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Abstract—Many Internet of Things (IoT) devices generate
relatively small-sized data and have limited energy supply. These
two factors limit their ability to connect directly to cloud servers
through a wireless backbone network without imposing a burden
on this network in providing efficient data transfer. In this
paper, we consider an IoT network architecture where a number
of different IoT devices send their data wirelessly to an IoT
gateway (or a fog node) via a WiFi network. We focus on
characterizing incoming traffic patterns to the gateway for three
typical IoT applications with real-time and non-real-time data
transfer requirements, such as video surveillance, smart city,
and e-healthcare. Our study is based on generating real IoT
traffic traces in a lab environment from various sensors and
devices for the aforementioned applications and employing these
traces to emulate a network of IoT nodes connected to a gateway
via WiFi. In the conducted experiments, different homogenous
and non-homogeneous traffic patterns of the selected applications
are examined for synchronized and unsynchronized data sources.
Based on our empirical data, the experimental results reveal that
the packet inter-arrival time distribution at the gateway is close
to generalized Pareto distribution for homogeneous eHealth and
smart city traffic, whereas the Weibull distribution is the nearest
to model the empirical packet interarrival time for the rest of
the examined traffic patterns. Moreover, we show that employing
the experimental findings to analyze the delay performance of
connecting the gateway to the cloud, given certain backbone
network resources, leads to accurate results.

Keywords – IoT, gateway, WiFi, fog, inter-arrival time distri-
bution, traffic, characterization.

I. INTRODUCTION

The basic concept of IoT is to allow the cooperation
between the Internet and Things, which refer to objects
equipped with identification, sensing, actuating, or controlling
capabilities. These smart objects can interact and communicate
over the Internet to accomplish specific goals, such as reducing
costs and increasing optimization in a multitude of domains [1]
[2]. This allows translating the physical world into a digital
cyber world, providing rich information via connectivity to
anyone or anything at any time in any place. Toward realizing
this objective, two main architectures are introduced in the
literature to support transferring data from IoT devices to
their management entities or servers. In the first one, which is
commonly known as cellular IoT [3], the IoT devices connect
directly to the cellular infrastructure. However, some open
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issues need to be addressed by this architecture to achieve
the global IoT vision. One of these issues is the wide-area
deployment of a high density of IoT devices and the fact that
many of these devices use low data rates to wirelessly transfer
the sensed information through the cellular network to Internet
cloud servers. This adds a burden on the backbone networks as
it needs to support the access of a massive number of devices
or machines in addition to the regular voice/data traffic of
human users [4]. The second architecture uses gateways to
aggregate the traffic of IoT devices before sending this traffic
over the wireless cellular backbone [5].

Indeed, the introduction of IoT gateways [5], machine-
to-machine (M2M) capillary gateways [6], and/or fog nodes
can relieve the cellular network burden as the traffic can be
aggregated by a gateway or locally processed, if possible,
by a fog node before it is sent over the backbone to the
cloud for further processing and/or storage [7]. Nevertheless,
a thorough study of the incoming traffic characteristics to
gateways or fog nodes is needed. This is attributed to the
fact that the traffic patterns generated by different IoT devices
can be different from Internet traffic generated mainly by
direct human activities [2] [8]. Thus, investigating IoT traffic
characteristics is essential because they are highly involved in
planning and designing network infrastructure [2].

Therefore, this study focuses on the second architecture
where the data from IoT devices is sent via the widely-
deployed WiFi technology to IoT gateways or fog nodes,
which forward it to its final destination in the Internet cloud
through a wireless backbone network as shown in Fig. 1. The
gateways/fog nodes aggregate traffic from different sources
such as video surveillance cameras, portable eHealth de-
vices (such as the electrocardiogram (ECG), electromyography
(EMG), and blood pressure) for remote patient monitoring, and
smart city sensors (air pollutant gases, temperature, luminosity,
air pressure, and proximity sensors). Indeed, modeling the
input traffic to these IoT gateways is of paramount importance
for evaluating the packet delay performance (e.g., via queuing
analysis) of the aggregated data and allocating the backbone
network resources. Thus, we focus on the characterization of
the incoming traffic to WiFi-based IoT gateways from IoT
devices and the scaling of the WiFi network connecting the
IoT devices with the gateways. The objective is to achieve
an efficient allocation of the backbone radio resources and a
successful realization of the second architecture.

The contribution of this research is three-fold. First, the
packet inter-arrival time of the incoming IoT traffic to a
WiFi-based IoT gateway is characterized for widely used IoT
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applications, such as video surveillance, smart city, and e-
healthcare. The three applications constitute a major part of
a wide smart city vision realized by IoT/M2M devices to
enhance the welfare and quality of life of city residents [3] [5].
This is achieved through the integration of different services
that target (i) the security (video surveillance, proximity sens-
ing, and luminosity detection) and (ii) health (ECG, EMG, and
blood pressure measurements) of human beings, in addition to
essential environmental factors such as temperature, humidity,
pressure, and air pollutant gases through wide-area monitoring.
Different traffic patterns of these applications are constructed
from traffic traces (obtained from real devices using lab ex-
periments) and examined in a realistic setting using a virtual-
machine based network emulator.

Second, we propose an analytical estimation of the number
of IoT devices running similar or different applications that
can connect through a WiFi network to a gateway or a fog
node without causing a significant access delay variation or
packet loss due to collisions. Third, based on the experimental
findings, an end-to-end delay performance analysis for trans-
ferring the aggregated traffic from a gateway or fog node over
a backbone communication link is provided.

The rest of the paper is organized as follows. Section II
surveys the most relevant related works. Section III describes
the proposed system model. In Section IV, the details of the
experimental setups used to generate real IoT traffic traces are
provided. Section V introduces and analyzes the emulated lab
environment utilized to characterize the incoming traffic of a
WiFi-based IoT gateway. The results and the major findings
of the performed experiments are presented in Section VI.
Using the experimental findings, Section VII introduces a
mathematical analysis for the end-to-end packet delay of IoT
gateways/fog nodes when connected to a backbone network.
Finally, Section VIII concludes this research.

II. RELATED WORKS

The research on IoT traffic characterization is still in its
infancy stages [8]. It has been shown that conventional ap-
proaches, including the standard Poisson process, are inade-
quate to model IoT traffic [9]. According to [10], the char-
acteristics of aggregated periodic IoT data using the Poisson
process can introduce large errors on performance metrics of
interest.

The Third Generation Partnership Project (3GPP) associa-
tion suggests modeling the distribution of data transfer events
generated (over some period of time) by a large number
of machine-type communication (MTC) devices connected
directly to an LTE network by either uniform distribution for
non-synchronized traffic or Beta distribution for synchronized
one [11]. However, this model does not target packet inter-
arrival time to IoT gateways over a WiFi network. In [12],
the authors propose a model for periodic uplink reporting
for cellular smart city applications (e.g., metering reports of
gas/water/electric consumptions, smart agriculture, and smart
environment). In this model, each device is assigned a re-
porting period with a Pareto-distributed packet length [12],
with direct communications between IoT devices and a cellular

network. Metzger et al. in [13] address the validity of using a
Poisson approximation to model the arrival of aggregated pe-
riodic IoT traffic at a cloud server. The authors of [14] present
fitted statistical distributions to the empirical distributions of
packet interarrival times of some smart home applications
such as temperature, air pressure, light, and motion sensors.
In [15], the authors provide a mathematical model for the
packet interarrival times of the aggregated traffic of a number
of homogeneous sources representing temperature, light, or
motion sensors. The works of [14] [15] focus on homogenous
traffic from specific types of IoT sensors and do not include
the effect of the communication technology used to aggregate
the traffic.

Some research works focus on IoT traffic classification for
security purposes. The authors of [16] compute the entropy
value of the parameters of IoT traffic, generated by a software
tool, to identify the device creating the traffic. Similarly,
in [17], Sivanathan et al. propose an architecture for IoT
traffic classification to autonomously detect IoT devices. Other
researchers focus on studying IoT traffic characteristics for
different purposes, such as investigating the effect on network
storage and traffic [18] and examining the impact on long-
range networks (LoRA) [19].

To the best of our knowledge, no other work in the literature
addresses the characterization of the aggregated incoming
traffic to WiFi-based IoT gateways for three major types of
applications (video surveillance, smart city, and e-healthcare),
considering inhomogeneous sources of different application
types. Moreover, our work is based on traffic data captured
from realistic experimental setups that mimic real-life scenar-
ios.

III. SYSTEM MODEL

Consider a three-tier topology in the system model. This
topology divides the IoT system into three layers, namely, the
perception, the network, and the application [20]. Here, the
system model considers the incoming flow of data from the
devices located in the perception layer and received by an
IoT gateway or fog node in the network layer. The perception
layer accommodates different types of devices and sensors
that represent a wide range of IoT applications such as e-
healthcare, smart city, and video surveillance. Furthermore,
such applications can provide a mixture of traffic that is
acquired in real-time or non-real time.

Our system model follows the general consensus that the
traffic generated in IoT networks tends to be more uplink than
downlink [19]. Thus, a gateway/fog node can be deployed in
the network layer in order to collect the data coming from
different IoT devices in the perception layer for further anal-
ysis and transmission to cloud management servers through a
wireless cellular (4G/5G) backbone. The gateway is directly
connected to each sensor node over an Internet Protocol (IP)
network with a single-hop star topology using the IEEE 802.11
medium access control (MAC) protocol. Here, we assume that
the data obtained by the sensors are sent wirelessly with a
negligible packet loss over a WiFi network as it is currently
among the most widely-deployed technologies.
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It is worth noting that the gateway-based architecture out-
performs the cellular IoT architecture in several aspects. First,
in the cellular IoT architecture, the existence of a vast number
of IoT/M2M devices side-by-side with human-based devices
significantly increases the transmission collision probability
when these devices compete for the random access channel
(RACH) during the random access (RA) procedure. This leads
either to a considerable delay in connection establishment or
a failure to access the channel after exceeding some number
of trials [4] [21] [22]. On the contrary, in the gateway-based
architecture, the aggregate packet arrival rate is often sufficient
to keep the gateway in the connected mode with the cellular
backbone network for an extended period (as it receives
data from different IoT devices). Thus, it does not need to
send connection requests over the random access channel.
This dramatically decreases the number of access requests,
which in turn increases the access success probability, reduces
the transmission collision probability, and decreases the data
channel access delay as only the gateways connect to the
cellular network [21] [23]. Second, the existence of WiFi-
based gateways or fog nodes in the vicinity of IoT devices
generally reduces the power consumption of the IoT devices.
On the other hand, in the cellular IoT, the IoT devices need to
ramp up their power (especially during the RA procedure) if
their connection requests suffer from transmission collisions
or are not identified by the base station due to interference
[22]. Third, in the gateway-based architecture, the gateway/fog
node can help perform some security and privacy functions
on behalf of IoT devices (mostly resource-constrained). This
includes access control, integrity, and isolation [7]. However,
in the cellular IoT, these devices need to apply all the cellular
network security functions, which are not optimally designed
for devices with such limited resources.

Thus, the architecture under study offers efficient mon-
itoring and response that are particularly required by any
IoT nodes sending time-critical information (e.g., healthcare
devices). Fig. 1 illustrates the considered system model.

IV. EXPERIMENTAL SETUPS FOR COLLECTING IOT
TRAFFIC TRACES

This section details the experimental setups that are em-
ployed to generate and capture real IoT traffic traces for e-
healthcare, smart city, and video surveillance applications.

These experimental setups are implemented based on two
micro-controller boards, namely Waspmote [24], and Intel
Galileo [25]. The data generated by both boards are trans-
mitted as ASCII characters encapsulated in UDP packets and
captured using the Wireshark packet analyzer in pcap format.
All the setups have been set to generate a packet capture file
of around a five-minute duration.

A. e-Health

In this setup, three medical sensors are selected to gen-
erate the e-health traffic, namely, electrocardiogram (ECG),
electromyography (EMG), and blood pressure. The ECG and
EMG sensors provide real-time measurements, whereas the
blood pressure device stores its readings to be available for

Fig. 1: An illustration of the system model.

retrieval in a non-real-time fashion. These e-health sensors are
connected to the Intel Galileo board through a health shield.

The readings for each e-health sensor are transferred, via a
WiFi network, from the Galileo board to a personal computer
(PC) and captured by Wireshark, as shown in Fig. 2. The Intel
Galileo board sends the data wirelessly through a bridge router.

Depending on the sensor’s type, the number of samples per
second is properly selected to obtain accurate results. In the
case of the ECG sensor, the Intel Galileo board is programmed
to obtain the data from the sensor with a sampling rate of 2000
Hz. Consequently, it sends a packet with a sufficient number
of samples to ensure a smooth replaying at the destination.
The sampling rate is chosen according to the recommendations
of the European Society of Cardiology and North American
Society of Pacing and Electrophysiology [26].

For the EMG sensor, the sampling rate is 5000 sam-
ples/second, which satisfies Nyquist criterion for this kind of
signals [27]. Moreover, a sufficient number of EMG readings
is placed in one UDP packet to ensure that the receiver can
interpret and play the time-varying EMG graph smoothly. This
is necessary to analyze EMG graphs and immediately detect
any critical condition correctly.

The blood pressure device sends one packet every 20
seconds. Each packet contains 7 readings. The number of
readings is selected such that the packet length of the blood
pressure device matches the other medical sensors. The packet
size for the eHealth traffic slightly varies around an average
of 937 Bytes for ECG data, 1054 Bytes for EMG data, and
939 Bytes for blood-pressure data. The overall average data
rate of the three sensors is 49 kbps.
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Fig. 2: Experimental setup for e-health data trace.

B. Smart City

This trace contains a variety of measured quantities, which
are likely to be monitored in most smart city initiatives, as in
the following.

The concentration of three gases (carbon dioxide, nitrogen
dioxide, carbon monoxide) and a group of air pollutant gases
(Air Pollutants II [24]) are monitored in an indoor location
with normal air concentration using different sensors. Lumi-
nosity is also sensed. A reading is obtained from each one of
these sensors every one second.

Moreover, temperature, humidity, and pressure are moni-
tored with a sensor connected to the Waspmote board. A
proximity sensor is also used with a sample rate of 40 Hz.

The packets generated by the aforementioned Waspmote
board sensors are sent wirelessly through a WiFi router and
captured by Wireshark, as depicted in Fig. 3. The packet size
varies according to the sensor type. It is around 124 Bytes
for gas sensors, 114 Bytes for the temperature, humidity, air
pressure, and proximity sensors, whereas it is 77 Bytes for the
light sensor. The average rate of the data sent from the sensor
board is around 1.2 kbps.

Fig. 3: Experimental setup for smart city data trace.

C. Video Surveillance

The video surveillance traffic trace is obtained using a
network camera to generate a live streaming video (real-time
traffic). The camera is configured to stream a UDP live video
in Moving Picture Expert Group Transport Stream (MPEG TS)
format using VideoLAN Client (VLC) media player via a WiFi
network as illustrated in Fig. 4. The video trace is captured
using Wireshark by a PC connected to the same network. The
camera transmits fixed-size packets (1358 Bytes each) with a
data rate of around 410 kbps.

Fig. 4: Experimental setup for video streaming data trace.

V. IOT NETWORK EXPERIMENTAL SETTING AND
GATEWAY LOAD ANALYSIS

In order to mimic the system model, two IoT network ex-
perimental setups are constructed. The first setup is emulation-
based. It uses virtual machines in order to emulate the appli-
cation nodes to provide large-scale experiments that cannot
be performed in a lab environment. The second setup is
laboratory-based. It is mainly used to validate the emulation-
based scheme. The following section describes both setups,
the examined traffic patterns, the analytical technique used to
determine the number of application nodes employed in each
experiment, and the validation of the emulation-based setup.

A. Emulated Experimental Setup

Fig. 5: The experimental emulation setup.

This setup uses the common open research emulator
(CORE) tool [28] for emulating the application nodes under
study. Opposite to discrete-event computer simulation, the
tool builds a virtual network of virtual machines (nodes) that
operate in real time. Therefore, it can run the full-fledged
version of Linux applications over a real TCP/IP protocol
stack. It is typically used when the required size of the actual
test network is large. In the setup, a node is used to serve
as an IoT gateway, or a fog node is placed in a location
where it can communicate to the other nodes as shown in
Fig. 5. The rest of the nodes are IoT traffic generators, where
each node runs one of the aforementioned trace files obtained
using the experimental setups introduced in Section IV. The
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number of nodes that replay a specific application trace
file is determined based on the traffic pattern introduced in
Subsection V-B. In the emulator, the nodes are connected with
the gateway through a WiFi network that implements IEEE
802.11 medium access control (MAC) protocol. The effect of
the physical channel is emulated by making the data rate ri
allocated to each node randomly assigned for every experiment
sample, where ri ∈ {6, 9, 12, 18, 24, 36, 48, 54} Mbps since
the wireless coverage and physical channel impairments affect
the received signal-to-noise ratio (SNR) at the WiFi interface
card. This accounts for changing the surroundings or even
node locations to different spots, leading to different WiFi
signal coverage quality, while rate adaptation is in place.
Consequently, it mimics the WiFi transceiver’s behavior in
practice, which adaptively selects the modulation scheme and
data transmission rate based on the channel condition. In
addition, the starting time of sending traffic for each node is
randomly determined for unsynchronized traffic. This captures
the variations of the main network parameters that affect traffic
characterization, targeted by this study across the samples of
different experiments.

B. Application-Oriented Traffic Patterns

Seven traffic patterns are investigated. Three patterns in-
clude homogenous traffic, namely, Pattern 1 video surveillance
traffic, Pattern 2 smart city traffic, and Pattern 3 e-health traffic.
The inhomogeneous traffic is represented by the remaining
four patterns, which include a mix of the three types of
applications under study. Pattern 4 consists of equally mixed
traffic of e-health, smart city, and video surveillance. The
majority of Pattern 5 traffic is e-health, whereas the majority
of Pattern 6 and 7 traffic come from video surveillance and
smart city sources, respectively.

C. IoT Gateway Load Analysis

We want to estimate the number of IoT nodes generating
homogeneous or inhomogeneous traffic connected to a WiFi-
based gateway or a fog node, without causing a significant
likelihood of packet loss, either due to packet collisions or
large access delay variations. It is to allow all the packets
generated by the IoT nodes to reach the gateway for a
reliable data transfer1. Thus, the characterized incoming traffic
includes all the packets sent to the gateway assuming the
packet loss is negligible.

It is worth noting that the number of IoT nodes provided
by the analysis is used to calculate the number of virtual IoT
nodes in the emulation-based setup that replay the trace files
and transmit them to the emulated gateway/fog node.

It has been shown in [30] and [31] that the channel access
delay (service time) of an IEEE 802.11 WiFi network and
packet collision probability steeply increase as the packet
arrival rate of the WiFi nodes increases towards saturation.
Consequently, increasing the number of nodes results in a
coarse change in the network load and a faster approach

1Packet loss due to channel impairments is assumed to be alleviated
by IEEE 802.11 frame retransmissions and the adaptive transmission rate
adjustment, which is implemented in almost all commercial WiFi hardware.

TABLE I: IEEE 802.11g system parameters [29].
System Parameter Value

MAC Overhead (hM ) 208 bits
fACK 31.6µs
fRTS 33.6µs
fCTS 31.6µs

Slot Time σ 9µs
TSIFS 10µs
TDIFS 28µs

Basic Rate 6 Mbps
Data Rate 54 Mbps
CWmin 32
CWmax 1024

towards saturation. This leads to the risk of packet loss due
to packet collisions, which cause a large service time variance
within this operation region. Therefore, the network should
operate in a region where the standard deviation of the service
time is much smaller than its average. It has been shown in
[31] that this region satisfies the condition

g , α(n− 1)� 1 (1)

where α is the probability of a non-empty node buffer and n
is the number of IoT nodes.

Also, this region is marked by a small collision probability,
pc, which implies the probability of at least one other node
simultaneously transmits with the tagged node and can be
calculated as

pc = 1− (1− αpt)n−1
. (2)

In (2), pt is transmission probability in any time slot of the
backoff period. It can be obtained as

pt =
1

E[B]
(3)

where E[B] is the average backoff period. The condition in
(1) can be satisfied for a small value of α (e.g., g ≤ 0.1). This
leads to a small pc, which can be calculated from (2) as

pc ≈
α(n− 1)

E[B]
. (4)

The average backoff period can be approximated, in the case
of a low pc, as [31]

E[B] ≈ σ 1− pc
1− 2pc

CWmin

2
(5)

where σ is the slot time and Wmin is the minimum contention
window size.

In addition, α can be obtained from

α = λE[St] (6)

where E[St] is the average service time given by

E[St] =

[
E[Ft] +

fc
2

pc
1− pc

]
[1 + α (n− 1)] + E[B]. (7)

Since the IoT nodes running different applications with differ-
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ent packet arrival rates, λ represents the average packet arrival
rate given by

λ =

3∑
j=1

wjλj (8)

where wj denotes the ratio of the number of IoT nodes running
application j to the total number of nodes n, λj is the packet
arrival rate of application j, and j ∈ {Video Surveillance,
eHealth, Smart City} .

In (7), E[Ft] is the average MAC frame transmission
time and fc is the frame collision time. The first term of
(7) represents the average time spent in successful frame
transmission and frame collision for a tagged node and the
rest of the network nodes, whereas the second term represents
the time spent in backoff [31].

The average frame transmission time can be obtained as
(assuming the IEEE 802.11 handshake procedure is in place)

E[Ft] = fRTS + fCTS + 3 TSIFS
+fACK + (hM + E[L])E[ 1R ] + TDIFS

(9)

where fRTS , fCTS , and fACK are the transmission times for
the request-to-send (RTS), clear-to-send (CTS), and acknowl-
edgment (ACK) frames, respectively; TDIFS and TSIFS are
the distributed and short inter-frame spacing, respectively; the
packet size and MAC frame overhead are denoted by L and
hM , respectively. The transmission rate is represented by R
and

E

[
1

R

]
=

k∑
i=1

pi
1

ri
(10)

where k is the number of available data rates and pi is the
probability of transmission at rate ri.

The average packet size, E[L] can be obtained as

E[L] =

3∑
i=1

wjLj (11)

where Lj is the packet size for each application type.
The frame collision time can be calculated as

fc = fRTS + TDIFS . (12)

Solving (1) - (4) after setting g = 0.1 leads to pc, which
can be used to find α from (6) - (12) and to obtain n from

n =

 α− λE[B]

αλ
(
E[Ft] +

fc
2

pc
1−pc

) − 1

α

 . (13)

In fact, (13) offers an estimation of the number of IoT nodes
that can be served by a WiFi-based gateway or a fog node
with negligible packet loss (i.e., without significant packet
collisions or considerable access delay variations).

For instance, using (13), the number of nodes for the
homogenous patterns can be calculated as 6, 135, and 21
nodes, for Pattern 1, 2, and 3, respectively, when the data rate
ri of each node is chosen randomly (i.e., pi = 1

8 ). Similarly,
for inhomogeneous patterns, the total number of nodes can
be estimated for a given wi value of each application. It

is worth noting that the sampling frequency influences the
traffic rate of each IoT traffic generator node for a particular
application. This, in turn, impacts the estimated number of
nodes (generating traffic for this application) to be connected
to the WiFi-based gateway according to (8) and (13). As the
traffic load per node increases, the number of nodes supported
by the gateway decreases, and vice versa. Thus, reducing (or
increasing) the sample rate leads to increasing (or decreasing)
the number of nodes. At the same time, the gateway gets a
similar traffic amount (but from a different number of nodes)
with a similar impact from the WiFi network on the packet
interarrival time.

D. Emulated Experimental Setup Validation

Fig. 6: The hardware experimental setup.

The emulated experimental setup is validated using a lab
setup with real hardware. The setup consists of a WiFi router
that is configured as an access point. The WiFi router emulates
an IoT gateway, which wirelessly receives the IoT data traces
from different IoT traffic generators and forwards these traces
to a PC directly connected to it for packet capturing, as
revealed in Fig. 6. An IoT traffic generator is a computer that
replays a packet trace file and sends it to the packet capturing
PC via the WiFi router. The trace file is obtained from one of
the experimental setups mentioned in Section IV for the IoT
applications under study.

To validate the emulated setup, we replicate the hardware
setup mentioned above with the same configuration and num-
ber of nodes in the emulator. Besides, we maintain the same
average channel rate in both setups.

Fig. 7 shows the cumulative distribution functions (CDFs)
for packet inter-arrival time obtained from the emulated and
hardware experimental setups using the same number of IoT
traffic generators for two example traffic patterns, namely,
video surveillance and e-Health. For both patterns, a close
match can be observed between the CDFs of the emulated
and hardware experimental setups, as Fig. 7(a) and 7(b) reveal.
This implies that the emulated experimental setup can be used
as a controlled experimental setting, especially for large-scale
scenarios.

VI. EXPERIMENTAL RESULTS

This section presents the results obtained by the emulated
experimental setup for the seven traffic patterns mentioned in
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Fig. 7: A sample comparison between the CDFs of the
emulated and hardware experimental setups.

Subsection V-B. We are particularly interested in checking the
suitability of modeling the incoming traffic of IoT gateways
by a distribution commonly used in the literature to model
the packet inter-arrival time in the Internet (i.e., Exponential,
Weibull, and generalized Pareto). The exponential distribution
is widely used due to its mathematical tractability. However,
it cannot model the packet interarrival time of Internet traffic
due to the long-range dependence and heavy-tailed properties
of this traffic [32]. Instead, Pareto and Weibull distributions
have been shown to better model the packet interarrival time
distribution for Internet traffic [33]. Moreover, different queu-
ing models have been analyzed for Pareto [34], and Weibull
[35] interarrivals.

A. Methods

1) Experiment Procedure: For each traffic pattern, a num-
ber of emulated IoT nodes (traffic generators) send their
data (a traffic trace) over a WiFi network to a gateway. For
inhomogeneous traffic patterns with the majority of traffic
sources belonging to one type of application, around 75%
of the total number of traffic sources are considered of this

type, whereas the rest are divided equally among the other
two types.

Each IoT node accesses the channel with data rate ri that
is chosen randomly, reflecting the quality of channel at the
node location. The packet inter-arrival time at the emulated
gateway is recorded, and its empirical distribution function
is obtained. Each experiment is repeated at least 50 times to
obtain sufficiently accurate statistics.

2) Network Configuration and Data Transmission: The
emulated experiments are conducted using IEEE 802.11g/a
WiFi data rates since relatively new standards such as IEEE
802.11n are shown to fall to these rates over long distances in
indoor-outdoor environments [36]. Thus, these data rates are
used to reflect the most anticipated rates for communication
with WiFi-based gateways in the environments.

The number of IoT nodes that maintain a network operating
point sufficiently away of the saturation region is calculated
based on the analysis introduced in Subsection V-C to avoid
getting a high packet collision probability, which may result
in packet loss in the experiment samples.

Since WiFi networks use the contention-based MAC pro-
tocol, IEEE 802.11 [29], the impact of transmission synchro-
nization of IoT nodes is studied. Thus, we examine the packet
inter-arrival time distributions of the traffic patterns mentioned
in Subsection V-B for two data generation scenarios, namely,
synchronized and unsynchronized. The first scenario mimics
a worst-case situation where the IoT nodes are simultaneously
reporting data about some events. This scenario may happen
when one event concurrently triggers more than one IoT node
to report related information (e.g., wide area monitoring). The
second scenario represents a more practical data reporting,
where IoT nodes start transmission randomly over some time
interval, as in [11].

3) Data Analysis: In order to statistically determine which
one of the aforementioned distributions matches the empir-
ical packet interarrival time distribution at an IoT gateway,
two steps are followed. First, the empirical data is fitted to
each distribution using the maximum likelihood method. Sec-
ond, the goodness-of-fit is tested using Kolmogorov-Smirnov,
Anderson-Darling, and Chi-Squared tests [37].

Unfortunately, the results from conducting these standard
tests reveal a rejection of the null hypothesis for the stud-
ied traffic patterns for all tests. Therefore, another statistical
approach is adopted to find the nearest fitted distribution to
the empirical data. It is based on computing the maximum,
mean, and the standard deviation of the absolute distance (AD)
between the empirical CDF FE(x) and the CDF of each fitted
probability distribution FFi(x), given by

AD = |FE(x)− FFi(x)|, i ∈ {1, 2, 3}. (14)

In (14), FF1(x) is represented by (15) for the exponential
distribution, where µ is the mean; the generalized Pareto
distribution CDF is represented by FF2(x) in (16), where
ξ, h, and s are the shape, threshold, and scale parameters,
respectively; the Weibull distribution CDF is described by
FF3(x) in (17), where k and λ are the scale and shape
parameters, respectively:
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FF1(x) = 1− e−(x/µ) (15)

FF2(x) = 1− (1 + ξ(x− h)/s)−1/ξ (16)

FF3(x) = 1− e(−x/k)
λ

. (17)

The empirical distribution is then matched to the nearest
distribution, i.e., the distribution with the lowest overall abso-
lute distribution distance parameters.

B. Results

1) Traffic Pattern 1 (Only Video Surveillance Traffic): Fig.
9 shows an example of how the empirical CDF compares to
the CDFs of the Exponential, Weibull, and Pareto distributions
in the synchronized case. Although the three distributions look
close to the empirical one for the synchronized case, the
Weibull distribution has the lowest absolute distance parame-
ters as revealed in Fig. 9. The average and standard deviation
of the absolute distance of Weibull distribution are the lowest
among the distributions in the unsynchronized case as depicted
in Fig. 10. This implies that the Weibull distribution is the
closest distribution to model the packet interarrival time for
video surveillance traffic.
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Fig. 8: The CDF for the Pattern 1.

2) Traffic Pattern 2 (Only Smart City Traffic): Figures 11(a)
and 12(a) show the absolute distance results for the smart
city traffic when IoT smart city nodes are synchronized and
unsynchronized, respectively. The Pareto distribution is the
lowest in absolute distance average and standard deviation,
and hence considered the closest distribution to characterize
this traffic pattern.

3) Traffic Pattern 3 (Only eHealth Traffic): Fig. 11(b)
shows that the Pareto distribution has the lowest AD param-
eters among the three distributions for synchronized eHealth
traffic. Similarly, for unsynchronized eHealth traffic, Pareto
distribution has the lowest maximum, average, and standard
deviation of AD among the examined distributions, as revealed
in Fig. 12(b). This indicates that the Pareto distribution is the
nearest to the empirical one.
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Fig. 9: Absolute distance parameters for synchronized
video surveillance traffic.
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Fig. 10: Absolute distance parameters for unsynchronized
video surveillance traffic.

4) Traffic Pattern 4 (Equally Mixed Traffic): Fig. 11(c)
and Fig. 12(c) show the AD maximum value, average, and
standard deviation for the synchronized and unsynchronized
cases, respectively, when the traffic consists of an equal mix
of video surveillance, eHealth, and smart city data (i.e., each is
originated from the same number of IoT nodes). The Weibull
distribution is the closest one to the empirical distribution,
according to the AD parameters, for both the synchronized
and unsynchronized cases.

5) Traffic Pattern 5 (Majority Smart City Traffic): This
traffic pattern represents a scenario in which the majority of
the traffic comes from smart city sources. It is noticed from
Fig. 13(a) and Fig. 14(a) that the Weibull distribution has the
smallest maximum, average, and standard deviation of AD
among the other distributions.

6) Traffic Pattern 6 (Majority Video Surveillance Traffic):
The majority of the sources for this traffic pattern are video
surveillance cameras. It is observed from Fig. 13(b) and Fig.
14(b) that the lowest AD parameters can be obtained using
the Weibull distribution.

7) Traffic Pattern 7 (Majority eHealth Traffic): This traffic
pattern is formed when the majority of the sending sources
are eHealth sensors. Fig. 13(c) and 14(c) show that the
Weibull distribution is the nearest one to match the empirical
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TABLE II: Distribution parameters of different traffic patterns

Traffic Patterns Exponential Weibull Generalized Pareto
µ k λ ξ s h

Video Surveillance Sync 45.26 41.36 0.84 0.19 36.51 0
Unsync 48.52 49.77 1.07 -0.01 49.32 0

Smart City Sync 53.39 51.74 0.94 0.103 47.4 0
Unsync 55.83 53.16 0.91 0.12 48.34 0

eHealth Sync 77.46 31.2 0.51 1.34 8.85 0
Unsync 83.99 82.06 0.95 0.09 75.56 0

Equal Mix Sync 45.43 40.04 0.8 0.29 32.9 0
Unsync 47.34 48.22 1.04 0.01 46.55 0

Majority Smart City Sync 51.46 47.94 0.87 0.14 44.21 0
Unsync 53.77 54.98 1.06 0.02 52.72 0

Majority Video Surveillance Sync 51.44 46.58 0.83 0.17 42.46 0
Unsync 54.28 56.09 1.09 0.002 54.13 0

Majority eHealth Sync 79.58 74.47 0.87 0.06 74.68 0
Unsync 82.84 85.62 1.09 0.008 82.12 0
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Fig. 11: Absolute distance parameters for the synchronized traffic Pattern 2, 3, and 4.
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Fig. 12: Absolute distance parameters for the unsynchronized traffic Pattern 2, 3, and 4.

distribution since it has the lowest AD maximum, average,
and standard deviation irrespective of whether the traffic is
synchronized or unsynchronized.

VII. PACKET INTERARRIVAL TIME DISTRIBUTION &
QUEUING ANALYSIS FOR IOT GATEWAYS

Consider N IoT gateways (or fog nodes) send the received
data from different sensors of the aforementioned applications
to their respective management entities (e.g., cloud servers)
through a wide coverage wireless backbone such as a 4G or

5G-based network. Each gateway is allocated the same amount
of radio resources, which provide a fixed service time per
packet St. In such a scenario, the gateway can be modeled as
a G/D/1 queuing system.

The average end-to-end delay E[D] can be obtained by the
aide of Marchal approximation [38] using

E[D] ≈ ρStc
2
v

2(1− ρ)
+ St (18)

where cv is the coefficient of variation of the packet interarrival
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(b) Majority Video Surveillance Traffic
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Fig. 13: Absolute distance parameters for the synchronized traffic Pattern 5, 6, and 7.
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(a) Majority Smart City Traffic (unsync)
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Fig. 14: Absolute distance parameters for the unsynchronized traffic Pattern 5, 6, and 7.

time and ρ is the queue utilization factor.
In the sequel, we provide a numerical comparison between

the measured end-to-end packet delay using CORE emulator
and the analytically calculated average packet delay using
(18) for three packet interarrival time distributions, namely,
Exponential, Weibull, and generalized Pareto. The aim is to
show the impact of the interarrival time distribution on radio
resource allocation. The emulation is performed by using a
packet trace of a specific traffic pattern as the input of an
IoT gateway or fog node for each sample. The emulated
configuration includes a gateway connected to a cloud data
management server via a 4G or 5G wireless link. The wireless
link rate is varied to reflect the availability of different amounts
of radio resources, which depend on the number of gateways
(or fog nodes), the background traffic of the backbone network,
and channel condition. Consequently, the impact of channel
impairments (i.e., pathloss, fading, interference) is represented
by the available data rate for the wireless link.

Fig. 15 shows the average end-to-end delay that the packets
from an IoT gateway/fog node experience when transferred
over a link for different available link capacity (represented
as different utilization factor values). The figure compares the
average delay measured by the emulator for the video surveil-
lance traffic pattern with the delay calculated by (18) for the
aforementioned interarrival time distributions. Apparently, Fig.
15 reveals that the average end-to-end delay is generally closer
to the one analytically obtained with Weibull distribution than
with the other distributions over different utilization factor
values. Similarly, Fig. 16 shows that the measured average

end-to-end delay best matches the values calculated using (18)
for generalized Pareto distribution. Indeed, the results depicted
by Figures 15 and 16 are in agreement with the results shown
in Subsection VI-B for the same patterns. The figures also
depict that the assumption of the exponential distribution for
the interarrival time leads to underestimating the average end-
to-end delay.
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Fig. 15: End-to-end delay from a WiFi gateway to a
management server (video surveillance pattern).

VIII. CONCLUSION

We have investigated the characterization of incoming traffic
at WiFi-based IoT gateways or fog nodes, since it is pivotal for
allocating the resources of the backbone network connecting
IoT nodes to cloud servers. This characterization includes
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Fig. 16: End-to-end delay from a WiFi gateway to a
management server (smart city pattern).

homogeneous and non-homogeneous traffic patterns of popular
IoT applications, such as video surveillance, e-healthcare, and
smart city, used in the area covered by the gateway or fog
node.

Real IoT data traces are generated in a laboratory setting
and used to generate the studied traffic patterns via a virtual
machine-based network emulation validated by a hardware-
based replica in another lab setup. The WiFi network scale in
terms of the number of IoT nodes is analyzed and determined
for a low probability of packet collisions and small access
delay variations to achieve negligible packet loss, assuming
date rate adaptation is in place to mitigate physical channel
impairments.

It is observed that the generalized Pareto distribution is
the closest among other common distributions to match the
empirical packet inter-arrival time distribution at a WiFi-based
IoT gateway or fog node for homogeneous e-healthcare and
smart city traffic. On the other hand, the Weibull distribution
is found to be the nearest distribution to match the empirical
packet inter-arrival time for homogeneous video surveillance
and any other inhomogeneous traffic pattern (a traffic mix of
the three applications) irrespective of whether the IoT traffic
sources are synchronized or not. Analyzing the average end-to-
end delay for a backbone link connecting a gateway/fog node
to a cloud entity using these packet interarrival time findings
reveals accurate results. This implies that the exponential
interarrival time is not suitable to model the packet interarrival
time at WiFi-based IoT gateways or fog nodes. In addition,
the WiFi random access scheme affects the packet interarrival
time at the gateway, making it not exactly following any of
the distributions commonly used for traffic modeling (such as
the exponential, Weibull, and generalized Pareto), although the
number of IoT nodes is set to keep access delay variations low.
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