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Abstract—Cooperative perception (CP) is a key approach to en-
suring reliable situation awareness of connected and autonomous
vehicles (CAVs). In this article, we discuss the key challenges
in terms of scalability, dynamics, and performance uncertainty
for supporting CP in a practical network environment. Then,
we present a data/model co-driven framework for scalable and
dynamic CP with performance awareness, as an engineering
solution to address the challenges. Specifically, we propose a
performance-aware scalable CP scheme based on a learning-
assisted optimization approach and a dynamic CP scheme based
on an optimization-assisted learning approach for different sce-
narios, both exploiting data-driven and model-based methods to
enhance each other. Finally, a case study is presented to show the
effectiveness of our scheme in handling the network dynamics
with resource efficiency.

Index Terms—Connected and autonomous vehicles (CAVs),
cooperative perception, data fusion, performance estimation,
machine learning, data/model co-driven methods.

I. INTRODUCTION

COnnected and autonomous vehicles (CAVs) will play a
crucial role in the sixth-generation (6G) communication

network for use cases such as smart city, smart factory, and
smart port, for enhancing the vehicle traffic safety and effi-
ciency [1]–[3]. They rely on real-time environment perception
to maintain situation awareness about the surroundings, which
includes continually detecting and tracking nearby objects in a
time-varying region of interest (RoI). Object detection involves
detecting the presence, locations, and classes of surround-
ing objects, based on computation-intensive deep learning
techniques [4], [5]. Object tracking involves maintaining the
identity and trajectory of detected objects over time, which is
usually lightweight, e.g., based on optical flow. In tracking-by-
detection, object detection is periodically triggered over multi-
ple time frames, while object tracking associates same objects
across frames between consecutive object detections to form
object trajectories, during which tracking errors accumulate
over time [6], [7]. Hence, object detection should have a low
latency and a high accuracy, to promptly compensate for the
tracking errors and reset the tracking accuracy to a high level.

Individual CAVs will have the stand-alone perception (SP)
capability for object detection and tracking by using onboard
sensors. Ideally, a CAV should operate without dependencies
on external sources of perception information. However, in
practice, it may lack a comprehensive understanding of the
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environment beyond the visible immediate surroundings. Each
CAV-object pair is subject to constantly-changing viewing dis-
tances/angles and occasional occlusions due to mobility, which
hinders consistent and reliable object detection and tracking
with SP. In such situations, adequate situational awareness
of a CAV requires obtaining and fusing complementary or
enhancing sensory information from other sources.

The emerging vehicle-to-everything (V2X) and vehicular
edge computing (VEC) technologies provide an opportunity
for CAVs to share sensory information and to support the
computation-intensive object detection, allowing them to col-
laboratively perceive a more accurate view of the environ-
ment [4], [8]. Fig. 1 shows a V2X and VEC enabled network
architecture for supporting the cooperative perception (CP).
Benefiting from the expanded sensing range and improved
perception accuracy, CP enhances the accuracy, robustness,
and reliability of object detection and tracking. When CP is
unavailable due to the lack of cooperating CAVs or commu-
nication resources, SP serves as a fallback mechanism.

CP is a hot research topic in computer vision field, which
focuses on the design of advanced deep neural network (DNN)
models for object detection and data fusion. This work has a
different focus to address challenges of CP from the network-
ing perspective. To support highly-efficient CP in a practical
network environment, there are several challenges in terms of
scalability, dynamics, and uncertainty. First, as the CAV num-
ber increases, the collective environmental knowledge grows,
potentially enhancing the perception performance, at the cost
of almost linearly increasing amount of exchanged sensor data.
It poses a substantial burden on the limited network resources
for communication and computation, potentially leading to
high object detection latency. Therefore, scalable engineering
solutions and efficient resource management strategies are
required for the CP system to effectively scale. Second, the
CP system is highly dynamic, due to vehicle mobility, dy-
namic perception workload, changing sensor data quality, and
time-varying resource availability. Addressing these dynamics
requires adaptive algorithms or protocols that can handle the
changes while maintaining timely and reliable information
sharing. Third, there are several factors that bring performance
uncertainty in CP, including the black-box nature of DNNs
and the unpredictable sensor data quality variations. These
uncertainties hinder performance-aware decisions such as how
to select the CAVs to cooperate with and which part of sensor
data to share while ensuring the perception performance. The
main contributions of this work are summarized as follows.

• We present a data/model co-driven scalable and dynamic
CP framework and design two modules for different sce-
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Fig. 1: A V2X and VEC enabled network architecture for supporting the cooperative perception among CAVs.

narios. One is a scalable CP scheme based on a learning-
assisted optimization method, addressing the scalability
and uncertainty issues. The other is a dynamic CP scheme
that focuses on accommodating dynamics in a CP system
based on an optimization-assisted learning approach;

• A case study is presented to demonstrate the effectiveness
of the proposed CP scheme.

The remainder of this article is organized as follows. The chal-
lenges and potential approaches are discussed in Section II.
Section III presents the data/model co-driven scalable and
dynamic CP framework, with a case study given in Section IV.
Conclusions are drawn in Section V.

II. COOPERATIVE PERCEPTION: CHALLENGES AND
POTENTIAL APPROACHES

According to the format of shared sensory information, CP
can be categorized into raw level, feature level, and decision
level [4], [9]. Fig. 2 illustrates three CP levels between two
CAVs. For different CP levels, a trade-off is observed between
performance gain and resource efficiency. In the raw-level
CP, CAVs share and fuse a large volume of raw sensor data,
such as camera images, light detection and ranging (LiDAR)
point clouds, or radar measurements, which preserve the most
fine-grained environmental information and contribute to the
highest perception performance gain, while incurring the high-
est communication overhead. In the feature-level CP, CAVs
extract, share, and fuse higher-level features based on the raw
data. As the features usually capture relevant perception infor-
mation, feature-level CP reduces the communication resource
requirements while still delivering sufficient perception perfor-
mance. The decision-level CP integrates lightweight sensing
decisions (e.g., object detection results) of individual CAVs,
which is the most communication-efficient but achieves limited
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Fig. 2: An illustration of three cooperative perception levels.

perception performance gain. Here, we focus on challenges of
raw-level and feature-level CP schemes, where the exchanged
sensory data have non-negligible data sizes.

A. Scalability

In a practical network with limited resources, it is chal-
lenging for raw-level and feature-level CP schemes to effec-
tively scale when the number of CAVs or objects increases.
Typically, the decision-level CP assumes data sharing via
radio broadcast, which incurs acceptable delay due to the
small data size [10]. However, if broadcasting is directly used
in raw-level/feature-level CP, the object detection latency is
high, which hinders prompt compensation for the accumulated
tracking errors. We consider two potential approaches to
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addressing this challenge, through reducing the exchanged
data based on data relevance or through reducing the object
detection delay by exploiting data parallelism.

Data Relevance: In raw-level CP, partial raw sensor data
can be selected for transmission and processing based on
data relevance. For example, when dealing with a union RoI
of multiple nearby CAVs, one approach is to divide the
union RoI into non-overlapping spatial zones. Each individual
CAV then shares the high-resolution partial raw sensor data
exclusively for its nearest zone. This strategy, when compared
with a basic scheme where all CAVs transmit the full raw
sensor data, potentially brings a substantial reduction in the
data volume without a remarkable performance degradation.
To further reduce irrelevant raw sensor data, a finer-grained
raw-level CP scheme enables the selective sharing of partial
raw sensor data pertaining to objects within the scene by
eliminating background information [5], [6]. However, when
the background-foreground ratio in the scene is low, the
background removal is insufficient to significantly reduce the
data volume. We observe that, in tracking-by-detection, the
tracking accuracy varies among objects due to their distinct
motion patterns. Based on such property, the data can be
further reduced to those pertaining to objects suffering from
low tracking accuracy and newly appearing objects [7].

Data Parallelism: As object detection can be parallelized
in per-object granularity, parallel computing subtasks can be
created, each for the detection of at least one object [11]. By
leveraging the computing resources of CAVs and nearby edge
servers, the subtasks can be distributed, allowing for parallel
processing and reducing the burden on individual CAVs. The
delay performance can be improved, enhancing the scalability.

B. Dynamics

A CP system is highly dynamic in multiple dimensions.
First, the environment is constantly evolving, leading to per-
ception workload and computing demand variations for the
CAVs. Second, CAVs may join or leave a CP system and
change their positions, which affects the overall sensor data
availability and quality. Third, due to CAVs’ mobility and re-
source competition with other vehicles, the availability, quality,
and resources for V2X communications change over time.
Such dynamics pose a significant challenge on consistently
accurate and real-time perception. There are several potential
approaches in handling the dynamics. The CAVs can choose
their perception mode in terms of whether or not to cooperate,
which CAVs to cooperate with, and what sensor data to share.
Moreover, by intelligently allocating network resources among
vehicles, the system can adapt to varying network conditions.
To deal with the dynamic computing demand while ensuring
delay satisfaction, techniques such as dynamic voltage and
frequency scaling can be employed at the CAVs to scale
up/down the CPU frequency on demand.

C. Uncertainty

There are several factors that lead to performance uncer-
tainty for CP. First, due to the inherent black-box nature of
DNNs, it is intractable to interpret the feature learning and

decision-making processes. It is unclear how the extracted
features from different views interact to yield a CP result. This
ambiguity introduces performance uncertainty. Second, due to
unpredictable photometric factors (e.g., illumination, blur) that
affect the sensor data quality, the perception performance for
a CAV-object pair varies in an unknown manner even if there
are no relative displacement or blockage between them [12].
This variability becomes more pronounced when considering
the data fusion among multiple CAVs. Third, the mobility of
CAVs and objects results in constantly-changing viewpoints,
further exaggerating the performance unpredictability. A po-
tential approach to addressing the uncertainty is performance
estimation based on data-driven techniques.

III. DATA/MODEL CO-DRIVEN SCALABLE AND DYNAMIC
COOPERATIVE PERCEPTION

To address the challenges, we present a data/model co-
driven framework for performance-aware scalable and dy-
namic cooperative perception. Model-based methods use math-
ematical models for decision making, based on prior knowl-
edge or assumptions. They have the generalities for differ-
ent networking scenarios, but are usually not applicable to
complex networks. Data-driven methods are based on machine
learning and big data, where data are exploited to derive in-
sights and make decisions, even if the underlying mechanisms
are not well understood. However, it usually takes a long
time to learn an optimal solution from the data, especially
for a complex problem with many decisions. Here, we present
two novel CP schemes, to demonstrate how model-based and
data-driven methods enhance each other in addressing the
scalability, dynamics, and uncertainty issues.

A. Performance-Aware Scalable Cooperative Perception

Consider a group of CAVs under the service coverage of a
road-side unit (RSU). Both CAVs and RSU have sensing, com-
puting, and communication capabilities, which cooperatively
perceive a union RoI of the CAVs. Fig. 3 show both ego-centric
and birds’ eye views of two CAVs, each with a 360◦ LiDAR
sensor mounted on the roof, in a simulated scenario. Software-
defined networking (SDN) is employed to separate the control
and data planes of network devices, allowing for flexible
network management. Fig. 4 shows the data and control plane
operations, which are elaborated in the following.

1) Data Plane: To enhance the scalability, we consider
fine-grained partial raw sensor data selection, transmission,
fusion, and processing on a per-object basis, and leverage
distributed computation by exploiting the parallelism among
computing subtasks associated with each object. A network
device, either a CAV or an RSU, may serve as a sensing device,
a computing device, or both. To support scalable CP, several
key operations are performed among the network devices.

Data Acquisition and Abstraction. Each sensing device
collects raw sensor data for objects within its sensing range.
A LiDAR sensor generates a 3D point cloud for each environ-
mental scan, which contains a set of 3D location coordinates
for observation data points. A data point pertains to a point in
space, e.g., due to a LiDAR reflection off a surface at the point.
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(a) (b)

(c) (d)

Fig. 3: An illustration of LiDAR-based sensing for two CAVs in a simulated driving scenario. (a) Ego-centric view of CAV 1. (b) Ego-centric
view of CAV 2. (c) Bird’s eye view of CAV 1. (d) Bird’s eye view of CAV 2.
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Fig. 4: Data and control plane operations in a performance-aware
scalable cooperative perception scheme.

All the raw sensor data acquired at different sensing devices
can be aligned in a global coordinate system via coordinate
transformation. Each sensing device also generates abstract
sensor data, which include the same general information as
the raw sensor data but at a lower resolution.

Bounding Box Detection. A 3D bounding box containing
an object can be characterized by a 9-tuple, specifying the
center coordinates and the region lengths and rotations (i.e.,
roll, yaw, pitch) along the x, y, and z axes, all in the global
coordinate system. A bounding box detection module is placed
at one of the computing devices, which receives and fuses the
abstract sensor data from all sensing devices. For example,
by clustering data points in the fused data, the bounding box
parameters of each object can be estimated, which are then
distributed to all sensing devices and the controller.

Object Data Extraction and Quality Evaluation. For each
object, a sensing device extracts the object data from its raw
sensor data based on the estimated bounding box parameters.
Depending on the sensing distance, viewpoint, and obstruction,
the object data held by different sensing devices differ in
their data quality. For LiDAR-based object data, a higher
intensity and a more even spatial distribution indicate better
data quality. To capture the object data quality, the bounding
box is partitioned into M disjoint sub-regions. The numbers of
data points located inside all the sub-regions composite a M -
dimension data quality vector. Each sensing device evaluates
the data quality vectors for different objects, which are then
sent to the controller. Fig. 5(a) and Fig. 5(b) show the object
data of both CAVs in Fig. 3 for a truck object, with the red
solid lines showing the boundaries of M = 8 sub-regions.
The data points of CAV 1 are concentrated at the back side
with low diversity, while the data points of CAV 2 spread more
evenly over the front and left sides, providing higher diversity.

Object Data Selection, Transmission, Fusion and Pro-
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Fig. 5: Impact of object data intensity and distribution on object
classification confidence. (a) Object data of CAV 1. (b) Object data
of CAV 2. (c) Confidence obtained by using object data of CAV 1.
(d) Confidence obtained by using object data of CAV 2.

cessing. After bounding box detection, the object classes
are identified by using an AI model pre-configured at each
computing device. Our scheme does not assume a specific AI
model. Here, we use Voxelnet as an example due to its gen-
eralization ability and performance [9]. We use an automated
driving toolbox in Matlab to simulate diverse scenarios with
randomly positioned CAVs and objects. Point clouds are sim-
ulated for each scenario, based on which a dataset is created
for training the Voxelnet. By exploiting data parallelism, each
object is associated with one classification subtask. For each
subtask, multiple sensing devices can be selected to provide
object data to a selected computing device for data fusion
and AI model processing, which incurs communication and
computing delays.

2) Control Plane: For data selection, we aim to ensure the
perception performance with minimum network resources for
the subsequent data transmission, fusion and processing stages.
In the control plane, a supervised learning based performance
estimation method is employed to address the performance un-
certainty issue. A learning-assisted optimization model is de-
veloped to facilitate performance-aware and resource-efficient
data selection, subtask placement, and resource allocation.

Learning-Based Performance Estimation. For a trained
object classification AI model, a performance metric is re-
quired to evaluate the impact of object data quality of each data
sample, to facilitate performance-aware data selection [12].
Typical performance metrics, such as accuracy, recall, and
precision, evaluate the average model performance for a
dataset [9]. Existing studies have demonstrated that, for a
well-calibrated classification model, the estimated probability
associated with the true class label, i.e., the confidence, reflects
its ground-truth correctness likelihood [13]. The positive corre-
lation between confidence and accuracy has been validated in
our previous work [14]. Hence, we use the confidence, which

differs among different data samples, as the performance
metric. Fig. 5(c) and Fig. 5(d) show the confidence of the
trained Voxelnet for object data of CAVs 1 and 2, respectively,
with a data down-sampling ratio from 0.01 to 11. We see
in Fig. 5(c) that the confidence increases slowly to below
75% as the point number increases, inferring that increasing
the data intensity without improving the data diversity brings
limited confidence gain. As the data points of CAV 2 are more
evenly distributed, we see in Fig. 5(d) that the confidence
increases more rapidly and finally approaches 100%. The
object size also affects the confidence, as a smaller object
tends to require less data points for accurate classification.
Therefore, we profile the confidence as an unknown nonlinear
function of the data quality vector and the object dimensions,
and train a DNN model to learn the function.

Learning-Assisted Optimization. At a computing device
with at least one subtask, a fraction of computing resources
should be allocated. For each sensing-computing device pair
with data transfer, a fraction of the available radio spectrum
should be allocated. For a subtask, data selection from more
sensing devices potentially improves the performance with a
diminishing marginal gain, at a higher network resource cost
for computing and communication. Hence, it is necessary to
select the best sensing device group and computing device
for each subtask, which satisfies the confidence and delay
requirements with minimum resources. We develop a learning-
assisted optimization model for the joint data selection, sub-
task placement, and resource allocation decision. By using
the performance estimation DNN model, the confidence of
each subtask can be estimated, which should not be below
a threshold. The delay of each subtask, which depends on
the data size, computing demand, and resource allocation,
should not exceed an upper limit. We propose an iterative
algorithm, where an outer module and an inner module interact
to yield a suboptimal solution. The outer module uses a genetic
algorithm to update the binary data selection and subtask
placement decisions with confidence satisfaction, while the
inner module optimizes the resource allocation decisions with
delay satisfaction given the binary decisions in each iteration.

B. Dynamic Cooperative Perception

In the scalable CP scheme, we consider a static snapshot of
an autonomous driving scenario for simplicity. The resource
availability is not considered as a bottleneck. In practice, the
surrounding objects change over time due to vehicle mobil-
ity, and the resource availability fluctuates and occasionally
becomes the bottleneck. Hence, we also propose a dynamic
CP scheme, which focuses on addressing the dynamics is-
sue. A practical mixed-traffic driving scenario is considered,
where a cluster of CAVs and human-driven vehicles (HDVs)
traverse through an RSU’s coverage area and share the radio
resources [15]. For simplicity, we assume predetermined CAV
pairing and object list for cooperative classification in ideal
cases with sufficient resources. Under the network dynamics,
we select a subset of CAV pairs for cooperation. The two CP
schemes focus on different aspects in different scenarios. They

1The code is available at https://github.com/kaigequ.
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complement each other, providing insights for addressing the
challenges in a CP framework.

For object classification, a CAV pair works in either an SP
mode by using a default DNN model or a CP mode by using a
feature-fusion DNN model. Here, we consider Voxelnet as the
backbone for both models. In the CP mode, both CAVs extract
features from their object data. One CAV transmits the features
via vehicle-to-vehicle (V2V) communication to the other CAV,
where the features from both CAVs are fused and processed.
The results are returned to the sender, with negligible trans-
mission cost. The total computing demand is reduced via
CP, potentially enhancing the computing efficiency. For each
CAV pair, a delay bound should not be violated in each time
slot. Thus, each CAV pair should dynamically switch between
the SP and CP modes under the network dynamics, and the
radio resources and CPU frequencies for all cooperative CAV
pairs should be jointly allocated for delay satisfaction. Define
the computing efficiency gain of a CAV pair as the reduced
computing energy consumption in comparison with that in the
SP mode, which decreases proportionally with the computing
demand (in CPU cycle) and the CPU frequency (in cycle/s)
squared. Such a gain is equal to zero in the SP mode. For the
dynamic perception mode selection and resource allocation,
we aim to increase the total computing efficiency gain, while
reducing the total switching cost between scheduling different
DNN models and satisfying the delay requirement.

An optimization-assisted multi-agent reinforcement learning
(MARL) framework is proposed, where each CAV pair is a
learning agent. All agents cooperatively learn the perception
mode selection actions based on dynamic states including
radio resource availability, perception workload, and channel
condition, to maximize an expected discounted total reward
in the long run. The reward function integrates the total
computing efficiency gain and the total switching cost. At each
time slot, given the states and actions of all agents, the reward
is obtained by solving a resource allocation optimization
problem, which determines the CPU frequencies and radio
resources among all cooperative CAV pairs, for a maximal
total computing efficiency gain with delay satisfaction. If the
problem is infeasible, a large negative reward is applied. This
optimization-assisted learning approach reduces the action
space and problem complexity in comparison with a pure
learning approach which directly learns all the decisions.

C. Practical Implementation

Due to vehicle mobility, the communicating RSU for a
CAV changes over time, and a CAV may move into an area
without RSU coverage. For seamless and reliable control, a
cluster head is selected among the vehicles to coordinate the
communication, computing, and sensing in the CP system. In
the scalable CP scheme, all the control plane functionalities
are centralized at an SDN controller which can be placed at
the cluster head. In the dynamic CP scheme, the cluster head
is responsible for collecting the states and actions from the
CAV pairs via a dedicated control channel, to calculate the re-
ward by solving a centralized resource allocation optimization
problem. With the coordination of the cluster head, the point

clouds of different CAVs can be aligned in a global coordinate
system, which is the basis for bounding box detection.

Another practical issue is the heterogeneity among DNN
models for CP. With a pre-trained DNN, the input sensing
data format should be consistent with the model’s requirement.
For example, images may need to be resized to fit the input
resolution of a DNN. If a multi-modal DNN is used for data
fusion between different sensor types, sensing data of required
modality should be provided. The proposed CP schemes as-
sume same DNN models among participating CAVs, but they
are not limited to a single model. In practice, different DNNs
can be pre-trained and maintained by a network controller. The
controller deploys at least one DNN at each CAV. For a group
of CAVs with CP requests, a protocol should be designed
for the negotiation of data format and DNN model. Only the
CAVs that reach a consensus can participate in a CP process.
Moreover, it is possible to have multiple CP sub-systems using
different data formats and DNN models.

IV. CASE STUDY

We present a case study to evaluate the performance of the
dynamic CP scheme. Consider a number of K ∈ {2, 3, 4, 5, 6}
CAV pairs, moving together with 10 HDVs. A pre-trained
Voxelnet model is deployed at each CAV. The voxel represen-
tation is considered as the feature data. We consider a 1500m
unidirectional highway segment for each learning episode, dur-
ing which the vehicle cluster moves for a distance of 1000m
through an RSU’s coverage area. The delay requirement for
object detection is 100 ms. The maximum CPU frequency
for each CAV is 8 GHz. The amount of available radio
resources for CAVs ranges from 2 to 7 MHz, the perception
workload for each CAV ranges from 4 to 8, and the transmitter-
receiver distance for each CAV pair ranges from 3 to 33 m,
whose state transitions across consecutive time slots follow
predefined Markov chains. To obtain the time-varying channel
power gain for each CAV pair, we use the 3GPP NR-V2X
37.885 highway case for the V2V link path loss calculation.

We compare the performance between the MARL solution
and three benchmark solutions for dynamic perception mode
selection, with results shown in Fig. 6. The benchmarks
include a random solution, a solution based on brute force
search, and a solution that lets all CAV pairs cooperate if
there exists a feasible resource allocation solution or work
in the default SP mode otherwise, referred to as random,
BF, and all respectively. For the benchmark solutions, given
a candidate perception mode selection decision, a resource
allocation optimization problem is solved to maximize the
instantaneous reward in the current time slot. For the BF
solution, we conduct a brute-force search among 2K candidate
decisions in each time slot, for a maximum instantaneous
reward. As K increases, we see a turning point in the total
computing efficiency gain in only the random solution, as the
average number of selected cooperative CAV pairs increases
linearly with K. This is because the radio resources are
shared among more cooperative CAV pairs for feature data
transmission, and each cooperative CAV pair should increase
the CPU frequency to compensate for the lower average
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Fig. 6: Performance comparison between the proposed and benchmark solutions for dynamic cooperative perception.

transmission rate, for delay satisfaction. Thus, even though
the total computing demand reduction increases in proportion
to the number of cooperative CAV pairs, the total computing
efficiency gain first increases and then gradually decreases
after a turning point. The all benchmark achieves a gradually
degraded computing efficiency gain when K increases, due
to higher chance for infeasible resource allocation among
all CAV pairs. However, both the MARL and BF solutions
achieve an increasing total computing efficiency gain as K
increases, with a small gap. The initial increasing trend is due
to the selection of more CAV pairs for cooperation. As K
further increases, adding more cooperative CAV pairs does
not contribute to more computing efficiency gain, but both
solutions are able to select the best group of cooperative CAV
pairs among more candidates to further improve the gain. For
the total switching cost, we observe an almost linear increasing
trend for the random solution, while both the MARL and BF
solutions achieve a significant reduction. The MARL solution
incurs the lowest total switching cost, due to its ability to learn
the long-term optimal perception mode switchings. For the all
benchmark, as K increases, the dominant solution gradually
changes from all CAV pairs working in the CP mode to all
CAV pairs working in the SP mode, achieving the highest
switching cost at a medium K value.

V. CONCLUSION

In this article, we focus on the networking perspective of
cooperative perception, and present a data/model co-driven
framework for performance-aware scalable and dynamic coop-
erative perception. By exploiting the complementary strengths
of data-driven and model-based methods, such a framework
facilitates the joint orchestration of sensing, computing, and

communication resources, to enhance the network resource ef-
ficiency with performance satisfaction. To accelerate the pace
of autonomous driving, extensive research efforts are required.
For example, we will further explore the adaptive selection
of cooperative perception levels, to gain more flexibility in
handling the network dynamics and to find a better trade-off
between performance gain and resource efficiency.
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