
SCIENCE CHINA
Information Sciences

August 2021, Vol. 64 182302:1–182302:21

https://doi.org/10.1007/s11432-020-3094-6

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Energy-efficient URLLC service provisioning in
softwarization-based networks

Mengjie LIU1, Gang FENG1* & Weihua ZHUANG2

1National Key Laboratory on Communications, University of Electronic Science and Technology of China,

Chengdu 610054, China;
2Department of Electrical and Computer Engineering, University of Waterloo, Waterloo N2L 3W8, Canada

Received 23 May 2020/Revised 27 August 2020/Accepted 20 October 2020/Published online 9 July 2021

Abstract Software defined networking (SDN) and network function virtualization (NFV) as new tech-

nologies have shown great potential in improving the flexibility of resource management for network service

provisioning. As traffic dynamics may cause violation of rigid service requirements, especially for ultra-

reliability and low-latency communication (URLLC) service, it is essential yet challenging to dynamically

allocate an appropriate amount of resources (including computation, transmission, and energy) to network

functions (NFs) in softwarization-based networks. Meanwhile, with the explosion of high resource-demanding

applications, the energy efficiency of communication networks deserves significant attention. In this paper,

we investigate the dynamic network function resource allocation (NFRA) problem with aim to minimize long-

term energy consumption while guaranteeing the requirements of URLLC services in softwarization-based

networks. To cater for efficient on-line NFRA decisions, we design a distributed dynamic NF resource alloca-

tion (DDRA) algorithm based on dynamic value iteration (DVI). The convergence of the DDRA algorithm

is proved. We conduct simulation experiments based on real-world data traces for performance evaluation.

The numerical results demonstrate that the proposed DDRA algorithm achieves around 25% and 20% energy

consumption reduction when compared with two benchmark algorithms, respectively.

Keywords softwarization-based networks, SDN/NFV, URLLC, energy efficiency, dynamic resource allo-

cation, distributed value iteration

Citation Liu M J, Feng G, Zhuang W H. Energy-efficient URLLC service provisioning in softwarization-based

networks. Sci China Inf Sci, 2021, 64(8): 182302, https://doi.org/10.1007/s11432-020-3094-6

1 Introduction

Ultra-reliability and low-latency communications (URLLC) as a new service category has the potential
to enable a broad range of real-time services, such as e-healthcare, self-driving cars, mission critical
applications, industrial automation, and augmented reality (AR) [1]. However, the quality enhancement
of URLLC services (i.e., reliability and latency) over the limited network resources necessitates new
technical solutions.

Software defined networking (SDN) and network function virtualization (NFV) as new technologies
facilitate network function (NF) deployment for service providers. SDN, which is very suitable to work
with NFV, bears the responsibility of managing applications running on common commodity hardware
instead of proprietary hardware. SDN could greatly reduce the cost and increase the flexibility and
programmability of NFs in the networks due to the separation of control from the data forwarding [2].
A specific network service can be provisioned by an ordered sequence of required NFs, called service
function chain (SFC) [3]. For example, the network service to support AR applications may need a
sequence of NFs such as firewall, filtering, security, image, and voice processing. An SFC is orchestrated
on a subset of nodes connected by links in the physical/substrate network. NF instances created for an
SFC are allocated a suitable amount of physical resources on substrate nodes (including computation and
transmission resources), and interconnected by specifying forwarding rules, so that the packets of service
flows are processed following the SFC.

*Corresponding author (email: fenggang@uestc.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3094-6&domain=pdf&date_stamp=2021-7-9
https://doi.org/10.1007/s11432-020-3094-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3094-6
https://doi.org/10.1007/s11432-020-3094-6

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:2

On the other hand, energy efficiency has proved to be a cost-effective deployment goal in the commu-
nication networks, as it determines the cooling costs, financial gains, processing load balancing, and node
reliability, of the commodity servers in the substrate network [4]. To meet the low-latency and ultra-
reliability requirements of URLLC services, sufficient resources for computing and transmission should
be allocated, which may conflict with energy-efficient network deployment targets. Actually, the trade-off
between the requirements of URLLC services and the energy efficiency of the system has received exten-
sive attention in wireless networks [5]. The wired core networks are responsible for the major parts of
the consumed energy in the communication networks, because the core networks with stronger compu-
tation and storage capability than wireless networks install and run a large amount of NFs demanding
high computation capacity [6]. In this study, we consider striking the balance between the transmission
requirements of URLLC services and energy efficiency in the softwarization-based core networks.

Specifically, network function resource allocation (NFRA) for URLLC services faces two main chal-
lenges. One is how to analyze the reliability of URLLC services in the core networks and design an
analytical model. Packet loss may happen when incoming packets overflow from the waiting queue of an
NF, which could influence the reliability of URLLC services. Hence, the packet loss rate should also be
taken into account in the core networks. The dynamics of incoming packets increase the complexity of
analysis. The other is that the computational complexity of the centralized NFRA algorithms becomes
extremely high with an explosive increase in the number of users and data usage [7–9]. As we know,
the distributed algorithm can efficiently decrease the time complexity of algorithms. However, the con-
vergence of a distributed algorithm is hard to be guaranteed, which needs careful corporation between
distributed computing nodes.

In this paper, we propose a distributed dynamic NFRA algorithm (DDRA) by investigating the dy-
namic NFRA problem which is formulated as an infinite horizon Markov decision process (MDP) with
the aim to minimize long-term average energy consumption in softwarization-based networks. The con-
vergence of DDRA is proved in this paper. To improve the latency performance of URLLC services, we
consider a general SFC framework [10], where parallel NF processing is allowed. Our main contributions
can be summarized as follows:

• By modeling the dynamic traffic as a Markov chain model, we propose the packet loss rate model of
URLLC services. We derive the closed-form expression of packet loss rate, which is used as an indicator
to measure the service reliability. Specifically, we define the packet loss rate at an NF module as the
probability that the queue length takes on a value larger than the maximum queue size [11, 12].

• A global optimal algorithm based on a value iteration algorithm is derived. As low-complexity on-line
algorithms are of key importance in a dynamic environment, we further develop DDRA that is distributed
value iteration (DVI) based. The convergence property of DDRA is proved to guarantee the effectiveness
of DDRA as an on-line resource allocation mechanism.

• We conduct simulations to evaluate the performance of DDRA. Numerical results, based on the
real-world trace from Google data center, demonstrate that the proposed DDRA algorithm achieves
high energy efficiency in comparison with two benchmarks, whose solutions refer to CoordVNF [13] and
BFDSU [14], respectively.

The remainder of this paper is organized as follows. We present a brief overview of related studies in
Section 2. Section 3 describes the system model and the problem formulation. Section 4 presents the
proposed solutions to the problem. We provide the numerical results as well as discussions in Section 5,
and finally conclude this study in Section 6.

2 Related work

Performing dynamic NFRA is necessary for an SDN/NFV based network by flexibly scaling resources
up or down for SFCs, as the packet arrival rate increases or decreases respectively. Meanwhile, the need
for high resource utilization and low energy consumption in the system motivates research for dynamic
NFRA mechanisms, which roughly fall into two categories based on whether the approach is reactive
or proactive to a dynamic environment [8]. In the following, we provide a summary of on-line resource
allocation mechanisms in these two categories.

The reactive algorithms make instantaneous decisions at a specific time based on detected work-
load [9, 14–17]. The resource reconfiguration and NF function migration need to be performed when
the quality of service (QoS) requirements are violated. In this situation, the energy consumption for

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:3

migrating NF modules needs to be taken into account, which can be comparable to or even dominant in
the energy consumption for packet forwarding and packet processing. Nguyen et al. [15] proposed a novel
market-based resource allocation framework with the aim of computing a market equilibrium solution
and allocating multiple types of resources of fog nodes to services in a fair and efficient manner. Zhou et
al. [16] proposed a dynamic energy-efficient resource allocation scheme to make instantaneous resource
allocation decisions in wireless networks at specific time instants rather than over a long period. The
aforementioned algorithms are implemented by redeploying/migrating virtual network function modules
to guarantee QoS requirements of services in a reactive way, which may lead to a high migration energy
consumption.

The proactive NFRA mechanisms allocate network resources for SFCs with packet rate (resource
demand) prediction [8,9,18] or without this prediction [7,19] in the near future based on historic data. In
this paper, we consider proactive NFRA with packet rate prediction based on a real-world dataset. Various
centralized on-line proactive approaches have been investigated in [7–9, 19]. However, the centralized
algorithms suffer from high computational complexity when the number of SFCs is moderately large due
to an explosive increase in the number of users and data usage.

To reduce the computational complexity, Han et al. [18] proposed an approximate MDP-based dy-
namic virtual machine (VM) management algorithm to minimize the long-term resource cost with the
consideration of VM migration. However, the relationship between NFs in an SFC is not considered. In
this paper, we propose a distributed NFRA algorithm to reduce the computation complexity and consider
the general SFC framework with parallelizable NFs, whereas in the traditional SFC framework, NFs are
chained in a sequential way. Furthermore, existing studies on resource allocation for NFs mainly focus
on QoS requirements in terms of latency [20]. Different from existing studies, we consider meeting QoS
requirements in terms of both end-to-end delay as well as packet loss rate.

3 System model and problem formulation

In this section, we describe the network model, traffic model (packet rate prediction model), energy
consumption model, end-to-end delay model, and packet loss rate estimation model. Based on these
models, we formulate the dynamic NFRA problem. Time is partitioned into intervals of constant duration.
For clarity, we list the major parameters and variables in Table 1.

3.1 Network model

We consider an SDN/NFV based network model, as illustrated in Figure 1, where a control platform lies
between the services and the substrate network. Based on the information collected from the substrate
network and services (QoS demands, resource capability, and traffic information), the controller(s) in
the control platform computes an NFRA solution of a control policy which determines the assignment
of processing cores, the NF mapping, and the link mapping policies for each service. A virtual node in
an SFC is mapped onto a substrate node. A virtual link is mapped onto a substrate link or a set of
substrate links. In the substrate network, incoming packets look up a cascade of flow switch tables in the
main flow switch, the NF switch, and the physical switch. The main flow switch table is preconfigured as
the first table of the data path to forwarding data packets coming from different nodes. The NF switch
table forwards data for the packet queue of different NFs. The physical switch delivers data on specific
physical channels or substrate network links. In this way, packet forwarding and routing decisions are
completely separated.

We model the substrate network as a weighted directed graph G = (V ,L), where V = {v|1 6 v 6 V }
and L = {l|1 6 l 6 L} are two sets containing substrate nodes and substrate links respectively. The set
of switches is denoted by C = {c | 1 6 c 6 C}. Each node has a switch used for packet forwarding, i.e.,
V = C. Once an NF is mapped onto node v, the physical switch in node v will be active for forwarding
packets.

Moreover, we consider a general framework of SFCs, called generalized SFC (GSFC), in the dynamic
NFRA problem to meet rigid delay requirements of services. We define the connection relationship
among the required NFs by a GSFC as a service function graph. Specifically, in the service function
graph of a GSFC, the NF pairs that have no dependency can be executed in parallel, e.g., Firewall and
Monitor in Figure 2. Actually, at the service layer, 41.5% of existing NF pairs have no dependency and
can be executed in parallel without causing extra resource overhead [21]. In this paper, we consider a

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:4

Table 1 Parameters and variables

Notation Parameter

Bn,t Bandwidth cost of virtual link ιn in time-interval t

Dl Propagation of one packet traversing substrate link l ∈ L

Ev Maximum available energy provided by node v ∈ V in each time-interval

Fi Set of NFs of GSFC i.

Gi A weighted directed graph of general SFC (GSFC) i

In Maximum queue size of NF Fn

Ll Maximum available bandwidth of substrate link l ∈ L

Li Set of virtual links of GSFC i

Mn Set of feasible cores for NF Fn

Nr Number of NFs in sub-chain P r
i,j

Q Set of all possible packet arrival rate

Ri Maximum packet loss rate of GSFC i

S1 Energy consumption of an active port of a switch

S2 Energy consumption of the chassis of a switch

St
i,n Event that the buffer of NF Fn in GSFC i is not full when a packet arrives at the buffer of Fn in time-interval t

Ti Maximum end-to-end latency of GSFC i

Ut
i,n Event that there are U packets in the buffer of NF Fn ∈ Fi in time-interval t

X Number of GSFCs in the network

Y Number of NFs in the network

νn Migration volume (memory size) of NF Fn

ϑ Energy consumption per GB of migration NF volume

Notation Variable

mt Core assignment action in time-interval t

kt Virtual link mapping action in time-interval t

ωt NF mapping action in time-interval t

π Control policy

ςn,t Binary variable indicating whether NF Fn migrates to another substrate node or not in time-interval t

ξl,t Binary variable indicating whether substrate link l ∈ L is active or not in time-interval t

ζc,t Binary variable indicating whether switch c ∈ C is active or not in time-interval t

general model for NF, which covers any type of NF. The GSFC model thus covers any type of URLLC
applications. Let i be the index of GSFCs. In GSFC i, let Fi and Li be the set of NFs and the set of
virtual links respectively. We model GSFC i as a weighted directed graph Gi which is an ordered sequence
of sub-graphs as shown in Figure 2, i.e., Gi = {Pi,j | 1 6 j 6 Ji}, where Pi,j is the jth sub-graph of Gi, and
Ji represents the maximum number of sub-graphs in Gi. Sub-graph Pi,j is composed of Rij sub-chains,
i.e., Pi,j = {P r

i,j |1 6 r 6 Rij}. Sub-chain P r
i,j consists of an ordered sequence of NFs and virtual links,

i.e., P r
i,j = {F1, ι1, . . . , Fn, ιn, . . . , FNr−1, ιNr−1, FNr |Fn ∈ Fi, ιn ∈ Li}, where Nr denotes the number

of NFs in sub-chain P r
i,j . Note that the start and end NFs of all sub-chains in the same sub-graph are

always equipped with a merging module and are usually called merging-NFs. The backups/copies of the
same packet processed by the parallel sub-chains merge at the merging-NF into one packet, which is then
sent to the next node/NF [21]. In the example of Figure 2, VPN and Transcoder are the Merging-NFs
of sub-chain (VPN, Firewall, Transcoder) and sub-chain (VPN, Monitor, Transcoder). Without loss of
generality, sub-graph Pi,j can represent one sub-chain (e.g., P1,2 in Figure 2), such that the conventional
SFC can be considered as a special case of the GSFC.

3.2 Traffic model

As in some existing studies [18,22,23], Google cluster data traces can be used to simulate real long-term
data traces of VMs and NFs. Here, we use the workload trace of a task in Google cluster to model the
workload trace of an NF in the substrate network. Google cluster trace records the resource utilization
of the machines in Google’s data-center in the form of jobs and task events. A job consists of multiple
tasks which are interconnected by specific forwarding rules. Each task represents a program to run on a
single machine. As the relationship between an SFC and its NFs is similar to that between a job and its
tasks, we use the workload trace of a task to model the workload trace of an NF [18, 24].

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:5

...

QoS demands

Controller

Substrate network

Control policy
Resource capability,

traffic information

……
Cores

Substrate
node

Physical switch to
transmit packets

 Switch module

Incoming
flow

Service request

NF
switch

Flow
switch

Packet queue

Substrate

link

E-health AR Smart home Smart devices

Figure 1 (Color online) An overview of the system model.

Firewall

Monitor TranscoderVPN Billing

The service function graph of a video service
Sub-graph

P1,1

P1,2

Figure 2 (Color online) An example of the service function graph of a video service.

By analyzing the characteristics of the trace in Google cluster [24], we use the finite-state stationary
Markov chain model to estimate the temporal correlation of the packet arrival rate of an NF. A Markov
chain is a stochastic model in which among a set of possible events the probability of each event depends
only on the state in the previous time-interval. Note that we define the packet arrival rates at NFs for a
short time interval. While the packet arrival rates at NFs may not strictly follow a Markov chain, it shares
some of the common features of a Markov chain [18]. In Subsection 5.1, we provide experimental results
to validate the Markov chain model used as an approximation to capture dynamics of the real-world
trace.

Based on this observation, we define the transition matrix of workload traces (the packet arrival rates)
of all NFs. Let X denote the number of SFCs in the system, λ′

i,n (packet/s) the packet arrival rate of

NF Fn and λ′
i = (λ′

i,1, . . . , λ
′
i,Y) ∈ Q, where Y =

∑X
i=1 |Fi| is the number of NFs in the system and Q

the set of all possible λ′
i. Note that λ′

i indicates a state of the packet arrival rates at NFs in the system,
and there are in total |Q| possible such states, where | · | denotes the cardinality of a set. We can obtain
the following transition matrix of the packet arrival rates at NFs in time-interval t:

Tt =

T t
1,1 T t

1,2 · · · T t
1,|Q|

T t
2,1 T t

2,2 · · · T t
2,|Q|

...
...

...

T t
|Q|,1 T t

|Q|,2 · · · T t
|Q|,|Q|

,

where T t
k,l represents the transition probability (kernel) from state λ′

l in time-interval t to state λ′
k in

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:6

time-interval t+1. Based on the assumption that the packet arrival rate at one NF follows a Markov chain
mode, the event that the average number of packets arriving at the NF in one time slot is dependent on
that of the same NF in the previous time slot. These kinds of events (state transitions) are independent
of each other since they are considered in the time dimension based on the Markov chain model, no
matter for the same NF or different NFs. As the service flows in different SFCs are isolated via service
function chains, the packet flow rates of different SFCs are independent of each other. Above all, the
packet arrival rate of one NF at time-interval t only depends on the packet arrival rate of this NF at
time-interval t− 1. According to Burke’s theorem [25], the output of an M/M/1 queue with arrival rate
λ is a Poisson process of rate λ. Note that the length of the output packet of the NFs can be scaled up or
down linearly by some NFs (e.g., an encryptor or a filter). Then, we can assume that the packet arrival
rates at the NFs in an SFC also follow a Markov chain. Hence, the transition kernel is given by

T t
k,l = Pr (Rt+1 = λ′

k|Rt = λ′
l)

=
Y∏

n=1

Pr
(
λn,t+1 = λ′

k,n

∣∣λn,t = λ′
l,n

)

=

Y∏

n=1

T t
k,l,n, (1)

where Pr(·) denotes the probability mass function; Rt = (λ1,t, . . . , λY,t) denotes the vector of packet
arrival rates of NFs; and λn,t denotes the packet arrival rate of NF Fn in time-interval t. We denote by
R = {r1, r2, . . . , ra} the set of all possible packet arrival rates, i.e., λn,t ∈ R.

3.3 Energy consumption model

Without loss of generality, we assume that the length of the time interval is 1 unit of time. Hence, the time
interval is omitted in the following energy consumption model. The consumed energy of the system mainly
consists of computational, forwarding, and migration energy [26]. A virtual NF module in a GSFC can
be mapped to one core or multiple cores to implement multi-core processing in a substrate node [10,27].
We denote the core assignment action for all NFs in time-interval t by set mt = {mn,t|1 6 n 6 Y } ,
where mn,t ∈ Mn denotes the number of cores assigned to NF Fn in time-interval t and Mn denotes the
set of feasible cores for NF Fn. Recall that Y denotes the number of NFs in the system. Specifically, the
computational energy consumption in time-interval t is modelled as

Pc(mt) =

Y∑

n=1

pc(mn,t), (2)

where the approximation model pc(mn,t) = mn,t(Sidle + (Smax − Sidle)dn(mn,t)λn,t) [18], widely adopted
in related studies, is used to evaluate the computational energy consumption of NF Fn; Sidle and Smax

denote the power consumption when the core is in the idle state and when the core in the fully-loaded
state (100% utilization of CPU), respectively; Function dn(·) maps the number of cores m to dn(m) which
is the time duration of NF Fn processing a packet on m cores. Specifically, dn(m) = dn(1)/Sn(m), where
speed function Sn(m) describes how much faster NF Fn processing a packet on m cores when compared
with dn(1) according to Amdahl’s law [27]. More details about Sn(·) are given in Section 5. Moreover,
dn(mn,t)λn,t indicates the CPU utilization of NF Fn in time-interval t.

The forwarding energy consumption is mainly determined by the chassis in switches and by the number
of active ports [28]. As substrate link ls,v ∈ L requires two ports between substrate node s and node v,
the total energy consumption of the switches in the system in time-interval t is given by

Ps(ξt, ζt) = 2S1ξt · e
T + S2ζt · e

T, (3)

where S1 is the amount of energy consumption of each active port of a switch; S2 is the amount of energy
consumption of the chassis of a switch; e is an all-ones row vector of dimension L; ξt = [ξl,t]1×L is a vector
of binary variable where ξl,t = 1 when link l ∈ L is active in time-interval t, and ξl,t = 0 otherwise; and
ζt = [ζc,t]1×C is a vector of binary variables where ζc,t = 1 when switch c ∈ C is active in time-interval
t, and ζc,t = 0 otherwise.

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:7

As the NF migration energy increases with the migrated traffic volume of the NF [26], the migration
energy consumption of NFs in the system in time-interval t is given by

Pm(ςt) = ϑν · ςTt , (4)

where ϑ is the energy consumption per GB of the migration NF volume; ν = (ν1, . . . , νY) is the vector
of migration traffic volume where νn is the memory size of NF Fn; and ςt = (ς1,t, . . . , ςY,t) is a vector of
binary variable where ςj,t = 1 indicates NF Fj migrates to another different substrate node in time-interval
t, and ςj,t = 0 otherwise.

The energy consumption in node v in time-interval t according to (2) and (3) is given by

ev,t(mt, ωt) =

Y∑

n=1

pc(mn,t)ωn,v,t + S1av + S2

(
1−

Y∏

n=1

(1− ωn,v,t)

)
, (5)

where the NF mapping action in time-interval t is represented by set ωt = {ωn,v,t | 1 6 n 6 Y } with
ωn,v,t = 1 if NF Fn is mapped to substrate node v ∈ V in time-interval t, and ωn,v,t = 0 otherwise; av is
the number of active links connecting node v and is determined by ξt. Note that ξt is directly determined
by the link mapping action kt = {ki,t|1 6 i 6 X} in time-interval t, i.e.,

ξl,t = 1−
X∏

i=1

∏

ιn∈Li

(1− ki,n,l,t), l ∈ L, (6)

where the link mapping action for GSFC i in time-interval t is represented by a set of binary variable,
i.e., ki,t = {ki,n,l,t|ιn,n+1 ∈ Li} in which ki,n,l,t = 1 indicates that virtual link ιn,n+1 ∈ Li is mapped to
substrate link l ∈ L in time-interval t, and ki,n,l,t = 0 otherwise.

3.4 Delay model

Let the end-to-end delay of a packet traversing a GSFC be the duration between its generation at the
source node and its arrival at its sink node, which consists of propagation, queuing, and processing delays.
An accurate end-to-end delay model is analyzed in [3], where the traffic multiplexing is considered for
achieving multiplexing gain. For simplicity, the multiplexing procedure is omitted here. In GSFC, as
the copies of packets processed by the parallel sub-chains merge at the Merging-NF, the maximum delay
of all sub-chains of one sub-graph decides the delay of the sub-graph. Recall that Ji is the number of
sub-graphs in Gi and Rij is the number of sub-chains in sub-graph P r

i,j . Thus, the delay is given by

ti(mi,t, ki,t) =

Ji∑

j=1

max
16r6Rij

∑

ιn∈P r
i,j

Dlki,n,l,t +

Nr−1∑

n=1

(dn(mi,n,t) + qn(mi,n,t))

+ d|Fi|(mi,|Fi|,t) + q|Fi|(mi,|Fi|,t), (7)

where the core assignment action for GSFC i in time-interval t is represented by set mi,t = {mi,n,t|Fn ∈
Fi} in which mi,n,t indicates the number of cores assigned to NF Fn ∈ Fi in time-interval t; the queuing
delay of a packet in the waiting queue of NF Fn assigned with m cores is given by qn(m); the propagation
delay of one packet traversing substrate link l is fixed and denoted by Dl; d|Fi|(m) and q|Fi|(m) denote
the processing delay and queuing delay of one packet at the last NF F|Fi| assigned with m cores in GSFC
i, respectively.

In addition, the queuing delay is affected by the time-varying traffic load. For simplicity, we consider
Poison packet arrivals at NFs in each time interval. The transition probability function of Poison packet
arrival rate at an NF in two adjacent time intervals is provided by the Markov chain model (1) and
the method of predicting this probability is shown in (15). We model the queuing delay for one packet
arriving at NF Fn as the expected value

qn(m) =
λi,n,tdn(m)

λi,n,t(1− λi,n,tdn(m))
, (8)

where λi,n,t is Poison packet arrival rate at NF Fn in time-interval t and λi,n,tdn(m) = ρn(m) is the
traffic intensity. Furthermore, to ensure the processing system stability, we have ρn(m) < 1.

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:8

3.5 Estimation of packet loss rate

An NF module in the substrate node serves incoming packets one at a time from the front of the queue
based on the first-come first-served discipline. According to the most popular queue management scheme,
i.e., Droptail [11, 12], an arrival packet is dropped when the buffer is full, as the buffer size (storage
capacity) of each NF module is limited in the substrate nodes. Let In be the buffer size of NF Fn. For
clarify, let St

i,n denote the event that the buffer of NF Fn in GSFC i is not full when a packet arrives
at the buffer of Fn in time-interval t and U t

i,n the event that there are U t
i,n packets in the buffer of NF

Fn ∈ Fi in time-interval t.
Let P(·) be a probability measure. We denote by ri,t(mi,t) the loss rate of a packet traversing GSFC i

in time-interval t, which can be expressed as

ri,t(mi,t)
(a)
= 1− P

(
⋂

Fn∈Fi

St
i,n

)
(b)
= 1−

∏

Fn∈Fi

P(St
i,n). (9)

In (9), the labelled equalities follow from the facts that: (a) the packet loss happens when the queue of
NF Fn ∈ Li is full and a packet arrives at the queue of Fn in time-interval t; (b) St

i,n, Fn ∈ Li are disjoint
events.

According to the M/M/1 queue model, U t
i,n is geometrically assigned with parameter 1 − ρ′ where

ρ′ = ρn(mi,n,t) = λi,n,tdn(mi,n,t) and λi,n,t is the packet arrival rate of NF Fn ∈ Fi in time-interval t.
Then we have

P(U t
i,n) = (1− ρ′) (ρ′)U

t
i,n . (10)

Based on P(U t
i,n), we obtain the cumulative distribution function:

P(St
i,n) = P(U t

i,n 6 In) =

In∑

k=0

(1 − ρ′)ρ′
k
= 1− ρ′

In+1
. (11)

Therefore, once the core assignment action (mi,t) for GSFC i in time-interval t is determined, the
packet loss rate of GSFC i can be obtained from (9)–(11). Note that the methods of fast link/node
failure recovery have been studied in previous work, such as [29]. Therefore, in this study, we only
consider the potential packet congestion in NF modules in the packet loss rate estimation model, without
considering any potential link failure and node failure in the substrate network.

3.6 Problem formulation

Based on the aforementioned models, we now formulate the dynamic NFRA problem as an MDP. The
MDP can be modelled as a 5-tuple (S,AX ,Pr, R,A), where S is a finite set of states as given in Definition 1;
A

X is a finite set of actions; Pr(S′|S,A) = Pr(St+1 = S′|St = S,At = A) is the transition probability
that action A in state St will lead to state St+1; R is the instantaneous cost function as S → R; and
A(Si) is the finite set of actions available from state Si.

Definition 1. The system state in time-interval t is uniquely specified by St = (Rt,Υt) ∈ S where Rt

determines the packet arrival rates at the NFs in the system andΥt = {Υ1
v,t,Υ

2
v,t,Υ

3
v,t|v ∈ V } determines

the number of active cores (Υ1
v,t), active ports (Υ2

v,t), and active chassis (Υ3
v,t) in switches.

A solution to an MDP is a control policy which maps states to actions to minimize the long-term average
cost. Let At denote the NFRA action set at time interval t, which consists of the core assignment, virtual
link mapping and NF mapping actions at time interval t in the system, i.e., At = (mt, kt, ωt).

Definition 2. The control policy π is a mapping from the system states to NFRA action set At, i.e.,
π(St) = At = (mt, kt, ωt) ∈ A(St), where A(St) is the set of actions available at state St.

Aiming to minimize the long-term average energy consumption while guaranteeing end-to-end delay
and packet loss rate requirements of each SFC, we formulate a dynamic NFRA problem as Problem 1
(P1).

P1 : min
π

P (π) = lim
T→ ∞

Eπ

[
1

T

T∑

t=1

p(t)

]
(12)

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:9

... ...

Time

interval

t

−

1

Time interval t

Time

interval

 t+1

S
t

S
t+1Pr π(S

t
)

MLE
Centralized/distributed

value iteration

Figure 3 The illustration of the solution to P1.

s.t. ρn(mn,t) 6 1, ∀t, n, (12a)

ti(mi,t, ki,t) 6 Ti, ∀t, i, (12b)

ri,t(mi,t) 6 Ri, ∀t, i, (12c)

bl,t(kt) 6 Ll, ∀t, l, (12d)

cv,t(mt, ωt) 6 Cv, ∀t, (12e)

ev,t(mt, ωt) 6 Ev, ∀t, (12f)

ki,n,l,tωi,n,v,tωi,n+1,v′,t = 1, l ∈ {lv,v1 , . . . , lvk,v′}q, ∀t, i, (12g)

mn,t ∈ Mn, kn,t, ωn,t ∈ {0, 1}, ∀Fn,

where P (π) is the long-term average energy consumption under control policy π; p(t) is the instantaneous
energy consumption in time-interval t, with p(t) = Pc(mt) + Ps(ξt, ζt) + Pm(ςt); Eq. (12a) guarantees
the stability of processing system (core utilization needs to be less than 1); Eq. (12b) guarantees the
delay requirement for GSFC i; Eq. (12c) guarantees the packet loss rate requirement for GSFC i and
the maximum packet loss rate required by GSFC i is denoted by Ri ∈ (0, 1). As the capacity of the
substrate nodes and links is limited, we have (12d)–(12f) where Ll, Cv, and Ev denote the maximum
available bandwidth, the maximum number of cores and the maximum available energy of substrate link
l and node v in each time-interval respectively. The bandwidth consumption of substrate link l is given
by bl,t(kt) =

∑X
i=1

∑
ιn∈Li

Bn,tkn,l,t, where Bn,t is the bandwidth consumption of virtual link ιn in time-

interval t. The core consumption of substrate node v is given by cv,t(mt, ωt) =
∑X

i=1

∑Y
n=1 mi,n,tωi,n,v,t,

where ωi,n,v,t = 1 if NF Fn of GSFC i is mapped to substrate node v ∈ V in time-interval t, and
ωi,n,v,t = 0 otherwise. Constraint (12g) ensures the connection of adjacent NFs in the same SFC, where
{lv,v1 , . . . , lvk,v′}q indicates the qth feasible path between substrate node v and node v′. The set of feasible
paths can be found by the depth-first searching algorithm [30].

4 On-line algorithm design and analysis

4.1 Overview of the solutions

In this subsection, we first present an optimal solution to the dynamic NFRA problem which is a non-
convex optimization problem. The high complexity of the optimal solution by using the centralized value
iteration inspires us to develop a low-complexity distributed dynamic NFRA (DDRA) algorithm which
is DVI based. The convergence property of the DVI is proved to guarantee the effectiveness of DDRA.
Figure 3 shows the main idea of the solution to P1, where each time interval includes two time windows.
In the first time window, the maximum likelihood estimation sliding window method (MLE) [31] uses
historical traffic data to generate the transition probability matrix of system states, i.e., Pr ∈ R

|S|×|S|. In
the second time window, the centralized/distributed value iteration method makes use of Pr generated
by MLE to calculate the control policy, π(St). Note that an appropriately short time interval shall be
set to catch the dynamics of traffic. The centralized value iteration with an exponential time complexity
to compute the utility function and thus cannot be used as an on-line algorithm. In contrast, the DDRA
algorithm with low complexity to compute the utility function can be used as an on-line mechanism to
match the short time interval.

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:10

4.2 Optimal value iteration

As P1 is formulated as a model-based infinite horizon average MDP, the optimal policy can be obtained by
solving the equivalent Bellman’s equation [32]. Dynamic programming is a very powerful tool in solving
optimal control problems. Considering the discrete variables in this paper, we use the value iteration as a
dynamic programming algorithm to effectively solve Bellman’s equation, which is the base for obtaining
the optimal solution to an MDP, such as P1.

Lemma 1 (Equivalent Bellman’s equation). If scalar η and a vector of the utility values, i.e., U =
(U(S1),U(S2), . . . ,U(S|S|)) satisfy the Bellman’s equation (13) for P1, where the instantaneous power
consumption p(Si) is obtained when the system is at state Si, then η is the optimal average energy
consumption for all Si ∈ S, i.e., η = minπP (π) = P (π∗). Furthermore, policy π

∗ is optimal if the
minimum is obtained in the R.H.S of (13).

η + U(Si) = min
A∈A(Si)

p(Si) +

∑

Sj∈S

Pr(Sj |Si, A)U(Sj)

 . (13)

Proof. See [32].
Given control policy π, we need to learn the one-step transition probability matrix Pr ∈ R

|S|×|S|, where
element Pr (St|St−1,π(St−1)) at row m and column l is derived as follows:

Pr (St|St−1,π(St−1)) = Pr(Rt,Υt|Rt−1,Υt−1,π(St−1))

= Pr (Rt|Rt−1) Pr(Υt|Υt−1,π(St−1))

(a)
= Pr (Rt = λ′

i|Rt−1 = λ′
l)

= T t
m,l

=

Y∏

n=1

T t
m,l,n. (14)

In (14), label (a) follows the fact that Pr(Υt|Υt−1,π(Sl)) = 1 according to the deterministic NF
migration, core allocation and link allocation actions.

Using MLE [31] to estimate the transition probability of the packet arrival rate of NF Fn, we have

T t
m,l,n =

∑t
k=t−e 1[rn(k − 1) = λ′

m|rn(k) = λ′
l]∑t

k=t−e 1[rn(k − 1) = λ′
m]

, (15)

where 1[·] is the indicator function which is equal to 1 if the condition holds, and 0 otherwise; e is the
length of the sliding window of MLE.

After generating transition probability matrix Pr, we can compute the optimal values of utility vector
U∗ = (U∗(S1),U

∗(S2), . . . ,U
∗(S|S|)) by using the value iteration with a dynamic programming mapping

T as Uk+1(Si) = TUk(Si), ∀Si ∈ S, which can be expressed as

TUk(Si) = min
A∈A(Si)

p(Si) +

∑

Sj∈S

Pr(Sj |Si, A)U
k(Sj)

 . (16)

In (16), the utility value U will eventually converge to the optimal utility value U∗ which satisfies the
Bellman’s equation, i.e., η + U∗ = TU∗ [32].

The Bellman’s equation [18] is NP-hard by using the dynamic programming mapping T , as it needs
an exponential time to compute the utility function. Specifically, T in (16) takes O(|S|) operations for
calculating the R.H.S of (16), where |S| is the number of states in S. Then, it takes O(|AX | log |AX |)
for the sorting to get the minimal utility value. Hence, it takes O1 = O(|S||AX | log |AX |) operations to

obtain the minimal utility values, where |S| = X3Y 3|R||L| and |A| = X2Y 2|V ||Mn|
∑Y

i=1 C
i−1
Y−1C

i
Ng

. The

number of mapping solutions is
∑Y

i=1 C
i−1
Y−1C

i
Ng

for a GSFC with Y NFs on one feasible path with Ng

nodes [10]. Unfortunately, O1 is high even for a problem with moderate number of SFCs. For example,

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:11

if the number of GSFCs X equals 5, and |A| equals 20, we have |AX | = (|A|)X = 205. Therefore, the
dimension of the action space increases exponentially with the number of GSFCs and needs exponential
time to calculate the utility function. This inspires us to further design an efficient algorithm to obtain
a suboptimal coordination policy of all GSFCs in the following.

4.3 Distributed value iteration mechanism

As mentioned before, the solution of Bellman’s equation corresponds to the global optimal solution
of Problem 1. However, the centralized value iteration method cannot avoid high-dimensional action
space of optimal control problems. In [33], a distributed iterative dynamic programming algorithm is
proposed, in which the control policy of only one user is updated to optimize the cooperation policy
of a multiple-users system. Inspired by the approach, we propose a distributed value iteration method,
called DVI. We intuitively explain the key idea of DVI as follows. In our framework, the control policy
of individual GSFCs is updated in a distributed dynamic iterative manner. Each GSFC maintains and
updates a current global policy by policy sharing with all other GSFCs to ensure the feasibility and global
optimality of the selected actions.

There exist essential differences between our proposed DVI and the algorithm in [33]. The latter
requires constructing initial utility values for all states to ensure the monotonically decreasing property
of the utility value, which is required to ensure the convergence of the algorithm in [33]. However, it is
rather time-consuming to find such initial utility values for all states. To overcome this obstacle, inspired
by the idea of relative value iteration [34], DVI randomly chooses a reference state, Sr, which can be any
fixed state in space S. In each iteration, utility value U(S) for state S is replaced by U(S)− U(Sr). The
convergence property of DVI can be proved by setting the initial utility values for all states to zero.

Before giving the distributed iteration functions, we define some notations. Let X = {1, . . . , X} be
the set of SFCs in the system. For i ∈ X, let ai = (mi,t, ki,t, ωi,t) ∈ Ai be the action for GSFC i, where
Ai is the available action set for SFC i. The control policy is given by A = (a1, . . . , aX) ∈ A

X . Let

Ay0
= {ay | y ∈ X, y 6= y0}. Let T̃ denote the dynamic programming mapping as R → R. Let function

δ(S,A) be defined as S× A
X → S with δ(S,A) = S′.

Specifically, we modify the value function (16) into a set of sub-functions, i.e., {ui
t, i ∈ X}. Given state

Sr, for S ∈ S, θ0 ∈ X and ι = 0, 1, . . ., the DVI is given by

aθ0ι (S) = arg min
aθ0∈A0(S)

{
p(S) +

∑

S′∈S

Pr
(
S′
∣∣S, aθ0ι (S), Aθ0(S)

)
uθ0
ι (S′)

}
, (17)

uθ0
ι+1(S) = T̃ uθ0

ι (S) = min
aθ0∈A0(S)

{
p(S) +

∑

S′∈S

Pr
(
S′
∣∣S, aθ0 , Aθ0(S)

)
uθ0
ι (S′)

}
, (18)

uθ0
ι+1(S) = uθ0

ι+1(S)− uθ0
ι+1(Sr), ∀S ∈ S, (19)

where A0(S) is the set of feasible actions of SFC θ0 at state S and S′ = δ(S, aθ0ι (S), Aθ0(S)). Then, we
have uθ0

ι+1(S) = p(S) +
∑

S′∈S
Pr (S′|S, aθ0ι (S), Aθ0(S)).

For ι → ∞, we define uθ0
∞(S) = limι→∞ uθ0

ι (S) and aθ0∞(S) = limι→∞ aθ0ι (S). Then, we construct a
control sequence as the current global policy Aθl(S) = [a1l (S), . . . , a

X
l (S)], where

ayl (S) =

{
ayl−1(S), y 6= θl,

ay∞(S), y = θl.
(20)

For ∀l = 1, 2, . . ., θl ∈ X and ι = 0, 1, . . ., the DVI is given by

aθlι (S) = arg min
aθl∈Al(S)

{
p(S) +

∑

S′∈S

Pr
(
S′
∣∣S, aθlι (S), Aθl(S)

)
uθl
ι (S′)

}
, (21)

uθl
ι+1(S) = T̃ uθl

ι (S) = min
aθl∈Al(S)

{
p(S) +

∑

S′∈S

Pr
(
S′
∣∣S, aθl , Aθl(S)

)
uθl
ι (S′)

}
, (22)

uθl
ι+1(S) = uθl

ι+1(S)− uθl
ι+1(Sr), ∀S ∈ S, (23)

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:12

where S′ = δ(S, aθlι (S), Aθl(S)). For ι → ∞, we define uθl
∞(S) = limι→∞ uθl

ι (S) and aθl∞(S) = limι→∞

aθlι (S). We can construct a control sequence as the current global policy Aθl+1
(S) = [a1l+1(S), . . . , a

X
l+1(S)]

according to (20).

Remark 1. (1) For ∀i ∈ X, let ai0(S) be the initial action at state S and Aθ0(S) = (a10(S), . . . , a
Y
0 (S))

be the initial control sequence. The initial control sequence, Aθ0(S), satisfies the delay and stability
constraints (12a)–(12c); (2) Note that aθl should also satisfy constraints (12d)–(12f). If aθl = a′ ∈
Al(S) violates any of (12d)–(12f), we denote the instantaneous energy consumption in time-interval t by
pt(S

′) = M , where S′ = δ(S, a′, Aθl(S)),M ∈ R
+, and M is a very large number which satisfies M ≫ Es;

(3) For given state Sr, we have uθl
ι (Sr) = 0; (4) We set uθ0

ι=0(S) = 0 for ∀S ∈ S.
Based on the above preparations, we now summarize the DDRA algorithm as Algorithm 1. In DDRA

for the time slotted system as illustrated in Figure 3, the controller initializes the utility function,
uθ0
ι=0(S) = 0, for all individual GSFCs. Algorithm 1 mainly consists of two steps, i.e., MLE and DVI. At

the beginning of a time interval, the controller makes use of the MLE and the historical data to predict
the transition kernel. Next, the DVI makes use of the MLE result to compute the control policy for each
GSFC in time-interval t and determine the control action for each SFC. The lower bound of the minimum
number of iterations for sub-function ui

t in each time-interval is determined by the computation precision
ξ > 0.

Algorithm 1 DDRA Algorithm

1: Initialization:

2: Set the computation precision ξ > 0 and the number of total time-intervals D;

3: Fix a state Sr ∈ S;

4: Set l = 0 and u
θ0
ι=0

(S) = 0, θ0 ∈ X for ∀S ∈ S;

5: while t < D do

6: In time-interval t:

7: Each NF updates the transition probabilities according to Eq. (15);

8: Let action a
θl
ι (S) be updated by (21) and value function u

θl
ι+1

(S) be updated by (22) and (23);

9: If |u
θl
ι+1

(S) − u
θl
ι (S)| 6 ξ, then let ι = 0, u

θl+1
0

(S) = u
θl
ι+1

(S) and go to the next step. Otherwise, let ι = ι + 1 and goto

step 8;

10: If |u
θl+1
0

(S) − u
θl
0
(S)| 6 ξ, go to the next step. Otherwise, let l = l + 1 and ι = 0, go to step 9;

11: Construct control action under the current system state St, which is At(St) = [a1
l+1(St), . . . , a

X
l+1(St)] according to (20).

Set t = t + 1;

12: end while

13: Return P∗(π) = u
θl
0
(Sr) and optimal control policy π = [A1(S1), A2(S2), . . .].

The DVI is developed to avoid the huge dimension of action space. In the DVI, only the action of each
SFC is used to update the value functions. Then, the computational complexity is dramatically reduced
from O1 = O(|S||AX | log |AX |) to O2 = O(|S||A| log |A|). We thus have O2 ≪ O1.

4.4 Convergence of DVI

Before analyzing the local and global convergence property of the DVI, we have Lemma 2.

Lemma 2. Let Paj denote the transition probability matrix when taking action aj . There exists a

positive integer m such that for every admissible policy π = {aθl0 , a
θl
1 , . . . , aθlm} , where aθlm = (aθlm(S1), . . . ,

aθlm(S|S|)), there exists a state Sr and ǫ > 0, such that

[
P
a
θl
m
P
a
θl
m−1

· · ·P
a
θl
1

]

ir
> ǫ, 1 6 i 6 Y, (24)

[
P
a
θl
m−1

P
a
θl
m−2

· · ·P
a
θl
0

]

ir
> ǫ, 1 6 i 6 Y, (25)

where [·]ir denotes the element of the ith row and rth column of the corresponding matrix.

Proof. For i = 1, . . . , Y and 0 6 j 6 m, according to (14), we have

[
P
a
θl
m
P
a
θl
m−1

· · ·P
a
θl
0

]

ij
= Pr (Sj |Si, a

θl
i (Si), Aθl(Si))

= Pr(Rj ,Υj |Ri,Υi, a
θl
i (Si), Aθl(Si))

= Pr (Rj |Ri) Pr(Υj |Υi, a
θl
i (Si), Aθl(Si))

= Pr (Rj = λ′
p|Ri = λ′

q)

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:13

= Tp,q (The transition kernel (1)). (26)

According to MLE, in each time interval t, there exists a state, λ′
p, such that Tp,q > 0. This concludes

the proof.

Based on Lemma 2, we prove the local convergence of DVI in Theorem 1. Theorem 1 shows that
uθl
ι (S) converges to a limit, uθl

∞(S). However, we know that the optimization by individual SFCs cannot
guarantee uθl

ι (S) to converge to the solution of (13). Hence, the global convergence should be validated.
Based on Theorem 1, the global convergence of DVI is proved in Theorem 2.

Theorem 1 (Local convergence). At each time interval t, for SFC θl ∈ Y, S ∈ S, and l = 0, 1, . . .,
ι = 0, 1, . . ., if ι → ∞, the value function uθl

ι (S) converges to a limit, uθl
∞(S), satisfying

uθl
∞(Sr) + uθl

∞(S) = T̃ uθl
∞(S). (27)

Proof. See Appendix A.

Theorem 2 (Global convergence). For ι = 0, 1, . . ., value function uθl
ι (S) is a Cauchy sequence if

l → ∞. As l → ∞ and ι → ∞, uθl
ι (S) converges to a limit, u∞(S), and uθl

ι (Sr) converges to η in (13),
i.e., η = u∞(Sr).

Proof. See Appendix B.

Next, we analyze the lower bound of the minimum number of iterations of ui
t in time-interval t. To

obtain this lower bound, we first present Lemma 3. Notice we use ‖ · ‖ to denote the L∞-norm.

Lemma 3. T̃ is a contraction mapping of modulus γ with respect to L∞-norm scaled by vector
(w1, w2, . . . , w|S|), i.e.,

‖T̃ui
τ − u∗‖w 6 γ‖T̃ui

τ−1 − u∗‖w, (28)

where ‖u‖w = ‖u(S1)/w1, u(S2)/w1, . . . , u(S|S|)/w|S|‖, u
∗ = (u∗

1, u
∗
2, . . . , u

∗
|S|) (i.e., u∗ = T̃ u∗) and 0 <

γ < 1 (More details about γ can be found in [35]).

Proof. cf. Lemma 3 in [35] for proof.

Based on Lemma 3, we can obtain Theorem 3.

Theorem 3. The lower bound of the minimum number of iterations of ui
t in time-interval t is n =

⌈log(ξ/‖c − u∗‖)/ log(γ)⌉ where ξ > 0 is the computation precision, c is the initial values of ui
τ i.e.,

c = ui
0.

Proof. Based on Lemma 3, the error ‖T̃ui
τ − u∗‖w can be bounded as follows:

‖T̃ ui
τ − u∗‖w 6 γ‖T̃ui

τ−1 − u∗‖w 6 γ2‖T̃ui
τ−2 − u∗‖w 6 γn‖c− u∗‖.

Next, the analysis follows the idea of bounding γn‖c− u∗‖ by ξ, i.e., γn‖c− u∗‖ 6 ξ. Then, we obtain
the lower bound on the minimum number of iterations n = ⌈log(ξ/‖c− u∗‖)/ log(γ)⌉.

Note that a larger ξ value results in faster convergence, while it may lead to lower detection accuracy.
The value of ξ should be carefully specified.

5 Numerical results and discussion

In this section, we first validate the feasibility of the Markov chain model as shown in (1) by examining real
data trace from Google data centres. We implement both the optimal value iteration in (16) (Optimal VI)
and the DDRA algorithm (Algorithm 1) to obtain the corresponding solution of P1. Then, we conduct
simulation experiments to validate the effectiveness of the DDRA algorithm by comparing it with two
benchmarks. Specifically, we evaluate the performance of optimal value iteration (Optimal VI), DDRA,
Benchmarks 1 and 2 with different delay (Ti) and packet loss rate (Ri) requirements.

5.1 Validation of Markov chain model

We adopt the Markov chain model to capture the temporal correlation of packet arrival rates of tasks in
Google data trace approximately. To validate the feasibility of the Markov chain model, we randomly
choose a task among around 4000 tasks. As mentioned previously, we use the workload trace of a task in

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:14

T
ra

n
si

ti
o
n
 p

ro
b
ab

il
it

y
 (
P

2
2
)

Time (d)

(a)

0 3.5 7.0 10.5 14.0 17.5 21.0 24.5

Time (d)

(b)

0 3.5 7.0 10.5 14.0 17.5 21.0 24.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ra

n
si

ti
o
n
 p

ro
b
ab

il
it

y
 (
P

2
3
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P22

Pattern

P23

Pattern

Figure 4 (Color online) Transition probability of packet arrival rate of a data trace from Google data center. (a) Transition

probability of P22 vs. time; (b) transition probability of P23 vs. time.

Google cluster to simulate the dynamic packet arrival rate of an NF. We divide the value of the packet
arrival rate into 10 levels. The transition probability of the packet arrival rate is calculated by MLE given
in (15) with a sliding window of 2 days.

Figures 4(a) and (b) show the variation of P22 and P23 over 25 days, where P22 indicates the transition
probability that the packet arrival rate lingers in level-2 in the preceding time-interval and lingers in
level-3 in the next time-interval. Since all transition probabilities have similar characteristics, we only
show P22 and P23 as examples. We can see that transition probabilities P22 and P23 always linger around
a value for several minutes or hours. This validates that the transition probability of packet rates is
quasi-static for a short term [18]. Hence, we can use the Markov chain as an approximation to calculate
the transition probabilities.

5.2 Performance evaluation of DDRA

Network topology. We consider two scenarios: (a) a small-scale network in which the number of nodes
is set to V = 5 and the number of SFCs is set to X = 4; and (b) a large-scale network with V = 12
and X = 10 [10, 36]. The small-scale network is used to validate the performance upper bound provided
by the optimal solution of Optimal VI and examine the difference between the optimal performance and
that of the DDRA algorithm. The large-scale network is used to evaluate the performance gain of the
DDRA algorithm. Owing to the high complexity of Optimal VI, we only evaluate it for the small-scale
network.

SFC requests. The length of GSFCs varies from 3 to 6 units. The source and sink nodes of GSFCs
are randomly specified. We choose the speed-up factor for the NFs with general form 1/(1 − p + p/m)
where 0 < p < 1, m ∈ Mn, as used in previous work [10]. There are three NFs that can work in
parallel in service layer in each GSFC. The service packet rate is discretized into 10 levels. Recall that
the bandwidth consumption of virtual link ιn (the end NF of virtual link ιn is NF Fn) in time interval
t is denoted by Bn,t, which can be estimated by Bn,t = λn,tLp, where Lp denotes the average packet
length. For simplicity, all the packets have equal length, i.e., Lp = 1024 bytes for all SFCs in the network.
Specifically, when the system is at state Rt = (λ1,t, . . . , λY,t) in time-interval t, the packet arrival rate

of NF Fn in time-interval t can be estimated by λn,t =
∑10

j=1 T
t−1
m,j,nλ

′
m,n. T t−1

m,j,n is calculated according
to (15).

In the simulations, the duration of the time-slot is set to 10 min according to [18] and other pa-
rameters are listed in Table 2 [10, 37]. Throughout the performance evaluation, we compare the pro-
posed DDRA algorithm with two other heuristic benchmarks referring to solutions in CoordVNF [13]
and BFDSU [14]. Both of these mechanisms are reactive to a dynamic environment and make instanta-
neous decisions at the beginning of each time interval by using the detected workload. We assume that
Benchmark 1 (B1) and Benchmark 2 (B2) use multiple cores as the computation model as in our system
model.

• B1 is a heuristic mechanism aiming to minimize the energy consumption by solving the embedding
problem for SFCs. The core allocation scheme for an NF is fixed by not obeying the delay and reliability

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:15

Table 2 Simulation parameters

Parameters Values

Smax, Sidle 25 W, 5 W

S1, S2 50 W, 25 W

ν, ϑ 20–50 GB, 0.512 W

dn(1), Dl 0.8–1.2 ms, 0.3–0.5 ms

Ll, Ev, Cv , λ 6 Mbps, 1.5 kW, 64, 100–1000 packets/s

In, ξ 50 (packet), 10−1

DDRA
Benchmark 1
Benchmark 2
Optimal VI

DDRA
Benchmark 1
Benchmark 2
Optimal VI

A
v
er

ag
e

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

k
W

)

1.4

1.6

1.8

2.0

1.2

1.0

0.8

0.6

A
v
er

ag
e

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

k
W

)

1.4

1.6

1.8

2.0

1.2

1.0

0.8

0.6
4.6 4.9 5.2 5.5

The maximum end-to-end delay T
i
 (ms) The maximum packet loss rate R

i
 (×10−3)

5.8 6.1 6.4 6.7 2 4 6 81 3 5 7

(a) (b)

Figure 5 (Color online) Average energy consumption under (a) Ri = 6 × 10−3 and (b) Ti = 6.5 ms in the small-scale network.

constraint of an SFC. The first NF instance is mapped at the candidate substrate nodes in close proximity
to the source node that is fixed. After an NF instance has been mapped to a substrate node and
then to embed the next NF, B1 examines the candidate substrate nodes in close proximity to this
previously mapped substrate node. The maximum distance between the candidate substrate nodes and
the previously mapped node is limited. If it fails in finding a substrate node to embed the NF, it discards
the last embedding steps and iteratively tries to embed the NFs on alternative nodes. Repeat these steps
until the last NF is embedded;

• B2 is a priority-driven weighted mechanism with objective of minimizing the energy consumption.
The core allocation scheme for an NF is fixed by not obeying the delay and reliability constraint of
an SFC. B2 sorts all computing nodes in an increasing order of the remaining amount of resources of
each computing node and sorts all NFs in a descending order of their total resource demand. The most
resource-demanding NF is first placed at the node with minimal remaining resources. Then, resort all
computing nodes in an increasing order of the remaining amount of resources and place the second
resource-demanding NF at the node with minimal remaining resources. Repeat these steps until the last
NF is embedded.

The complexity of B1 and B2 is O(N2M) and O(NM) +O(N) +O(M), respectively, where N is the
number of substrate nodes and M is the number of virtual NFs of all SFCs. More specifically, the worst
case of searching (sorting) procedure in B1 takes O(N) and the worst case is that there are total O(NM)
times for all NFs of searching procedure due to the infeasibility of the substrate node found in each step
for embedding an NF instance. Thus, the complexity of B1 is O(MN2). The sorting procedure of B2
takes O(N) and O(M) for substrate nodes and all NFs, respectively. The worst case of feasible mapping
procedure takes O(NM). Thus, the complexity of B2 is O(NM) +O(N) +O(M).

In the experiments, one time interval is set to 10 min. We use the following performance metrics over 3
days (432 time-intervals in total): (1) average energy consumption as given by P (π) to evaluate the total
energy efficiency, (2) average computational energy consumption, (3) average network forwarding energy
consumption, and (4) average migration energy consumption. The definition of the last three metrics is
similar to that of average energy consumption.

First, we demonstrate the performance upper bound of the DDRA algorithm in the small-scale network
in Figures 5(a) and (b). Figure 5(a) shows that the average energy consumption in the system of all

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:16

A
v
er

ag
e

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

k
W

)

A
v
er

ag
e

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

k
W

)

The maximum packet loss rate R
i
 (×10−3)

2 4 6 81 3 5 7

2

4

6

8

1

3

5

7

(a)

4.6 4.9 5.2 5.5

The maximum end-to-end delay T
i
 (ms)

5.8 6.1 6.4 6.7

(b)

2.5

2.0

3.5

3.0

4.5

4.0

5.0

1.5

DDRA

Benchmark 1
Benchmark 2

DDRA

Benchmark 1
Benchmark 2

Figure 6 Average energy consumption under (a) Ti = 6.5 ms and (b) Ri = 6 × 10−3 in the large-scale network.

four mechanisms monotonically decreases with the maximum end-to-end delay, and the average energy
consumption of the DDRA algorithm is always lower than that of B1 and B2. This is because the DDRA
algorithm allocates appropriate computational resources for individual NFs, which allows to use fewer
cores and even fewer nodes (switches) to provision the services. In addition, the prediction method in
the DDRA algorithm captures the regularities of traffic in individual SFCs, so as to efficiently allocate
appropriate resources for NFs and decrease the number of NF migrations in each time-interval. Therefore,
the DDRA algorithm can achieve both computational energy gain and migration energy gain. In contrast,
B1 and B2 choose the core assignment policy in a greedy way according to the current traffic load of
NFs. Moreover, the average energy consumption of the DDRA algorithm is slightly higher than that of
the optimal value iteration method when Ti < 6.1 ms, but can converge to that of the optimal one with
Ti. This is because the DVI may abandon the actions violating the constraints of the maximum capacity
of nodes and links as mentioned in Remark 1. In this way, the DVI may exclude an optimal solution and
converge to a suboptimal solution. A lower Ti (larger computational cores) implies a higher probability of
violating the constraints, such as the maximum capacity of nodes and end-to-end delay. The gap between
the curves of the DDRA and the theoretical optimal solution increases as the maximum end-to-end delay
decreases. This is because that a lower delay requirement may cause a big penalty value which leads
to a poor convergence of the algorithm. Naturally, this in turn has a bad impact on the algorithm to
converge to an optimal solution. Figure 5(b) shows the average energy consumption in the system of
each mechanism decreases with the maximum packet loss rate. The average energy consumption using
the DDRA algorithm is always lower than that of B1 and B2 due to the same reasons in Figure 5(a).
Therefore, the DDRA algorithm can efficiently improve energy efficiency for service provisioning in the
network and benefit from the low packet loss requests when compared with B2 and B1 in the small-scale
network.

Next, we demonstrate the performance improvement of the DDRA algorithm in the large-scale network
as shown in Figures 6(a) and (b). Owing to the high complexity of the optimal value iteration, we only
evaluate DDRA, B1, and B2 in the large-scale network. Figure 6(a) shows the average energy consumption
of three mechanisms using the trace from Google data center with Ri in the large-scale network. We
can see that the average energy consumption monotonically decreases with packet loss rate Ri. This is
as expected as the lower packet loss rate of an SFC always implies the higher computation capacity of
NFs in the SFC. The average energy consumption in Figure 6(a) follows DDRA < B1 < B2, because
the DDRA allocates appropriate cores for individual NFs aiming at decreasing the computational energy
consumption. Using less computational cores for each NF means that more NFs can be mapped onto
the same node. In this way, more switching resources can be saved. In addition, DDRA needs fewer
NF migrations than BFUSU and B1 by capturing the traffic dynamics. Therefore, DDRA as an on-line
mechanism can significantly improve energy efficiency when compared with B1 and B2 in the large-
scale network. Figure 6(b) shows the average energy consumption as a function of end-to-end delay
requirements of the three mechanisms. The average energy consumption of the DDRA algorithm is
always lower than that of B1 and B2 due to the same reasons as in Figure 6(a). In Figure 6(b), we can

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:17

The maximum packet loss rate R
i
 (×10−3)

2 4 6 81 3 5 7

(a)

The maximum packet loss rate R
i
 (×10−3)

2 4 6 81 3 5 7

(b)

The maximum packet loss rate R
i
 (×10−3)

2 4 6 81 3 5 7

(c)

A
v
er

ag
e

co
m

p
u
ta

ti
o
n
al

 e
n
er

g
y
 (

k
W

)
A

v
er

ag
e

fo
rw

ar
d
in

g
 e

n
er

g
y
 (

k
W

)
A

v
er

ag
e

m
ig

ra
ti

o
n
 e

n
er

g
y
 (

k
W

)

1.0

0.8

0.6

0.4

0.2

0

DDRA

Benchmark 1

Benchmark 2

Optimal VI

DDRA

Benchmark 1

Benchmark 2

Optimal VI

DDRA

Benchmark 1

Benchmark 2

Optimal VI

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.45

0.40

0

0.05

0.10

0.15

0.20

0.25

0

Figure 7 Average energy consumption under under Ti = 6.5 ms in the small-scale network. (a) Average computational energy

consumption; (b) average forwarding energy consumption; (c) average migration energy consumption.

see that DDRA can reduce the average energy consumption approximately 25% and 20% when compared
with B1 and B2 respectively. Thus, DDRA can effectively reduce much more energy consumption than
B1 and B2 in a long term. This validates that DDRA also saves more energy for the low latency requests
when compared with B1 and B2 in the large-scale network.

Figure 7 shows the average computational, forwarding and migration energy consumption in the small-
scale network. As demonstrated in Figure 7(a), when the maximum packet loss rate increases, the com-
putational energy consumption decreases in all four mechanisms. The DDRA can utilize core resources
more efficiently than B2 and CoorVNF. Moreover, the difference between DDRA and optimal VI becomes
smaller when the maximum packet loss rate increases. Figure 7(b) shows that, when Ri 6 4 × 10−3,

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:18

the DDRA has higher forwarding energy consumption than optimal VI, as the DDRA may obtain a
suboptimal virtual link and NF mapping action by using a distributed calculation method. Further,
the DDRA has lower forwarding energy consumption than B2 and CoorVNF, because the DDRA maps
more NFs onto a same substrate node by using less cores compared with B2 and CoorVNF. As shown in
Figure 7(c), the DDRA performs less NF migrations than B2 and CoorVNF, because it tries to flexibly
allocate appropriate computational and forwarding resources to individual NFs and thus decreasing the
number of NF migrations, while B2 and CoorVNF are implemented by redeploying/migrating virtual
network function modules for improving resource utilization and guaranteeing QoS requirements. Al-
though the DDRA may not strictly capture the packet arrival rates sometimes, the results show that it
still outperforms B1 and B2 by effectively reducing the long-term average energy consumption.

6 Conclusion

In this paper, we have investigated the dynamic NF resource allocation as a large-scale MDP for minimiz-
ing the long-term average energy consumption, while guaranteeing the packet loss rate and the end-to-end
delay in SDN/NFV based networks. We first derive an optimal algorithm which has high computational
complexity. To achieve a low computational complexity, we propose a distributed dynamic NFRA algo-
rithm, which can be used as an on-line mechanism. The convergence property of the proposed the DDRA
algorithms has been proved. Numerical results based on real world data traces demonstrate that the
DDRA algorithm performs well and significantly outperforms two benchmark mechanisms. These results
clearly illustrate that DDRA as an on-line mechanism improves the energy efficiency for services in the
next generation softwarization networks.

Energy-efficient network function resource allocation for a large number of users in dynamic environ-
ments is technically challenging. The transition probability function is model-based in this work. It is
interesting to extend the current work by considering a model-free solution in future research when the
historical data is not achievable.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61871099, 61631004)

and China Postdoctoral Science Foundation (Grant No. 2019M663476). We gratefully acknowledge the many helpful suggestions

made by Shaoe LIN, Qihao LI, Weizhang TING, Junlin LI, Nan CHEN, and anonymous referees. We also thanks to the support of

joint training public postgraduates of Chinese Scholarship Council (CSC).

References

1 Series M. Framework and overall objectives of the future development of imt for 2020 and beyond. Recommendation ITU-2083,

2015. https://www.itu.int/rec/R-REC-M.2083/en

2 Ye Q, Li J L, Qu K G, et al. End-to-end quality of service in 5G networks: examining the effectiveness of a network slicing

framework. IEEE Veh Technol Mag, 2018, 13: 65–74

3 Ye Q, Zhuang W H, Li X, et al. End-to-end delay modeling for embedded VNF chains in 5G core networks. IEEE Int Things

J, 2019, 6: 692–704

4 Zhang S Q, Wu Q Q, Xu S G, et al. Fundamental green tradeoffs: progresses, challenges, and impacts on 5G networks. IEEE

Commun Surv Tut, 2017, 19: 33–56

5 Mukherjee A. Energy efficiency and delay in 5G ultra-reliable low-latency communications system architectures. IEEE Netw,

2018, 32: 55–61

6 Dharmaweera M N, Parthiban R, Sekercioglu Y A. Toward a power-efficient backbone network: the state of research. IEEE

Commun Surv Tut, 2015, 17: 198–227

7 Chen Y, Zhang N, Zhang Y C, et al. Energy efficient dynamic offloading in mobile edge computing for Internet of Things.

IEEE Trans Cloud Comput, 2019. doi: 10.1109/TCC.2019.2898657

8 Fei X C, Liu F M, Xu H, et al. Adaptive VNF scaling and flow routing with proactive demand prediction. In: Proceedings

of IEEE INFOCOM, Honolulu, 2018. 486–494

9 Yu B, Han Y N, Wen X M, et al. An energy-aware algorithm for optimizing resource allocation in software defined network.

In: Proceedings of IEEE GLOBECOM, Washington, 2016. 1–7

10 Liu M J, Feng G, Zhou J H, et al. Joint two-tier network function parallelization on multicore platform. IEEE Trans Netw

Serv Man, 2019, 16: 990–1004

11 Floyd S, Jacobson V. Random early detection gateways for congestion avoidance. IEEE ACM Trans Netw, 1993, 1: 397–413

12 Bolot J-C. End-to-end packet delay and loss behavior in the Internet. In: Proceedings of ACM SIGCOMM Computer

Communication Review, 1993. 289–298

13 Beck M T, Botero J F. Coordinated allocation of service function chains. In: Proceedings of IEEE Global Communications

Conference (GLOBECOM), 2015. 1–6

14 Zhang Q X, Xiao Y K, Liu F M, et al. Joint optimization of chain placement and request scheduling for network function

virtualization. In: Proceedings of IEEE ICDCS, 2017. 731–741

15 Nguyen D T, Le L B, Bhargava V K. A market-based framework for multi-resource allocation in fog computing. IEEE ACM

Trans Netw, 2019, 27: 1151–1164

16 Zhou Z Y, Dong M X, Ota K, et al. Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based

LTE-A networks. IEEE Int Things J, 2016, 3: 428–438

https://www.itu.int/rec/R-REC-M.2083/en
https://doi.org/10.1109/MVT.2018.2809473
https://doi.org/10.1109/JIOT.2018.2853708
https://doi.org/10.1109/COMST.2016.2594120
https://doi.org/10.1109/MNET.2018.1700260
https://doi.org/10.1109/COMST.2014.2344734
https://doi.org/10.1109/TNSM.2019.2920012
https://doi.org/10.1109/90.251892
https://doi.org/10.1109/TNET.2019.2912077
https://doi.org/10.1109/JIOT.2015.2497712

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:19

17 Lyu X C, Tian H, Ni W, et al. Energy-efficient admission of delay-sensitive tasks for mobile edge computing. IEEE Trans

Commun, 2018, 66: 2603–2616

18 Han Z H, Tan H S, Chen G H, et al. Dynamic virtual machine management via approximate Markov decision process.

In: Proceedings of IEEE INFOCOM, San Francisco, 2016. 1–9

19 Chen L X, Zhou S, Xu J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks.

IEEE ACM Trans Netw, 2018, 26: 1619–1632

20 Ye Q, Li J L, Qu K G, et al. End-to-end quality of service in 5G networks: examining the effectiveness of a network slicing

framework. IEEE Veh Technol Mag, 2018, 13: 65–74

21 Sun C, Bi J, Zheng Z L, et al. NFP: enabling network function parallelism in NFV. In: Proceedings of ACM Conference of

Special Interest Group on Data Communication, 2017. 43–56

22 Chen L H, Shen H Y. Consolidating complementary VMs with spatial/temporal-awareness in cloud datacenters. In: Proceed-

ings of IEEE INFOCOM, 2014. 1033–1041

23 Zhang Q, Zhani M F, Boutaba R, et al. Dynamic heterogeneity-aware resource provisioning in the cloud. IEEE Trans Cloud

Comput, 2014, 2: 14–28

24 Reiss C, Wilkes J, Hellerstein J L. Google cluster-usage traces: format+schema. 2011. https://scholar.google.com.hk/scholar?

q=google+cluster-usage+traces:format%2Bschema&hl=zh-CN&as sdt=0&as vis=1&oi=scholart

25 Burke P J. The output of a queuing system. Oper Res, 1956, 4: 699–704

26 Sharkh M A, Jammal M, Shami A, et al. Resource allocation in a network-based cloud computing environment: design

challenges. IEEE Commun Mag, 2013, 51: 46–52

27 Sun X H, Ni L M. Another view on parallel speedup. In: Proceedings of IEEE/ACM Conference on Supercomputing, 1990.

324–333

28 Mahadevan P, Sharma P, Banerjee S, et al. A power benchmarking framework for network devices. In: Proceedings of

International Conference on Research in Networking, 2009. 795–808

29 Wen R H, Feng G, Tang J H, et al. On robustness of network slicing for next-generation mobile networks. IEEE Trans

Commun, 2019, 67: 430–444

30 Korf R E. Depth-first iterative-deepening: an optimal admissible tree search. Artif Intell, 1985, 27: 97–109

31 Myung I J. Tutorial on maximum likelihood estimation. J Math Psychol, 2003, 47: 90–100

32 Bertsekas D P. Dynamic Programming and Optimal Control. Belmont: Athena Scientific, 1995

33 Wei Q L, Liu D R, Shi G, et al. Multibattery optimal coordination control for home energy management systems via distributed

iterative adaptive dynamic programming. IEEE Trans Ind Electron, 2015, 62: 4203–4214

34 Bertsekas D. Distributed dynamic programming. IEEE Trans Autom Control, 1982, 27: 610–616

35 Tseng P. Solving H-horizon, stationary Markov decision problems in time proportional to log(H). Oper Res Lett, 1990, 9:

287–297

36 Wen R H, Feng G, Tan W, et al. Protocol stack mapping of software defined protocol for next generation mobile networks.

In: Proceedings of IEEE International Conference on Communications (ICC), 2016. 1–6

37 Liu H K, Xu C Z, Jin H, et al. Performance and energy modeling for live migration of virtual machines. In: Proceedings of

ACM International Symposium on High Performance Distributed Computing, 2011. 171–182

Appendix A Proof of Theorem 1

We first show that {u
θl
ι (S)} is a Cauchy sequence when fixing θl. Then, from (23), u

θl
∞(Sr)+u

θl
∞(S) = T̃ u

θl
∞(S) holds for all S ∈ S.

First, denoting

ν
θl
ι = T̃ u

θl
ι (Sr),

we have

u
θl
ι+1

= p + P
a
θl
ι

u
θl
ι − ν

θl
ι e 6 p + P

a
θl
ι−1

u
θl
ι − ν

θl
ι e,

u
θl
ι = p + P

a
θl
ι −1

u
θl
ι−1

− ν
θl
ι−1

e 6 p + P
a
θl
ι

u
θl
ι−1

− ν
θl
ι−1

e,

where e is an all-ones vector of dimension |S|. Setting δ
θl
ι = u

θl
ι+1

− u
θl
ι , we have

P
a
θl
ι

δ
θl
ι−1

+ (ν
θl
ι−1

− ν
θl
ι)e 6 δ

θl
ι 6 P

a
θl
ι−1

δ
θl
ι−1

+ (ν
θl
ι−1

− ν
θl
ι)e.

By iterating, we have

P
a
θl
ι

· · ·P
a
θl
ι−m+1

δ
θl
ι−m + (ν

θl
ι−m − ν

θl
ι)e 6 δ

θl
ι 6 P

a
θl
ι−1

· · ·P
a
θl
ι−m

δ
θl
ι−m + (ν

θl
ι−m − ν

θl
ι)e. (A1)

According to Lemma 2 and the fact δ
θl
ι−m(Sr) = 0, the R.H.S of (A1) yields

δ
θl
ι (Si) 6

|S|∑

j=1

[
P

a
θl
ι−1

· · ·P
a
θl
ι−m

]

ij

δ
θl
ι−m(Sj) + ν

θl
ι−m − ν

θl
ι 6 (1 − ǫ)max

j
δ
θl
ι−m(Sj) + ν

θl
ι−m − ν

θl
ι ,

which implies that

max
j

δ
θl
ι (Sj) 6 (1 − ǫ)max

j
δ
θl
ι−m(Sj) + ν

θl
ι−m − ν

θl
ι .

Similarly, from the L.H.S of (A1), we have

min
j

δ
θl
ι (Sj) > (1 − ǫ)min

j
δ
θl
ι−m(Sj) + ν

θl
ι−m − ν

θl
ι .

https://doi.org/10.1109/TCOMM.2018.2799937
https://doi.org/10.1109/TNET.2018.2841758
https://doi.org/10.1109/MVT.2018.2809473
https://doi.org/10.1109/TCC.2014.2306427
https://scholar.google.com.hk/scholar?q=google+cluster-usage+traces:format%2Bschema&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.hk/scholar?q=google+cluster-usage+traces:format%2Bschema&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://doi.org/10.1287/opre.4.6.699
https://doi.org/10.1109/MCOM.2013.6658651
https://doi.org/10.1109/TCOMM.2018.2868652
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/S0022-2496(02)00028-7
https://doi.org/10.1109/TIE.2014.2388198
https://doi.org/10.1109/TAC.1982.1102980
https://doi.org/10.1016/0167-6377(90)90022-W

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:20

By subtracting the last two relations, for ∀Sj ∈ S and ι > m, we have

max
j

δ
θl
ι (Sj) − min

j
δ
θl
ι (Sj) 6 (1 − ǫ)

(
max

j
δ
θl
ι−m(Sj) − min

j
δ
θl
ι−m(Sj)

)
.

Then, for A > 0 and all ι > m, we have

max
j

δ
θl
ι (Sj) − min

j
δ
θl
ι (Sj) 6 A(1 − ǫ)ι/m.

As δ
θl
ι (Sr) = 0, it follows that for ∀Si ∈ S,

∣∣∣uθl
ι+1

(Si) − u
θl
ι (Si)

∣∣∣ =
∣∣∣δθlι (Si)

∣∣∣ 6 max
j

δ
θl
ι (Sj) − min

j
δ
θl
ι (Sj) 6 A(1 − ǫ)ι/m.

Thus, for every r > 1, we have

∣∣∣uθl
ι+r(Si) − u

θl
ι (Si)

∣∣∣ 6
r−1∑

l=0

∣∣∣uθl
ι+1+l(Si) − u

θl
ι+l(Si)

∣∣∣

6 A(1 − ǫ)ι/m
r−1∑

l=0

(1 − ǫ)l/m

=
A(1 − ǫ)ι/m(1 − (1 − ǫ)r/m)

1 − (1 − ǫ)1/m
.

According to Cauchy convergence, the value function u
θl
ι (S) converges to a limit u

θl
∞(S).

Appendix B Proof of Theorem 2

The theorem can be proved in three steps.

(1) We show that for ∀ι = 0, 1, . . ., {u
θl
ι (S)} is a Cauchy sequence and convergent as l → ∞.

First, letting

ν
θl
ι = T̃ u

θl
ι (Sr),

we have

u
θl+1
ι = p + P

a
θl+1
ι−1

u
θl+1

ι−1
− ν

θl+1

ι−1
e 6 p + P

a
θl
ι−1

u
θl+1

ι−1
− ν

θl+1

ι−1
e,

u
θl
ι = p + P

a
θl
ι −1

u
θl
ι−1

− ν
θl
ι−1

e 6 p + P
a
θl
ι

u
θl
ι−1

− ν
θl
ι−1

e.

We set q
θl
ι = u

θl+1
ι − u

θl
ι , resulting in

P
a
θl+1
ι−1

q
θl
ι−1

+ (ν
θl
ι−1

− ν
θl+1

ι−1
)e 6 q

θl
ι 6 P

a
θl
ι−1

q
θl
ι−1

+ (ν
θl
ι−1

− ν
θl+1

ι−1
)e.

According to (20), by iteration, we obtain

P
a
θl+1
ι−1

· · ·P
a
θl+1
0

· · ·P
a
θl
ι

q
θl−1
ι + (ξ

θl−1
ι − ξ

θl
ι)e 6 q

θl
ι 6 P

a
θl
ι−1

· · ·P
a
θl
0

· · ·P
a
θl−1
ι

q
θl−1
ι + (ξ

θl−1
ι − ξ

θl
ι)e,

where ξ
θl
ι =

∑ι−1

i=0
ν
θl+1

i +
∑∞

i=ι ν
θl
i . Letting P ′

θl
= P

a
θl+1
ι−1

· · ·P
a
θl+1
0

· · ·P
a
θl
ι

, by iteration, we then have

P
′
θl

· · ·P ′
θl−m+1

q
θl−m
ι + (ξ

θl−m
ι − ξ

θl
ι)e 6 q

θl
ι 6 P

′
θl−1

· · ·P ′
θl−m

q
θl−m
ι + (ξ

θl−m
ι − ξ

θl
ι)e. (B1)

According to Lemma 2 and the fact q
θl−m
ι (Sr) = 0, the R.H.S of (B1) yields

q
θl
ι (Si) 6

|S|∑

j=1

[
P

′
θl−1

. . . P
′
θl−m

]

ij
q
θl−m
ι (Sj) + ξ

θl−m
ι − ξ

θl
ι 6 (1 − ǫ)max

j
q
θl−m
ι (Sj) + ξ

θl−m
ι − ξ

θl
ι ,

which implies that

max
j

q
θl
ι (Sj) 6 (1 − ǫ)max

j
q
θl−m
ι (Sj) + ξ

θl−m
ι − ξ

θl
ι .

Similarly, from the L.H.S of (B1) we have

min
j

q
θl
ι (Sj) > (1 − ǫ)min

j
q
θl−m
ι (Sj) + ξ

θl−m
ι − ξ

θl
ι .

Liu M J, et al. Sci China Inf Sci August 2021 Vol. 64 182302:21

By subtracting the last two relations, for ∀Sj ∈ S and l > m we have

max
j

q
θl
ι (Sj) − min

j
q
θl
ι (Sj) 6 (1 − ǫ)

(
max

j
q
θl−m
ι (Sj) − min

j
q
θl−m
ι (Sj)

)
.

The rest proof follows the proof of Theorem 1.

(2) We show that the limit of the iterative value function u
θl
ι satisfies the Bellman equation, as l → ∞.

First, we define some notations. For ∀ι = 0, 1, . . ., let

u
∞
ι (S) = lim

l→∞
u
θl
ι (S),

u
∞

(S) = lim
ι→∞

u
∞
ι (S).

For ∀ι = 0, 1, . . ., we define Γi = {l|θl = i, 1 6 i ∈ Y}, and let ni be the number of elements in Γi. Let σ1, σ2, . . . , σni
be the

elements in Γi that satisfy σ1 < σ2 < · · · < σni
, i.e., Γi = {σj |j = 1, 2, . . . , ni}, where ni → ∞.

As ni → ∞, the policy of SFC i is updated infinite times. Then, the optimal policy for SFC i can be defined as

u
i
ι(S) = argmin

ai

p(S) +

∑

S′∈S

Pr [S
′
|S, a

i
, Ai(S)]u

∞
ι (S

′
)

 .

According to (27), when ι → ∞, we have

u
∞

(Sr) + u
∞

(S) = min
ai

p(S) +

∑

S′∈S

Pr [S
′
|S, a

i
, Ai(S)]u

∞
(S

′
)

 .

For ∀i ∈ Y, we have ni → ∞ and

u
∞(Sr) + u

∞(S) = min
a1

p(S) +
∑

S′∈S

Pr [S′|S, a1
, A1(S)]u∞(S′)

 ,

.

.

.

u
∞(Sr) + u

∞(S) = min
aY

p(S) +
∑

S′∈S

Pr [S′|S, aY
, AY (S)]u∞(S′)

 ,

which means that

u
∞(Sr) + u

∞(S) = min
A

p(S) +
∑

S′∈S

Pr [S′|S,A]u∞(S′)

 . (B2)

(3) We show that value function u∞(Sr) equals to η.

According to the definition of η in (13) and (B2), we can obtain

η = u
∞(Sr).

	Introduction
	Related work
	System model and problem formulation
	Network model
	Traffic model
	Energy consumption model
	Delay model
	Estimation of packet loss rate
	Problem formulation

	On-line algorithm design and analysis
	Overview of the solutions
	Optimal value iteration
	Distributed value iteration mechanism
	Convergence of DVI

	Numerical results and discussion
	Validation of Markov chain model
	Performance evaluation of DDRA

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2

