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Abstract

In this article, robust static output feedback (SOF) Nash games for a class of uncertain
Markovian jump linear stochastic systems (UMJLSSs) are investigated, in which each player
may have access to local/private SOF information. It is proved that the robust SOF Nash
strategy set can be obtained by minimizing the upper bounds of the cost functions based
on a guaranteed cost control mechanism. By using the Karush–Kuhn–Tucker (KKT) con-
dition, the necessary conditions for the existence of the robust SOF Nash strategy set are
established in terms of the solvability conditions of nonlinear simultaneous algebraic equa-
tions (NSAEs). A heuristic algorithm is developed to solve the NSAEs. Particularly, it is
shown that the robust convergence of the heuristic algorithm is guaranteed by combin-
ing the Krasnoselskii–Mann (KM) iterative algorithm with a new convergence condition.
Finally, a simple practical example is presented to show the reliability and usefulness of the
proposed algorithm.

1 INTRODUCTION

Uncertain Markov jump linear stochastic systems (UMJLSSs)
have received considerable attention since they can be used to
describe many real world systems, characterized by a stochas-
tic process, subject to random abrupt changes due to the
failures of the components and unmodeled dynamics [1].
Usually, deterministic uncertainties refer to uncertainties in sys-
tem matrices. In the UMJLSSs, deterministic uncertainties are
independent of stochastic processes of Markov jump and Brow-
nian motion. Therefore, they can be regarded as a generalized
case of Markov jump linear stochastic systems (MJLSSs). In
recent years, various efforts have been made to deal with sys-
tem uncertainties in both stochastic and deterministic systems.
By using the Lyapunov stability theory, robust stability and sta-
bilization issues of the uncertain Markov jump delay stochastic
systems (UMJDSSs) have been investigated [2, 3]. The robust
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exponential stabilization problem for the UMJDSSs with mode-
dependent state variable delay has also been considered by
using memory state feedback controller [4]. The dissipative
control problems for continuous and discrete-time nonlinear
Markovian jump time-delay systems have been addressed [5, 6].
Sliding mode control for a class of delayed discrete-time nonlin-
ear Markovian jump has been handled [7]. Various robust sta-
bility and stabilization conditions have been reported for the
UMJLSSs [1]. Moreover, some efforts have also been made to
deal with dynamic games for the MJLSSs and the UMJLSSs.
For example, the state feedback Nash strategies and Pareto
suboptimal strategies for the MJLSSs and the robust state
feedback Nash strategies and Pareto suboptimal strategies for
the UMJLSSs are studied in [8–12]. The existing studies have
provided effective solutions to the corresponding problems
under the assumption of using state feedback strategies. How-
ever, as we know, in the controller/strategy design, full state
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information are not always available in reality. In most practi-
cal applications, control/game designers can only rely on local
or partial state information because full state information are
difficult to obtain, if not impossible. As a result, it is impor-
tant to study static output feedback (SOF) controller/strategy
in control/game field. Furthermore, a game setting in which all
the players have the same SOF information structure does not
appear reasonable when considering Nash game problems. In
fact, it is essential that each player be allowed to have access
to local or private SOF information in a non-cooperative Nash
game. To the best of our knowledge, no studies have tackled this
important challenge.

In the past two decades, many attentions have been made
to study the SOF control/game problems for a variety of sys-
tems. The SOF control problems have been studied for Markov
jump linear deterministic systems [13–15]. The finite-horizon
H∞ SOF control problems for Markov jump systems have also
been investigated, and the sufficient conditions for the exis-
tence of the SOF controller have been designed in the form
of relaxed linear matrix inequality (LMI) [16]. There exist some
studies on SOF strategies in dynamic games for the MJLSSs
[17–19]. While many theoretical results have been established
to demonstrate the existence of the SOF controller/strategy,
more research efforts are required to study numerical methods
to solve SOF control/game problems because these problems
involve solving complex equations and inequalities which are
usually high-ordered and cross-coupled. The associated matrix
inequality problems are NP-hard [20].

In this article, we study a robust SOF Nash game for the
UMJLSSs with multiple players. This is an extension of the
previous study from deterministic systems [21, 23], to Markov
jump stochastic systems. On the other hand, although robust
SOF strategies for UMJLSSs in cooperative Pareto games have
been dealt with in [22], robust SOF strategies for UMJLSSs in
non-cooperative Nash games are studied for the first time. The
difference is in that all the players are allowed to have their
own SOF information structure in Nash games. Designing the
robust SOF Nash strategies for the UMJLSSs relies on solv-
ing the nonlinear simultaneous algebraic equations (NSAEs).
If N players exist in the game, the number of NSAEs will
increase dramatically. It becomes very hard to solve such large-
scale NSAEs.

The contributions of this paper are multi-fold. First, based
on the guaranteed cost control mechanism [24], the closed-
loop stochastic system obtained by using the robust SOF Nash
strategy set are proven to be exponentially mean-square stable
(EMSS), and the upper bounds of the cost functions are estab-
lished. Second, we have proven that the robust SOF Nash strat-
egy set can be designed by minimizing the upper bounds of
the cost functions. By using the KKT condition [25], the neces-
sary conditions for the existence of a robust SOF Nash strategy
set are established in terms of the solvability conditions of the
NSAEs. In contrast to the existing results based on the LMI-
based algorithm [17, 21, 23], we solved the NSAEs rather than
the LMI strict constraint optimization problem, which guaran-
tees optimality for the bounds of the cost functional. Third, we
propose a heuristic algorithm to compute the solution set of the

NSAEs. We improve the convergence robustness of the pro-
posed algorithm by combining the Krasnoselskii–Mann (KM)
iterative algorithm (see [26, 27] and references therein) with
a new convergence condition. Note that, although the robust
SOF Nash strategy set is considered, the NSAEs are solved
explicitly using the proposed iterative techniques to overcome
computational difficulty. Finally, we present a practical example
to demonstrate the effectiveness of the proposed algorithms. In
particular, we show that a robust Nash strategy can be designed
using only one state value for each player in a Williams–Otto
process example [30–32].

Throughout this paper, some notations are used: Ir ∈ ℝr×r

denotes the identity matrix; ‖ ⋅ ‖ denotes the Euclidean norm
of a matrix; 𝔼[ ⋅ | 𝜃(t ) = i] denotes the conditional expectation
operator; 𝕄d

n,m denotes the space of all X = (X (1),… , X (d ))
with X (k) being n × m matrix, i ∈  ,  = {1, 2,… , d }.
Moreover, the components of X +Y Z are defined as
X +Y Z = (X (1) +Y (1)Z (1),… , X (d ) +Y (d )Z (d ));
2

F
([0, ∞), ℝk ) denotes the space of all measurable func-

tions f (t ) : [0, ∞) × Ω → ℝk, which are Ft -measurable
for every t ≥ 0, with 𝔼[∫ ∞

0
| f (t )|2dt | 𝜃(0) = i] < ∞,

i ∈ 

2 PRELIMINARY RESULTS

Let (Ω,  , {t }t≥0, P) be a given filtered probability space
where there exist a standard one-dimensional Wiener pro-
cess, w(t ), t ≥ 0, and a right continuous homogeneous Markov
process, 𝜃(t ), t ≥ 0, with state space  = {1, 2,… , d }. It is
assumed that {w(t )}t≥0 and {𝜃(t )}t≥0 are independent stochastic
processes. Furthermore, Markov process 𝜃(t ) has the transition
probabilities given by

P{𝜃(t + 𝜉 ) = l | 𝜃(t ) = k}

=

{
𝜋kl 𝜉 + o(𝜉 ), if k ≠ l

1 + 𝜋kk𝜉 + o(𝜉 ), otherwise
, (1)

where𝜋kl ≥ 0, k ≠ l ,𝜋kk = −
∑d

l=1, l≠k
𝜋kl , lim𝜉→0 o(𝜉 )∕𝜉 =

0.
Consider the following UMJLSS

dx(t ) = [A(𝜃(t ), t )x(t ) + B(𝜃(t ), t )u(t )]dt

+ [Ap(𝜃(t ), t )x(t ) + Bp(𝜃(t ), t )u(t )]dw(t ), x(0) = x0,

(2a)

y(t ) = C (𝜃(t ))x(t ), (2b)

where x(t ) ∈ ℝn denotes the state vector, u(t ) ∈ ℝm denotes
the control input, and y(t ) ∈ ℝr denotes the output vec-
tor. Matrices A(𝜃(t ), t ), Ap(𝜃(t ), t ) ∈ ℝn×n and B(𝜃(t ), t ),
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Bp(𝜃(t ), t ) ∈ ℝn×m have the following forms [1, 11, 12, 22]:

A(𝜃(t ), t ) = A(𝜃(t )) + D(𝜃(t ))Δ(𝜃(t ), t )Ea (𝜃(t )), (3a)

B(𝜃(t ), t ) = B(𝜃(t )) + D(𝜃(t ))Δ(𝜃(t ), t )Eb(𝜃(t )), (3b)

Ap(𝜃(t ), t ) = Ap(𝜃(t )) + Dp(𝜃(t ))Δp(𝜃(t ), t )Epa (𝜃(t )), (3c)

Bp(𝜃(t ), t ) = Bp(𝜃(t )) + Dp(𝜃(t ))Δp(𝜃(t ), t )Epb(𝜃(t )), (3d)

where

ΔT (𝜃(t ), t )Δ(𝜃(t ), t ) ≤ Ina
, ΔT

p (𝜃(t ), t )Δp(𝜃(t ), t )) ≤ Inb
.

(4)

Coefficients A, Ap ∈ 𝕄d
n,n, and B, Bp ∈ 𝕄d

n,m , have constant
matrices A(k), B(k), Ap(k), Bp(k), D(k), Dp(k), Ea (k), Eb(k),
Epa (k) and Epb(k), i ∈  . Real matrices Δ(𝜃(t ), t ) ∈ ℝnp×na

and Δp(𝜃(t ), t ) ∈ ℝnq×nb are unknown, representing determin-
istic uncertainties.

To study the robust SOF Nash strategy for a class of
UMJLSSs, we need to give some related definition and lemmas.

Definition 1. [18, 22] The UMJLSS in (2) or (A, B, Ap, Bp) is
stochastic stabilizable in mean-square sense, if there exists an
SOF control

u(t ) = K (𝜃(t ))y(t ) = K (𝜃(t ))C (𝜃(t ))x(t ), (5)

with K (1), K (2),…,K (d ) being constant matrices, such that for
any initial state x(0) = x0, 𝜃(0) = i, the closed-loop system

dx(t ) = [A(𝜃(t ), t ) + B(𝜃(t ), t )K (𝜃(t ))C (𝜃(t ))]x(t )dt

+ [Ap(𝜃(t ), t ) + Bp(𝜃(t ), t )K (𝜃(t ))C (𝜃(t ))]x(t )dw(t ),

(6)

is exponentially mean-square stable (EMSS), that is,

𝔼[‖x(t )‖2] ≤ e−(t−t0 )𝔼[‖x(t0)‖2], (7)

for some  > 0 and  > 0.

Consider the following UMJLSS

dx(t ) = [A(𝜃(t ), t )x(t )

+ Bv (𝜃(t ))v(t )]dt + Ap(𝜃(t ), t )x(t )dw(t ), (8a)

z (t ) = H (𝜃(t ))x(t ), (8b)

where v(t ) ∈ ℝmv denotes the external disturbance, z (t ) ∈ ℝnz

denotes the controlled output, and coefficients Bv ∈ 𝕄d
n,mv

with
Bv (k), i ∈  , being constant matrices.

The following results related to the disturbance attenuation
problem under consideration was established as an extended
version of the bounded real lemma from the existing result in
[1].

Lemma 1. [12, 22] Let 𝛾 denote the required disturbance attenuation

level. Consider a set of symmetric positive definite matrices W > 0 and

positive scalars 𝛽(k) and 𝛼(k), such that the following matrix inequalities

hold for every i ∈  :

F̃ (W ,𝛼(k), 𝛽(k),𝜇(k), k) ≤ 0, k = 1,… , d, (9a)

DT
p (k)W (k)Dp(k) ≤ 𝜇(k)Inb

, (9b)

where

F̃ (W ,𝛼(k), 𝛽(k),𝜇(k), k)

:= W (k)A(k) + AT (k)W (k)

+ 𝛼−1(k)W (k)D(k)DT (k)W (k)

+ 𝛼(k)ET
a (k)Ea (k) + H T (k)H (k) +

d∑
l=1

𝜋kl W (l )

+ AT
p (k)W (k)Ap(k)

+ 𝛽−1(k)AT
p (k)W (k)Dp(k)DT

p (k)W (k)Ap(k)

+ (𝛽(k) + 𝜇(k))ET
pa (k)Epa (k)

+ 𝛾−2W (k)Bv (k)BT
v (k)W (k).

Then, we have

i) the UMJLSS in (8a) is EMSS internally with v(t ) ≡ 0;

ii) the following inequality holds:

‖z‖2
2 ≤ 𝛾2‖v‖2

2 + xT (0)W (k)x(0), (10)

where

‖z‖2
2 := 𝔼

[
∫

∞

0
‖z (t )‖2dt

||| 𝜃(0) = i

]
,

‖v‖2
2 := 𝔼

[
∫

∞

0
‖v(t )‖2dt

||| 𝜃(0) = i

]
.

iii) the worst-case disturbance is given by

v∗(t ) = F ∗
𝛾 (𝜃(t ))x(t ) = 𝛾−2BT

v (𝜃(t ))W (𝜃(t ))x(t ). (11)

Although the H∞ performance is closely related to the ini-
tial value x(0), it does not affect the derivation of the worst-
case disturbance. In the H∞ control theory, it is well known
that the initial value x(0) of the system is usually assumed to be
zero.
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The following result is established to facilitate derivations in
the main contributions.

Lemma 2. [12, 22] Consider the following autonomous UMJLSS

dx(t ) = A(𝜃(t ), t )x(t )dt + Ap(𝜃(t ), t )x(t )dw(t ), x(0) = x0,

(12)

and the cost function

J (Δ,Δp, x0, k) = 𝔼

[
∫

∞

0
xT (t )Q(𝜃(t ))x(t )dt

||| 𝜃(0) = i

]
,

(13)

where Q(𝜃(t )) = Q(𝜃(t ))T
> 0.

Suppose that a set of symmetric positive definite matrices X and positive

scalars 𝜖(k) and 𝜆(k) exist such that the following matrix inequalities

hold for every i ∈  :

G̃(X , 𝜆(k), 𝜖(k),𝜓(k), k) ≤ 0, k = 1,… , d, (14a)

DT
p (k)X (k)Dp(k) ≤ 𝜓(k)Inb

, (14b)

where

G̃(X , 𝜆(k), 𝜖(k),𝜓(k), k)

:= X (k)A(k) + AT (k)X (k) + 𝜆−1(k)X (k)D(k)DT (k)X (k)

+ 𝜆(k)ET
a (k)Ea (k) +

d∑
l=1

𝜋kl X (l ) + AT
p (k)X (k)Ap(k)

+ 𝜖−1(k)AT
p (k)X (k)Dp(k)DT

p (k)X (k)Ap(k)

+ (𝜖(k) + 𝜓(k))ET
pa (k)Epa (k) + Q(k).

Then,

(i) the UMJLSS in (12) is EMSS;

(ii) the cost function has the following upper bound

sup
Δ,Δp

J (Δ,Δp, x(0), 𝜃(0)) = 𝔼[xT (0)X (k)x(0)]. (15)

Next, we propose a robust Nash strategy for a class
of UMJLSSs.

3 ROBUST NASH STRATEGY

Consider a UMJLSS with multiple players, defined by

dx(t ) =

[
A(𝜃(t ), t )x(t )+

N∑
m=1

Bm (𝜃(t ), t )um (t )+Bv (𝜃(t ))v(t )

]
dt

+

[
Ap(𝜃(t ), t )x(t ) +

N∑
m=1

Bpm (𝜃(t ), t )um (t )

]
dw(t ),(16a)

z (t ) =

⎡⎢⎢⎢⎣
H (𝜃(t ))x(t )
G1(𝜃(t ))u1(t )

⋮
GN (𝜃(t ))uN (t )

⎤⎥⎥⎥⎦, (16b)

yi (t ) = Ci (𝜃(t ))x(t ), (16c)

where ui (t ) ∈ ℝmi , i = 1,… , N , denotes the ith control input,
and yi (t ) ∈ ℝri , i = 1,… , N , denotes the ith output. Without
the loss of generality, assume that G T

i (𝜃(t ))Gi (𝜃(t )) = Imi
.

Matrices Bi (𝜃(t ), t ) and Bpi (𝜃(t ), t ) ∈ ℝn×mi have the follow-
ing forms

Bi (𝜃(t ), t ) = Bi (𝜃(t )) + D(𝜃(t ))Δ(𝜃(t ), t )Ebi (𝜃(t )), (17a)

Bpi (𝜃(t ), t ) = Bpi (𝜃(t )) + Dp(𝜃(t ))Δp(𝜃(t ), t )Epbi (𝜃(t )).

(17b)

The cost functions are defined by

Jv (u1,… , uN , v, x0, k)

= 𝔼

[
∫

∞

0

[‖z (t )‖2 − 𝛾2‖v(t )‖2
]
dt
|||𝜃(0) = i

]
, (18a)

Ji (u1,… , uN , v,Δ,Δp, x0, k)

= 𝔼

[
∫

∞

0

[
xT (t )Qi (𝜃(t ))x(t )

+ uT
i

(t )Ri (𝜃(t ))ui (t )
]
dt
|||𝜃(0) = i

]
, (18b)

where Qi (k) = QT
i (k) > 0, Ri (k) = RT

i (k) > 0, i = 1,… , N .
The robust SOF Nash strategy in non-cooperative dynamic

games with multiple players is investigated here, which is an
extension of the existing results reported in [11, 12, 22]. The
problem under consideration is formulated as follows.

For a given disturbance attenuation level, 𝛾 > 0, find a robust
SOF Nash strategy set (u∗1 ,… , u∗

N
) and a worst case disturbance

v∗(t )

ui (t ) = u∗i (t ) = K ∗
i (𝜃(t ))y(t ) = K ∗

i (𝜃(t ))Ci (𝜃(t ))x(t )

= K ∗
i (𝜃(t ))

[
Ci0(𝜃(t )) 0 ⋯ 0 Cii (𝜃(t )) 0 ⋯ 0

]
x(t )

= K ∗
i (𝜃(t ))

(
Ci0(𝜃(t ))x0(t ) +Cii (𝜃(t ))xi (t )

)
, (19a)

v(t ) = v∗(t ) = F ∗
𝛾 (𝜃(t ))x(t ), (19b)

where xi (t ) denotes the state of each player with the following structure:

x(t ) =

⎡⎢⎢⎢⎢⎣
x0(t )

x1(t )

⋮

xN (t )

⎤⎥⎥⎥⎥⎦
, xi (t ) ∈ ℝni , i = 0, 1,… , N,
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such that

(i) when u∗i (t ) = K ∗
i (𝜃(t ))Ci (𝜃(t ))x(t ) is applied, inequality

(10) holds;

(ii) when v∗(t ) = F ∗
𝛾 (𝜃(t ))x(t ) is applied, u∗i (t ) satisfies the fol-

lowing inequality

J̄i (u
∗
1 ,… , u∗

i−1, u∗i , u∗
i+1,… , u∗

N
, v∗, x0, k)

≤ J̄i (u
∗
1 ,… , u∗

i−1, ui , u∗
i+1,… , u∗

N
, v∗, x0, k), (20)

where i = 1,… , N , and

sup
Δ,Δp

Ji (u1,… , uN , v∗,Δ,Δp, x0, k) = J̄i (u1,… , uN , v∗, x0, k).

The robust Nash equilibrium refers to that the upper bound
of the cost functions, J̄i (u1,… , uN , v∗, x0, k), satisfies (20)
against unmodeled deterministic uncertainties and stochastic
uncertainties.

3.1 Disturbance attenuation conditions

Consider the following closed-loop UMJLSS and the cost func-
tion

dx(t ) =

[(
Ā(𝜃(t )) + D(𝜃(t ))Δ(𝜃(t ), t )Ēa (𝜃(t ))

)
x(t )

+ Bv (𝜃(t ))v(t )

]
dt +

[
Āp(𝜃(t ))

+ Dp(𝜃(t ))Δp(𝜃(t ), t )Ēpa (𝜃(t ))
]
x(t )dw(t ), (21a)

z (t ) = H̄ (𝜃(t ))x(t ), (21b)

Jv (K1(k)C1(k)x,… , KN (k)CN (k)x, v, x(0), k)

= 𝔼

[
∫

∞

0

[‖z (t )‖2 − 𝛾2‖v(t )‖2
]
dt

||| 𝜃(0) = i

]
, (21c)

where

Ā(k) := A(k) +
N∑

m=1

Bm (k)Km (k)Cm (k),

Ēa (k) := Ea (k) +
N∑

m=1

Ebm (k)Km (k)Cm (k),

H̄ (k) :=

⎡⎢⎢⎢⎢⎢⎣

H (k)

G1(k)K1(k)C1(k)

⋮

GN (k)KN (k)CN (k)

⎤⎥⎥⎥⎥⎥⎦
,

Āp(k) := Ap(k) +
N∑

m=1

Bpm (k)Km (k)Cm (k),

Ēpa (k) := Epa (k) +
N∑

m=1

Epbm (k)Km (k)Cm (k).

The following matrix inequalities and the worst case disturbance
are obtained based on Lemma 1:

F (W , K1(k),… , KN (k),𝛼(k), 𝛽(k),𝜇(k), k) ≤ 0, (22a)

DT
p (k)W (k)Dp(k) ≤ 𝜇(k)Inb

, (22b)

v(t ) = v∗(t ) = F ∗
𝛾 (𝜃(t ))x(t ) = 𝛾−2BT

v (𝜃(t ))W (𝜃(t ))x(t ),

(22c)

where W (k) > 0, k = 1,… , d , and

F (W , K1(k),… , KN (k),𝛼(k), 𝛽(k),𝜇(k), k)

:= W (k)Ā(k) + ĀT (k)W (k)

+ 𝛼−1(k)W (k)D(k)DT (k)W (k) + 𝛼(k)ĒT
a (k)Ēa (k)

+ H̄ T (k)H̄ (k) +
d∑

l=1

𝜋kl W (l ) + ĀT
p (k)W (k)Āp(k)

+ 𝛽−1(k)ĀT
p (k)W (k)Dp(k)DT

p (k)W (k)Āp(k)

+ (𝛽(k) + 𝜇(k))ĒT
pa (k)Ēpa (k)

+ 𝛾−2W (k)Bv (k)BT
v (k)W (k).

Note the following matrix substitutions in UMJLSS (8):

A(𝜃(t ), t ) ← Ā(𝜃(t )) + D(𝜃(t ))Δ(𝜃(t ), t )Ēa (𝜃(t )),

Ap(𝜃(t ), t ) ← Āp(𝜃(t )) + Dp(𝜃(t ))Δp(𝜃(t ), t )Ēpa (𝜃(t )),

H (𝜃(t )) ← H̄ (𝜃(t )).

It should be noted that the following inequality are satisfied

‖z‖2
2 ≤ 𝛾2‖v‖2

2 + xT (0)W ∗(k)x(0). (23)

3.2 Robust Nash strategy set

Different from the Pareto strategy for cooperative games inves-
tigated in [22], the Nash strategy for non-cooperative games is
considered here. The Nash strategy can be decided indepen-
dently by each player, which leads to a more complex strategic
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structure than that of the Pareto strategy. The cost function in
(18a) is changed accordingly as follows:

Ji (u1,… , uN , F ∗
𝛾 (𝜃(t ))x,Δ,Δp, x0, k)

= 𝔼

[
∫

∞

0
xT (t )Q̄i (𝜃(t ))x(t )dt

||| 𝜃(0) = i

]
, (24)

where

Q̄i (k) := Qi (k) +C T
i (k)K T

i (k)Ri (k)Ki (k)Ci (k).

Hence, the following matrix inequalities can be established
based on the previous result in [11, 12, 22] and Lemma 2:

Gi (W (k), Pi , K1(k),… , KN (k), 𝜆i (k), 𝜖i (k),𝜓i (k), k) ≤ 0,

(25a)

DT
p (k)Pi (k)Dp(k) ≤ 𝜓i (k)Inb

, (25b)

where k = 1,… , d , and

Gi (W (k), Pi , K1(k),… , KN (k), 𝜆i (k), 𝜖i (k),𝜓i (k), k)

:= Pi (k)Â(k) + ÂT (k)Pi (k) + 𝜆−1
i (k)Pi (k)D(k)DT (k)Pi (k)

+ 𝜆i (k)ĒT
a (k)Ēa (k) +

d∑
l=1

𝜋kl Pi (l ) + ĀT
p (k)Pi (k)Āp(k)

+ 𝜖−1
i (k)ĀT

p (k)Pi (k)Dp(k)DT
p (k)Pi (k)Āp(k)

+ (𝜖i (k) + 𝜓i (k))ĒT
pa (k)Ēpa (k) + Q̄i (k),

Â(k) := Ā(k) + Bv (k)F𝛾 (k) = Ā(k) + 𝛾−2Bv (k)BT
v (k)W (k).

Furthermore, the following cost upper bounds can be
obtained:

Ji (u1,… , uN , F ∗
𝛾 (𝜃(t ))x,Δ,Δp, x0, k)

≤ J̄i (u1,… , uN , F ∗
𝛾 (𝜃(t ))x, x0, k)

= 𝔼[xT (0)Pi (𝜃(0))x(0) || 𝜃(0) = i] = Tr[MPi (k)], (26)

where 𝔼[x(0)xT (0)] = M .
The robust SOF Nash strategy can be obtained by solving the

upper bound minimization problem of the cost functions (26)
as follows.

Theorem 1. If P∗
i > 0, K∗

i , 𝝀
∗
i and 𝝐∗i are the solutions of the upper

bound minimization problem of the cost functions (26), then there exist con-

stants Si > 0, i = 1,… , N such that P∗
i > 0, K∗

i , 𝝀
∗
i and 𝝐∗i satisfy

the following NSAEs in (27):

Gi (W
∗(k), P∗

i , K ∗
1 (k),… , K ∗

N
(k), 𝜆∗i (k), 𝜖∗i (k),𝜓i (k), k) = 0,

(27a)

Γ1
i (Si ,W

∗(k), P∗
i (k), K ∗

1 (k),… , K ∗
N

(k),

𝜆∗i (k), 𝜖∗i (k),𝜓i (k), k) = 0, (27b)

Γ2
i (P∗

i (k), K ∗
1 (k),… , K ∗

N
(k),

𝜆∗i (k), 𝜖∗i (k),𝜓i (k), k) = 0, (27c)

𝜆∗i (k) := Γ3
i (P∗

i (k), Si (k), K ∗
1 (k),… , K ∗

N
(k), k)

:=

√√√√√√Tr
[
DT (k)P∗

i (k)Si (k)P∗
i (k)D(k)

]
Tr
[
Ēa (k)Si (k)ĒT

a (k)
] , (27d)

𝜖∗i (k) := Γ4
i (P∗

i (k), Si (k), K ∗
1 (k),… , K ∗

N
(k), k)

:=

√√√√√√ Tr
[
Ēpa (k)Si (k)ĒT

pa (k)
]

Tr
[
DT

p (k)P∗
i (k)Āp(k)Si (k)ĀT

p (k)P∗
i (k)Dp(k)

] ,

(27e)

where

Γ1
i (Si ,W (k), Pi (k), K1(k),… , KN (k), 𝜆i (k), 𝜖i (k),𝜓i (k), k)

:= Â(k)Si (k) + Si (k)ÂT (k)

+ 𝜆−1
i (k)[Si (k)Pi (k)D(k)DT (k) + D(k)DT (k)Pi (k)Si (k)]

+

d∑
l=1

𝜋lkSi (l ) + Āp(k)Si (k)ĀT
p (k)

+ 𝜖−1
i (k)[Āp(k)Si (k)ĀT

p (k)Pi (k)Dp(k)DT
p (k)

+ Dp(k)DT
p (k)Pi (k)Āp(k)Si (k)ĀT

p (k)] + M,

Γ2
i (Pi (k), K1(k),… , KN (k), 𝜆i (k), 𝜖i (k),𝜓i (k), k)

:=
(

BT
i (k)Pi (k)+𝜆i (k)ET

bi
(k)Ē−ia (k)+BT

pi (k)Pi (k)Ā−ip(k)

+ 𝜖−1
i (k)BT

pi (k)Pi (k)Dp(k)DT
p (k)Pi (k)Ā−ip(k)

+ (𝜖i (k) + 𝜓i (k))ET
pbi

(k)Ē−ipa (k)
)

Si (k)C T
i (k)

+
(
𝜆i (k)ET

bi
(k)Ebi (k) + BT

pi (k)Pi (k)Bpi (k)

+ 𝜖−1
i (k)BT

pi (k)Pi (k)Dp(k)DT
p (k)Pi (k)Bpi (k)

+ (𝜖i (k) + 𝜓i (k))ET
pbi

(k)Epbi (k)

+ Ri (k)
)

Ki (k)Ci (k)Si (k)C T
i (k),

Ēa (k) := Ē−ia (k) + Ebi (k)Ki (k)Ci (k),

Āp(k) := Ā−ip(k) + Bpi (k)Ki (k)Ci (k),

Ēpa (k) := Ē−ipa (k) + Epbi (k)Ki (k)Ci (k),
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In this case,

ui (t ) = u∗i (t ) = K ∗
i (𝜃(t ))Ci (𝜃(t ))x(t ), (28)

constitutes a robust SOF Nash strategy set. Furthermore, the upper bound

of the cost functions under the robust SOF Nash strategy set (28) is mini-

mized; inequality (20) is satisfied.

Proof. First, we study the following upper bound optimization
problem of cost functions (26):

min
ui

J̄i (u
∗
1 ,… , u∗

i−1, ui , u∗
i+1,… , u∗

N
, v∗, x0, k)

= min
Pi (k),Ki (k),𝜆i (k),𝜖i (k)

Tr[MPi (k)], (29)

where u∗m , m = 1,…,i − 1, i + 1,…,N , are the fixed strategy.
Under inequality constraint (25a), the existence condi-

tions can be established using the KKT condition [25]. The
Lagrangian, i (k), is defined as

i (k) = i (Si , Pi , K1,… , KN ,𝝀i (k), 𝜷 i (k), k)

= Tr [Pi (k)] +
d∑

l=1

Tr [Si (l )

× Gi (W (l ), Pi , K1(l ),… , KN (l ), 𝜆i (l ), 𝜖i (l ),𝜓i (l ), l )],

(30)

where Si ( j ) is the symmetric matrix of the Lagrange multiplier,
and we set 𝜃(0) = k.

It is clear that Tr [Pi (k)] and Gi are continuously differen-
tiable at point q∗i (k). Using the KKT conditions results in

Gi (W (k), Pi , K1(k),… , KN (k), 𝜆i (k), 𝜖i (k),𝜓i (k), k) ≤ 0,

(31a)

Si (k) ≥ 0, Si (k)Gi (W (k), Pi , K1(k),… , KN (k), 𝜆i (k),

𝜖i (k),𝜓i (k), k) = 0, (31b)

𝜕i (k)

𝜕Pi (k)
= Γ1

i (Si , Pi (k), K1,… , KN , (31c)

𝜆i (k), 𝜖i (k),𝜓i (k), k) = 0, (31c)

1
2
⋅
𝜕i (k)

𝜕Ki (k)

=
(

BT
i (k)Pi (k) + 𝜆i (k)ET

bi
(k)Ēa (k) + BT

bi
(k)Pi (k)Āp(k)

+ 𝜖−1
i (k)BT

bi
(k)Pi (k)Dp(k)DT

p (k)Pi (k)Āp(k)

+ (𝜖i (k) + 𝜓i (k))ET
pbi

(k)Ēpa (k)

+ Ri (k)Ki (k)Ci (k)
)

Si (k)C T
i (k) = 0, (31d)

𝜕i (k)

𝜕𝜆i (k)
= −𝜆−2

i
(k)Tr[DT (k)Pi (k)Si (k)Pi (k)D(k)]

+ Tr[Ēa (k)Si (k)ĒT
a (k)] = 0, (31e)

𝜕i (k)

𝜕𝜖i (k)
= Tr[DT

p (k)Pi (k)Āp(k)Si (k)ĀT
p (k)Pi (k)Dp(k)]

− 𝜖−2
i (k)Tr[Ēpa (k)Si (k)ĒT

pa (k)] = 0. (31f)

Based on (31c) which are generalized cross-coupled stochastic
Sylvester equations (GCCSSEs), (27b) can be obtained. Under
the assumption of (27), the GCCSSEs in (31c) have unique
solutions Si (k) = S∗i (k) > 0. Therefore, (27a) holds, from (31b).
Furthermore, from (31d), the strategy set of (27c) can be com-
puted. Next, (27d) and (27e) can be derived, respectively, from
(31e) and (31f). Hence, inequality (20) can be obtained since the
following inequality holds

J̄i (u
∗
1 ,… , u∗

i−1, u∗i , u∗
i+1,… , u∗

N
, v∗, x0, k)

= min
ui

J̄i (u
∗
1 ,… , u∗

i−1, ui , u∗
i+1,… , u∗

N
, v∗, x0, k)

≤ J̄i (u
∗
1 ,… , u∗

i−1, ui , u∗
i+1,… , u∗

N
, v∗, x0, k). (32)

Second, for the H∞ constraint, if matrix inequalities (22a) and
(22b) hold, we can obtain inequality (28) by applying Lemma 1.
This completes the proof of Theorem 1. □

Remark 1. Notably, it is not easy to confirm the feasibility of
the derived conditions (27). It is also very difficult to solve
the NSAEs. Therefore, an effective and efficient computational
procedure needs to be developed.

4 HEURISTIC ALGORITHM

In order to determine the robust SOF Nash strategy set in
(28) and obtain the worst case disturbance in (22c), we need
to solve the high-order and complex NSAEs in (27) and the
matrix inequality in (22a). In general, equations (27) need to
be solved using an algorithm, for example, Newton’s method.
In this paper, we consider the reduction of the computation to
obtain a solution set by using LMI. By introducing the LMI opti-
mization technique, there is no need to solve equations for opti-
mization variables such as (27d) and (27e), and simplification of
the algorithm can be achieved. This is very useful for multivari-
able optimization problems in this paper.

First, the following optimization problem is solved.

min
W ,𝜶 ,𝜷

d∑
l=1

Tr[W (l )], s.t. (22a), (22b). (33a)
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Let us define the Lagrangian, (k), is defined as

(k) = (T ,W i ,𝜶 (k), 𝜷 (k), k),

=

d∑
l=1

Tr[W (l )] +
d∑

l=1

Tr [T (l ),

× F (W , K1(k),… , KN (k),𝛼(k), 𝛽(k),𝜇(k), k)], (34)

where T ( j ) is the symmetric matrix of the Lagrange multiplier.
Using the KKT condition, the following NSAEs are estab-

lished as the necessary condition.

F (W , K1(k),… , KN (k),𝛼(k), 𝛽(k),𝜇(k), k) = 0, (35a)

Λ1(T (k), K1(k),… , KN (k),𝛼(k), 𝛽(k),𝜇(k), k) = 0, (35b)

𝛼(k) := Λ2(T (k), K1(k),… , KN (k), k)

=

√√√√√√Tr
[
DT (k)W (k)T (k)W (k)D(k)

]
Tr
[
Ēa (k)T (k)ĒT

a (k)
] , (35c)

𝛽(k) := Λ3(T (k), K1(k),… , KN (k), k)

=

√√√√√√Tr
[
DT

p (k)W (k)Āp(k)T (k)ĀT
p (k)W (k)Dp(k)

]
Tr
[
Ēpa (k)T (k)ĒT

pa (k)
] ,

(35d)

where

Λ1(T (k), K1(k),… , KN (k),𝛼(k), 𝛽(k),𝜇(k), k)
:= T (k)[Ā(k) + 𝛼−1(k)D(k)DT (k)
+ 𝛾−2Bv (k)BT

v (k)W (k)]T + [Ā(k) + 𝛼−1(k)D(k)DT (k)

+ 𝛾−2Bv (k)BT
v (k)W (k)]T (k) +

d∑
l=1

𝜋lkT (l )

+ Āp(k)T (k)ĀT
p (k)

+ 𝛽−1(k)[Dp(k)DT
p (k)W (k)Āp(k)T (k)ĀT

p (k)

+ Āp(k)T (k)ĀT
p (k)W (k)Dp(k)DT

p (k)] + In.

Hence, the LMI-based iterative algorithm is given as follows.
Step 1. Set the initial values: choose K

(0)
i (k), 𝜆

(0)
i (k), 𝜀

(0)
i (k), i =

1,… , N , and F
(0)
𝛾 (k), k = 1,… , d , such that closed-loop UMJLSS

(16a) is EMSS, and select appropriate constants 𝜓i (k) and 𝜇(k).
Step 2-1. Solve the following NSAEs for P

(n+1)
i (k), i = 1,… , N ,

k = 1,… , d :

Gi

(
W (n)(k), P

(n+1)
i

, K
(n)

1 (k),… , K
(n)

N
(k),

𝜆
(n)
i (k), 𝜖

(n)
i (k),𝜓i (k), k

)
= 0. (36)

Step 2-2. Solve the following GCCSSEs for S
(n+1)
i (k), k =

1,… , d :

Γ1
i

(
S

(n+1)
i ,W (n)(k), P

(n+1)
i (k), K

(n)
1 ,… , K

(n)
N

,

𝜆
(n)
i (k), 𝜖

(n)
i (k),𝜓i (k), k

)
= 0. (37)

Step 2-3. Solve the following cross-coupled linear equations for

K
(n+1)

i (k), i = 1,… , N , k = 1,… , d :

Γ2
i

(
P

(n+1)
i (k), K

(n+1)
1 ,… , K

(n+1)
N

,

𝜆
(n+1)
i (k), 𝜖

(n+1)
i (k),𝜓i (k), k

)
= 0. (38)

Step 2-4. Compute the following equations for 𝜆
(n+1)
i (k) and

𝜖
(n+1)
i (k), i = 1,… , N , k = 1,… , d :

𝜆
(n+1)
i (k) = Γ3

i (P
(n+1)

i (k), S
(n+1)
i (k),

K
(n+1)

1 (k),… , K
(n+1)

N
(k), k), (39a)

𝜖
(n+1)
i (k) = Γ4

i (P
(n+1)

i (k), S
(n+1)
i (k),

K
(n+1)

1 (k),… , K
(n+1)

N
(k), k). (39b)

Step 3-1. Solve the following equations for W (n+1)(k), k = 1,… , d :

F (W (n+1), K
(n+1)

1 (k),… , K
(n+1)

N
(k),

𝛼(n)(k), 𝛽(n)(k),𝜇(k), k) = 0. (40)

Step 3-2. Solve the following equations for T (n+1)(k), k =
1,… , d :

Λ1(T (n+1)(k), K
(n+1)

1 (k),… , K
(n+1)

N
(k),

𝛼(n)(k), 𝛽(n)(k),𝜇(k), k) = 0. (41)

Step 3-3. Compute the parameters for 𝛼(n+1)(k) and 𝛽(n+1)(k),
k = 1,… , d :

𝛼(n+1)(k) = Λ2(T (n+1)(k), K
(n+1)

1 (k),… , K
(n+1)

N
(k), k), (42a)

𝛽(n+1)(k) = Λ3(T (n+1)(k), K
(n+1)

1 (k),… , K
(n+1)

N
(k), k). (42b)

Step 4. Set

P
(n+1)

i (k) ← 𝜂(n)P
(n+1)

i (k) + (1 − 𝜂(n) )P
(n)

i (k), (43a)

W (n+1)(k) ← 𝜂(n)W (n+1)(k) + (1 − 𝜂(n) )W (n)(k), (43b)
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where 𝜂(n) ∈ (0, 1] is chosen at each iteration to ensure that the following

inequality holds.

𝒥(n+1) < 𝒥(n), (44)

with 𝒥(n) :=
∑N

m=1

∑d

l=1 Tr[P
(n)

m (l )] +
∑d

l=1 Tr[W (n)(l )].
Step 5. If the iterative algorithm consisting of Steps 2–4 converges, we

have obtained the iterative solutions for the NSAEs (27) and inequal-

ity (22a); otherwise, if the number of iterations reaches a preset threshold,

declare that there is no strategy set. Stop.
We are now in the position to state the following

theorem.

Theorem 2. The above-mentioned algorithm achieves the conver-

gence if there exists 𝜂(n) ∈ (0, 1] such that for all n ∈ ℕ, 𝒥(n+1) <
𝒥(n). Furthermore, a converged solution set satisfies the NSAEs

(27).

Proof. It is easy to observe that the algorithm always generates
a non-increasing sequence of the cost. That is, the following
inequalities hold.

0 < ⋯ < 𝒥(n+1) < ⋯ < 𝒥(n) < 𝒥(0). (45)

Therefore, since the sequence {𝒥(n)} is decreasing, and the lower
bound exists from (36), the bounded and monotonic sequences
are convergent. □

The procedure of (43) in Step 4 is based on the KM itera-
tion [26, 27]. The proposed algorithm achieves robust conver-
gence by combining the non-increasing cost sequence and the
KM iteration. However, if we omit the iterative procedure in
(43), this algorithm is reduced to the Picard iteration scheme,
which may not converge.

Remark 2. Setting the initial condition in both algorithms is a
difficult task. In fact, a method of trial and error for selecting
the initial condition such that the closed loop system is stable
cannot be avoided. As shown in [28], it has been reported that
most existing algorithms require the determination of an initial
stabilizing gain, which can be extremely challenging. Therefore,
further investigation is required to choose a less restrictive ini-
tial gain.

To overcome such difficulty, the optimality for the upper
bounds of the cost functions in Theorem 1 is attained by
solving very large-scale NSAEs resulting from the KKT con-
dition. Furthermore, to avoid the derivation of the New-
ton’s method for solving the NSAEs as a batch process, we
have applied the KM iteration, which guarantees the con-
vergence. Moreover, it is reasonable to implement the pro-
posed numerical scheme compared with the iterative tech-
nique based on the LMI because the optimal cost bound is
computed.

Remark 3. In recent years, a SOF framework for a class of
network of switched heterogeneous linear vehicle systems with

asynchronous switching in terms of an LMI-based control pro-
tocol design scheme has been discussed, as in [29]. However,
the established consensus strategy depends on the slack matri-
ces, and how to choose slack matrices was not discussed in
detail. Another important difference from [29] is that our prob-
lem formulation includes the cost function for all players. As a
result, by choosing the weights of the cost functional by the con-
trol designer, the appropriate transient response and the optimal
bound of the cost could be obtained. Conversely, the SOF con-
trol strategy in [29] is only guaranteed exponential stability with
an H∞ disturbance attenuation.

5 NUMERICAL EXAMPLE

To demonstrate the effectiveness of the preceding theoretical
results, a practical numerical example based on the Williams–
Otto process [30, 31] is provided in this section. The Williams–
Otto process is widely known as a non-isothermal continuous
stirred-tank reactor (CSTR) that includes three parallel reac-
tions. It is also a typical chemical process widely adopted in the
control engineering literature. For example, it was used in [31,
32] as a delay framework from which the detailed physical char-
acteristics and related deterministic equations of the system can
be found.

The details of the CSTR are given below. The reactor is
fed by two reactant feed rates FA and FB . Upon entering the
chemical reactor, raw materials A and B take part in three
chemical reactions that produce a product P along with some
other by-products. Product P is produced after some impurities
are separated. In this situation, it is required that the reactors
be controlled by catalyst feeds u1(t ) := 𝛿FA∕6VR and u2(t ) :=
𝛿FB∕6VR, which are related to raw materials A and B, respec-
tively. Moreover, it is assumed that control input u2(t ) is subject
to failures with the following two modes of operation: i) undam-
aged (𝜃(t ) = 1) and ii) opening reduced to 40% of the desired
value due to the probabilistic damage or failure (𝜃(t ) = 2) [33].
Thus, the system can be represented as a stochastic system gov-
erned by an UMJLSS, indicating that the failure mode can be
regarded as a jumping mode.

On the other hand, we consider that 5% of the state
coefficient can be represented by a Wiener process due to
stochastic perturbations. In addition, it is assumed that the
uncertainties (3) have 1% variation from nominal matrices
partially.

Finally, the following stochastic system is considered
that combines the non-isothermal continuous stirred-
tank reactor (CSTR) [31, 32] with the Markov jumps
[33].

dx(t ) =

[
A(𝜃(t ), t )x(t )+

2∑
m=1

Bm (𝜃(t ), t )um (t ) + Bv (𝜃(t ))v(t )

]
dt

+

[
Ap(𝜃(t ), t )x(t )+

2∑
m=1

Bpm (𝜃(t ), t )um (t )

]
dw(t ), (46)
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where

x(t ) =

⎡⎢⎢⎢⎣
x1(t )
x2(t )
x3(t )
x4(t )

⎤⎥⎥⎥⎦, x(0) =

⎡⎢⎢⎢⎣
0.4
1.5
2.5
0.5

⎤⎥⎥⎥⎦,

d = 2,

[
𝜋11 𝜋12
𝜋21 𝜋22

]
=

[
−0.3 0.3

0.7 −0.7

]
,

A(𝜃(t )) =

⎡⎢⎢⎢⎣
−4.93 −1.01 0 0
−3.20 −5.30 −12.8 0
6.40 0.347 −32.5 −1.04

0 0.833 11.0 −3.96

⎤⎥⎥⎥⎦,

B1(𝜃(t )) =

⎡⎢⎢⎢⎣
1
0
0
0

⎤⎥⎥⎥⎦, B2(1) =

⎡⎢⎢⎢⎣
0
1
0
0

⎤⎥⎥⎥⎦, B2(2) =

⎡⎢⎢⎢⎣
0

0.6
0
0

⎤⎥⎥⎥⎦,

Bv (𝜃(t )) =

⎡⎢⎢⎢⎣
0.1
−0.2
−1
0.5

⎤⎥⎥⎥⎦, D(𝜃(t )) =

⎡⎢⎢⎢⎣
0.1
0
0
0

⎤⎥⎥⎥⎦,

Ea (𝜃(t )) = Epa (𝜃(t )) =
[
0.1 0.1 0 0

]
,

Ebi (𝜃(t )) = Epbi (𝜃(t )) = 0, i = 1, 2, Ap(𝜃(t )) = 0.05A(𝜃(t )),

Bpi (𝜃(t )) = 0.05Bi (𝜃(t )), Dp(𝜃(t )) = D(𝜃(t )),

C1(𝜃(t )) = C2(𝜃(t )) =
[
0 0 0 1

]
,

H (𝜃(t )) =
[
0 1 0 1

]
, 𝜃(t ) = 1, 2.

It can be assumed that only the deviation of x4(t ) in the weight
composition of the product P is measured in the CSTR example
[31]. Due to this restriction, the SOF strategy is considered and
the strategy can be easily implemented in practice. Therefore, it
is worth pointing out that although each player can only access
the current state x4(t ) due to the form of Ci (𝜃(t )), i = 1, 2, the
proposed SOF strategy can be designed from a practical point
of view, unlike [18, 22]. On the other hand, the problem and
the algorithm in this paper are more complex than those in [19],
since [19] has no deterministic uncertainties and presents a small
number of optimized parameters compared to the number in
this paper.

The weight matrices of cost functions are given by

R1(𝜃(t )) = R2(𝜃(t )) = 1,

Q1(𝜃(t )) = 4I4, Q2(𝜃(t )) = 2I4, 𝜃(t ) = 1, 2.

The control problem for the feed rates FA and FB can be
regarded as the Prisoner’s Dilemma. The Nash equilibrium [34]
can be used. Namely, it can be formulated as the dynamic Nash
game problem and it is a novel challenging task to determine the
complicated decision scenarios in the CSTR.

Next, we select 𝛾 = 2, 𝜓i (k) = 𝜇(k) = 0.1, k = 1, 2. Using
the proposed recursive algorithms with the initial conditions:

K
(0)

i (k) = 1, 𝜆
(0)
i (k) = 𝜀

(0)
i (k) = 1, F

(0)
𝛾 (k) = 𝛾−2BT

v (k),

i = 1, 2, k = 1, 2,

we obtain the following robust Nash H∞ constrained strategy
set in (19):

K1(1) =
[
−1.6146 × 10−1

]
, K2(1) =

[
−3.0858 × 10−2

]
,

K1(2) =
[
−1.6226 × 10−1

]
, K2(2) =

[
−1.9944 × 10−2

]
,

F𝛾 (1) =
[
−3.5381 × 10−3 9.7358 × 10−3

−3.6819 × 10−4 1.0132 × 10−2
]
,

F𝛾 (2) =
[
−3.5456 × 10−3 9.7522 × 10−3

−3.6430 × 10−4 1.0164 × 10−2
]
.

It should be noted that the proposed algorithm in Section 4
converges after 52 iterations with an accuracy of 10−13 with
𝒥(n+1) < 𝒥(n) for all n, and the strategy set was computed. On
the other hand, although the existing results based on the LMI
strict constraint optimization problem [17, 21, 23] converged
with an accuracy of 10−6, it is observed that the same algorithm
did not converge with an accuracy of 10−7. It is worth pointing
out that, unlike the LMI-base iterative scheme [17, 21, 23], the
proposed iterative algorithm based on the nonlinear simultane-
ous algebraic equations (NSAEs) achieves a robust convergence
as a novel contribution.

Second, the cost bounds obtained by using the proposed KM
iteration technique are as follows:

Tr[MP1(1)] = 1.574825065494579,

Tr[MP1(2)] = 1.575341323917184,

Tr[MP2(1)] = 0.7846434452403350,

Tr[MP2(2)] = 0.7847635972147170

The cost bounds obtained by using the existing iterative tech-
nique based on the LMI are as follows:

Tr[MP1(1)] = 1.574825120177673,

Tr[MP1(2)] = 1.575341378601194,

Tr[MP2(1)] = 0.7846435058395878,

Tr[MP2(2)] = 0.7847636578146988

From the numerical results, it is easily found that using the KM
iteration technique results in the more precise cost bounds com-
pared to the cost bounds obtained by using the iterative tech-
nique based on the LMI [17, 21, 23].
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FIGURE 1 State and mode trajectories of the Williams–Otto model

Finally, Figure 1 shows how the system states and mode vary
with time. In the case that the deterministic time-varying uncer-
tainty is Δ(t ) = sin t as a special case, all the states converge to
the equilibrium point.

Remark 4. It should be noted that the lower bound of the dis-
turbance attenuation level 𝛾 strongly depends on the system
parameters. On the other hand, the selection of the parameters
𝜓i (k) and 𝜇(k) requires a method of trial and error or a relatively
large value may be selected. In general, the lower bound for the
existence of a strategy set is obtained by performing a bisection
method in advance under the condition that the non-targeted
parameters are fixed. Subsequently, the control designer may
consider the usage in the range exceeding these values. In this
paper, when the parameter 𝛾 is fixed as 𝛾 = 2, the lower bound
of the parameters are 𝜓i (k) = 𝜇(k) = 0.0078787. Conversely,
when the constraint parameters is fixed as 𝜓i (k) = 𝜇(k) = 0.01,
the lower bound of the disturbance attenuation level is 𝛾 =
0.25388 in this example. It should be noted that the lower bound
of the disturbance attenuation level means the infimum of 𝛾 in
which the strategy set exists.

6 CONCLUSION

In this article, the robust SOF Nash strategies have been studied
for the UMJLSSs. As a result, it is ensured that a robust SOF
Nash strategy set can be established even if each player can
only use his/her local or private SOF information. The influ-
ence of deterministic uncertainties and external disturbances
can be attenuated simultaneously using the proposed strategy
set, which can be computed by solving the NSAEs. Different
from the recent studies in [11, 12], the robust SOF Nash strate-
gies are considered. Moreover, the robust Nash strategy of non-
cooperative games is derived, as compared with the Pareto sub-
optimal strategy in [22]. The heuristic algorithm is to solve the
NSAEs. Although the corresponding NSAEs are highly com-
plex and nonlinear, their solutions can be computed by using
the proposed algorithms in a relatively straightforward man-
ner. A novel convergence method is introduced combined with
the KM iteration to attain robust convergence of the proposed

algorithms. A simple example is provided to validate the effec-
tiveness of the proposed algorithms.

In H∞ control theory, it is assumed implicitly that the ini-
tial condition of the system is zero. Therefore, the possibil-
ity of the initial condition being nonzero in Lemma 1 has not
been considered. Unfortunately, there was no discussion on this
issue in this paper, despite its importance. The robustness of
the performance of the controller under such a situation is a
challenging issue. On the other hand, the computational cost
of the proposed method increases drastically when the number
of modes increases. In this case, we need to consider a differ-
ent designing concept from the root, for example, designing a
mode-independent SOF strategy. These issues will be studied in
future works.

Finally, the proposed approach is expected to be extended to
the UMJLSSs so that the transition probabilities of the Marko-
vian process include partially uncertain and/or unknown terms
[35]. Although the proposed control strategy cannot be applied
to a more general case, the extended problem is more challeng-
ing than the UMJDSSs considered in this paper. This issue will
be addressed in future investigations.
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APPENDIX A

This appendix presents the convergence of KM iterative algo-
rithm for nonexpansive mappings [26, 27].

Let H be a real Hilbert space, and C a closed convex sub-
set of H . Recall that mapping T : C → C is said to be non-
expansive if ‖T x − T y‖ ≤ ‖x − y‖ for all x, y ∈ C . A point,
x ∈ C , is a fixed point of T provided T x = x. Denote by
F (T ) := {x : T x = x} the set of fixed points of T . For an arbi-
trary chosen point, x1 ∈ C , construct sequence {xn}, where xn

is defined iteratively for each positive integer n ≥ 1 by

xn+1 = T xn, (47a)

xn+1 = (1 − 𝜂n ) + 𝜂nT xn, (47b)

where 𝜂n ⊂ [0, 1] is a sequence of relaxation parameter.
The sequences, {xn}, generated by (47a) and (47b) are called

Picard and KM iteration, respectively. It has been shown that
the Picard iteration (47a) for a non-expansive mapping, T , may
fail to converge to a fixed point of T , even if T has a unique
fixed point. However, KM iteration (47b) for 𝜂n = 0.5 con-
verges strongly to a fixed point of T .
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