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Abstract—Federated learning (FL) over resource-constrained
wireless networks has recently attracted much attention. How-
ever, most existing studies consider one FL task in single-cell
wireless networks and ignore the impact of downlink/uplink inter-
cell interference on the learning performance. In this paper, we
investigate FL over a multi-cell wireless network, where each
cell performs a different FL task and over-the-air computation
(AirComp) is adopted to enable fast uplink gradient aggrega-
tion. We conduct convergence analysis of AirComp-assisted FL
systems, taking into account the inter-cell interference in both
the downlink and uplink model/gradient transmissions, which
reveals that the distorted model/gradient exchanges induce a gap
to hinder the convergence of FL. We characterize the Pareto
boundary of the error-induced gap region to quantify the learning
performance trade-off among different FL tasks, based on which
we formulate an optimization problem to minimize the sum of
error-induced gaps in all cells. To tackle the coupling between
the downlink and uplink transmissions as well as the coupling
among multiple cells, we propose a cooperative multi-cell FL
optimization framework to achieve efficient interference man-
agement for downlink and uplink transmission design. Results
demonstrate that our proposed algorithm achieves much better
average learning performance over multiple cells than non-
cooperative baseline schemes.

Index Terms—Federated learning, over-the-air computation,
interference management, multi-cell cooperation.

I. INTRODUCTION

The integration of artificial intelligence (AI) and wireless

communications becomes an emerging trend for accelerating

the fulfillment of connected intelligence in the 6G wireless

networks [1]–[3]. Meanwhile, a vast amount of raw data

generated at the wireless edge stimulates the emergence of

various AI applications, such as smart Internet of Things

(IoT), autonomous driving, and augmented reality. Due to the

communication-efficiency and privacy-preserving concerns, it

is undesirable to transfer raw data from massive edge devices

to an edge server, e.g., base station (BS), as in the centralized

machine learning (ML) framework. To this end, federated

learning (FL) as one of the promising distributed learning

paradigms has recently been proposed to train a common ML
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model in an iterative manner by exploiting the edge computing

power while keeping the raw data at the edge devices [4],

[5]. During each training iteration, multiple edge devices

first receive the latest global model broadcast from the edge

server, based on which the edge devices compute the local

updates with their own datasets. Subsequently, the edge server

aggregates the local updates to refresh the global model for the

next training iteration. The aggregation of local updates therein

can be regarded as an implicit information sharing without

transmitting the private raw data, which effectively preserves

the data privacy. However, because of the periodic exchange

of high-dimensional model/gradient parameters between the

edge server and edge devices during the training process, it

is mandatory to develop communication-efficient strategies to

reduce the communication overhead and accelerate the training

process, especially when the radio resources are limited.

Recent years have witnessed an upsurge research interest

in the joint learning and communication design for FL over

wireless networks. One challenge in realizing such a joint

design is the efficient allocation of limited radio resources

for high learning performance. To this end, the authors in

[6] propose to dynamically adapt the frequency of global

aggregation to improve the learning performance under a fixed

resource budget for the entire training process. The authors

in [7] optimize the resource allocation to balance the trade-

off between the training time and the energy consumption.

In addition, various scheduling policies are developed in [8]–

[15] to allocate limited radio bandwidth to a subset of edge

devices with good channel conditions [8], [10], large local

updates norm [10], [11], small transmission delay [12]–[14],

and low energy consumption [15]. Moreover, hierarchical FL

is considered in [16]–[19] to reduce communication costs and

achieve efficient resource allocation. All the aforementioned

studies adopt an orthogonal multiple access (OMA) scheme

to achieve uplink model/gradient aggregation, where the edge

sever updates the global model after successfully decoding

each of the local updates. The number of resource blocks

required by such a “transmit-then-aggregate” strategy linearly

scales with the number of participating devices, which can

be radio spectrum inefficient, especially when the number of

devices is large.

Over-the-air computation (AirComp) has recently been

leveraged to enhance the communication efficiency of up-

link model/gradient aggregation in FL systems [20]–[23]. By

exploiting the waveform superposition property of multiple-

access channels, AirComp allows multiple devices to concur-

rently transmit their local updates over the same radio channel
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and meanwhile enables the edge server to directly receive

an aggregation of these local updates [24]–[26]. Such an

“aggregate-when-transmit” strategy requires only one resource

block regardless of the number of participating devices. To

achieve accurate model aggregation via AirComp, various

transceiver designs have recently been proposed to reduce

the distortion of the aggregated model due to receiver noise

and channel fading, such as via multi-antenna beamform-

ing [20] and transmit power control [27], [28]. In addition,

auxiliary equipment is leveraged to support reliable uplink

model/gradient aggregation, such as intelligent reflecting sur-

face [29]–[31] and half-duplex relay [32], thereby improving

the learning performance when the propagation environment

is unfavorable. All the aforementioned works assume ideal

error-free downlink transmissions and focus on the uplink

transmission design. Due to the random channel fading, the

global model disseminated in the downlink inevitably suffers

from channel distortion, which in turn detrimentally affects

the local training performance at the edge devices. When

the downlink distortion is severe, the previous training may

become futile.

To fill this gap, the authors in [33]–[35] develop efficient

methods to tackle non-ideal downlink model dissemination

in wireless FL systems. In particular, the authors in [33]

show that, by adopting the analog downlink transmission,

the adverse impact on the learning performance caused by

the devices with less accurate model estimates can be al-

leviated by those with more accurate model estimates. The

convergence of FL over noisy downlink and uplink wireless

channels is investigated in [34], which takes into account

full and partial device participation, uplink model and model

differential transmission, and non-independent and identically

distributed (non-i.i.d.) local datasets. Results show that the

effect of both downlink and uplink communication errors can

be alleviated during the training process as long as they do

not dominate the errors caused by stochastic gradient descent

(SGD). In addition, the authors in [35] consider a unit-modulus

AirComp-assisted FL system, where a phase-shift network at

the edge server is utilized to reduce the parameter distortion

caused by both the downlink and uplink communication errors.

A. Motivation

The aforementioned studies develop efficient joint learning

and communication designs considering one FL task in a

single-cell wireless network. With the rapid advancement in

connected intelligence, the co-existence of multiple FL tasks

in a multi-cell wireless network will become a new normal

in future wireless networks. Under this circumstance, the

inter-cell interference among different FL tasks needs to be

considered, as it is the main performance-limiting factor of

multi-cell wireless networks. A few recent studies have given

some preliminary discussions about the impact of inter-cell

interference on device scheduling and resource allocation in

wireless FL systems [36], [37]. These studies focus on inter-

cell interference in the uplink aggregation. Different from

the existing studies in the literature, in this paper we study

multiple FL tasks over multi-cell wireless networks, while

taking into account the inter-cell interference in both the down-

link and uplink model/gradient transmissions. Furthermore,

we investigate the learning performance in multiple cells,

extending the existing studies focusing only on a typical cell.

B. Challenges and Contributions
In this paper, we consider over-the-air FL in a multi-

cell wireless network, where each cell performs a different

FL task and the devices in each cell upload local gradients

to their home BS using AirComp. We consider a practi-

cal yet challenging scenario with universal frequency reuse,

where both the downlink and uplink transmissions during the

training process in each cell are distorted by the receiver

noise, channel fading, and inter-cell interference. To achieve

maximal learning performance for all cells, it is necessary

to effectively manage inter-cell interference during both the

downlink and uplink model/gradient transmissions, which in-

troduces the following challenges. First, the main objective

of FL is to enable low-latency and high-quality intelligence

distillation from edge devices. However, there does not exist

a widely-accepted performance metric that can characterize

the learning performance as a function of communication

system parameters. Second, considering both the downlink

and uplink model/gradient distortion significantly complicates

the learning performance characterization. This is because

the local gradient computation depends on the distortion of

the downlink model transmission, while the global model

update also depends on the distortion of the uplink gradient

transmission. Third, due to the inter-cell interference, the

transmission processes in different cells are coupled and hence

simply focusing on single-cell optimization may deteriorate

the learning performance in other cells, which makes it chal-

lenging to coordinate the downlink and uplink model/gradient

transmissions in different cells. To address these challenges,

we develop a cooperative optimization framework to balance

the learning performance of different FL tasks in a multi-cell

wireless network. The main contributions of this paper are

summarized as follows:

• We first analyze the convergence of the proposed over-

the-air FL in a multi-cell wireless network, taking into

account the impact of both the downlink and uplink

transmission distortions caused by receiver noise, channel

fading, and inter-cell interference. The derived analytical

convergence expression shows that both the downlink and

uplink transmission distortions induce a gap that prevents

the FL algorithm from converging to a stationary point;

• To balance the learning performance among different FL

tasks in multiple cells, we define a new performance

metric, named gap region, to be the set of error-induced

gaps that can be simultaneously generated by all cells un-

der resource constraints. We further introduce the Pareto

boundary of the gap region to characterize the perfor-

mance trade-off among multiple cells, which enables us

to formulate an optimization problem to minimize the

sum of error-induced gaps for all cells via the profiling

technique;

• We propose a cooperative multi-cell FL optimization

framework, which decouples the optimization for the
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downlink and uplink model/gradient transmissions, and

coordinates the optimization for different cells. It enables

us to separately minimize the sum of gaps generated by

the downlink and uplink transmission distortions, where

the resulting subproblems can be solved by using the

bisection search method via checking the feasibility of

a sequence of second order cone programming (SOCP)

problems. Practical implementation issues of our pro-

posed optimization framework are discussed;

• We present extensive simulations to validate our pro-

posed cooperative multi-cell FL optimization framework.

Simulation results show that our proposed algorithm can

balance the learning performance among different FL

tasks in multiple cells, and yield lower training loss and

higher test accuracy as compared with non-cooperative

baseline schemes in terms of the multi-cell average learn-

ing performance.

C. Organization and Notations

The rest of this paper is organized as follows. Section II

describes the learning and communication models for over-the-

air FL in a multi-cell wireless network. Section III presents the

convergence analysis and formulates the cooperative optimiza-

tion problem. In Section IV, we propose a cooperative multi-

cell FL optimization framework to achieve efficient interfer-

ence management. Simulation results are provided in Section

V to evaluate the performance of our proposed algorithm.

Finally, Section VI concludes this work.

Notations: Italic, bold lower-case, and bold upper-case

letters denote scalar, column vector, and matrix, respectively.

Operators (·)†, (·)T, and diag(·) denote the conjugate, trans-

pose, and diagonal matrix, respectively. Besides, operator | · |
returns the cardinality of a set or the absolute value of a scalar,

and ‖ · ‖ represents the Euclidean norm, while �{·} denotes

the real part of a complex value. The important notations used

throughout the paper are listed in Table I.

II. SYSTEM MODEL

In this section, we present the learning and communication

models for over-the-air FL in a multi-cell wireless network,

taking into account the inter-cell interference in both the down-

link model dissemination and uplink gradient aggregation.

A. Learning Model

Consider a multi-cell wireless network consisting of M
single-antenna BSs, where BS m ∈ M = {1, 2, . . . ,M} aims

to train an ML model by coordinating Km single-antenna de-

vices located in cell m, as shown in Fig. 1. Specifically, device

k ∈ Km = {∑m−1
l=1 Kl + 1,

∑m−1
l=1 Kl + 2, . . . ,

∑m−1
l=1 Kl +

Km} is associated with BS m and has local dataset Dk, where

Km∩Kl = ∅, ∀ l ∈ M\{m}. The local loss function of device

k ∈ Km evaluated at model parameter wm ∈ R
Dm is given

by

Fm,k(wm) =
1

|Dk|
∑

ξi∈Dk

fm(wm; ξi) (1)

TABLE I
IMPORTANT NOTATIONS AND THEIR DEFINITIONS.

Notation Definition
M Set of all cells/BSs.

Km Set of all devices associated with BS m ∈ M.

Dk Local dataset at device k ∈ Km.

wm Model parameter of the learning task in cell m ∈ M.

fm(wm; ξi) Sample-wise loss function of the learning task in cell
m evaluated at model parameter wm on sample ξi.

Fm,k(wm) Local loss function of device k ∈ Km evaluated at
model parameter wm on dataset Dk .

Fm(wm) Global loss function evaluated at model parameter wm

for the learning task in cell m.

T Number of communication rounds.

gk Local gradient parameter at device k ∈ Km.

sdlm / sulk Normalized model parameter of wm / gradient param-
eter gk .

hdl
k / hul

k Downlink / Uplink channel coefficient between device
k ∈ Km and its home BS m ∈ M.

hdl
l,k / hul

k,l Downlink / Uplink channel coefficient between device
k ∈ Km and its non-associated BS l ∈ M \ {m}.

ydlk,d / yulm,d Downlink / Uplink signal of the d-th dimension received
at device k ∈ Km / BS m ∈ M.

pdlm / pulk Downlink / Uplink transmit power at BS m ∈ M /
device k ∈ Km.

zdlk,d / zulm,d Additive receiver noise of the d-th dimension at device
k ∈ Km / BS m ∈ M.

rdl
k / rul

m De-normalized signal at device k ∈ Km / BS m ∈ M.

edlk / eulm Downlink dissemination / Uplink aggregation error at
device k ∈ Km / BS m ∈ M.

ŵk Model parameter received at device k ∈ Km.

ĝm Average of the local gradients received at BS m ∈ M.

cm Receive normalizing factor at BS m.

ηm Learning rate of the learning task in cell m ∈ M.

where ξi denotes the i-th labeled data sample, and fm(wm; ξi)
is the sample-wise loss function quantifying the prediction

error of model parameter wm on data sample ξi. Without

loss of generality, all the local datasets in the same cell are

assumed to have the same size, i.e., |Dk| = |Dj |, ∀ k, j ∈ Km.

Accordingly, the global loss function for the learning task in

cell m can be expressed as

Fm(wm) =
1

Km

∑
k∈Km

Fm,k(wm) (2)

and the objective of FL is to obtain a global model such that

w�
m = arg min

wm∈RDm
Fm(wm). (3)

In our considered multi-cell system, each cell performs a

different FL task by applying the gradient-averaging method

[4], which will be elaborated in the next subsection. We

consider universal frequency reuse, i.e., all cells share the

same frequency channel, which inevitably leads to inter-cell

interference among the different cells.

B. Communication Model

To train a high-quality global model, each cell iteratively

performs the training process for T ∈ N+ rounds. Each
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Fig. 1. Illustration of multiple FL tasks in a multi-cell wireless network.

training round consists of four stages: 1) downlink model
dissemination, 2) local gradient computation, 3) uplink gra-
dient aggregation, and 4) global model update, where stages

1) and 3) are carried out over wireless fading channels. For

simplicity, we assume that the sample-wise loss functions and

the dimensions of model parameters in different cells are

the same, i.e., fm(·) = f(·) and Dm = D, ∀m ∈ M.

Note that for a general case that the dimensions of model

parameters in different cells are different, we can use either

zero padding or compression technique to adjust the model

parameters of different cells to have the same size. The details

of the learning and communication design for the t-th round,

t ∈ T = {1, 2, . . . , T}, are given in the following.

1) Downlink Model Dissemination: In the downlink, BS

m broadcasts its current global model wt−1
m to the associated

devices in set Km. Specifically, at the t-th round, to facilitate

the transmit power control, BS m first normalizes the current

global model wt−1
m as

(sdlm)t =
wt−1

m − w̄t−1
m 1

νt−1
m

(4)

where 1 = [1, 1, . . . , 1]T ∈ R
D, and w̄t−1

m ∈ R and νt−1
m ∈

R++ denote the mean and standard deviation of D entries of

global model wt−1
m , respectively. They are defined as

w̄t−1
m =

1

D

D∑
d=1

wt−1
m,d, (ν

t−1
m )2 =

1

D

D∑
d=1

(
wt−1

m,d − w̄t−1
m

)2
.

(5)

Hence, each element of normalized model (sdlm)t has

zero mean and unit variance, i.e., E[(sdlm,d)
t] = 0 and

E[((sdlm,d)
t)2] = 1, ∀ d ∈ {1, 2, . . . , D}.

Let (hdl
k )t ∈ C and (hdl

l,k)
t ∈ C, ∀ k ∈ Km, denote

the downlink channel coefficients during the t-th round be-

tween device k and its home BS m, and between device

k and its non-associated BS l ∈ M \ {m}, respectively.

Assume that each device is able to accurately estimate the

channels between itself and all the BSs through downlink

pilot signaling, and each BS can obtain the local channel

state information (CSI) of its associated devices through uplink

feedback [38]. The channel gain of each link is invariant within

one coherence time block but independently changes from

one block to another. Each round consists of one downlink

transmission block and one uplink transmission block, where

each transmission block can accommodate the transmission

of an entire model/gradient parameter. The communication

protocol designed in the following focuses on the transmission

of one typical dimension of the parameters, which can be

extended to the scenarios where multiple blocks are required

for transmitting high-dimensional model/gradient parameters.

Note that, when the dimension of the model/gradient parameter

is quite large, the compression techniques can be leveraged to

enable the parameters to be transmitted in one coherence block

[22], [39].

BS m broadcasts the normalized global model, (sdlm)t, to

the associated devices in set Km. The signal received at device

k ∈ Km is given by

(ydlk,d)
t = (hdl

k )t
√
(pdlm)t(sdlm,d)

t

+
∑

l∈M\{m}
(hdl

l,k)
t
√

(pdll )t(sdll,d)
t

︸ ︷︷ ︸
Inter-cell interference

+ (zdlk,d)
t (6)

where (pdlm)t ∈ R+ denotes the downlink transmit power at BS

m and (zdlk,d)
t ∼ CN (0, (σdl

k )2) denotes the additive receiver

Gaussian noise at device k. By assuming that BS m shares

small-sized scalars {w̄t−1
m , νt−1

m } and (pdlm)t with its associated

devices in an error-free manner before broadcasting the global

model, device k is able to de-normalize the received signal as

follows

(rdlk,d)
t =

((hdl
k )t)†νt−1

m

|(hdl
k )t|2

√
(pdlm)t

(ydlk,d)
t + w̄t−1

m

= wt−1
m,d +

((hdl
k )t)†νt−1

m

|(hdl
k )t|2

√
(pdlm)t︸ ︷︷ ︸

×

⎛⎝ ∑
l∈M\{m}

(hdl
l,k)

t
√

(pdll )t(sdll,d)
t + (zdlk,d)

t

⎞⎠
︸ ︷︷ ︸

(edlk,d)
t

(7)

where (edlk,d)
t denotes the downlink dissemination error caused

by the receiver noise, channel fading, and inter-cell interfer-

ence. Here, the first term in parentheses of (edlk,d)
t denotes the

error caused by inter-cell interference and the second term is

the error induced by the additive noise. Therefore, the model

parameter received at device k can be represented as

ŵt
k = �

{
(rdlk )t

}
= wt−1

m + �
{
(edlk )t

}
(8)

where (rdlk )t = [(rdlk,1)
t, (rdlk,2)

t, . . . , (rdlk,D)t]T and (edlk )t =

[(edlk,1)
t, (edlk,2)

t, . . . , (edlk,D)t]T.

2) Local Gradient Computation: After obtaining estimated

global model ŵt
k, device k computes local gradient gt

k ∈ R
D

based on its local dataset Dk, given by

gt
k = ∇Fk(ŵ

t
k) =

1

|Dk|
∑

ξi∈Dk

∇f(ŵt
k; ξi). (9)

Note that the mini-batch stochastic gradient can be adopted

when the size of the local dataset is large. By uniformly

sampling a batch of data (Dbs
k )t ⊂ Dk, the mini-batch
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stochastic gradient can be computed by

g̃t
k =

1

|(Dbs
k )t|

∑
ξi∈(Dbs

k )t

∇f(ŵt
k; ξi) (10)

where E(Dbs
k )t [g̃

t
k] = gt

k.

In the following, we mainly adopt (9) for the convergence

analysis and device k ∈ Km uploads its local gradient

parameter gt
k to its home BS m in the uplink transmission.

3) Uplink Gradient Aggregation: For global model update,

BS m aims to receive an arithmetic mean of the local gradients

of all devices in set Km, given by

gt
m =

1

Km

∑
k∈Km

gt
k. (11)

To enhance the communication efficiency, we adopt AirComp

for uplink gradient aggregation. With AirComp, BS m is

capable of directly obtaining a noisy version of the arithmetic

mean in (11) by allowing all devices in set Km to concurrently

transmit their local gradients over the same radio channel

[20]–[22]. Similar to the downlink transmission, device k first

normalizes its local gradient as [30]

(sulk )t =
gt
k − ḡtk1

υt
k

(12)

where ḡtk ∈ R and υt
k ∈ R++ denote the mean and standard

deviation of D entries of local gradient gt
k, respectively. They

are defined as

ḡtk =
1

D

D∑
d=1

gtk,d, (υ
t
k)

2 =
1

D

D∑
d=1

(
gtk,d − ḡtk

)2
. (13)

Consequently, (12) ensures that the transmitted signals satisfy

E[(sulk,d)
t] = 0 and E[((sulk,d)

t)2] = 1, ∀ d ∈ {1, 2, . . . , D},

∀ k ∈ Km.

Let (hul
k )t ∈ C and (hul

k,l)
t ∈ C, ∀ k ∈ Km, denote the

uplink channel coefficients during the t-th round between

device k and its home BS m, and between device k and its

non-associated BS l ∈ M\{m}, respectively. With concurrent

transmissions in the uplink, the signal received at BS m is

given by

(yulm,d)
t =

∑
k∈Km

(hul
k )tbtk(s

ul
k,d)

t + (zulm,d)
t

+
∑

l∈M\{m}

∑
k′∈Kl

(hul
k′,m)tbtk′(sulk′,d)

t

︸ ︷︷ ︸
Inter-cell interference

(14)

where btk ∈ C denotes the transmit scalar at device k and

(zulm,d)
t ∼ CN (0, (σul

m)2) denotes the additive receiver Gaus-

sian noise at BS m. To compensate for the phase distortion

introduced by complex channel responses, the transmit scalar

is set to btk =
((hul

k )t)†

|(hul
k )t|

√
(pulk )t, where (pulk )t ∈ R+ denotes

the uplink transmit power at device k. Then, (14) reduces to

(yulm,d)
t =

∑
k∈Km

|(hul
k )t|

√
(pulk )t(sulk,d)

t + (zulm,d)
t

+
∑

l∈M\{m}

∑
k′∈Kl

(hul
k′,m)t((hul

k′)t)†

|(hul
k′)t|

√
(pulk′)t(s

ul
k′,d)

t.

(15)

By assuming that the edge devices report scalars

{ḡtk, υt
k}k∈Km

to their home BSs in an error-free manner, BS

m is able to obtain the scaled signal as follows

(rulm,d)
t =

1

Km

(
(yulm,d)

t√
ctm

+
∑

k∈Km

ḡtk

)

=
1

Km

( ∑
k∈Km

gtk,d +
(yulm,d)

t√
ctm

−
∑

k∈Km

(
gtk,d − ḡtk

))

=
1

Km

∑
k∈Km

gtk,d +
1

Km

×

⎛⎝ ∑
k∈Km

⎛⎝ |(hul
k )t|

√
(pulk )t√

ctm
− υt

k

⎞⎠ (sulk,d)
t +

(zulm,d)
t√

ctm︸ ︷︷ ︸
+

∑
l∈M\{m}

∑
k′∈Kl

(hul
k′,m)t((hul

k′)t)†
√
(pulk′)t(sulk′,d)

t

|(hul
k′)t|

√
ctm

⎞⎠
︸ ︷︷ ︸

(eulm,d)
t

(16)

where ctm ∈ R++ denotes the receive normalizing factor

for signal power alignment and noise power suppression,

and (eulm,d)
t denotes the uplink aggregation error caused by

the receiver noise, channel fading, and inter-cell interference.

Here, the first term of (eulm,d)
t represents the misalignment

error caused by the non-uniform channel fading and power

control, the second term denotes the error introduced by the

receiver noise, and the third term denotes the error due to inter-

cell interference. Therefore, the average of the local gradients

received at BS m is given by

ĝt
m = �

{
(rulm)t

}
=

1

Km

( ∑
k∈Km

gt
k + �

{
(eulm)t

})
(17)

where (rulm)t = [(rulm,1)
t, (rulm,2)

t, . . . , (rulm,D)t]T and (eulm)t =

[(eulm,1)
t, (eulm,2)

t, . . . , (eulm,D)t]T.

4) Global Model Update: Based on the average of local

gradients received at BS m given in (17), the global model

maintained by BS m can be updated as

wt
m = wt−1

m − ηtmĝt
m (18)

where ηtm denotes the learning rate of cell m.

Remark 1. In the AirComp-based system, synchronization
is required among the distributed devices. In practice, syn-
chronization can be realized by sharing a reference-clock
across the devices [40], or adopting the timing advance
technique commonly used in 4G Long-Term Evolution (LTE)



6

and 5G New Radio (NR) [41]. For the multi-cell system under
consideration, we assume that all devices can be synchronized
as in [38].

Remark 2. Normalizing the model/gradient parameters be-
fore transmission has two benefits. First, by normalizing the
parameters to have zero-mean entries, the model/gradient pa-
rameters obtained by (8) and (17) can be regarded as unbiased
estimations of their original values, thereby facilitating the
convergence analysis. Second, by normalizing the parameters
to have unit-variance entries, we need to focus only on the
impact of the power control of other cells on the error-induced
gap regardless of the specific values of their model/gradient
parameters.

Remark 3. As mentioned above, compression techniques can
be used to adjust the model sizes in different cells to be the
same and enhance the communication efficiency. If compres-
sion is applied, then the effect of compression errors should be
considered in addition to the wireless communication errors.

Remark 4. Multiple antennas can be equipped at both the
receiver and transmitter to improve the transmission accuracy
by exploiting the diversity gain, and to simultaneously transmit
multiple dimensions of model/gradient parameters by exploit-
ing the spatial multiplexing gain. In such scenarios, the receive
and transmit beamforming should be carefully designed to
distinguish spatially multiplexed signals while compensating
for channel fading and mitigating the inter-cell interference,
which will be studied in our future work.

III. CONVERGENCE ANALYSIS AND PROBLEM

FORMULATION

In this section, we present the convergence analysis of

AirComp-assisted FL, taking account of both the downlink and

uplink transmission distortions, based on which we formulate

a cooperative multi-cell optimization problem to balance the

learning performance among different FL tasks in multiple

cells.

A. Convergence Analysis

To proceed, we first make the following two standard

assumptions on the loss functions.

Assumption 1. Global loss function Fm(·), ∀m ∈ M, is
lower bounded, i.e., Fm(w) ≥ Fm(w�) > −∞, ∀w ∈ R

D.

Assumption 2. All local loss functions Fm,k(·), ∀ k ∈ Km,
∀m ∈ M, are continuously differentiable and their gradients
∇Fm,k(·) are Lipschitz continuous with constant L > 0, i.e.,
for any w, w̃ ∈ R

D,

‖∇Fm,k(w)−∇Fm,k(w̃)‖ ≤ L ‖w − w̃‖ , (19)

which is also equivalent to

Fm,k(w)− Fm,k(w̃)

≤ 〈∇Fm,k(w̃),w − w̃〉+ L

2
‖w − w̃‖2 . (20)

Assumption 1 is the minimal assumption required for the

loss function to converge to a stationary point [42]. Assump-

tion 2 ensures that the local gradients do not change at an

arbitrarily high rate with respect to the model parameter [43].

This assumption is commonly adopted for the convergence

analysis in most existing studies on FL [6], [12], [44]. Based

on the above assumptions, we present an upper bound of the

time-average norm of the global gradients in the following

theorem.

Theorem 1. In cell m, by setting 0 < ηtm ≡ ηm < 1
L , the

time-average norm of the global gradients after T rounds is
upper bounded as

1

T

T−1∑
t=0

E

[∥∥∇Fm(wt
m)
∥∥2] ≤ 2

ηmT

(
Fm(w0

m)− Fm(w�
m)
)

︸ ︷︷ ︸
Initial gap

+
1

T

T−1∑
t=0

D∑
d=1

(
L2

Km

∑
k∈K

E

[
�
{
(edlk,d)

t+1
}2]

︸ ︷︷ ︸
+

Lηm
K2

m

E

[
�
{
(eulm,d)

t+1
}2])

︸ ︷︷ ︸
Error-induced gap

, ∀m ∈ M (21)

where the expectation is taken over normalized transmit sym-
bols and receiver noise.

Proof. Please refer to Appendix.

According to Theorem 1, the upper bound of
1
T

∑T−1
t=0 E

[
‖∇Fm(wt

m)‖2
]

given in (21) consists of

two parts, i.e., initial gap and error-induced gap. The initial

gap is mainly determined by the distance between the values

of the global loss function at the initial point and the optimal

point, which approaches zero as the number of rounds, T ,

goes to infinity. Hence, when T is large, the convergence

gap is dominated by the error-induced gap, due to the

receiver noise, channel fading, and inter-cell interference in

both downlink and uplink transmissions. Inspired by this

observation, we aim to minimize the error-induced gap in

each time slot for transmitting one-dimension model/gradient

parameter in each cell, given by

L2

Km

∑
k∈Km

E

[
�
{
(edlk,d)

t
}2]

+
Lηm
K2

m

E

[
�
{
(eulm,d)

t
}2]

,

∀ d ∈ {1, 2, . . . , D}, ∀ t ∈ T , ∀m ∈ M. (22)

This is due to the fact that, when (22) is minimized, the

error-induced gap is minimized. Nevertheless, simply focusing

on minimizing (22) for each cell may lead to severe inter-

cell interference in multi-cell wireless networks and in turn

deteriorate the learning performance of other cells. Therefore,

a cooperative design is required to balance the learning per-

formance among different FL tasks in multiple cells.

Remark 5. From the second term in (22), it is observed that
by exploiting the gradient aggregation in the uplink, setting a
small learning rate ηm can reduce the impact of the uplink
aggregation error. This is because the uplink aggregation error
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is added on the gradients in (17), which enables learning rate
ηm to rescale the error in (18).

B. Problem Formulation

For presentation clarity, we omit the time indices in the

following problem formulation. To balance the learning per-

formance among different FL tasks, we first define the gap

region, G, to be the set of tuples (Δ1,Δ2, . . . ,ΔM ), which

represents the instantaneous error-induced gaps of all cells that

can be simultaneously generated under a given set of downlink

and uplink transmit power constraints for BSs and devices,

respectively. The gap region, G, can be expressed as

G =
⋃

{(Δ1,Δ2, . . . ,ΔM ) | Δm ≥ Gapm, ∀m ∈ M}
(23)

where

Gapm =
L2Edl

m

Km︸ ︷︷ ︸
Gapdl

m

+
LηmEul

m

K2
m︸ ︷︷ ︸

Gapul
m

(24)

denotes the error-induced gap with

Edl
m =

∑
k∈Km

E

[
�
{
edlk,d

}2]

=
∑

k∈Km

ν2m

⎛⎜⎝ ∑
l∈M\{m}

�
{
(hdl

k )†hdl
l,k

}2

pdll

|hdl
k |4pdlm

+
(σdl

k )2

2|hdl
k |2pdlm

⎞⎟⎠
(25)

and

Eul
m = E

[
�
{
eulm,d

}2]
=

∑
k∈Km

⎛⎝ |hul
k |
√
pulk√

cm
− υk

⎞⎠2

+
∑

l∈M\{m}

∑
k′∈Kl

�
{
hul
k′,m(hul

k′)†
}2

pulk′

|hul
k′ |2cm

+
(σul

m)2

2cm
. (26)

Here, (25) reflects the impact of the sum of downlink dissem-

ination errors at the devices in cell m and (26) reflects the

impact of the uplink aggregation error at BS m on Gapm.

Thus, Gapm is determined by

V =

{( ⋃
m∈M

{
pdlm, cm,

{
pulk
}
k∈Km

})∣∣∣∣∣ 0 ≤ pdlm ≤ P dl
m ,

cm > 0, 0 ≤ pulk ≤ P ul
k , ∀ k ∈ Km, ∀m ∈ M

}
(27)

where P dl
m and P ul

k denote the maximum transmit power

budgets in the downlink and uplink, respectively. As the

value of Gapm in each cell is influenced by the inter-cell

interference, there is a performance trade-off among different

FL tasks in multiple cells. In particular, reducing one cell’s

error-induced gap may increase the error-induced gaps of other

cells. Therefore, we aim to find a feasible set, V , to reach

Pareto boundary P of gap region G for balancing the learning

performance among multiple cells, where the Pareto optimality

of a tuple (Δ1,Δ2, . . . ,ΔM ) is defined as follows [45].

Fig. 2. Illustration of Pareto boundary P of gap region G in a two-cell
wireless network.

Definition 1. Tuple (Δ1,Δ2, . . . ,ΔM ) is Pareto
optimal if there is no other tuple (Δ̃1, Δ̃2, . . . , Δ̃M )
with (Δ̃1, Δ̃2, . . . , Δ̃M ) � (Δ1,Δ2, . . . ,ΔM ) and
(Δ̃1, Δ̃2, . . . , Δ̃M ) �= (Δ1,Δ2, . . . ,ΔM ), where � denotes
the component-wise inequality.

A two-cell example is shown in Fig. 2, where the gray area

denotes gap region G and its lower-left boundary represents

Pareto boundary P . On such a boundary, we can only reduce

one cell’s error-induced gap at the cost of increasing the error-

induced gap of the other cell. Here, we leverage the profiling

technique [38], [46] to characterize the Pareto boundary by

coordinating all BSs to minimize the sum of error-induced

gaps of all cells. Specifically, let κ = [κ1, κ2, . . . , κM ] denote

a given profiling vector, which satisfies κm ≥ 0, ∀m ∈ M,

and
∑

m∈M κm = 1. The gap tuple on Pareto boundary P
can be obtained by solving the following problem

minimize
ζ,{cm},

{pdl
m},{pul

k }

ζ (28a)

subject to Gapm ≤ κmζ, ∀m ∈ M (28b)

0 ≤ pdlm ≤ P dl
m , ∀m ∈ M (28c)

0 ≤ pulk ≤ P ul
k , ∀ k ∈ Km, ∀m ∈ M (28d)

cm > 0, ∀m ∈ M (28e)

ζ ≥ 0 (28f)

where ζ denotes the sum of error-induced gaps of

all cells. Thus, the gap tuple can be represented as

(Δ1,Δ2, . . . ,ΔM ) = (κ1ζ, κ2ζ, . . . , κMζ), where a smaller

value of κm implies a more stringent requirement for the error-

induced gap of cell m. The corresponding Pareto optimal gap

tuple can be geometrically viewed as the intersection of the

ray in the direction of κ (gap profile) and Pareto boundary P ,

as shown in Fig. 2.

Since the downlink and uplink transmissions are carried

out sequentially, the local gradients for uplink aggregation

can be obtained only after obtaining the global model from

the downlink dissemination, and vice versa. As a result, we

cannot obtain the exact expressions for constraints (28b),

which makes it highly intractable to simultaneously tackle the



8

downlink and uplink optimization in problem (28). Besides,

due to the presence of the inter-cell interference, the downlink

and uplink transmit power levels of different cells are coupled

in constraints (28b). The uplink transmit powers and receive

normalizing factor in each cell are also coupled in constraints

(28b). To address these challenging issues, we propose a coop-

erative multi-cell FL optimization framework in the following.

IV. COOPERATIVE MULTI-CELL FL OPTIMIZATION

FRAMEWORK

In this section, we present a cooperative multi-cell FL

optimization framework to balance the learning performance

among different FL tasks in multiple cells.

Denote ζ = ζdl0 +ζul0 , where ζdl0 and ζul0 are used to quantify

the sum of instantaneous error-induced gaps generated by

downlink and uplink transmissions, respectively. Hence, we

rewrite problem (28) as

minimize
ζdl
0 ,ζul

0 ,{cm},
{pdl

m},{pul
k }

ζdl0 + ζul0 (29a)

subject to Gapdl
m ≤ κmζdl0 , ∀m ∈ M (29b)

Gapul
m ≤ κmζul0 , ∀m ∈ M (29c)

ζdl0 ≥ 0 (29d)

ζul0 ≥ 0 (29e)

constraints (28c), (28d), (28e). (29f)

The downlink and uplink transmissions are decoupled in

problem (29), which allows us to separately optimize the

downlink and uplink transmissions.

A. Cooperative Downlink Transmission

For the downlink model dissemination, the optimization

problem can be written as

minimize
ζdl
0 ,{pdl

m}
ζdl0 (30a)

subject to constraints (28c), (29b), (29d). (30b)

By substituting (25) into constraints (29b), we have

minimize
ζdl,{pdl

m}
ζdl (31a)

subject to
∑

l∈M\{m}
pdll

∑
k∈Km

�
{
(hdl

k )†hdl
l,k

}2

|hdl
k |4

+
∑

k∈Km

(σdl
k )2

2|hdl
k |2 ≤ κdl

mζdl

ν2m
pdlm, ∀m ∈ M

(31b)

0 ≤ pdlm ≤ P dl
m , ∀m ∈ M (31c)

ζdl ≥ 0 (31d)

where ζdl =
ζdl
0

L2 and κdl
m = κmKm. Problem (31) can

be solved by tackling a sequence of feasibility detection

problems, given ζdl. Specifically, for any given ζdl, problem

(31) is reduced to

find {pdlm} (32a)

subject to
∑

l∈M\{m}
pdll

∑
k∈Km

�
{
(hdl

k )†hdl
l,k

}2

|hdl
k |4

+
∑

k∈Km

(σdl
k )2

2|hdl
k |2 ≤ κdl

mζdl

ν2m
pdlm, ∀m ∈ M

(32b)

0 ≤ pdlm ≤ P dl
m , ∀m ∈ M. (32c)

Here, constraints (32b) can be rewritten as√
�2

m,0 +
∑
l∈M

�2
m,lp

dl
l ≤

√
κdl
mζdl

ν20,m
pdlm, ∀m ∈ M (33)

where

�2
m,0 =

∑
k∈Km

(σdl
k )2

2|hdl
k |2 , �

2
m,m = 0

�2
m,l =

∑
k∈Km

�
{
(hdl

k )†hdl
l,k

}2

|hdl
k |4 , ∀ l ∈ M \ {m}. (34)

By denoting qdl =

[√
pdl1 ,

√
pdl2 , . . . ,

√
pdlM

]T
,

Πm = diag ([�m,0, �m,1, . . . , �m,M ]), and

ϑm = [ϑm,1, ϑm,2, . . . , ϑm,M ]
T

with

ϑm,l =

{ √
κdl
mζdl

ν2
m

, l = m

0, l �= m
(35)

constraints (33) can be represented as a set of second-order

cone (SOC) constraints. Problem (32) is thus equivalent to the

following SOCP problem

find qdl (36a)

subject to
∥∥[1; qdl]TΠm

∥∥ ≤ (qdl)Tϑm, ∀m ∈ M (36b)

0 ≤ qm ≤
√
P dl
m , ∀m ∈ M (36c)

which can be efficiently solved by using convex optimization

tools, e.g., CVX [47]. Thus, the optimal downlink transmit

power control given ζdl can be obtained by (pdlm)∗ = ((qdlm)∗)2,

∀m ∈ M, where (qdl)∗ = [(qdl1 )∗, (qdl2 )∗, . . . , (qdlM )∗]T is

the optimal solution to problem (36). Furthermore, by pre-

defining a solution precision, εdl > 0, we can leverage the

bisection search method to obtain optimal solutions (ζdl)� and

{(pdlm)�}m∈M via checking the feasibility of the solution to

problem (36), which is summarized in Algorithm 1.

B. Cooperative Uplink Transmission

For the uplink gradient aggregation, the optimization prob-

lem is given by

minimize
ζul
0 ,{cm},{pul

k }
ζul0 (37a)

subject to constraints (28d), (28e), (29c), (29e). (37b)
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Algorithm 1: Cooperative downlink optimization for

problem (30).

Input: Standard deviations of global models {νm},

profiling vector κ, and solution precision

parameter εdl.
1 ζdllow ← 0, ζdlup ← 1.

2 while
∣∣ζdlup − ζdllow

∣∣ > εdl do

3 ζdl ← ζdl
up+ζdl

low

2 .

4 Obtain {(pdlm)∗}m∈M by solving problem (36).

5 if Problem (36) is feasible then
6 ζdlup ← ζdl.
7 (pdlm)� ← (pdlm)∗, ∀m ∈ M.

8 else
9 ζdllow ← ζdl.

10 end
11 end

Output: (ζdl)� ← ζdl
up+ζdl

low

2 and optimal downlink

transmit powers {(pdlm)�}m∈M.

It is intractable to directly solve problem (37) due to the cou-

pling between uplink transmit power levels
⋃

m∈M{pulk }k∈Km

and receive normalizing factors {cm}m∈M. To tackle this

issue, we first obtain the optimal receive normalizing factors

with fixed uplink transmit power levels. Specifically, given⋃
m∈M{pulk }k∈Km , problem (37) can be decoupled into M

subproblems, where the subproblem for cell m is given by

minimize
cm>0

∑
k∈Km

⎛⎝ |hul
k |
√

pulk√
cm

− υk

⎞⎠2

+
(σul

m)2

2cm

+
∑

l∈M\{m}

∑
k′∈Kl

�
{
hul
k′,m(hul

k′)†
}2

pulk′

|hul
k′ |2cm

. (38)

It is easy to verify that problem (38) is a convex quadratic

problem by treating 1√
cm

as an optimization variable. Hence,

the optimal receive normalizing factors can be computed as

c�m =

⎛⎝∑k∈Km
|hul

k |2pulk + (σul
m)2/2∑

k∈Km
|hul

k |
√

pulk υk

+

∑
l∈M\{m}

∑
k′∈Kl

�
{
hul
k′,m(hul

k′)†
}2

pulk′/|hul
k′ |2∑

k∈Km
|hul

k |
√
pulk υk

⎞⎟⎠
2

,

∀m ∈ M. (39)

On the other hand, substituting (39) into problem (37), we

have

minimize
ζul,{pul

k }
ζul (40a)

subject to

( ∑
k∈Km

υ2
k − κul

mζul

)( ∑
k∈Km

|hul
k |2pulk +

(σul
m)2

2

+
∑

l∈M\{m}

∑
k′∈Kl

�
{
hul
k′,m(hul

k′)†
}2

pulk′

|hul
k′ |2

⎞⎟⎠
≤
( ∑

k∈Km

|hul
k |
√

pulk υk

)2

, ∀m ∈ M (40b)

0 ≤ pulk ≤ P ul
k , ∀ k ∈ Km, ∀m ∈ M (40c)

ζul ≥ 0 (40d)

where ζul =
ζul
0

L and κul
m =

κmK2
m

ηm
. This problem can be

solved in a way similar to solving problem (31). Specifically,

given ζul, problem (40) becomes

find {pulk } (41a)

subject to Ξm

( ∑
k∈Km

|hul
k |2pulk +

(σul
m)2

2

+
∑

l∈M\{m}

∑
k′∈Kl

�
{
hul
k′,m(hul

k′)†
}2

pulk′

|hul
k′ |2

⎞⎟⎠
≤
( ∑

k∈Km

|hul
k |
√

pulk υk

)2

, ∀m ∈ M (41b)

0 ≤ pulk ≤ P ul
k , ∀ k ∈ Km, ∀m ∈ M (41c)

where Ξm =
∑

k∈Km
υ2
k − κul

mζul ≥ 0. By defining

γm = [γm,1, γm,2, . . . , γm,Ktot ], ∀m ∈ M, with Ktot =∑
m∈M Km and

γm,k =

{ |hul
k |, k ∈ Km

�{hul
k,m(hul

k )†}
|hul

k | , k ∈ Kl, ∀ l ∈ M \ {m} (42)

constraints (41b) can be reformulated as√√√√Ξm

(∑
l∈M

∑
k∈Kl

γ2
m,kp

ul
k +

(σul
m)2

2

)
≤

∑
k∈Km

|hul
k |
√
pulk υk,

∀m ∈ M. (43)

Then, problem (41) can be reformulated as the following

SOCP problem:

find qul (44a)

subject to
√
Ξm

∥∥[1; qul]TΓm

∥∥ ≤ (qul)Tψm, ∀m ∈ M
(44b)

0 ≤ qulk ≤
√
P ul
k , ∀ k ∈ Km, ∀m ∈ M (44c)

where qul =
[√

pul1 ,
√
pul2 , . . . ,

√
pulKtot

]T
, Γm =

diag
([
σul
m/

√
2,γm

])
, and ψm = [ψm,1, ψm,2, . . . , ψm,Ktot

]
T

with

ψm,k =

{
|hul

k |υk, k ∈ Km

0, k ∈ Kl, ∀ l ∈ M \ {m}. (45)

Consequently, we can obtain the optimal uplink transmit power

as (pulk )∗ = ((qulk )∗)2, ∀ k ∈ Km, ∀m ∈ M, given ζul, by

solving problem (44) with convex optimization tools, where

(qul)∗ = [(qul1 )∗, (qul2 )∗, . . . , (qulKtot
)∗]T is the optimal solution
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Algorithm 2: Cooperative uplink optimization for

problem (37).

Input: Standard deviations of local gradients {υk},

profiling vector κ, and solution precision

parameter εul.

1 ζullow ← 0, ζulup ← minm∈M
∑

k∈Km
υ2
k

κul
m

.

2 while
∣∣ζulup − ζullow

∣∣ > εul do

3 ζul ← ζul
up+ζul

low

2 .

4 Obtain
⋃

m∈M{(pulm)∗}k∈Km by solving problem

(36).

5 if Problem (36) is feasible then
6 ζulup ← ζul.
7 (pulk )� ← (pulk )∗, ∀ k ∈ Km, ∀m ∈ M.

8 else
9 ζullow ← ζul.

10 end
11 end
12 Obtain {c�m} based on (39).

Output: (ζul)� ← ζul
up+ζul

low

2 , optimal uplink transmit

powers
⋃

m∈M{(pulk )�}k∈Km , and optimal

receive normalizing factors {c�m}m∈M.

to problem (44). Moreover, by given solution precision εul,
the bisection search method can be used to find the optimal

solutions (ζul)� and
⋃

m∈M{(pulk )�}k∈Km
to problem (40),

while optimal receive normalizing factors {c�m}m∈M can

be obtained by substituting
⋃

m∈M{(pulk )�}k∈Km
into (39).

The uplink transmission optimization for problem (37) is

summarized in Algorithm 2.

Remark 6. From (39), it is observed that optimal receive
normalizing factors {c�m} are inversely proportional to stan-
dard deviations {υk} of local gradient parameters. Since the
absolute value of each entry of the gradient parameter tends
to become smaller when the model parameter approaches the
stationary point of the loss function, the standard deviation
of all entries of the gradient parameter is also expected to
become smaller. Besides, (16) demonstrates that a larger {c�m}
can better suppress the uplink aggregation error caused by the
receiver noise and inter-cell interference. Therefore, transmit-
ting local gradients in the uplink is able to achieve better
resistance to the receiver noise and inter-cell interference in
the later rounds of training process under the same system
constraints.

C. Computational Complexity Analysis

According to [48], [49], the computational complexity of

solving an SOCP problem with the interior-point method is

O
(
k0.5soc

(
m3

soc +m2
soc

∑ksoc

j=1 nsoc,j +
∑ksoc

j=1 n
2
soc,j

))
, where

ksoc denotes the number of SOC constraints, msoc the number

of equality constraints, and nsoc,j the dimension of the j-th

SOC. In Algorithm 1, we need to solve a series of SOCP

problems of (36), where each SOCP problem has ksoc = M ,

msoc = 0, and nsoc,1:ksoc
= M+2, thereby requiring a compu-

tational complexity of O
(
M3.5

)
. In addition, as the bisection

search method generally takes O
(
log

((
ζdlup − ζdllow

)
/εdl

))
iterations, the computational complexity of the down-

link optimization is O
(
log

((
ζdlup − ζdllow

)
/εdl

)
M3.5

)
. Sim-

ilarly, the computational complexity of Algorithm 2 is

O
(
log

((
ζulup − ζullow

)
/εul

)
M1.5K2

tot

)
.

D. Discussion on Implementation Issues

To implement the proposed cooperative multi-cell FL op-

timization framework, the communication protocol illustrated

in Fig. 3 can be adopted for each training round.

Before the downlink model dissemination, each BS first

broadcasts orthogonal pilot signals to the devices. Each device

estimates and feeds back the channel conditions between

itself and the BSs to its home BS, e.g., device k ∈ Km

feeds back hdl
k and {hdl

l,k}l∈M\{m} to BS m. Since the

BSs are generally connected through high-rate wired back-

haul links, one of the BSs can be designated as a central-

ized controller (CC) [50] for collecting total downlink CSI⋃
m∈M{hdl

k , {hdl
l,k}l∈M\{m}}k∈Km

and standard deviations

{νm}m∈M of the model parameters from other BSs for the

cooperative downlink optimization. After that, the CC delivers

the setting of downlink transmit power {pdlm}m∈M to the

corresponding BSs, and then BS m shares model statistics

{w̄m, νm} and power setting pdlm to its associated devices for

model recovering as in (7). Consequently, each device receives

a noisy version of the model parameter disseminated by its

home BS, and accordingly computes the local gradient for the

next model update.

After finishing the local gradient computation, the de-

vices located in cell m first upload their gradient statistics,

{ḡk, υk}k∈Km , to BS m, which will be utilized for the

cooperative uplink optimization and the gradient aggrega-

tion as shown in (16). Then, the CC leverages the same

method as in the downlink transmission to collect the total

uplink CSI,
⋃

m∈M{hul
k , {hul

k,l}l∈M\{m}}k∈Km
, by exploiting

the channel reciprocity, and to gather standard deviations⋃
m∈M{υk}k∈Km of the local gradients, based on which the

cooperative uplink optimization can be completed. Subse-

quently, optimized receive normalizing factors {cm}m∈M and

uplink transmit power
⋃

m∈M{pulk }k∈Km
can be assigned to

each BS and its associated devices, respectively. Finally, each

BS aggregates the local gradients of its associated devices as

in (16), and performs the global model update as in (18). Note

that, if the CSI remains invariant within each training round,

the overhead for uplink channel estimation can be eliminated.

Since the model/gradient parameters that need to be trans-

mitted are typically high-dimensional during the training pro-

cess, the above exchanged scalars are relatively small in terms

of the packet size and hence are assumed to be transmitted in

an error-free manner with negligible overhead [30].

Remark 7. In addition to the centralized optimization method
assisted with a CC, interference management can be achieved
by the distributed optimization method, which leverages the
interference temperature (IT) technique to limit the inter-cell
interference from other cells [38], [46]. Specifically, the IT
technique allows the inter-cell interference term to be replaced
by a constant, namely IT level, which enables each cell to
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Fig. 3. Communication protocol within a typical training round of our proposed AirComp-assisted FL in a multi-cell wireless network.

optimize its transmission regardless of the transmission of
other cells. The IT constraints should be considered in the
optimization to ensure that the inter-cell interference does
not exceed the IT level. Meanwhile, each BS merely needs to
obtain the CSI of its home cell, which reduces the overhead for
collecting the CSI of other cells. The distributed optimization
algorithm is left for our future work.

V. SIMULATION RESULTS

In this section, we present the numerical results to evaluate

the performance of our proposed cooperative multi-cell FL

optimization framework, based on computer simulations.

A. Simulation Setup

We consider a four-cell wireless network, where the BSs

are located at (0, 0), (40, 0),
(
20, 20

√
3
)
, and

(
20,−20

√
3
)

meters, respectively. The devices in each cell are uniformly

and randomly distributed in a circle of radius  ∈ [1, 20]
meters centered at their home BS. The number of devices

located in each cell is set to Km = K̄ = 10, ∀m ∈ M. All

channel coefficients are modeled as [51]

h = ρ−α/2

(√
β

1 + β
hLoS +

√
1

1 + β
hNLoS

)
(46)

and vary independently over different rounds, where ρ denotes

the distance between the transmitter and the receiver, α = 2.5
denotes the pathloss exponent, β = 5 (dB) represents the

Rician factor, hLoS denotes the line-of-sight (LoS) component,

and hNLoS ∼ CN (0, 1) denotes the non-line-of-sight (NLoS)

exponent. Considering heterogeneity of different BSs and

devices, the maximum downlink transmit power budgets of

four BSs are set to P dl
1 = 40 dBm, P dl

2 = 30 dBm, P dl
3 = 30

dBm, and P dl
4 = 40 dBm, respectively. The maximum transmit

power budgets of devices in each cell are set to P ul
k = 15 dBm,

∀ k ∈ {∑m−1
l=1 Kl + 1, . . . ,

∑m−1
l=1 Kl + � K̄

2 �}, and P ul
k = 30

dBm, ∀ k ∈ {∑m−1
l=1 Kl + � K̄

2 � + 1, . . . ,
∑m−1

l=1 Kl + K̄},

∀m ∈ M, where �x� is the floor function that returns the

greatest integer less than or equal to x ∈ R. In addition,

the noise power are set to (σul
m)2 = (σdl

k )2 = −110 dBm,

∀ k ∈ Km, ∀m ∈ M, and the solution precision is set to

εdl = εul = 10−9. All simulation results in the following are

obtained by averaging over 100 experiments.

1) Learning Model Setting: We leverage the multinomial

logistic regression to train the learning models with the fol-

lowing specific settings.

• Sample-Wise Loss Function: Suppose the labeled data

sample can be represented as ξ = [u; v], where u denotes

the data feature and v denotes the ground-truth label of

u. The sample-wise loss function used for the training is

given by [52]

f(w; ξ) = −
C∑

c=1

I{v=c}log

(
exp

(
wT

c u
)∑C

j=1 exp
(
wT

j u
)) (47)

where C denotes the total number of label categories, the

model parameter w consists of the parameter for each

label category, i.e., w = [wT
1 ,w

T
2 , . . . ,w

T
C ]

T, and I{v=c}
is an indicator function defined as

I{v=c} =

{
1, v = c
0, v �= c.

(48)

The partial gradient with respect to wc is

∇wc
f(w; ξ) = −

(
I{v=c} −

exp(wT
c u)∑C

j=1 exp(w
T
j u)

)
u

(49)

and the entire gradient can be expressed as ∇f(w; ξ) =
[∇w1f(w; ξ)T,∇w2f(w; ξ)T, . . . ,∇wC

f(w; ξ)T]T.

• Dataset: The MNIST [53] and Fashion-MNIST [54]

datasets are used in the considered multi-cell FL system,

where different cells perform different learning tasks

based on their assigned datasets. Specifically, the data

labeled with 0 ∼ 4 in the MNIST dataset are assigned

to cell 1, the data labeled with 5 ∼ 9 in the MNIST

dataset are assigned to cell 2, the data labeled with 0 ∼ 4
in the Fashion-MNIST dataset are assigned to cell 3,

and the data labeled with 5 ∼ 9 in the Fashion-MNIST

dataset are assigned to cell 4. In each cell, we first sort

the dataset by the contained labels, then divide it into

K̄ shards, and finally assign one shard for each device

without replacement.

• Learning Rate: The learning rates of four cells are set

to η1 = η2 = 0.1 and η3 = η4 = 0.01.

2) Baseline Schemes: We consider the following transmis-

sion schemes for comparison.

• Benchmark / DL-Free / UL-Free: The case that both

the downlink model dissemination and uplink gradient
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aggregation are realized in an error-free manner serves

as the Benchmark scheme. This scheme achieves the

best learning performance by assuming the accurate

model/gradient exchange. The error-free downlink and

uplink transmissions are referred to as DL-Free and UL-
Free, respectively.

• DL-Opt / UL-Opt: DL-Opt denotes the strategy that

performs the resource allocation for the downlink trans-

mission using Algorithm 1, and UL-Opt denotes the strat-

egy that performs the resource allocation for the uplink

transmission using Algorithm 2. These schemes are used

to evaluate the learning performance of our proposed

cooperative multi-cell FL optimization framework.

• UL-IgnInter: In this case, each cell independently op-

timizes its uplink transmission by ignoring the inter-cell

interference. Hence, the optimization problem for cell m
is given by

minimize
cm,{pul

k }

∑
k∈Km

⎛⎝ |hul
k |
√

pulk√
cm

− υk

⎞⎠2

+
(σul

m)2

2cm

(50a)

subject to 0 ≤ pulk ≤ P ul
k , ∀ k ∈ Km, cm > 0 (50b)

which can be solved by using the method proposed in

[55]. This scenario reduces to the uplink transmission

design for single-cell wireless networks.

• UL-MaxInter: In this case, each cell optimizes its uplink

transmission by assuming the existence of the maximum

inter-cell interference from other cells. Hence, the opti-

mization problem for cell m is given by

minimize
cm,{pul

k }

∑
k∈Km

⎛⎝ |hul
k |
√

pulk√
cm

− υk

⎞⎠2

+
(σul

m)2

2cm

+
∑

l∈M\{m}

∑
k′∈Kl

�
{
hul
k′,m(hul

k′)†
}2

P ul
k′

|hul
k′ |2cm

(51a)

subject to 0 ≤ pulk ≤ P ul
k , ∀ k ∈ Km, cm > 0 (51b)

which can be solved by using the method proposed in

[55]. This situation is similar to UL-IgnInter that focuses

on single-cell transmission design but considering the

worst-case inter-cell interference.

• DL-Full / UL-Full: The full-power transmission is ap-

plied to the system by setting pdlm = P dl
m , ∀m ∈ M, in

the DL-Full scheme, and setting pulk = P ul
k , ∀ k ∈ Km,

∀m ∈ M, in the UL-Full scheme, respectively.

B. Performance Evaluation

1) Two-Cell Network: We first evaluate the learning perfor-

mance of our proposed cooperative multi-cell FL optimization

framework in a two-cell network, i.e., only cell 1 and cell 2
are active, with profiling vector κ =

[
1
2 ,

1
2

]
.

Figs. 4(a) and 4(b) show the learning performance versus

the number of rounds for different downlink transmission

schemes when the uplink gradient aggregation is error-free.
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(a) Training loss versus the number of rounds.

0 50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

1

200 250 300

0.965

(b) Test accuracy versus the number of rounds.

Fig. 4. Learning performance comparison for different downlink transmission
schemes when the uplink gradient aggregation is error-free.

It is observed that the training loss and test accuracy obtained

by DL-Opt are close to those obtained by Benchmark in

both two cells, which reveals that our proposed cooperative

downlink transmission is able to properly balance the downlink

dissemination errors between two cells while ensuring learning

performance. Meanwhile, DL-Full yields almost the same

training loss and test accuracy as Benchmark in cell 1, but

has larger performance gaps in comparison with Benchmark
in cell 2. This indicates that the inter-cell interference from

cell 1 severely deteriorates the downlink transmission in cell

2 due to the lack of interference management. The magnitude

of downlink dissemination errors at each device increases

with the transmission power of its non-associated BSs and

decreases with that of its home BS according to (7). As

the maximum downlink transmit power budget of cell 1 is

larger than that of cell 2, simply implementing the downlink

full-power transmission leads to poor inter-cell interference

suppression for devices in cell 2, thereby reducing the accuracy

of the received global model at each device. In addition, the

training loss of cell 2 obtained by DL-Full shows a decreasing

trend in early rounds but increases later, while the test accuracy

first increases but subsequently decreases. This demonstrates

that inaccurate downlink model dissemination leads to worse

performance as the number of rounds increases.
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(b) Test accuracy versus the number of rounds.

Fig. 5. Learning performance comparison for different uplink transmission
schemes when the downlink model dissemination is error-free.

Figs. 5(a) and 5(b) show the learning performance versus the

number of rounds for different uplink transmission schemes

when the downlink model dissemination is error-free. It is ob-

served that UL-Opt performs similarly to Benchmark in terms

of the training loss and test accuracy, which demonstrates that

our proposed cooperative uplink transmission is capable of

balancing the uplink aggregation errors between two cells,

while keeping near-optimal learning performance. Different

from the downlink model dissemination, the transmission

design in the uplink gradient aggregation needs to achieve

the magnitude alignment at the receiver while suppressing the

inter-cell interference for accomplishing the desired function

computation [24]. Since UL-IgnInter ignores the inter-cell

interference and UL-MaxInter assumes a maximum inter-cell

interference, they achieve less accurate power control than

UL-Opt, which results in larger distortion of the aggregated

local gradients at the BS and in turn leads to worse learning

performance in both cells. Due to the negligence of inter-

cell interference, UL-IgnInter suffers from severe inter-cell

interference during the training process. As channel conditions

independently change over different communication rounds,

the inter-cell interference may vary dramatically in different

rounds, which leads to large fluctuations in the training loss

of UL-IgnInter. Meanwhile, since the worst effect of inter-
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(a) Achievable region of training loss.
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(b) Achievable region of test accuracy.

Fig. 6. Achievable region of learning performance when T = 300.

cell interference is considered, UL-MaxInter yields a relatively

smooth curve as compared with UL-IgnInter. Due to the lack

of power control, the magnitude alignment of uplink local

gradients achieved by UL-Full is completely dependent on

the receiver noise, channel fading, and inter-cell interference,

which leads to much worse learning performance than other

baseline schemes. Meanwhile, due to the randomness of the

receiver noise and channel fading, the FL training using

UL-Full is not guaranteed to converge. This results in that

some experiments yield an increasing training loss and a non-

increasing test accuracy, while others yield slightly decreasing

training loss and increasing test accuracy. Consequently, by

averaging the simulation results over 100 experiments, the

training loss of UL-Full shown in Fig. 5(a) increases, instead

of decreasing as other baseline schemes, while the test accu-

racy of UL-Full shown in Fig. 5(b) can still increase.

Figs. 6(a) and 6(b) show the achievable region of learning

performance when T = 300, where the achievable region

represents the learning performance that can be simultane-

ously achieved by all cells under a given set of downlink

and uplink transmit power constraints for BSs and devices,

respectively. The achievable regions of the training loss and

test accuracy are surrounded by the Pareto boundary, where

the Pareto boundary is drawn through DL-Opt & UL-Opt
by setting the profiling vector as κp = [κ̄, 1 − κ̄], where
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(a) Average learning performance in a three-cell network.
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(b) Average learning performance in a four-cell network.

Fig. 7. Average learning performance comparison in multi-cell wireless
networks with different transmission schemes.

κ̄ ∈ {0.0001, 0.001, 0.1, 0.5, 0.9, 0.99, 0.9999}. It is observed

that all the baseline schemes that consider unreliable wireless

communications lie within the achievable regions of training

loss and test accuracy. The DL-Opt & UL-Opt achieves the

learning performance closest to Benchmark as compared with

other baseline schemes that lack interference management in

either downlink or uplink transmission. The results indicate

that the interference management is required for both the

downlink and uplink transmissions to balance the FL perfor-

mance among multiple cells.

2) Multi-Cell Network: We evaluate the average learning

performance over multiple cells of our proposed cooperative

multi-cell FL optimization framework in multi-cell wireless

networks, where cells 1 ∼ M are active and the profiling

vector is set to κ =
[

1
M , 1

M , . . . , 1
M

]
.

Figs. 7(a) and 7(b) show the average learning performance

versus the number of rounds under different transmission

schemes in three-cell and four-cell networks, respectively. It is

observed that DL-Opt & UL-Opt outperforms other baseline

schemes that lack interference management in either down-

link or uplink transmission in terms of the average training

loss and test accuracy. This demonstrates that our proposed

cooperative transmission design is effective in a multi-cell

wireless network and can balance the learning performance.

As the number of rounds increases, the learning performance

of DL-Opt & UL-MaxInter gradually approaches and even

exceeds the learning performance of DL-Opt & UL-IgnInter.

Hence, the inter-cell interference gradually becomes a major

factor limiting the performance improvement, which demon-

strates the importance of interference management in multi-

cell wireless networks. Also, since the performance of DL-Opt
& UL-IgnInter is mainly limited by the uplink transmission,

a phenomenon similar to DL-Free & UL-IgnInter is also

observed in Fig. 7, i.e., ignoring the inter-cell interference in

the upink transmission leads to relatively large fluctuations in

the training loss.

VI. CONCLUSIONS

In this paper, we consider AirComp-assisted FL in a multi-

cell wireless network, where each cell performs a different FL

task. To quantify the learning performance, we first conduct

the convergence analysis of AirComp-assisted FL systems,

which reveals that the distorted downlink and uplink commu-

nications result in a gap that hinders the convergence of FL.

We then characterize the Pareto boundary of the gap region via

the profiling technique and further formulate an optimization

problem to minimize the sum of error-induced gaps for all

cells. Subsequently, we propose a cooperative multi-cell FL

optimization framework to achieve efficient interference man-

agement in the downlink and uplink transmissions. Benefiting

from the coordination among multiple cells, our proposed

algorithm is able to achieve much better average learning

performance than non-cooperative baseline schemes.

APPENDIX

PROOF OF THEOREM 1

For presentation clarity, we omit the cell index in the

following analysis. According to (8), (17), and (18), the single-

round change of the global model is given by

wt+1 −wt = −ηt+1

K

⎛⎜⎝∑
k∈K

gt+1
k + �

{
(eul)t+1

}︸ ︷︷ ︸
et+1
u

⎞⎟⎠

= −ηt+1

K

⎛⎜⎜⎝∑
k∈K

∇Fk(w
t + �

{
(edlk )t+1

}︸ ︷︷ ︸
et+1
d,k

) + et+1
u

⎞⎟⎟⎠ . (52)

Based on (2), (20), and (52), we have

F (wt+1)− F (wt)

≤
〈
∇F (wt),wt+1 −wt

〉
+

L

2

∥∥wt+1 −wt
∥∥2

= −ηt+1

〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

〉

−ηt+1

K

〈
∇F (wt), et+1

u

〉
︸ ︷︷ ︸

A1
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+
L(ηt+1)2

2

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k ) +
1

K
et+1
u

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

.

(53)

We then rewrite A2 as

A2 =

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k ) +
1

K
et+1
u

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

∥∥∥∥∥
2

+
1

K2

∥∥et+1
u

∥∥2
+ 2

〈
1

K

∑
k∈K

∇Fk(w
t + et+1

d,k ),
1

K
et+1
u

〉
♦1=

1

K2

∥∥et+1
u

∥∥2 + 2

〈
1

K

∑
k∈K

∇Fk(w
t + et+1

d,k ),
1

K
et+1
u

〉

+

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

−
∥∥∇F (wt)

∥∥2
+ 2

〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

〉
(54)

where ♦1 is according to∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt) +∇F (wt)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

+
∥∥∇F (wt)

∥∥2
+ 2

〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

〉

=

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

−
∥∥∇F (wt)

∥∥2
+ 2

〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

〉
. (55)

By setting 0 < ηt ≡ η < 1
L and substituting (54) into (53),

we have

F (wt+1)− F (wt)

≤ A1 + Lη2

〈
1

K

∑
k∈K

∇Fk(w
t + et+1

d,k ),
1

K
et+1
u

〉
︸ ︷︷ ︸

A3

+
Lη2

2K2

∥∥et+1
u

∥∥2 − Lη2

2

∥∥∇F (wt)
∥∥2

+
Lη2

2

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

− η (1− Lη)

〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

〉
♦2= A3 +

Lη2

2K2

∥∥et+1
u

∥∥2 − η (1− Lη)

×
〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

〉

− η

(
1− Lη

2

)∥∥∇F (wt)
∥∥2

+
Lη2

2

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

♦3≤ A3 +
Lη2

2K2

∥∥et+1
u

∥∥2 − η

2

∥∥∇F (wt)
∥∥2

+
η

2

∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

(56)

where ♦2 holds by setting〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )

〉
=
〈
∇F (wt),∇F (wt)

+
1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

〉
(57)

and ♦3 follows from

− 2

〈
∇F (wt),

1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

〉

≤
∥∥∇F (wt)

∥∥2 + ∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2

.

(58)

Since model/gradient parameter θt ∈ {wt
m, gt

k} at the t-th
round is determined by the normalized uplink/downlink trans-

mit symbols, S =
⋃t−1

i=1

{
(sdlm)i, (sulk )i

}
, and receiver noise

Z =
⋃t−1

i=1

{
(zdl

k )i, (zul
m)i

}
in the previous (t− 1) rounds, the

total expectation of θt and F (θt) for any t ∈ T can be repre-

sented as E [θt] = ESEZ [θt] and E [F (θt)] = ESEZ [F (θt)],
respectively [44]. In addition, since E [a] = 0, ∀a ∈ S ∪ Z ,

we have E [etu] = 0 and E

[
etd,k

]
= 0, ∀ k ∈ K, ∀ t ∈ N+,

which implies that E [A3] = 0 for A3 given in (56).

By summing both sides of (56) for T rounds and taking the

total expectation, based on Assumption 1, we have

F (w�)− F (w0) ≤ E
[
F (wT )

]
− F (w0)

≤ −η

2

T−1∑
t=0

E

[∥∥∇F (wt)
∥∥2]+ Lη2

2K2

T−1∑
t=0

E

[∥∥et+1
u

∥∥2]

+
η

2

T−1∑
t=0

E

⎡⎣∥∥∥∥∥ 1

K

∑
k∈K

∇Fk(w
t + et+1

d,k )−∇F (wt)

∥∥∥∥∥
2
⎤⎦

♦4≤ −η

2

T−1∑
t=0

E

[∥∥∇F (wt)
∥∥2]+ Lη2

2K2

T−1∑
t=0

E

[∥∥et+1
u

∥∥2]
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+
η

2K

T−1∑
t=0

∑
k∈K

E

[∥∥∥∇Fk(w
t + et+1

d,k )−∇Fk(w
t)
∥∥∥2]

♦5≤ −η

2

T−1∑
t=0

E

[∥∥∇F (wt)
∥∥2]+ Lη2

2K2

T−1∑
t=0

E

[∥∥et+1
u

∥∥2]
+

ηL2

2K

T−1∑
t=0

∑
k∈K

E

[∥∥∥et+1
d,k

∥∥∥2] (59)

where ♦4 follows from the Jensen inequality and ♦5 is based

on (19) in Assumption 2. Finally, dividing both sides of (59)

by T rounds and rearranging it yield (21).
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federated learning across heterogeneous cellular networks,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2020, pp.
8866–8870.

[17] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge asso-
ciation and resource allocation for cost-efficient hierarchical federated
edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp.
6535–6548, 2020.

[18] W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, C. Miao, and D. I. Kim,
“Dynamic edge association and resource allocation in self-organizing
hierarchical federated learning networks,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 12, pp. 3640–3653, 2021.

[19] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung,
and C. Miao, “Decentralized edge intelligence: A dynamic resource
allocation framework for hierarchical federated learning,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 3, pp. 536–550, 2022.

[20] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp.
2022–2035, 2020.

[21] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 491–506, 2020.
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