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Abstract—In controller area networks (CANs), electronic con-
trol units (ECUs) such as telematics ECUs and on-board diag-
nostic ports must protect the message exchange from spoofing
attacks. In this paper, we propose a CAN bus authentication
framework that exploits physical layer features of the messages,
including message arrival intervals and signal voltages, and
applies reinforcement learning to choose the authentication mode
and parameter. By applying the Dyna architecture and using a
double estimator, this scheme improves the utility in terms of
authentication accuracy without changing the CAN bus protocol
or the ECU components and requiring knowledge of the spoofing
model. We also propose a deep learning version to further
improve the authentication efficiency for the CAN bus. The
learning scheme applies a hierarchical structure to reduce the
exploration time, and uses two deep neural networks to compress
the high-dimensional state space and to fully exploit the physical
authentication experiences. We provide the computational com-
plexity and the performance analysis. Experimental results verify
the theoretical analysis and show that our proposed schemes
significantly improve the authentication accuracy as compared
with benchmark schemes.

Index Terms—Controller area networks, authentication, spoof-
ing attacks, reinforcement learning.

I. INTRODUCTION

Electronic control units (ECUs) in controller area networks

(CANs) exchange service information and control signals to

support advanced driver assistance systems and comfort appli-

cations for vehicles [2]–[4]. However, CAN bus has to detect

spoofing attacks that are launched via social engineering,

worms at dealerships and the air update [5].

Spoofing attackers can compromise the in-vehicle onboard

diagnostic (OBD-II) ports and telematics ECUs, and keep

sending spoofing messages with high priority to the CAN

bus [6]–[8], which further results in denial-of-service attacks

and even life-threatening disasters to drivers and passengers.

A smart attacker can sniff the CAN bus status, apply data

mining to exploit the message ID database such as [9] and use

an automotive diagnostic tool such as VAS5052 developed by

Audi/Volkswagen in [10], to obtain the ID of each command

message. More specifically, the attackers can store some im-

portant messages such as the braking command and send these

messages later with the falsified ID from the compromised

ECUs, which results in man-in-the-middle attacks and further

controls the steering column of the vehicles to cause severe

traffic accidents [5], [11]–[14].

Current CAN bus authentication mostly uses specific mes-

sage authentication codes (MACs) to verify the ECU messages

This paper was presented in part at IEEE ICC 2019 [1].

[10], [15]. For instance, the CAN bus as designed in [10]

uses encryption session keys to build the MAC and to au-

thenticate the data frames. However, the session keys required

by these authentication schemes are not always applicable

due to the limited communication bandwidth of the CAN

bus, the restricted computational sources of the ECUs and

the weak integrity checking [16]. On the other hand, the in-

vehicle encryption in [17] has to choose a secure ECU to

generate the long-term symmetric keys and may suffer from

high computational and communication overheads for a CAN

bus with restricted computational resources.

To the best of our knowledge, CAN buses usually apply

unidirectional authentication such as the signal voltage based

intrusion detection scheme in [18] instead of the bidirectional

schemes due to the limited computational and bandwidth

capacity. For example, the four-way authentication in [19] that

uses 256 bits in the handshake process to verify each message

is not applicable to the CAN bus message with less than 128

bits according to [18].

Therefore, physical (PHY) layer authentication schemes are

further considered, which exploit PHY features such as the

message arrival intervals [20]–[23] and signal voltages [8],

[18], [24], [25] to detect spoofing messages. More specifically,

the spoofing attackers that use the compromised ECU at a

lower sampling rate than the monitor cannot accurately obtain

the signal voltages of the other ECUs. Due to the distinctive

hardware configurations of the CAN bus, especially the tran-

sistors with drain-to-source on-state resistance [18], [25], the

inimitable signal voltages cannot be forged by the attackers.

Each message sent by the ECUs has a unique arbitration ID

that represents the transmission priority according to [26]. The

message periodicity indicates whether the CAN bus receives

a spoofing message with the assigned arbitration ID [27].

As a novel physical feature based automotive intrusion

detection scheme, VoltageIDS in [25] uses the signal volt-

ages to detect both masquerade attacks and bus-off attacks

without any modulation of the current CAN bus systems.

In addition, the intrusion detection scheme named Viden as

proposed in [18] uses the voltage profiles as fingerprints to

pinpoint the malicious ECUs. However, a CAN bus has to use

faster authentication to support time sensitive applications and

emergency control signals.

In this paper, we propose a CAN bus authentication scheme

that exploits the arrival intervals of the periodic messages

and signal voltages of messages to detect spoofing attacks

and the resulting man-in-the-middle attacks, replay attacks

and denial-of-service attacks. More specifically, this scheme
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samples the waveform of the received message and measures

the output voltages from the two dedicated wires, called

CAN-High (CANH) and CAN-Low (CANL), which are used

to transmit messages to avoid electromagnetic interference

[28]. This scheme also measures the arrival interval from the

previous message with the same arbitration ID if the claiming

arbitration ID is periodic.

Instead of using the heuristic algorithms (such as the genetic

algorithms [29]) that achieve the local optimal policy or the

watermarking techniques (such as the semi-fragile watermark

[30]) that focus on the image authentication, we apply rein-

forcement learning (RL) to optimize the authentication policy

for the monitor without knowing the frequency of spoofing

messages sent by the attacker. More specifically, our scheme

applies reinforcement learning to choose the authentication

mode and test threshold in a hypothesis test that compares

the physical layer features with the records for improving the

authentication accuracy.

The authentication policy is chosen based on the state that

consists of the message priority, number of total accepted

messages, and number of the falsely accepted messages in

a given time duration. By applying the Dyna architecture,

this scheme exploits the simulated authentication experiences

for planning to reduce random exploration in the original

authentication process. Based on a double estimator, this

scheme avoids the over-estimation of the Q-values and thus the

suboptimal authentication policies. Different from VoltageIDS

[25] that relies on signal voltage features and Viden [18] that

depends on signal voltage profiles, our scheme relies on both

the arrival intervals of periodic messages and signal voltages

to improve the utility consisting of the message priority and

authentication accuracy, without depending on any labelled

signal voltages.

We further propose a deep RL based CAN bus authenti-

cation scheme, which improves the authentication accuracy

and reduces the optimization latency based on a hierarchical

structure [31], and design two deep neural networks (DNNs),

i.e., top-level DNN and bottom-level DNN. It uses the two

DNNs to compress the high-dimensional state space and to

fully exploit the PHY authentication experiences, each of

which contains two fully connected (FC) layers rather than

the convolutional layers to quickly extract the authentication

features and thus reduce the sample complexity. The top-

level DNN outputs the authentication mode distribution of

the current state. With the chosen authentication mode and

state as input, the bottom-level DNN outputs the test threshold

distribution. By applying the experience replay technique to

update the DNN weights, the proposed scheme improves the

learning efficiency in the CAN bus authentication.

The computational complexity and performance are pro-

vided to evaluate the authentication efficacy. Experiments are

performed on a CAN bus connected to 18 legitimate ECUs,

a monitor and a compromised ECU. Experimental results

show that our proposed schemes improve the authentication

accuracy, as compared with existing schemes.

The rest of this paper is organized as follows. Section II

gives an overview of the related work. Section III presents

the CAN bus model, followed by the CAN authentication

TABLE I
LIST OF IMPORTANT SYMBOLS

Symbol Description
L Number of the ECUs

NL
Number of the legitimate messages

in T time slots

Γ
Number of the feasible test

thresholds

NY
Maximum number of the spoofing

messages in T time slots

fS Message voltage sampling rate

J Maximum number of the IDs

d(k)
Arbitration ID of the message

received at time slot k

l(k)
Periodicity of the message

received at time slot k

ρ(k)
Transmission priority of the

message at time slot k

W
Number of the voltage samples for

each message

{ν(k)
i /μ

(k)
i }1≤i≤W

Extracted CANH/CANL voltages

of the message received at time

slot k

τ (k)
Arrival interval from previous

message with arbitration ID d(k)

N
(k)
A

Number of the received messages

in T time slots

N
(k)
P

Number of the accepted messages

in the previous N
(k)
A messages

N
(k)
F

Number of the falsely accepted

messages in the previous N
(k)
A

messages

cF
Importance of the falsely

accepted messages

cT Authentication latency coefficient

framework in Section IV. We propose an RL based CAN bus

authentication scheme in Section V and a deep RL version in

Section VI. The computational complexity and performance

are provided in Section VII, followed by the experimental

results in Section VIII. We draw the conclusion and discuss

the future work in Section IX. For ease of reference, some

important symbols are summarized in Table I.

II. RELATED WORK

In this section, we review some relevant works to our study,

besides those already mentioned above. A group of pioneer-

ing CAN bus intrusion detection schemes apply supervised

learning to evaluate the measured signal voltages based on

the labelled voltage dataset. For example, Choi et al. propose

an automotive intrusion detection scheme in [25], which

uses support vector machine (SVM) and bagged decision

tree classification model to evaluate the signal voltages in

the detection of both masquerade attacks and bus-off attacks

accurately. The spoofing detection scheme in [28] applies
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Fig. 1. Illustration of the CAN bus with a monitor and L ECUs, in which
an outside attacker compromises the telematics ECU and/or the OBD-II port.

SVM, neural network and bagged decision tree to improve

the spoofing detection accuracy at a high sampling rate.

The spoofing detection system in [24] reduces the required

sampling rate of the voltage signals for a low-speed CAN

bus. The signal voltage based spoofing detection scheme in

[8] uses the logistic regression to further reduce the sampling

rate for a high-speed CAN bus. The CAN bus authentication

scheme in [32] applies the maximum-likelihood estimation for

the Poisson distribution based data arrival interval scenarios.

Message arrival intervals can be used to verify the periodic

messages for CAN buses. For instance, the intrusion detection

algorithm in [20] that builds a hypothesis test with a fixed

threshold to evaluate the message arrival intervals for the

detection of both injection attacks and denial-of-service attacks

suffers from a high false alarm rate if the attacker sends

spoofing messages with high priority. The CAN bus intrusion

detection system in [21] that exploits the message arrival

intervals to detect fabrication attacks, suspension attacks, and

masquerade attacks suffers from a low detection accuracy for

periodic messages with lower priority, due to the changed

message arrival intervals. The CAN-FD authentication scheme

as developed in [22] applies Bloom filtering to measure the

message periodicity to detect replay attacks, which also suffers

from detection performance degradation for the periodic mes-

sages with low priority due to the queuing delay. The anomaly

detection approach proposed in [23] applies a distributed long-

short-term-memory framework to evaluate the arrival intervals

for intra-vehicle networks that support deep neural networks

but sometimes falsely views the delayed low priority messages

as spoofing.

Reinforcement learning has been used to optimize the test

threshold for wireless authentication without the knowledge

of attack strategies. For instance, the authentication scheme

in [33] applies Q-learning and Dyna-Q to optimize the test

threshold and thus improve the authentication accuracy. The

authentication scheme in [34] uses neural episodic control

to select the authentication data such as the received signal

strength indicators and the arrival intervals of the ambient

radio signals for wireless networks instead of CAN buses.

III. SYSTEM MODEL

A. Network Model

In this work, we consider a CAN bus in a vehicle that can

transport sensitive information such as braking command and

monitor the vehicle’s status, which consists of a monitor and

L ECUs such as the engine control ECU, the telematics ECU,

and the routing gateway ECU, as shown in Fig. 1. All the

L ECUs are connected via two dedicated wires, i.e., CANH

and CANL. According to [35] and [36], the OBD-II port is

assumed to have unrestricted access to the high-speed CAN

bus with baud rate up to 1 Mbps or the low-speed CAN bus

with baud rate lower than 125 Kbps via a routing gateway ECU

instead of an access control gateway ECU. For example, the

CAN bus uses a diagnostic tool to read the received messages

and uses a scan tool to send messages through the OBD-II

port. The ECUs have distinctive hardware configurations [18].

Each ECU generates a waveform with 2.75 ∼ 4.5 V on the

CANH and 0.5 ∼ 2.25 V on the CANL to send a dominant

bit (0) [28]. The recessive bit (1) usually corresponds to the

waveform at 2.25 ∼ 2.75 V voltages on both CANH and

CANL.
Radio devices such as smartphones send busty messages

with varying arrival interval ranging from 10 ms to 500 ms

via the telematics ECU or the OBD-II port using Bluetooth

and WiFi. On the other hand, the engine control ECU sends

the engine revolution message with arbitration ID 0x2C4 every

24 ms, and the steering ECU sends the angle message with

arbitration ID 0x025 every 20 ms [21]. Time is partitioned to

slots of equal length. Let l(k) ∈ {0, 1} indicate the periodicity

of the message received at time slot k. If l(k) = 1, the message

is periodic with the message arrival interval denoted by τ (k).
Without loss of generality, we assume that at most one

ECU sends a message in each time slot to the CAN bus.

The ECU that is assigned with lower arbitration ID gains

access to the CAN bus if there are more than one ECU

sending messages simultaneously. The intra-vehicle network

has J feasible arbitration IDs. Each message has a unique

arbitration ID, which represents the message type and priority.

At time slot k, the CAN bus receives a message with ID

d(k) ∈ {1, 2, · · · , J} corresponding to ECU j. According to

[26], the priority of the message denoted by ρ(k) decreases

with the arbitration ID d(k), with ρ(k) = 0 when d(k) = J ,

i.e., ρ(k) = 1 − d(k)/J . According to [21], a higher priority

message sent by other ECUs can change the arrival intervals

of the periodic messages.
Each message consists of at most 128 dominant bits (0) and

recessive bits (1), including the start of the frame (SOF), the

arbitration ID, the extended ID field, the data, the acknowl-

edgement (ACK) and the end of the frame (EOF), as shown

in Fig. 2. According to [25], the voltages of the dominant bits

(0) in the extended ID field are more active than the other

parts of the message. Upon receiving a message, the monitor

uses an analog-to-digital converter at rate fS to measure the

waveform of the dominant bits (0) in the extended ID field of

the message and obtain W CANH voltages {ν(k)i }1≤i≤W and

W CANL voltages {μ(k)
i }1≤i≤W . A falsely accepted message

may cause the abnormal behavior such as the failure fuel level

in [2].

B. Intra-vehicle Attack Model
We consider an attacker, Eve, who compromises a telematics

ECU or OBD-II port, and sends a number of the spoofing mes-
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Fig. 2. CAN bus message format with 64 ∼ 128 bits.

sages with the arbitration IDs of the other ECUs [12], which

compromises the arrival intervals of the periodic messages.

The spoofing message can result in the falsification of the fuel

level, the instruction failure alarm on the instrument panels,

and the control lost of the engine and brake of the vehicle

[11].

Eve installs a malware such as a malicious self-diagnostic

application (app) from the Android application Market on her

smartphone to compromise the OBD-II port via the OBD-

II scan tool [10], as shown in Fig. 1. Eve can also inject

worms such as à la Stuxnet to compromise the telematics

ECU [5], and control it to send spoofing messages. By storing

some important messages such as the braking command, Eve

controls the compromised ECUs to send these messages later

with the falsified ECU IDs, which results in man-in-the-middle

attacks. Eve can also keep sending spoofing messages with

high priority via the compromised ECUs to result in denial-

of-service attacks [37].

According to [21] and [18], Eve changes the arrival intervals

of the periodic messages once sending out a spoofing message

to the CAN bus and cannot forge the signal voltage of another

ECU due to the distinct drain-to-source on-state resistance of

the transistor. Eve is assumed to send at most NY spoofing

messages in T time slots, and choose the number of spoofing

messages to send to the CAN bus in the future T time slots,

denoted by y(k) ∈ {0, 1, · · · , NY} that is claimed to be sent

by ECU i, which aims to prevent ECU i from sending these

messages.

IV. CAN BUS AUTHENTICATION FRAMEWORK

We propose an unidirectional based CAN bus authenti-

cation framework that exploits the physical layer informa-

tion, including message arrival intervals and signal voltages

to detect spoofing attacks, which saves the computational

and communication overhead compared with the bidirectional

authentication. More specifically, a monitor connects to the

CAN bus and measures the physical features to determine

whether the message under test is indeed sent by the ECU that

is assigned with the claimed arbitration ID. This framework

provides lightweight authentication services without changing

the CAN bus protocol or the ECU components in intra-vehicle

systems.

Without loss of generality, the CAN bus is assumed to

receive a message that claims arbitration ID d(k) at time

slot k, which is either sent by the claimed ECU or an

attacker Eve who fakes the message. This framework monitors

the waveform of the dominant bits (0) in the extended ID

field of the message as shown in Fig. 2 and measures the

corresponding signal voltages at W uniformly distributed time.

The resulting CANH voltages are {ν(k)i }1≤i≤W and the CANL

voltages are {μ(k)
i }1≤i≤W . The monitor evaluates the message

priority ρ(k) and measures the message arrival interval τ (k)

from the previous authenticated message with this ID if the

message with the claimed arbitration ID d(k) is periodic.

The scheme chooses the authentication features or mode de-

noted by x
(k)
1 ∈ {0, 1}. If x

(k)
1 = 0, the authentication depends

on the difference between the current signal voltages and the

samples of the previous authenticated message with arbitration

ID d(k). If x
(k)
1 = 1, the authentication depends on both the

signal voltage samples and the message arrival interval. In

the framework, authentication mode 0 is more effective for

non-periodic messages, while authentication mode 1 is more

accurate for periodic messages. In particular, the framework

switches to the signal voltages if the message arrival interval is

known by the attacker or changed by the message transmission

failure or higher priority messages.

This framework builds a z-score based hypothesis test to

compare the current physical layer features with the feature

records. The test statistic denoted by Δ is compared with

the test threshold x
(k)
2 , which is equally quantized into Γ

levels, i.e., x
(k)
2 ∈ {i/Γ |1 ≤ i ≤ Γ}. If Δ ≤ x

(k)
2 , the

monitor accepts the message and updates the voltage records

of the message. Otherwise, the monitor rejects the message

and sends an active error flag to the CAN bus rather than a

specific ECU. After the authentication, a radio device such as a

smartphone outside the intra-vehicle network sends a feedback

signal to the monitor if there are some abnormal behaviors

such as the falsification of the fuel level caused by the falsely

accepted message. According to [18], the monitor must finish

the authentication before the ACK of the message, as shown

in Fig. 2.

V. RL BASED CAN BUS AUTHENTICATION

We propose an RL based CAN bus authentication scheme

(RLA), which chooses both the authentication mode and

test threshold [x
(k)
1 , x

(k)
2 ]. This authentication scheme uses

the Dyna architecture to simulate hypothetical authentication

experiences to update the learning parameters such as the

Q-values, and applies a double estimator to avoid over-

estimation.

Upon receiving the message at time slot k, the authentica-

tion formulates the current state denoted by s(k) that consists

of message priority ρ(k), the number of the accepted messages

in the authentication, N
(k−1)
P , and the number of the falsely

accepted messages in the previous T time slots, N
(k−1)
F , that

is obtained from the feedback from the radio device, i.e.,

s(k) =
[
ρ(k), N

(k−1)
P , N

(k−1)
F

]
. (1)

Based on a double estimator, the authentication policy

x(k) = [x
(k)
1 , x

(k)
2 ] is chosen based on ε-greedy using the

sum of the first Q-value QA(s(k), ·) and second Q-value
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Algorithm 1: RL based CAN bus authentication

1: Initialize λ, β, J , W , T , N
(0)
A , N

(0)
P , N

(0)
F , {τ̄i}1≤i≤J ,

{ν̄i}1≤i≤J , {ν̃i}1≤i≤J , {μ̄i}1≤i≤J , {μ̃i}1≤i≤J , QA = 0,

and QB = 0
2: for k = 1, 2, 3, ... do
3: Read the arbitration ID d(k)

4: ρ(k) = 1− d(k)

J

5: Extract W CANH voltages
{
ν
(k)
i

}
1≤i≤W

6: Extract W CANL voltages
{
μ
(k)
i

}
1≤i≤W

7: if Message with arbitration ID d(k) is periodic then
8: Measure τ (k)

9: end if
10: Form s(k) via (1)

11: Select x(k) =
[
x
(k)
i

]
1≤i≤2

via (2)

12: Calculate Δ via (3)

13: if Δ ≤ x
(k)
2 then

14: Accept the message

15: Update the voltage records

16: else
17: Send an active error flag

18: end if
19: Count N

(k)
A and N

(k)
P

20: Measure N
(k)
F

21: Compute u(k) via (4)

22: Randomly choose to update QA
(
s(k),x(k)

)
via (5) or

QB
(
s(k),x(k)

)
via (6)

23: C
(
s(k),x(k), s(k+1)

)
= C

(
s(k),x(k), s(k+1)

)
+ 1

24: Calculate M via (7)

25: R
(
s(k),x(k),M

)
= u(k)

26: for i = 1, 2, · · · , D do
27: Randomly choose a simulated state-action pair

(s̃, x̃)
28: Choose s̃′ with probability 1

M C (s̃, x̃, s̃′)
29: Compute r̃ via (8)

30: Randomly choose to update QA (s̃, x̃) via (5) or

QB (s̃, x̃) via (6)

31: end for
32: end for

QB(s(k), ·). The policy distribution is given by

Pr
(
x(k) = x̂

)
={

1− ε, x̂ = arg max
x′∈X

{
QA

(
s(k),x′)+QB

(
s(k),x′)}

ε, o.w

(2)

where X is the action set that consists of the 2Γ feasible

authentication policies.

The message arrival interval records of the J different types

of messages {τ̄i}1≤i≤J are initialized by the vehicle manu-

facturers. In particular, the arrival interval records of the non-

periodic messages are set as 0. The voltage records {ν̄i}1≤i≤J ,

{ν̃i}1≤i≤J , {μ̄i}1≤i≤J , and {μ̃i}1≤i≤J are initialized with the

Viden scheme in [18]. Let I (·) be the indictor function, with

value 1 if true and 0 otherwise. This scheme builds the test

statistic Δ as follows

Δ =
1

ν̃d

(∑W
i=1 ν

(k)
i

W
− ν̄d

)2

+
1

μ̃d

(∑W
i=1 μ

(k)
i

W
− μ̄d

)2

+ I
(
x
(k)
1

)
I
(
l(k)

)(
τ (k)

τ̄d
− 1

)2

. (3)

If Δ ≤ x
(k)
2 , the CANH voltage records ν̄d and ν̃d are

updated with the average and the variance of {ν(k)i }1≤i≤W ,

respectively. In this case, the CANL voltage records μ̄d and

μ̃d are updated with {μ(k)
i }1≤i≤W .

The monitor counts the number of the received messages

denoted by N
(k)
A and the number of the accepted messages

N
(k)
P in the previous T−1 time slots and current time slot. The

scheme measures the number of the time slots that received

the feedback from the radio device outside the intra-vehicle

network in the previous T − 1 time slots and current time

slot, which is used as the number of spoofing messages that

are falsely accepted in the N
(k)
A messages, i.e., N

(k)
F . The

authentication weight denoted by cF represents the importance

of the falsely accepted messages, and the latency coefficient

denoted by cT represents the importance of the authentication

response time in the utility evaluation. This scheme computes

the utility that represents the optimization objective via

u(k) = ρ(k)N
(k)
P − cFρ

(k)N
(k)
F − cTx

(k)
1 (4)

where three terms are the estimated importance of the accepted

messages, the penalty of the falsely accepted messages, and

the estimated authentication cost, respectively.

The learning rate denoted by λ ∈ (0, 1] is chosen to control

the weight of the current experience, and the discount factor

β ∈ (0, 1] indicates the weight on the future utility. The first Q-

value is updated based on the second Q-value QB(s(k),x(k))
according to the iterative Bellman equation via

QA
(
s(k),x(k)

)
← (1− λ)QA

(
s(k),x(k)

)

+ λ

(
u(k) + βQB

(
s(k+1), arg max

x′∈X
QA

(
s(k+1),x′

)))
.

(5)

Similarly, the second Q-value QB(s(k),x(k)) is updated as

follows,

QB
(
s(k),x(k)

)
← (1− λ)QB

(
s(k),x(k)

)

+ λ

(
u(k) + βQA

(
s(k+1), arg max

x′∈X
QB

(
s(k+1),x′

)))
.

(6)

According to [38], this scheme randomly chooses to up-

date the first Q-value QA(s(k),x(k)) or the second Q-value

QB(s(k),x(k)) each time slot.

The number of the occurrences from (s(k),x(k)) to s(k+1)

is denoted by C(s(k),x(k), s(k+1)). The number of occur-

rences of the state-action pair (s(k),x(k)) denoted by M is
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given by

M =
∑
ŝ

C
(
s(k),x(k), ŝ

)
. (7)

The reward record R(s(k),x(k),M) = u(k). By applying

the Dyna architecture as in [34], the scheme simulates D
hypothetical authentication experiences to update the two Q-

values, as summarized in Algorithm 1. More specifically, in

the i-th simulation, the monitor randomly chooses a simulated

state-action pair (s̃, x̃) and selects the next simulated state s̃′

based on C(s̃, x̃, s̃′) and M . The simulated reward denoted

by r̃ is calculated by

r̃ =
1

M

M∑
m=1

R (s̃, x̃,m) (8)

which replaces u(k) in (5) and (6) to update QA (s̃, x̃) and

QB (s̃, x̃).

VI. DEEP RL BASED CAN BUS AUTHENTICATION

We propose a deep RL based CAN bus authentication

scheme named DRLA in Algorithm 2 to further improve the

authentication performance for the CAN buses that support

deep learning. The scheme uses a hierarchical structure and

two lightweight deep neural networks with the fully connected

layers to quickly extract the authentication features and thus

reduce the authentication latency. Based on two-layer DNNs,

this scheme uses the top-level DNN to choose the authentica-

tion mode x
(k)
1 and the bottom-level DNN to select the test

threshold x
(k)
2 with the chosen authentication mode.

Similar to Algorithm 1, the scheme formulates the state s(k)

based on message priority ρ(k), the number of the accepted

messages by the authentication, N
(k−1)
P , and the number of

the falsely accepted messages, N
(k−1)
F , in the previous T time

slots, which is the input to the top-level DNN. As shown in

Fig. 3, the top-level DNN with weights θ includes two FC

layers and outputs the top Q-values denoted by Q∗ (s(k), ·;θ).

The two FC layers consist of n1 and n2 rectified linear units

as the activation function. The authentication mode, x
(k)
1 , is

chosen based on the top Q-values according to ε-greedy. With

x
(k)
1 and s(k) as the input, the bottom-level DNN with weights

ϕ has two FC layers that contain m1 and m2 rectified linear

units, respectively, and outputs the bottom Q-values denoted

by Q′
(
s(k), x

(k)
1 , ·;ϕ

)
. The test threshold x

(k)
2 is chosen

based on Q′
(
s(k), x

(k)
1 , ·;ϕ

)
with ε-greedy.

The test statistic Δ given by (3) is compared with the chosen

test threshold x
(k)
2 . If Δ ≤ x

(k)
2 , the monitor updates the

voltage records ν̄d, ν̃d, μ̄d and μ̃d similar to Algorithm 1, and

sends an active error flag otherwise. The monitor measures

N
(k)
F and uses (4) to calculate the utility u(k).

The weights of the DNNs are updated based on the authen-

tication experience {s(k),x(k), u(k)}, which is then stored in

the memory pool D, i.e.,

D ← D ∪
{
s(k),x(k), u(k)

}
. (9)

Fig. 3. Illustration of the Deep RL based CAN bus authentication.

By applying the experience replay technique, the scheme

randomly samples Z experiences from D to update the top-

level DNN weights θ. According to the Adam method [39],

the top-level DNN weights are updated by

θ = argmin
θ′

E

[(
u(k−1) + β max

x′
1∈{0,1}

Q∗
(
s(k), x′

1;θ
′
)

−Q∗
(
s(k−1), x

(k−1)
1 ;θ′

))2
]
. (10)

The weights of the bottom-level DNN are updated with the Z
authentication experiences using Adam,

ϕ = argmin
ϕ′

E

[(
u(k−1) −Q′

(
s(k−1),x(k−1);ϕ′

)

+ β max
x′
2∈{ i

Γ }i∈{1,2,··· ,Γ}

Q′
(
s(k), x

(k)
1 , x′

2;ϕ
′
))2

]
.

(11)

VII. PERFORMANCE ANALYSES

In this section, we investigate the computational complexity

of our proposed authentication schemes and the performance

bound including the authentication accuracy. More specifically,

this scheme uses hT multiplications to update the weights of

the top-level DNN, which depends on the n1 rectified linear

units in the first FC layer, the n2 rectified linear units in the

second FC layer, the Z sampled authentication experiences

and the two authentication modes. By [40], we have

hT = 12Zn1 + 3Zn1n2 + 11Zn2 + 8Z. (12)

Similarly, the bottom-level DNN needs hB multiplications to

update its weights, which relies on the m1 rectified linear units

in the first FC layer, the m2 rectified linear units in the second

FC layer, the size of the sample authentication experiences Z
and the Γ feasible test thresholds given by

hB = 15Zm1 + 3Zm1m2 + (4Γ + 3)Zm2 + 4ZΓ. (13)

According to [41], the number of the rectified linear units

in the first FC layer of the top-level DNN in Algorithm 2
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Algorithm 2: Deep RL based CAN bus authentication

1: Initialize β, J , W , T , Z, N
(0)
A , N

(0)
P , N

(0)
F , {τ̄i}1≤i≤J ,

{ν̄i}1≤i≤J , {ν̃i}1≤i≤J , {μ̄i}1≤i≤J , {μ̃i}1≤i≤J , θ, ϕ,

and D = ∅

2: for k = 1, 2, 3, ... do
3: Read the arbitration ID d(k)

4: ρ(k) = 1− d(k)

J

5: Extract W CANH voltages
{
ν
(k)
i

}
1≤i≤W

6: Extract W CANL voltages
{
μ
(k)
i

}
1≤i≤W

7: if Message with arbitration ID d(k) is periodic then
8: Measure τ (k)

9: end if
10: Form s(k) via (1)

11: Input s(k) to the top-level DNN

12: Choose x
(k)
1 based on the top-level DNN outputs,

Q∗ (s(k), ·;θ), with ε-greedy

13: Input s(k) and x
(k)
1 to the bottom-level DNN

14: Choose x
(k)
2 based on the bottom-level DNN outputs,

Q′
(
s(k), x

(k)
1 , ·;ϕ

)
, with ε-greedy

15: Calculate Δ via (3)

16: if Δ ≤ x
(k)
2 then

17: Accept the message

18: Update the voltage records

19: else
20: Send an active error flag

21: end if
22: Count N

(k)
A and N

(k)
P

23: Measure N
(k)
F

24: Compute u(k) via (4)

25: Save the authentication experience via (9)

26: Sample Z experiences from D
27: Update θ via (10)

28: Update ϕ via (11)

29: end for

depends on the number of the learning samples k and the two

authentication modes, i.e.,

n1 = 2
√
2k. (14)

The number of the rectified linear units in the second FC layer

of the top-level DNN relies on the k learning samples and two

authentication modes given by

n2 =
√
2k. (15)

The number of the rectified linear units in the first FC layer

of the bottom-level DNN in Algorithm 2 relies on the number

of the learning samples k and the number of the feasible test

thresholds Γ given by

m1 =
√
kΓ + 2

√
k

Γ
. (16)

The number of the rectified linear units m1 in the second FC
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Fig. 4. Nonlinear regression of the false alarm rate and the miss detection
rate based on the CAN bus that consists of a monitor, 18 legitimate ECUs
and a compromised ECU as shown in Fig. 5.

layer of the bottom-level DNN is given by

m2 =
√
kΓ . (17)

Theorem 1. The computational complexity of QLA, Viden,
RLA and DRLA is given by O (kΓ ), O (k), O (kDΓ ), and
O (kZΓ ), respectively.

Proof. See Appendix A.

Remark: The complexity of the four authentication

schemes increases with the number of the learning samples

k. Our proposed RLA also relies on the D simulated au-

thentication experiences and the Γ feasible test thresholds.

The computational complexity of DRLA increases with the

number of the feasible test thresholds, Γ , and the size of the

sample authentication experiences, Z, and uses the deep neural

networks instead of the convolutional neural networks in [34],

to reduce the sample complexity.

The CAN bus authentication against a spoofing attacker Eve

can be formulated as an authentication game. In this game, the

monitor chooses the authentication mode x1 ∈ {0, 1} and test

threshold x2 ∈ (0, 1], while Eve selects the number of the

spoofing messages in T time slots y ∈ [0, NY]. For simplicity,

the CAN bus is assumed to receive NL legal messages with

transmission priority ρ from the L ECUs in T time slots.

Eve is assumed to use the arbitration IDs of a compromised

ECU, observe the messages transmitted on the CAN bus, send

y spoofing messages in T time slots, and aim to maximize

its utility denoted by uS. Decreasing with the utility of the

monitor u and the spoofing cost cS, the utility of Eve is

modelled by

uS = −u− cSy. (18)

We perform 100 experiments to obtain data of the false

alarm rate and miss detection rate in Fig. 4. In each experi-

ment, 18 legitimate ECUs and a compromised ECU exchange

1800 messages over a CAN bus at 500 Kbps baud rate as
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shown in Fig. 5. The monitor, consisting of an ECU, an

oscilloscope and a laptop, samples the voltage signals at a rate

of 100 MS/s to obtain 360 CANH voltages and 360 CANL

voltages for each message. The test statistic is calculated via

(3) and compared with the given test threshold to obtain the

false alarm rate and miss detection rate every 1800 messages.

The false alarm rate of the proposed authentication scheme

pF is modelled with two regression parameters, denoted by

0 < a
(i)
1 ≤ 1 and a

(i)
2 < 0, for two authentication modes. As

shown in Fig. 4, pF of authentication mode i is assumed to be

an exponential function given by

pF = a
(i)
1 exp

(
x2a

(i)
2

)
. (19)

Similarly, the distribution of the miss detection rate pM for

authentication mode i is given by

pM = a
(i)
3 exp

(
x2a

(i)
4

)
(20)

where 0 < a
(i)
3 ≤ exp(−a

(i)
4 ), and a

(i)
4 > 0. For ∀i ∈ {0, 1},

let

αi =
a
(i)
3 a

(i)
4 NY

a
(i)
1 a

(i)
2 NL

(21)

ξi =
a
(i)
2

a
(i)
2 − a

(i)
4

. (22)

Theorem 2. The performance bound of the RL based CAN
bus authentication is given by

pF ≥ a
(0)
1 (α0 − cFα0)

ξ0 (23)

pM ≥ a
(0)
3 (α0 − cFα0)

ξ0−1
(24)

u ≤ ρNL − ρ

(
NLa

(0)
1 − NYa

(0)
3

α0

)
(α0 − cFα0)

ξ0 (25)

if

cS ≤ −ρa
(0)
3

α0
(α0 − cFα0)

ξ0 (26)

α0 < 1− cF ≤ α0 exp
(
a
(0)
2 − a

(0)
4

)
(27)

ρ

(
NLa

(0)
1 − NYa

(0)
3

α0

)
(α0 − cFα0)

ξ0

≥ ρ

(
NLa

(1)
1 − NYa

(1)
3

α1

)
(α1 − cFα1)

ξ1 + cT (28)

Proof. See Appendix B.

Remark: In the case given by (26)-(28), the monitor

chooses to use the signal voltages in the authentication (i.e.,

x1 = 0), if the transmission priority of the message ρ is higher

than a bound given by the NL legal messages sent by the

L ECUs and the maximum number of the received spoofing

messages NY in T time slots. In this case, the authentication

accuracy given by (23) and (24) relies on the number of

the received legal messages NL and the maximum number

of the received spoofing messages NY in T time slots. The

utility of the monitor given by (25) relies on the message

priority ρ. According to [38], if (26)-(28) hold, the proposed

RLA in Algorithm 1 can eventually converge to the optimal

authentication policy given by

x∗ =

[
0,

1

a
(0)
2 − a

(0)
4

ln (α0 − cFα0)

]
(29)

after sufficient interactions, and thus achieve the performance

bound given by (23)-(25).

VIII. EXPERIMENTAL RESULTS

Experiments were performed on a CAN bus at 500 Kbps

baud rate that allows about 3906 messages per second. Eigh-

teen legitimate ECUs, a monitor, and a compromised ECU are

connected on the CAN bus, as shown in Fig. 5. The monitor is

an ECU connected to a Dell E6430 laptop that has a 2.4 GHz

dual-core processor and 16 GB of RAM to store the voltage

data measured by an oscilloscope based on the extended ID

field of the received messages at 100 MS/s sampling rate. Note

that the monitor in a practical vehicle can be implemented

with a sampling chip such as ADC08100CIMTC/NOPB and

a Raspberry Pi 4 for lower costs.

The attacker Eve compromises the telematics ECU via WiFi

and fabricates the messages with the legal arbitration IDs of

the compromised ECU. Eve measures the CAN bus signal

features, applies the greedy algorithm to choose a number NY

from 0 to 800 and sends NY spoofing messages in 200 ms.

Typical message voltages of the ECUs on the CANH and

the CANL are shown in Fig. 6. The CAN bus has 18 message

types that consist of 14 periodic messages with arbitration IDs

0x000 ∼ 0x00D and 4 non-periodic messages with arbitration

IDs 0x00E ∼ 0x011. The arrival intervals of the periodic

messages are summarized in Table II. The legitimate ECUs

and the compromised ECU send at most 1458 messages every

second, i.e., 38% CAN bus load. The monitor estimates the

false alarm rate and miss detection rate every 50 messages

within 200 ms.

The learning parameters λ, β and ε are set as 0.1, 0.2 and

0.1, respectively, based on the experiments not shown here

for accurate authentication. The first FC layer in the top-level

DNN has 32 filters and the second FC layer has 16 filters.

The two FC layers in the bottom-level DNN have 256 and

128 filters, respectively. The experience pool can store 3000

experiences, and the minibatch has 64 experiences.

TABLE II
ARRIVAL INTERVALS OF THE PERIODIC MESSAGES

Message ID Time interval (ms)

0x000 ∼ 0x003 10

0x004 ∼ 0x006 20

0x007 ∼ 0x009 40

0x00A ∼ 0x00B 100

0x00C ∼ 0x00D 500

The authentication performance of our proposed RLA im-

proves over time, as shown in Fig. 7. For example, RLA

decreases the false alarm rate by 60.4% to 4.2%, and decreases

the miss detection rate by 65.3% to 4.9% after 2000 time slots.

Compared with the PHY authentication scheme named QLA in
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(a) CAN bus snapshot

(b) Network topology

Fig. 5. Experimental setting of the CAN bus authentication with 20 ECUs,
in which one compromised ECU sends spoofing messages.
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Fig. 6. Examples of the signal voltages of two ECUs on the CAN bus as
shown in Fig. 5.

[1], RLA reduces the false alarm rate by 22.2%, decreases the

miss detection rate by 34.3%, and increases the utility by 8.8%

at the 2000-th time slot. The proposed RLA also improves the

authentication performance as compared with Viden in [18].

For instance, RLA reduces the false alarm rate by 63.8% and

the miss detection rate by 63.4%, and increases the utility

by 49.0% after 2000 time slots compared with Viden. The

reason is that RLA exploits both the arrival intervals and

signal voltages to improve the authentication performance. In

addition, RLA takes 96.5 μs to verify a message, including the

physical feature measurement and authentication evaluation,

which is shorter than the minimum message arrival time of

128 μs of the CAN bus in Fig. 5.

DRLA further improves the authentication performance of

RLA, e.g., DRLA further decreases the false alarm rate by

40.0% to 2.5%, reduces the miss detection rate by 51.1% to
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(b) Miss detection rate
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Fig. 7. Performance of the CAN bus authentication schemes with 18
legitimate ECUs in the CAN bus as shown in Fig. 5 against the attacker
that sends 0 ∼ 800 spoofing messages in 200 ms.

2.4%, increases the utility by 12.5% at time slot 2000, and

decreases the convergence time by 50.0%. DRLA reaches the

performance bound given by (23)-(25) after 1000 time slots,

verifying the analysis results in Theorem 2. With a slightly

higher computational complexity than QLA and Viden, DRLA

can be implemented in a monitor equipped with a Dell E6430

laptop with a 2.4 GHz dual-core processor and 16 GB of RAM.

The authentication performance for the 3 ∼ 18 ECUs

averaged over 500 time slots is presented in Fig. 8, showing

that the proposed schemes work well in typical ECU settings.

For example, RLA has the false alarm rate less than 3.7%
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TABLE III
PERFORMANCE COMPARISON OF CAN BUS AUTHENTICATION SCHEMES

Method
Performance Periodic messages Non-periodic messages

False alarm rate (%) Miss detection rate (%) False alarm rate (%) Miss detection rate (%)

DRLA 0.8 1.0 2.1 4.4

RLA 3.9 3.0 4.1 5.2
QLA [1] 5.1 6.8 4.9 6.7

Viden [18] 11.4 13.2 10.8 13.1

VoltageIDS [25] 10.0 4.3 9.1 4.5

IDA [20] 5.5 6.9 44.2 55.6
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Fig. 8. Performance of the RL based CAN bus authentication schemes in
the CAN bus as shown in Fig. 5 for the {3, 6, 10, 14, 18} legitimate ECUs
averaged over 500 time slots against the attacker that sends 0 ∼ 800 spoofing
messages in 200 ms.
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Fig. 9. Authentication accuracy for both periodic and non-periodic messages
on the CAN bus equipped with 18 legitimate ECUs under two authentication
modes.

and miss detection rate less than 4.59%, if the number of

ECUs is less than 18. Compared with QLA and Viden, RLA

decreases the false alarm rate by 35.9% and 66.1%, decreases

the miss detection rate by 27.2% and 78.5%, and increases the

utility by 4.6% and 32.2%, respectively, with 10 ECUs. The

performance of DRLA further improves, with 24.8% reduction

of the false alarm rate, 32.1% reduction of the miss detection

rate, and 5.7% increase of the utility.

As shown in Table III, the accuracy averaged over 100 runs

and 500 time slots of our proposed schemes exceeds existing

CAN bus authentication schemes, including QLA [1], Viden

[18], VoltageIDS [25] and the intrusion detection algorithm

named IDA [20]. For example, the proposed DRLA has 8.0‰
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Fig. 10. Authentication accuracy of DRLA for both periodic and non-periodic
messages on the CAN bus consisting of 18 legitimate ECUs.
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Fig. 11. Authentication accuracy of DRLA for given CAN bus load averaged
over 100 runs each consisting of 500 time slots.

false alarm rate and 1.0% miss detection rate when dealing

with periodic messages, which is 92.0% and 76.7% lower

than VoltageIDS, respectively. The performance gain results

from the authentication basis that consists of both the arrival

intervals and signal voltages. Our proposed RLA reduces the

false alarm rate by 90.7% and the miss detection rate by

90.6% compared with IDA. That is because IDA exploits the

arrival intervals and thus fails to authenticate the non-periodic

messages.

The authentication accuracy of the two modes for both

periodic and non-periodic messages on the CAN bus with 18

legitimate ECUs in Fig. 9 shows that mode 0 is more effective

for non-periodic messages, while mode 1 authenticates the

periodic messages more accurately. For example, mode 1

reduces the false alarm rate by 74.3% to 6.0‰ and decreases

the miss detection rate by 78.0% to 7.5‰ after 2000 time

slots for periodic messages, as compared with mode 0. On

the other hand, mode 0 has 2.7% false alarm rate and 3.8%

miss detection rate at the 2000-th time slot when dealing with

non-periodic messages, which is 68.9% and 41.6% higher than

mode 1, respectively.

Our proposed DRLA is more accurate for periodic mes-

sages, as shown in Fig. 10. For instance, DRLA with periodic

messages reduces the false alarm rate by 62.0% to 8.0‰ and

decreases the miss detection rate by 75.2% to 1.1% after 1000

time slots, as compared with non-periodic messages.

As shown in Fig. 11, the authentication accuracy of our

proposed DRLA averaged over 100 runs each consisting of

500 time slots is provided for the CAN bus load ranging

from 10.0% to 100.0%. Both the false alarm rate and the

miss detection rate first increase with the load and decrease

afterwards. For example, the false alarm rate slightly decreases

from 2.6% to 2.1% if the load changes from 10.0% to 57.0%,

and increases to 4.2% if the load improves up to 100.0%.

Besides, DRLA decreases the miss detection rate from 3.8% to

3.3% if the load increases from 10.0% to 38.0%, and increases

the miss detection rate by 21.2% to 4.0% if the load changes

from 38.0% to 100.0%.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an RL based CAN bus au-

thentication scheme that exploits both the signal voltages and

arrival intervals of messages to detect spoofing attacks. This

scheme simulates hypothetical authentication experiences with

the Dyna architecture to reduce the initial random exploration

and uses a double estimator to avoid the over-estimation of the

Q-values in the selection of the authentication mode and test

threshold without the knowledge of the spoofing model. We

also have designed a deep RL version to further improve the

authentication performance and discussed its computational

complexity and performance. Experiments on a CAN bus

with 18 legitimate ECUs have been performed, with results

showing that its authentication performance gains over QLA

[1], Viden [18], VoltageIDS [25] and IDA [20]. For example,

RLA reduces the false alarm rate by 60.4% to 4.2%, reduces

the miss detection rate by 65.3% to 4.9%, and increases the

utility by 52.7% compared with Viden. DRLA further reduces

the false alarm rate by 34.5% and miss detection rate by

43.9%, and increases the utility by 15.2%.

Our scheme depends on a trusted monitor and has a

lower authentication accuracy once the legitimate messages

are falsely rejected. In the future, we plan to improve the au-

thentication accuracy and robustness by incorporating multiple

handshakes for the CAN-FD with a high baud rate and a large

frame size. The monitor and the ECUs have to be protected

with handshakes against the attackers that can compromise

the in-vehicle nodes and provide better feedback signals to

further reduce the false alarm rate. In addition, our scheme

can combine the positive-slope with the negative-slope signal

voltages in both the time and frequency domains to detect

spoofing attacks more accurately and use transfer learning

to exploit the similar authentication experiences to further

accelerate the optimization speed.

APPENDIX A

PROOF OF THEOREM 1

Proof. According to [42], the complexity of QLA in [1] and

Viden in [18] is given by O (kΓ ) and O (k). Compared with

QLA, our proposed RLA updates the Q-values with D more

times every time slot, and thus has complexity given by

O (kDΓ ).



12

According to [43], by (12)-(17), the computational com-

plexity of DRLA is given by

O
(
Z
(
12n1 + 3n1n2 + 11n2 + 8 + 15m1

+ 3m1m2 + (4Γ + 3)m2 + 4Γ
))

(30)

= O

(
35Z

√
2k + 18Zk + (4Γ + 18)Z

√
kΓ

+ 30Z

√
k

Γ
+ 3ZkΓ + 4ZΓ + 8Z

)
(31)

= O

(
Z
√
2k + Zk + Z

√
kΓ + Z

√
k

Γ
+ ZkΓ

)
(32)

= O
(
ZkΓ

)
. (33)

APPENDIX B

PROOF OF THEOREM 2

Proof. By (4), (19) and (20), we have

u (x, y) = ρNL − ρNLa
(x1)
1 exp

(
x2a

(x1)
2

)
+ ρy (1− cF) a

(x1)
3 exp

(
x2a

(x1)
4

)
− cTx1. (34)

For given ∀x1 ∈ {0, 1}, let

x̃2 =
1

a
(x1)
2 − a

(x1)
4

ln (αx1 − cFαx1) . (35)

By (18) and (34), if (26) holds, we have

∂uS ([0, x̃2] , y)

∂y
=− ρa

(0)
3

α0
(α0 − cFα0)

ξ0 − cS ≥ 0, ∀y ∈ [0, NY].

(36)

Thus, we have

uS

([
0,

1

a
(0)
2 − a

(0)
4

ln (α0 − cFα0)

]
, NY

)

≥ uS

([
0,

1

a
(0)
2 − a

(0)
4

ln (α0 − cFα0)

]
, y

)
, ∀y ∈ [0, NY].

(37)

By (34), we have

∂2u
(
x, NY

)
∂x2

2

= −ρNLa
(x1)
1

(
a
(x1)
2

)2

exp
(
x2a

(x1)
2

)
+ ρNY (1− cF) a

(x1)
3

(
a
(x1)
4

)2

exp
(
x2a

(x1)
4

)
≤ 0, ∀x1 ∈ {0, 1}, x2 ∈ (0, 1]. (38)

Thus, we have

∂u
(
x, NY

)
∂x2

∣∣∣∣
x2=x̃2

= −ρNLa
(x1)
1 a

(x1)
2 (αx1 − cFαx1)

ξx1

+
ρNYa

(x1)
3 a

(x1)
4

αx1

(αx1 − cFαx1)
ξx1

= 0, ∀x1 ∈ {0, 1}. (39)

Thus, if (26)-(28) hold, we have

u

([
0,

1

a
(0)
2 − a

(0)
4

ln (α0 − cFα0)

]
, NY

)

≥ u
(
x, NY

)
, ∀x1 ∈ {0, 1}, x2 ∈ (0, 1]. (40)

Thus, by (37) and (40), we have a Nash equilibrium of the
authentication game given by

(x∗, y∗) =

([
0,

1

a
(0)
2 − a

(0)
4

ln (α0 − cFα0)

]
, NY

)
. (41)

According to [44], by (19), (20) and (34), we have the

performance bound given by (23)-(25).
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