicle and the mobile device optimize the
privacy budget, the perturbation angle, and the IRS phase shifts
without quantizing the action set and thus further improve
the location privacy protection level compared with DQN and
deep PDS-learning. For instance, a vehicular edge computing
system in [176] applies DDPG to choose the edge caching and
content delivery policy. The reward function is formulated with
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Fig. 10. Deep RL based location privacy protection.

the vehicle location protection level, the successful caching
rate, the energy consumption and the content delivery latency.
The mobile device formulates the state based on the vehicle
driving direction and the required caching resources. This
scheme designs four DNNs each of which has three FC layers,
in which the primary actor network directly outputs the edge
caching and content delivery policy, the primary critic network
evaluates the chosen policy and outputs the evaluated Q-
values, and both the target actor and critic networks generate
target Q-values to train the two primary networks. The system
reshapes the discrete edge caching policy (i.e., zero or one)
into a continuous action set, and uses the max-weighted
bipartite matching obtained by the Hungarian algorithm to
estimate the edge caching policy. In the simulations based
on a real-world dataset from Uber with 100 vehicles each of
which has 5 GB caching capacity and 10 MHz bandwidth
to cache the content data with size ranging from 10 to 50
MB, the proposed scheme achieves 86% successful content
caching probability, which is 10.3% higher than the greedy
content caching scheme.

The deep RL based location privacy protection scheme as
proposed in [177] further improves the privacy protection level
for sensitive location-based service systems by incorporating
DP and DDPG to optimize the privacy policy that consists
of the privacy budget and the perturbation angle against the
adversary that can infer the user preferences and life patterns.
As illustrated in Fig. 10, the state that contains the vehicle
location, the sensitivity level of the current location and the
attack strength history estimated by the vehicle is used as the
input of the actor network with three FC layers that outputs the
privacy policy. According to the experience replay technique, a
critic network with three FC layers outputs the Q-value of the
chosen policy to update the weights of the actor network, and
thus evaluate the effectiveness of the chosen privacy budget
and perturbation angle. After obtaining the policy, the vehicle
adds gamma distributed noise to the original location, based
on the privacy budget and perturbation angle to obtain the
perturbed location. In the simulations based on a 6 × 6 km2

square map with four sensitive locations, this scheme improves
the privacy level by 77.5% and reduces the QoS loss by 7.7%,

as compared with the Geo-indistinguishability scheme after
1500 time slots, given the semantic model and time-varying
sensitivity model of each location.

B. IRS

IRS helps improve the data transmission quality, but has lo-
cation leakage vulnerability to the adversary that can intercept
the legitimate data as well as infer the locations of both the
IRS and users. This issue can be mitigated by combing DP
with deep RL to choose a location protection policy such as
the IRS phase shifts, without knowing the accurate adversary
model and channel changing model. For example, the RL
based DP-aided location protection scheme in [178] applies
the DDPG to jointly optimize the transfer power vector of
the energy transmitters and the IRS phase shifts based on the
state that includes the perturbed channel coefficients among the
energy transmitters, users, IRS and IoT devices and the energy
demand vector of the IoT devices to increase the reward,
including the QoS and the location protection level of the
energy transmitters. By assuming that the harvested energy is
enough to support the data transmission, this scheme uses FC
layers to replace the Conv. layers in the traditional DDPG for
less space complexity. Simulations are performed with 3 ∼ 17
static energy transmitters, each of which has power ranging
from 20 to 50 dBm and an IRS having 20 available reflection
phase shifts, showing that the proposed scheme improves the
reward by 29.4% compared with the random power allocation
scheme with 10 IoT devices.

C. MmWave

The multiple-inhabitant activities will cause serious user lo-
cation leakage in mmWave systems. Thus, a 79 GHz mmWave
recognition system with six users in [179] applies deep learn-
ing to obtain multiple user tracks and human activities. It
has severe location leakage without enough labeled datasets.
In this case, the system can apply Dyna-Q to choose the
classification threshold from the action set quantized from zero
to one, based on the state including the current human activ-
ities, sampling data size, task type, feature dimensions, and
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previous location leakage level. The goal is to maximize the
reward that depends on the activity recognition accuracy, user
tracking accuracy, latency, and user location protection level. A
number of virtual location protection experiences including the
simulated state-action pairs, corresponding simulated reward,
and next state, are generated by a Dyna architecture and used
to update the Q-values with real experiences, thus avoiding
random exploration in the initial learning process. However,
this system may fail in a mmWave system with hundreds of
users without quantizing the available threshold levels. This
issue can be addressed by deep RL such as DDPG, which uses
neural networks (e.g., CNN) to extract the protection features
and further improve the user location protection performance,
thus reducing the quantization errors in the continuous action
set.

Another user location protection mmWave system in [180]
combines federated learning with deep learning to choose a
beamforming policy, using the dynamic norm clipping method
based on the accurate backdoor attack model to protect user
location privacy. The performance can be further improved by
deep RL, without knowing the attack interval and strategies.
More specifically, the server applies DQN with two Conv.
layers and two FC layers to optimize the beamforming pol-
icy, in which the state (consisting of the number of users,
probability of attacker existence, current datasets of all the
users, probability of the location leakage, and previous data
confidence) is used as the input. By using the neural network
function approximators, the DQN outputs the Q-values of
all the feasible beamforming policies under the current state,
which relies on the reward function formulated with the data
confidence, user location protection level, benign rate and
accuracy.

D. Massive MIMO

Due to a large number of users and their various locations,
massive MIMO systems are vulnerable to inference attacks.
A location privacy-preserving channel estimation algorithm
designed in [181] incorporates DP and the PHY-layer signal
processing techniques such as the channel estimation to protect
the user location information. The Frank-Wolfe and singular
value decomposition is applied to estimate the user-BS channel
states, without revealing any location information of the users.
Nevertheless, this algorithm relies on the accurate channel
model and the adversary strategies, thus cannot satisfy the
DP requirement under the massive MIMO based 6G system
with large-scale dynamic users. Thus, the BS can apply an RL
algorithm such as DDPG to optimize the privacy budget in
the DP, based on the state including the estimated legitimate
user-BS channel states, number of users and corresponding
antennas, estimated attack probability, and previous location
protection performance. This system aims to maximize the
reward that relies on the normalized mean squared errors of
the channel estimation, symbol error rate, execution time, and
average location protection level of all users.

In summary, the existing RL based location privacy pro-
tection schemes are designed for the MEC and IRS systems
against inference attacks, eavesdropping, and selfish attacks.

The location protection performance of mmWave and massive
MIMO systems can be improved by Dyna-Q, DQN and
DDPG, which enable wireless devices to optimize the clas-
sification threshold, beamforming policy, and privacy budget,
without relying on an accurate attack model.

IX. RL BASED UAV SECURITY AND PRIVACY
PROTECTION

RL based UAV security and privacy protection schemes ad-
dress jamming, eavesdropping, differential attacks and DDoS
attacks and apply RL to optimize the transmit power and video
layer selection, the payment policy and the trajectory planning
to improve the security performance and the privacy protection
level [196], [197]. As summarized in Table VIII, these schemes
rely on the performance history and the current channel
states to increase the long-term expected reward consisting
of the peak signal-to-noise ratio (PSNR), energy efficiency,
and packet arrival rate. RL algorithms such as WoLF-PHC
and DDPG enable UAV to enhance security under dynamic
network environments without relying on the accurate attack
pattern information.

A. Anti-Jamming UAV Communications

Due to the limited battery capacity and high mobility, UAVs
have to address jamming attacks, especially smart jamming,
and the performance can be improved by RL. For example,
the UAV controller communication in [88] that applies Q-
learning and WoLF-PHC to choose the UAV transmit power
vector over the available frequency channels based on the
previous attack mode increases the SINR, the safe rate and
the secrecy capacity with less energy consumption against
jamming. The UAV communication performance under a large
transmit power range and available frequency channels can be
improved by the power allocation based on DQN aided by the
stochastic gradient descent algorithm. This scheme depends on
the CNN architecture that consists of two Conv. layers and two
FC layers: Conv. 1 has 20 filters each with size 3×3 based on
the length of the reshaped state sequence, Conv. 2 involves 40
filters each having a size 2×2, FC 1 has 180 neurons that equal
to the output of Conv. 2, and FC 2 with size 64 outputs the
Q-values of the 64 feasible policies. For the UAV transmission
with up to 400 mW transmit power against a smart jammer
with up to 400 mW jamming power, this scheme increases
11% safe rate from the Q-learning based scheme, but the UAV
transmission may have a high outage probability, thus cannot
satisfy the QoS requirements in the multi-UAV system with
multiple smart jammers.

Therefore, a knowledge RL based anti-jamming UAV com-
munication scheme is proposed for the large-scale swarm
communications indicating a large state space in [187], which
enables the UAVs to exploit the anti-jamming features in
the state with the domain knowledge technique and thus
accelerate the convergence speed. More specifically, a UAV
system applies DDPG to jointly select the channel power
allocation policy and the trajectory of all the UAVs based
on the state that is formed with the position information,
the maneuvering state of UAVs and the channel state. The
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TABLE VIII
RL BASED UAV SECURITY AND PRIVACY PROTECTION

State Policy Reward RL algorithms Attacks

Previous attack mode Power allocation

SINR
Safe rate
Secrecy capacity
Energy consumption

Q-learning
WoLF-PHC
DQN [88]

Jamming
Eavesdopping
Spoofing

UAV position
Channel states
Maneuvering state

Power allocation
Trajectory control

SINR
QoS requirement
Energy consumption

DDPG [187]

Jamming

Previous PSNR
Task priority
Channel states
Jamming power

Coding rate
Modulation type
Power allocation
Quantization parameter

PSNR
Throughput
Transmission latency
Energy consumption

Q-learning
Safe DQN [188]

Robot location
Previous BER
RSSI
Energy consumption

Relay policy
Moving distance

SINR
Energy consumption

Q-learning
Safe DDQN [189]

UAV position
Available users

AN strategy
Power allocation
Moving velocity

Secrecy rate
Energy consumption
Map limitation penalty

MADDPG [190]

EavesdroppingUAV position
Power allocation
Trajectory control
Video layer selection

PSNR
Energy consumption Safe DQN [191]

Channel states
Jamming power
Previous latency

Power allocation
Network coding policy

Eavesdropping rate
Transmission latency
BS energy consumption

Dyna-Q [68]

Model update quality Payment level
Local update strategy

Sensing cost
Aggregate accuracy
Energy consumption
Model update quality

Q-learning [192] Differential attacks

UAV behaviors Detection policy Detection accuracy DDPG [193] Intrusion attacks
User offloading policy
User transmit power
Energy consumption

Power allocation
UAV selection

Penalty counter
Energy consumption DQN [194]

Inference attacks
UAV position
Remaining data payload

Device selection
Power allocation
Deployment strategy
Subchannel selection

Execution time
Learning accuracy loss A3C [195]

reward function is formulated with the SINR, the moving
energy consumption, and the QoS requirement. A UAV system
without the physical collisions among UAVs is simulated in
Python 3.6 software equipped with pytorch1.4 with 5 UAVs
each of which sends messages with 400 mW transmit power
and flies at 500 m height within a 4 km × 3 km area against
a reactive jammer with three available jamming channels and
maximum power 400 mW. Simulation results show that this
scheme saves the average energy by 18.3% as compared with
the SARSA-Q based anti-jamming scheme with both the UAVs
and the jammer having constant flying velocities.

Compression and coding parameters such as the video
quantization parameter and the channel coding rate are highly
related to the UAV video transmission performance. Nev-
ertheless, existing video transmission schemes mainly focus
on fixed compression and coding parameters and thus fail

to meet the various video quality-of-experience requirements
with dynamic UAV channel states under smart jamming. Thus,
the RL based video transmission scheme in [188] formulates
the state with the task priority, the UAV-ground channel state,
the received jamming power at the ground station, the PSNR
of the UAV video signals, the transmission latency and energy
consumption, and the throughput against smart jamming. The
UAV applies fast Q-learning to optimize the video quantization
parameter, the channel code rate, the modulation type and the
transmit power based on the state, which aims to maximize
the long-term expected reward that relies on the PSNR, and
the transmission latency and energy consumption.

To further improve the learning efficiency for the UAV
with enough energy resources, this video transmission system
applies safe DQN to guarantee the video quality-of-experience,
which uses the SINR as the security criterion to avoid ex-
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Fig. 11. RL based UAV secure communications against eavesdropping.

ploring the risky transmission policies that cannot satisfy the
given threshold. Two CNNs (i.e., the Q-network that outputs
the Q-values and the E-network that evaluates the E-values)
sharing the Conv. layers are designed to formulate the policy
distribution based on the modified Boltzmann distribution.
In the simulations, the UAV at a 10 m/s speed compresses
the captured video with the compression coding standard H.
264 and sends the video stream with binary phase-shift key-
ing, quadrature phase-shift keying or 16-quadrature amplitude
modulation and power ranging from 100 to 180 mW. Each
of the two CNNs has 20 and 40 filters in two Conv. layers,
respectively, to guarantee the video transmission quality. The
proposed scheme improves the SINR by 28.6%, reduces the
latency by 47.6%, and saves the energy consumption by 62.2%
compared with the adaptive modulation scheme against a
random jammer with feasible power changing from 100 to 120
mW. Nevertheless, this scheme ignores the impact of video
stream data size and UAV mobility on the video transmission
performance, which may result in transmission failure under
a highly dynamic UAV system.

Robots can help further improve the UAV-ground commu-
nication performance of the RL based anti-jamming schemes.
For example, the robot relay scheme proposed in [189] com-
bines tile coding technique (i.e., a function approximation
approach) with Q-learning to optimize the robot relay policy
based on the state that contains the robot location and trans-
mission energy consumption and the previous transmission
quality. Compared with typical Q-learning, this scheme maps
the state into a number of anti-jamming features for less
storage overhead and aims to increase the SINR and save
the robot energy. The robot with sufficient resources can
also apply DDQN equipped with a risk network, an online
network and a target network. Each of the three networks
includes an input layer with 5 neurons, a hidden layer with
256 neurons and an output layer with 27 neurons that relies
on the number of feasible relay policies. A Boltzmann policy
distribution is formulated with the Q-values and the E-values
that rely on the BER of the messages and the QoS requirement.

Simulations are performed with a UAV sending messages with
100 mW power to a BS and a robot relay with transmit
power changing from zero to 200 mW and moving within
5 m to resist a smart jammer with maximum power 10 mW.
The results show that the proposed scheme achieves 36.6%
less outage probability, 67.5% lower BER, and 31.4% less
robot energy consumption than the Q-learning based trajectory
control scheme. However, this scheme requires the robot with
enough resources to support DNNs, and suffers from anti-
jamming communication performance degradation if the robot
mobility is slower than the UAV.

B. Secure UAV Communications

The line-of-sight of UAV channel links improves UAV
communication performance but also increases the intercept
probability of the eavesdroppers, especially the active eaves-
droppers that can send jamming signals based on the observed
channel states and thus induce the UAVs to increase their
transmit power. Therefore, the RL based secure communi-
cation can be used to decrease the intercept performance of
the eavesdroppers compared with the traditional convex opti-
mization schemes in the optimization of the friendly jamming,
moving strategy and attack detection mode in UAV systems,
as illustrated in Fig. 11. For example, the UAV can apply RL
such as A2C to optimize the secure communication policy
and use the network coding technique (such as the random
linear network coding) to encode each message into several
independent encoded packets, thus hiding messages in multiple
data flows against eavesdropping [198].

A multi-agent RL based cooperative secure UAV commu-
nication scheme is proposed in [190], which enables the UAV
network to apply MADDPG to choose the secure communi-
cation policy, including the transmit power, friendly jamming
power and the moving velocity of each UAV. With the goal
of maximizing the long-term expected reward that relies on
the secrecy rate, the map limitation penalty, and the energy
consumption of all UAVs, this system formulates the state
with the UAV position and the index of the objective ground
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users. In this system, each UAV has an actor network and
shares a global critic network. More specifically, the state is
input to the actor network of each UAV that directly outputs
the UAV secure communication policy. With the state and
the chosen UAV secure communication policies of all the
UAVs, a global critic network with five FC layers evaluates
the corresponding Q-values and updates the weights of each
actor network. Different from the traditional MADDPG, this
scheme designs an attention network to extract the secure
communication features with higher importance to the system,
which is added to connect with the global critic network to
reduce the exploration space. In the simulations based on a
100 m × 100 m square area, a UAV as the transmitter and
three UAVs as friendly jammers flies at height from 15 to 50
m and sends messages to six ground users with up to 2.1 W
transmit power against three eavesdroppers. The results show
that this scheme improves 11.1% secure rate compared with
the DDPG based secure communication scheme. Nevertheless,
this scheme ignores the observation sharing among the UAVs
and has learning efficiency degradation in large-scale and
dynamic networks.

UAVs with insufficient computational and energy resources
have to avoid communication failure and guarantee the QoS
for the live streaming applications under eavesdropping. Safe
RL such as safe DQN can reduce the dangerous exploration
in the optimization of the video secure communication policy
such as the video layer and the transmit power. Therefore, the
UAV-enabled video streaming transmission scheme in [191]
with each UAV flying at a fixed altitude applies safe DQN to
select the video layer that represents the requirement of the
PSNR, the structural similarity and the data rate, the transmit
power and the trajectory based on the UAV locations (i.e., the
state). In this scheme, the safe DQN has a Q-network and two
target Q-networks, in which the Q-network with the state as the
input that has four FC layers estimates the long-term expected
reward and the two target Q-networks are used to evaluate the
auxiliary constraint cost. This scheme formulates the secure
communication process as a CMDP and uses Lyapunov theory
to build a safe policy set. The reward depends on the PSNR,
and the UAV transmission and moving energy consumption.
Simulations are performed in a Python platform, in which 2 ∼
6 UAV jammers send AN signals to the ground with 0 ∼ 10 W
power and a UAV at 100 m height sends video streaming with
up to 200 mW transmit power, 100 KHz bandwidth and five
video layers to the ground. The results show that this scheme
improves the energy efficiency by 12.5% compared with the
Lagrangian-based DQN algorithm under 4×10−4 learning rate.

Network coding provides inherent data protection for UAVs
by mixing the information from different data flows. For exam-
ple, the RL based UAV-aided secure communication scheme
in [68] applies Dyna-Q to optimize the number of coded
packets, the packet allocation and the transmit power based on
the state including the legitimate channel gain, the jamming
power received at the UAVs, and the transmission latency. This
scheme designs a Dyna architecture that consists of a virtual
model generating a number of simulated experiences, which
uses to update the long-term expected reward that includes the
eavesdropping rate, the transmission latency and the energy

consumption. The performance gain is verified in a simulated
secure communication scenario, where a BS sends 7000 bytes
of picture data coded by the random linear network coding
algorithm with power changing from zero to 400 mW to the
mobile device, and three UAVs help relay the coded packets
with fixed power 20 mW against an active eavesdropper that
uses intelligent devices to wiretap the channel state and applies
Q-learning to optimize the jamming power from zero to 400
mW. For instance, the proposed scheme achieves 87.2% lower
intercept probability and 84.9% lower outage probability after
2500 time slots than the conventional relay selection scheme.
This scheme quantizes the secure communication policies into
a discrete action set and relies on accurate reward signals and
state observation. It can suffer from slow learning speed and
quantization errors under dynamic UAV networks with the
delayed feedback over limited bandwidth.

C. Privacy-Aware UAV Communications

RL can be combined with several new techniques such as
federated learning, blockchain and DP to protect the UAV
private and sensitive information from malicious attacks dur-
ing the offloading and crowdsensing processes. For example,
the UAV-assisted MCS privacy-aware communication system
proposed in [192] combines federated learning with Q-learning
to select the payment level of the task publisher and the local
model quality strategies of UAVs to maximize the reward
including the sensing cost, the energy consumption of each
UAV, the quality of local model update of the participate
UAVs, and the accuracy of the aggregated global model.
The state consists of the previous quality of local model
update sequences of participating UAVs. This system uses
blockchain to record the UAV behaviors with a PoW based
incentive mechanism against differential attacks, low-quality
local model update attacks and contribution records tampering
attacks, and applies the local DP mechanism and federated
learning based on the stochastic gradient descent algorithm to
protect UAV data privacy following the aggregate accuracy
constraints. Simulations are performed in the MCS system
with 4 BSs and 80 ∼ 120 UAVs flying at 100 ∼ 300 m
height in a 1000 × 1000 m2 terrain area. The results show
that the scheme improves the average quality of the local
model update by 40.0% compared with the randomized policy
scheme. However, the optimization time in this scheme is
significantly raised due to the increment of the UAV number
and the task number, which sometimes can be even longer
than the task latency requirement.

To reduce the quantization errors in the UAV edge com-
puting network against smart attacks, the RL based intrusion
detection scheme in [193] applies DDPG with two primary
networks and two target networks to optimize the malicious
attack detection policies of all the UAVs to maximize the long-
term expected reward that depends on the detection accuracy.
More specifically, the primary actor network uses the state
including the behaviors of UAVs as the input and directly
outputs the detection policy of each UAV, and the primary
critic network evaluates the chosen policy and updates the
weights of the primary actor network. Two target networks
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Fig. 12. RL based UAV-enabled MEC data privacy protection with federated learning.

are used to update the weights of the two primary networks to
avoid choosing the local optimum policies. Simulation results
based on a UAV network within a 500 × 500 × 500 m3 area
with 5 smart attackers, 50 mobile users, and 20 UAVs with
transmit power up to 40 dBm show that the proposed scheme
achieves 95.0% detection accuracy, which is 48.4% higher than
the opportunistic scheme after 1000 time slots. The system
does not account for the detection overhead (such as the
latency and the UAV moving energy), thus may fail to detect
the smart attacks in practical UAV networks without enough
energy resources.

A multi-agent federated RL based semi-distributed resource
management scheme is proposed in [194] to combat server
attacks and massive privacy leakage. As illustrated in Fig.
12, this scheme combines multi-agent DQN and federated
learning algorithm to choose the number of UAVs used to
offload tasks and the corresponding transmit power of mobile
users to increase the reward consisting of the penalty counter
and the energy consumption of both the mobile users and
selected UAVs with sensitive data protection guarantee. The
state includes the task offloading policy of each UAV, the
current transmit power of each mobile user and the system
energy consumption, which is used as the input of the DQN
with three hidden layers. In this scheme, each mobile device
does not share the learning experiences with others, and may
spend a lot of time randomly exploring unnecessary policies
at the beginning of the learning process. This scheme has two
parts: The single-agent training process applies standard DQN
to select the offloading policy, while the Gaussian differentials
encryption uses DP to encrypt the experiences in the dataset
as well as the network parameters in the user local model. By
applying the experience replay technique, each UAV randomly
chooses 256 experiences from the replay memory pool with
a size of 2000 for higher privacy protection performance.
Simulation results with 20 ∼ 200 mobile users with transmit

power up to 20 dBm and 10 UAVs flying at 50 m height and 4
m/s speed show that the proposed scheme can reduce the total
UAV energy by 38.2% compared with the benchmark without
resource management scheme with 200 mobile users.

The deep RL based privacy-aware UAV resource allocation
system as proposed in [195] combines A3C with federated
learning to jointly optimize the device selection (e.g., the
mobile device, the vehicle and the IoT device) and the de-
ployment, the subchannel selection and the power allocation
of each UAV, which enables the devices to process the raw
sensitive data locally rather than offload it to the UAV edge
servers for user privacy protection. More specifically, each
UAV formulates the state based on its horizontal location,
the location of the selected devices and the remaining data
payload, which is input to both the actor and critic networks.
This scheme aims to increase the reward including the learning
accuracy loss and the execution time. Instead of updating the
weights with the target networks, this system uses federated
learning to train a global model to update the two networks
of each UAV for higher learning efficiency. Each network
has three FC layers that involve 256, 256, and 128 neurons,
respectively. In the simulations with four UAVs at 150 m
height with power up to 150 mW and 100 devices with 50 mW
transmit power, this scheme achieves about 91.0% learning
accuracy, which is 7.1% higher than the benchmark without
device selection. However, the system directly applies the
standard A2C that relies on immediate experiences without
considering the policy selection priority, and thus explores
local optimum privacy protection policy due to any inaccurate
weights update of the global network.

In summary, the value-based RL including Q-learning and
DQN, the policy gradient RL in terms of DDPG and A3C,
and the multi-agent RL such as WoLF-PHC have been applied
in the selection of UAV security policies. Nevertheless, these
schemes rely on either the complete state observation and
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TABLE IX
RL BASED CROSS-LAYER SECURITY AND PRIVACY PROTECTION

Learning agent Policy Reward RL algorithms Layers

SDN controller Link selection [199] Reverse delivery ratio
Trust value of each vehicle DQN PHY

Network

Edge device Bandwidth allocation [200]
Movement authority
Boundary probability
Bandwidth of each train

A3C PHY

Coordinator
Encryption key size
Power allocation
IRS phase shifts [79]

SINR
Eavesdropping rate
Transmission latency
Data protection level
Sensor energy consumption

Safe Dyna-Q
PPO

PHY
MAC

SDN controller Computational resource allocation [201] Privacy loss
QoS of users SARSA-Q Network

Application

Edge device Vasopressor dosage
Intravenous policy [202]

Sequential organ failure
assessment score DDQN PHY

Network

User Bitrate of video chunks [203] Quality of experience A3C PHY
Application

MEC server

Privacy protection algorithm
Block interval
Data flow selection [204]

Energy consumption
Transactional throughput A3C

NetworkProtection level
User location [205]

Charging time
Offloading time DQN

Caching policy [206] Cache hit rate DDPG

immediate reward signals from the environment or the fixed
UAV location and trajectory, which may have difficult imple-
mentation in practical UAV networks under more intelligent
attacks.

X. RL BASED CROSS-LAYER SECURITY AND PRIVACY
PROTECTION

The wireless security solutions at PHY-layer, MAC layer
and network layer can cooperate to improve the security
against smart attacks that change the attack modes and location
[22], [207]. The corresponding cross-layer security policies
(e.g., the encryption key in the MAC layer and the transmit
power in the PHY-layer) depend on the accurate attack mode
and the security strategies in each layer, which are rarely
known by the mobile devices and BSs [79]. Therefore, RL
such as Dyna-Q, SARSA-Q, DQN and DDPG can be applied
to optimize the cross-layer security policies under the time-
varying attack model and channel states. Existing RL based
cross-layer security and privacy protection schemes are sum-
marized in Table IX.

A. Cross-Layer Security

Eavesdroppers and man-in-the-middle attackers can simul-
taneously attack the multiple layers including the PHY-layer,
MAC layer and network layer in 6G cellular systems, which
makes the existing RL based secure communication at the
PHY-layer or the network layer suffer from performance
degradation [208]. Therefore, a software-defined trust based
vehicular architecture in [199] is designed to collect the

physical link and network link information to resist malicious
attacks (e.g., man-in-the-middle attacks) at both the PHY-layer
and the network layer, which includes a trust information
module, a storage module, a transaction management module,
and a learning module. More specifically, the learning module
in the software-defined networking (SDN) controller uses
DQN consisting of an input layer, two Conv. layers, two
hidden layers and an output layer to optimize the link selection
policy of the source vehicle for secure communication based
on the state that contains the reverse delivery ratio and the
trust value of each vehicle. In the DQN structure, Conv. 1
has 32 filters with 2 × 2 kernel size, Conv. 2 with the same
kernel size as Conv. 1 has 48 filters and the two hidden
layers have 512 neurons. The system maximizes the long-
term expected reward that includes the reverse delivery ratio
and trust value of each vehicle to avoid communication failure
among connected vehicles, by exploring all the available state-
action pairs including the dangerous exploration that results
in transmission failure even network disaster. Simulations are
performed based on 8 ∼ 32 vehicles with 1 ∼ 11 Mbps data
rate, the results show that the proposed scheme improves the
reward by 41.0% with 32 vehicles compared with the CNN-
based security scheme.

Due to the open protocols and network instability, the
communication-based train control systems are easily threat-
ened by network attacks such as the man-in-the-middle at-
tackers that can steal the transmitted data or send malicious
information to users. Therefore, the RL based cross-layer
secure communication scheme that includes the detection and
defense stages is proposed in [200] to resist smart attacks
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that can falsify the movement authority of the systems.In the
detection stage, the system uses the movement authority as
the detection basis and combines the long short-term memory
(i.e., a kind of recurrent neural network) with the support
vector machine model based on the labeled dataset to detect
malicious users. In the cross-layer defense stage, the edge
device applies A3C with 8 worker agents and a global network
to choose the bandwidth allocation policy of each edge server
to the total trains with the goal of maximizing the long-
term expected reward that relies on the bandwidth of each
train, movement authority, and the boundary probability. The
state of A3C consists of the position of trains, the position
of the front train, the movement authority sequence, and
the confidence rate. This scheme improves the accuracy rate
by 76.5% compared with the traditional intrusion detection
scheme in a communication-based train control system with 8
trains each of which moves at a speed up to 80 km/h, transmits
messages with 44 dBm power and owns 5 MHz bandwidth
totally.

To improve the cross-layer secure communication perfor-
mance against active eavesdropping in the healthcare sensing
data transmission, the RL based sensor encryption and power
control scheme proposed in [79] formulates the reward with
the transmission latency, the sensor energy consumption, the
SINR of sensor signals, the eavesdropping rate and the data
protection level. More specifically, the coordinator uses the
SINR of the sensor signals as the security criterion to enable
the safe exploration in the selection of the encryption key size
and transmit power of the sensor, and the IRS phase shifts.
The transmission policy is chosen with both Dyna-Q and PPO
based on the state containing the priority of the healthcare
sensing data, the received jamming signal strength and the
channel states of both the sensor and the IRS. In the PPO
based secure communication system without considering the
vulnerable exploration in the continuous action set, an actor
network involving four FC layers outputs a 32-dimensional
mean vector of the feasible policies to formulate a multivariate
Gaussian policy distribution, and a critic network with four
FC layers evaluates the one-dimensional advantage value of
the chosen transmission policy, as shown in Fig. 13. In the
actor and critic networks, both the two hidden layers have
64 neurons and the input layer has 65 neurons. According to
the chosen policy, the sensor processes the healthcare sensing
data in analog signals into digital signals based on an A/D
converter, encrypts the data with the selected key size, and
transmits the encrypted data with the chosen power level to the
coordinator. An electroencephalography system is simulated
with a sensor collecting sensing data encrypted based on the
advanced encryption standard with three priorities, a coordi-
nator with transmit power ranging from 0.1 to 1 mW and a
jammer with jamming power up to 0.02 mW. The results show
that the proposed scheme achieves 49.1% lower eavesdropping
rate and 60.1% lower intercept probability compared with the
IRS-aided secure wireless communication.

B. Cross-Layer Privacy Protection
The value-based RL (e.g., SARSA-Q and DDQN) and the

policy gradient RL (such as A3C and DDPG) have been

applied to optimize the cross-layer privacy protection policy
such as the video chunks bitrate at the PHY-layer and the data
flow selection and caching policy at the network layer against
the man-in-the-middle attacks and eavesdropping.

1) Data Privacy-Aware Communications: With the limited
storage and computational resources, network instability and
hierarchical infrastructure, MEC systems are vulnerable to
malicious attacks that can steal the sensitive data in the data
transmission process among the servers and mobile devices.
Existing data privacy protection schemes such as the quantum
encryption based cross-layer authentication in [209] rely on
the accurate attack channel states and eavesdropping patterns,
which suffer from data leakage in hierarchical MEC networks
with time-varying channel conditions.

This issue can be addressed by the RL based dynamic
customizable privacy-preserving model as designed in [201],
which applies SARSA-Q to optimize the computational re-
source allocation policy for the SDN controller to maximize
the reward relying on the QoS of users and the privacy loss
against the smart attacker that collects the private information
of the mobile devices and destroys the location privacy and
identity. The MEC server observes their regions, the mes-
sage published by each mobile device, the time slots, and
the participating users. Simulations are implemented on the
Java platform and performed with the Yelp dataset consisting
of more than 188,000 businesses and about 6 million user
reviews. The results show that the proposed scheme reduces
privacy loss by 38.0% compared with the benchmark scheme.
However, this scheme quantizes the state space and defense
action set, which results in quantization errors and thus slows
the learning speed in the complicated MEC systems with a
large number of mobile devices and servers.

With a large number of personal health information such
as electronic medical records, the MEC servers in clinical
decision support systems that help doctors make treatment
decisions have to resist the curious and malicious nodes in both
the PHY and higher layers. For example, a privacy-preserving
edge-computing-enabled clinical decision system proposed in
[202] combines DDQN with a federated learning algorithm to
choose the vasopressor dosage and intravenous policy based
on the state consisting of the electronic medical records, which
are divided into 47 features including Demographics, Lab Val-
ues, Vital Signs, Intake, and Output Events, etc. By exploring
all the feasible policies that contain the risky policies related to
severe privacy leakage under the current state, this system aims
to maximize the long-term expected reward formulated based
on the sequential organ failure assessment score, representing
the lactate levels of the patient and the extent of the organ
failure. More specifically, the edge device applies DDQN
that has two hidden layers with both 128 neurons on the
fully decentralized federated framework to choose sequential
clinical treatment policy and uses homomorphic encryption in
the training process to further improve the secure transmission
performance. Simulations are performed on the Python 3.8
platform with a 1.25 TB SSD cache and 1 ∼ 8 MEC servers
with 100 MB/s bandwidth, which shows that the proposed
scheme provides the trust regions in real clinical decision
support systems. As for implementation, this scheme has to
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divide the PHY cross-layer security action set accurately and
further improve the learning efficiency with a large number of
patients.

A cross-layer privacy-aware communication scheme is pro-
posed in [203] to jointly optimize the PHY-layer resource
allocation and the application layer rate adaptation policy, in
which the BS applies convex optimization to optimize the
beamforming policy and the user uses A3C with a critic
network and an actor network to select the bitrate of video
chunks to increase the quality of experience of each chunk.
The state is formulated with the measured network throughput,
the downloading time of the previous video chunks, the
complexity of the current video chunk, the sizes of video
chunks, the current buffer occupancy, the number of remaining
chunks in the video and the estimated previous video quality.
Both the two CNNs in the A3C have a one-dimensional Conv.
layer with 128 filters as the input layer, a hidden layer with
128 neurons, and an output layer with 6 neurons equalling the
number of the available encoding bitrates. In the multi-cell
scenario with 12 cells each having a BS with three antennas
and 12 2-antenna users, the proposed scheme improves the
quality of experience by 25.0% and the PSNR by 13.3% and
reduces the latency by 91.3% compared with the weighted sum
mean-square error minimization scheme. This scheme relies on
complete state information and accurate reward signals, which
may result in data leakage and video transmission failure in a
partial observation scenario.

2) Privacy Protection in Network Layer: Due to the net-
work instability and the randomness of traffic loads in 6G
systems, deep RL including A3C, DQN and DDPG has been
applied in the network layer privacy protection to optimize
the user location and the data caching policy and thus avoid
information leakage and guarantee communication security.
For example, the privacy protection scheme is designed in
[204] to resist the malicious nodes at the network layer, which
enables the MEC server to apply A3C with a global network
and 20 worker agents in the MEC system to choose the privacy
protection algorithm, the block interval of the blockchain,

and the data flow selection based on the state, including the
transmission rate of all the users, the user-server channel gain,
the available computing resources of the MEC servers, the
stake distribution, the user privacy level and the blockchain
transaction size. The reward function is formulated with the
transactional throughput of the blockchain system and the total
energy consumption, but ignores the computational latency. To
evaluate the privacy performance of the proposed scheme, a
MEC system is simulated with Python 3.6 consisting of 20
users and 5 servers each having up to 8 GHz bandwidth and
transmit power ranging from 0.1 to 2 W. The results show that
the scheme improves the average throughput by 25.3%, and
saves the average energy consumption by 16.1% compared
with the privacy protection scheme without user data sharing.

In addition, the multi-access edge computing systems are
vulnerable to malicious MEC servers in the network layer,
in which the attackers can easily obtain the location privacy
and usage pattern privacy of users during the computation
tasks offloading process. Therefore, a deep RL based privacy
preservation MEC system proposed in [205] replaces the two
CNNs in the DQN architecture with two lightweight DNNs
to protect user privacy and guarantee the QoS requirement
for time-sensitive applications. More specifically, the state is
formulated with the user location, the usage pattern privacy
protection level and the channel gain. The system optimizes
the protection level of the usage pattern privacy and the user
location based on the state instead of the attack patterns and the
user offloading strategies to maximize the reward including the
user charging time and offloading time, without considering
the privacy protection level. This scheme increases the reward
by 30.0% compared with the local computing scheme in the
MEC system equipped with a server and 10 user devices each
of which has 915 MHz frequency and 5 W transmit power
following the Rayleigh fading channel model.

The RL based privacy-preserving edge caching scheme in
[206] combines the distributed DDPG algorithm with the
federated learning technique to address the privacy leakage
issue in MEC systems, assuming that each user has the
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same caching capacity.Different from the traditional DDPG,
this algorithm optimizes the policy in parallel and updates
the weights of the actor networks with a distributional critic
network [210]. More specifically, the actor networks choose
the caching policy of the current file, based on the state
including the user request information and current cache to
increase the global real-time cache hit rate. The distributional
critic network of the MEC server updates the weights of the
actor networks with 𝑁-step temporal difference error and the
prioritized experience replay techniques to evaluate the chosen
caching policy. Federated learning is used to predict the time-
varying content popularity of the underlying file with the data
privacy guarantee. On the other hand, each user also involves
an actor network that optimizes their local caching decision
based on the caching contents set of the user and the historical
request information. In the simulated MEC system with a
server and 10 users having 24 files to be cached, the proposed
distributed DDPG scheme has a 64.8% higher cache hit rate
than the randomized policy scheme.

In summary, most of the existing RL based cross-layer
security and privacy protection schemes directly apply typical
RL algorithms in the optimization of secure communication
performance and privacy loss. Particularly, safe Q-learning
has been applied in a cross-layer secure sensor-coordinator
communication system against active eavesdropping. On the
other hand, deep RL (such as PPO and DDPG) can be
combined with safe exploration to further improve the cross-
layer security performance with restricted QoS requirements.

XI. FUTURE RESEARCH DIRECTIONS

Interesting directions for the RL based 6G PHY-layer and
cross-layer security include the security with partial observa-
tion, the safe exploration based security, privacy protection
with federated RL, and multi-agent RL for 6G security.

A. 6G Security with Partial Observation

Existing RL based wireless security schemes have perfor-
mance degradation under the partial and inaccurate observa-
tion of the state, which results from the inaccurate channel
estimation and the delayed feedback over limited bandwidth
in complicated and dynamic networks.

• Partial observation: The state estimation error such
as the inaccurate channel estimation sometimes fails
the learning of the security policy and yields security
problems such as transmission failure or privacy leakage
at both the PHY-layer and higher layers. This issue
can be relieved by combining the model planning tech-
nique such as prioritized sweeping [211] with meta-
learning algorithms such as the model-agnostic meta-
learning (MAML) in [212]. More specifically, the model
planning technique uses a virtual model to generate
several simulated experiences in every time slot, and
the meta-learning algorithms learn a large number of
prior knowledge from similar security scenarios, in which
both the simulated experiences and the prior knowledge
are used to formulate an experience pool. Each wireless
device exploits the previous security experiences (such as

the authentication accuracy in [44]) from the experience
pool. For example, the known information such as the
location and transmit power of the other wireless devices
can be exploited via the sampling training in MAML to
address the state estimation error and select the power
allocation strategy in 6G systems.

• Observation delay: The observation delay of the state
and reward signals degrades the learning performance
of the RL based security scheme. To this end, transfer
learning such as fine-tuning based transfer learning in
[213] can exploit the defense experiences in similar or
simulated communication systems to initialize the learn-
ing parameters such as the CNN weights to help save
the initial random exploration for more efficient security
policy exploration.

B. Safe RL Based 6G Security

Wireless security applications are required to avoid the dan-
gerous exploration of risky policies that cause serious security
problems or privacy leakage. Safe RL algorithms, such as safe
DQN, have been applied in anti-jamming communications and
trust edge computing [55], [95], [98], [214]. In the future work,
security metrics, such as the privacy level, the BER, and the
authentication accuracy, should be formulated as the risk level
in the exploration process, and the reward function has to
incorporate the worse-case or constrained criterion, in order
to further improve the PHY cross-layer security performance.

• Criterion selection: How to formulate an efficient secu-
rity criterion in the reward function is critical for avoiding
choosing risky policies, especially in the design of the
PHY cross-layer security mechanisms. By incorporating
the known network defense experiences and the expert
guidance obtained from the teachers’ advice or other
similar scenarios, the mobile devices and BSs decide
how to choose the criterion selection in 6G security
applications such as anti-jamming communications [215].

• Learning efficiency: Existing safe RL based security
schemes have to improve the optimization efficiency in
the learning process to satisfy the latency requirements,
especially the latency-sensitive applications such as real-
time video games. Users can use inter-agent transfer
learning to initialize the network parameters in the safe
exploration and design DNNs to avoid the action or state
quantization errors for higher learning efficiency.

C. Privacy Protection with Federated RL

Privacy issues in 6G systems will continue to exist, due to
the data sharing between users and the third party, especially
the selfish or malicious nodes, which can be addressed by
federated learning [216]–[218]. As a promising decentralized
machine learning technique, federated learning helps 6G sys-
tems avoid privacy leakage, improve the usage of the network
bandwidth resources, and reduce the transmission latency for
MEC, massive MIMO systems, IoT, and so on [219]. By
applying federated learning, users or APs upload the learning
or neural network parameters used in the computing model or
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policy selection rather than the user data to the central server
for privacy protection [220].

However, the federated RL based privacy protection needs
to address the following issues in practical 6G systems.

• Inaccurate parameter updates and privacy leakage:
The information exploiting, data poisoning, model poi-
soning, and free-riding attacks launched by the malicious
users can lead to inaccurate parameter updates of the
central server and privacy leakage of other users in 6G
systems. A potential solution is the blockchain-aided fed-
erated learning architecture, which records the parameter
sharing among users without a third-party intermediary
to suppress the malicious behaviors of users. In addition,
DP can help protect user privacy by adding some "noise"
such as Gaussian noise to the learning parameters before
uploading them to the central server.

• High communication overhead: Due to the limited
bandwidth, computational and energy resources of users,
federated RL based privacy protection schemes require a
large number of learning samples to converge. Thus, these
schemes suffer from high communication and computa-
tional overhead per time slot in a large-scale decentralized
and heterogenous 6G system. This issue can be well
addressed by compression schemes such as sparsification
and quantization that reduce the data exchange among
users and the central server for less communication
overhead. Besides, the users can apply imitation learning
algorithms such as inverse RL that learn the reward
function to provide additional learning samples and thus
reduce the computational complexity.

D. Multi-agent RL for 6G Security

Wireless devices such as mobile devices and BSs that
execute various tasks have to improve their learning efficiency
in the selection of the PHY-layer and cross-layer security
policy in large-scale 6G systems, which can be addressed by
multi-agent RL. However, it is difficult for wireless devices
to design a global learning optimization objective due to the
independent goal of each device. The following two issues
should be addressed before implementing multi-agent RL in
6G systems.

• Exploration disaster: The mobile device chooses its
policy based on the observed network states as well as
the policies of other agents and thus may result in a high-
dimensional state space, yielding the exploration disaster.
In addition, the devices with insufficient computational
resources suffer from the high-dimensional discrete action
set. A potential solution is exploiting the multi-agent
communication mechanism such as DIAL that enables
each device to explore the policies and states of the given
neighboring devices instead of all the devices.

• Privacy leakage: In the multi-agent systems, mobile
devices share their observations, policies and learning
parameters such as the neural network weights with
the other devices to improve the policy optimization
efficiency but result in data or location privacy leakage. To
address this issue, mobile devices can combine DP with

multi-agent RL to determine the shared information and
thus balance the privacy protection level and the learning
efficiency.

XII. SUMMARY

In this article, we have investigated the 6G PHY-layer
attacks and shown that the NOMA, MEC, massive MIMO,
mmWave, VLC, THz and IRS will be vulnerable to jam-
ming, eavesdropping, DDoS, Sybil attacks, man-in-the-middle,
selfish attacks and inference attacks. We reviewed the RL
based PHY-security techniques for 6G systems and illustrated
how to apply new RL algorithms to enhance the performance
of the anti-jamming communications, secure communications,
PHY-layer authentication, privacy-aware communications and
location privacy protection with typical wireless techniques
for 6G systems. Afterward, we summarized the RL based
UAV security solutions at PHY-layer and discussed how the
wireless devices apply RL to enhance the cross-layer security
and privacy protection performance of 6G.

However, existing RL based security schemes will have
severe performance degradation in 6G systems with large-scale
heterogeneous networks to support real-time computation-
intensive applications. Four major challenges for the RL
based 6G security techniques include the inaccurate state and
reward signals with long estimation latency, the risky state
exploration, the security overhead, and the slow learning speed
in large-scale networks. Promising solutions for robust and
lightweight RL based 6G security are model planning, meta-
learning, transfer learning, federated learning, safe RL and
multi-agent RL.
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