
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 1

LOSP: Overlap Synchronization Parallel with Local
Compensation for Fast Distributed Training

Haozhao Wang, Zhihao Qu, Member, IEEE Song Guo, Fellow, IEEE Ningqi Wang, Ruixuan Li, Member, IEEE
and Weihua Zhuang, Fellow, IEEE

Abstract—When running in Parameter Server (PS), the Dis-
tributed Stochastic Gradient Descent (D-SGD) incurs significant
communication delays and huge communication overhead due
to the model synchronization. Moreover, considering the hetero-
geneity of computational capability among workers, traditional
synchronization modes incur under-utilization of computational
resources because fast workers have to wait for slow ones
finishing the computation. To tackle these issues, we propose a
new synchronization mechanism, named LOSP, which overlaps
computation and communication procedures in distributed train-
ing and introduces local compensation to mitigate adverse effects
caused by such non-strict synchronization. The advantages of
LOSP come from three aspects. First, LOSP removes the waiting
time for model synchronization by conducting computation and
communication in an overlapped manner. Second, LOSP allows
multiple local updates on workers to fully exploit the computa-
tion capability and to significantly reduce the communication
cost. Third, the training accuracy can be improved by local
compensation that prohibits an excessive deviation of model
update direction during multiple local updates. We theoretically
prove that LOSP (1) preserves the same convergence rate as
the sequential SGD for non-convex problems, and (2) exhibits
good scalability due to the linear speedup property with respect
to both the number of workers and the average number of
local updates. Evaluations show that LOSP significantly improves
performance over the state-of-the-art ones in terms of both
convergence accuracy and communication cost.

Index Terms—Overlap Synchronization Parallel, Parameter
Server, Local Compensation, Distributed Machine Learning

I. INTRODUCTION

MACHINE learning has demonstrated great promises in
a wide range of application domains, e.g., self-driving,

smart city, language processing, etc., which are fundamentally
altering the way individuals and organizations live, work and
interact [2]–[4]. With the rapid growth of training data and
machine learning model size, how to efficiently train machine
learning model in a distributed manner has received much at-
tention since computation can be parallelized in multiple nodes.

Haozhao Wang is with School of Computer Science and Technology,
Huazhong University of Science and Technology and Department of Computing,
The Hong Kong Polytechnic University. E-mail: hz_wang@hust.edu.cn

Zhihao Qu is with the School of Computer and Information, Hohai University,
and Department of Computing, The Hong Kong Polytechnic University. E-mail:
quzhihao@hhu.edu.cn

Song Guo is with with the Department of Computing, The Hong Kong
Polytechnic University. E-mail: song.guo@polyu.edu.hk

Ningqi Wang is with Information Networking Institute, Carnegie Mellon
University. E-mail: nq.maigre@gmail.com

Ruixuan Li is with School of Computer Science and Technology, Huazhong
University of Science and Technology. E-mail: rxli@hust.edu.cn

Weihua Zhuang is with the Department of Electrical and Computer
Engineering, University of Waterloo, Canada. E-mail: wzhuang@uwaterloo.ca

This is an extended revision of the early version appeared in [1]

A widely used framework in distributed machine learning is
data parallelism over Parameter Server (PS) architecture, i.e.,
data are distributed over multiple workers and a global model
is cooperatively optimized with the coordination of servers [5],
[6]. As to the algorithm running in PS for solving training
problems, distributed Stochastic Gradient Descent (D-SGD)
is usually adopted because it is applicable to various model
optimizations with proven efficiency in terms of scalability [5],
[7], [8].

One of the popular synchronization modes for D-SGD in PS
is Bulk Synchronous Parallel (BSP). Specifically, the learning
process proceeds by iteratively running two procedures in
a sequential manner, i.e., computing the local gradients and
synchronizing the global model. In the computation procedure,
each worker computes local gradient separately according to its
own dataset. In the synchronization procedure, after receiving
gradients from workers, the server aggregates the gradients
and sends back the updated parameters of the global model
for the next step computation. Although the gradients are
computed simultaneously in all workers, the aggregation step
needs the synchronization of all workers which would incur a
significant delay. We conduct preliminary experiments to show
the computation time and the synchronization time of BSP. As
illustrated in Fig. 1, we have the observation that BSP suffers
serious synchronization delay especially when the number of
workers is large.

P=4 P=8 P=16
�	
��
�

0

1

2

3

4

��
�
��
��
�

Comp. Time
Sync. Time

Fig. 1. The average time duration of computation and synchronization
procedure in one iteration when training machine learning model ResNet20
on ImageNet. Each node in the cluster is equipped with 4 CPU cores and 10
G bps Ethernet interface card.

To reduce the synchronization delay, the mainstream is
to design flexible synchronization mode. Considering the

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 2

synchronization delay is usually caused by slow workers,
various synchronization modes have been proposed to reduce or
eliminate the waiting time of fast workers [9]. TAP [10] allows
each worker to push the gradient and pull the model from the
server separately without synchronization. Though the TAP
model is of low synchronization cost, it converges slowly due
to the serious staleness problem. SSP [11], [12] establishes a
framework of the BSP and TAP that makes a trade-off between
convergence efficiency and synchronization efficiency. One
major issue in these synchronization methods is that each
worker still executes the computation and synchronization
sequentially such that workers are idle from finishing the
computation to receiving the updated global model from the
server. Recently, it is observed that a higher computation
efficiency can be achieved when the parameters in a neural
network are sent layer by layer in parallel with computing
[8], [13]. However, the workers in these methods are still idle
when the synchronization process has a longer duration than
the computation process.

To fully unleash the potential of a given distributed training
system, we propose a framework named LOSP that overlaps
the computation and synchronization. This work can be viewed
as an extension of our previous work on OSP [1]. In LOSP,
the overlap synchronization means that workers sequentially
push updates and pull models while simultaneously calculating
the gradient in a non-stop manner. In addition, to tackle the
problem of slow workers, adaptively multiple local updates
are allowed to fully exploit the computational capability of
workers. Through these ways, not only the computing resource
and communication resource can have nearly full utilization,
but also the communication cost can be significantly reduced
due to a reduced number of synchronization procedures.

However, the adverse effect of reducing the synchronization
delay in such a way is that the gradients in each iteration are
computed with respect to the stale global model of the last
iteration, which yields a deviation from the correct direction
of model update. Such deviation may cause an even more
severe degradation on training accuracy when the number of
local updates becomes large. Although traditional gradient
compensation method [14] efficiently solves the deviation
problem in the case of asynchronous mode, they bring extra
computing cost and can hardly be applied to such overlapped
mode when there exist multiple local updates. To tackle this
problem, we devise a novel local compensation mechanism
that prohibits an excessive deviation of local updates to further
improve the training accuracy. The core idea of the mechanism
is to compensate the stale model with the locally cached
gradient to reduce its difference with the fresh model before
computing the gradient. We revisit the theoretical analysis of
the convergence rate and conduct extensive experiments to
validate the feasibility and efficiency of the proposed method.

The main contributions of this paper are summarized as
follows.
• We propose a novel synchronization framework, LOSP,

that overlaps computation and communication procedures
in distributed training and introduces local compensation
to mitigate adverse effects caused by such non-strict syn-
chronization. This method achieves high synchronization

efficiency and significantly reduces the communication
cost in large-scale distributed learning.

• We theoretically prove that the ergodic convergence of
LOSP is the same as the sequential non-compression SGD.
Meanwhile, LOSP has a linear speedup property with
respect to both the number of workers and the average
number of local updates, which demonstrates the efficiency
and the scalability of LOSP.

• We conduct experiments on both convex and non-convex
problems under clusters of different scales. The results
show that LOSP improves the performance up to 1.6× for
MnistCNN without losing the convergence result.

The rest of this paper is organized as follows. The related
works about computation and communication efficiency in
distributed training systems are introduced in Section 2. The
problem formulation is presented in Section 3. Then, we
describe LOSP in detail and analyze its convergence property in
Section 4 and Section 5, respectively. In Section 6, performance
evaluations are presented to show the efficiency of our proposed
method. Finally, Section 7 concludes this paper.

II. RELATED WORK

With the emerging of deep learning applications, machine
learning systems for efficiently training machine learning
models become imperative. To improve the training efficiency
on a single machine, multiple works recently proposed reducing
the time of memory access to accelerate the processing speed
[15]–[18]. Though the performance improvement has been
achieved, the performance still cannot satisfy the requirement
for fast training models due to limited resources of a single
machine. One of the most efficient ways of solving this issue
is to extend the systems on single machine to distributed
systems. Among all the distributed learning systems, Parameter
Server [5], [6] is the most popular one and recently receives
many attentions. However, since Parameter Server adopts a
centralized paradigm to train the models, the server suffers from
a huge communication delay when the number of workers is
large. To solve the communication delay issue, many solutions
are proposed recently.

To solve the communication bottleneck of Parameter Server,
a straightforward method is to remove the server and group
all workers into a graph. Recently, decentralized learning [19],
[20] is proposed to train models without a centralized server.
In this paradigm, all workers are organized in a form of graph
and each worker only communicates with its neighbors. The
machine learning models are synchronized in a gossip manner.
The results in [19] show that decentralized learning achieves a
comparable convergence result with Parameter Server but has
less communication overhead.

Following the architecture of Parameter Server, another
way to mitigate the communication issue is reducing the
synchronization frequency [21]–[26]. Yu et al. [21] propose
a method that runs multiple local updates in each worker
before aggregating the models. Further, other approaches [23]–
[25] adaptively adjust the number of local updates to balance
the communication cost and the computation cost. Xinchen
et.al. [26] proposes a method that guarantees the evenness of
the data to reduce the overall synchronization times.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 3

Different from the above methods that directly reduce the
communication delay, there are some approaches to improve
computation efficiency from the perspective of the relationship
between computation and communication. This type of methods
improve the training efficiency mainly by increasing the ratio
of computation to communication. One method is to adopt a
large batch size [27]–[29] to increase the computing efficiency.
However, a large batch size is mostly an empirical method and
can lead to accuracy reduction [30]. Another method is to break
the synchronization of all workers, e.g., SSP [11], [12], [31],
partial synchronization [32]–[34], and TAP [10], [35] such that
the communication burst issue of forced synchronization can be
mitigated and the corresponding computation-communication
ratio is significantly increased. The extreme case is the one-shot
synchronization [36] in which all workers are only synchronized
one time.

Furthermore, there are many works that accelerate the dis-
tributed learning system [37]–[40] via optimizing the network.
Qihua et.al. [38] proposes scheduling the data flow in the
network to reduce the transmission time of model parameters.
For the wireless network, Deniz et.al. [39] proposes a method
to improve the coding and decoding effciency from the physical
layer. Amedeo et.al. [40] proposes aggregating the parameters
on the switch to reduce the communication data size in the
network.

Different from the above methods, this paper takes one step
ahead along the approach of parallelizing computation and
communication in each worker. Although some recent works
focus on overlapping the computation and communication
[41], [42], they are totally different from ours. Assran et
al. [41] design an asynchronous overlapping method for the
decentralized architecture, while we propose an overlapping
scheme for Parameter Server architecture with periodical
synchronization. Jianyu et al. [42] propose an overlapping
method for the Parameter Server system. However, they focus
on solving the straggler problem in the system by adding
an anchor model on each worker. Instead, we in this paper
introduce the local compensation to mitigate the adverse effect
of staleness.

III. PROBLEM DEFINITION AND PRELIMINARIES

For clarity, main symbols used in this paper are summarized
in Table I.

In this paper, we focus on solving the sum optimization
problem which is typically used in machine learning field.
Specifically, let 58 (l) be the loss of model parameter l fitting
the 8-th data sample of the training set. Then, the objective of
is to find a model l that minimizes the fitting loss of all data
samples in the training set, i.e.,

min � (l) = 1
=

=∑
8=1

58 (l), (1)

where = denotes the number of data samples.
The objective function in (1) is complicated since it is defined

as the average loss of the parameter vector from the whole
datasets. For most learning models, it is impossible to derive a
closed-form solution to this optimization problem. Therefore,

TABLE I
A SUMMARY OF MAIN MATHEMATICAL SYMBOLS

Symbol Definition

% The number of workers
 8
C The number of local updates in C-th global iteration
lC Parameter of C-th global iteration
l8

C,:
Local parameter of worker 8 in :-th inner iteration
of C-th global iteration

[C Learning rate in C-th global iteration
b 8C Mini-batch of Samples selected by worker 8 in iteration C
6 (l; b) Gradient with respect to samples b and parameter l
�8

C Accumulated gradients of worker 8 in iteration C
∇� (l) Full gradient with respect to the whole dataset
f2 Variance bound of stochastic gradient
" Variance bound of the number of inner updates of workers
! Lipschitz constant
l★ The optimal solution of the problem
3 The number of dimensions of the gradient vector
B Quantization level

gradient descent based optimization methods are widely used
to solve this problem, which could iteratively converge to the
desired parameter under the meticulously designed training
process. For various machine learning mode, SGD methods are
applicable to solve this problem efficiently. Instead of using the
whole dataset to compute the gradient, SGD randomly selects a
mini-batch of data samples b and computes stochastic gradient
6(l; b) with the model l. Compared to the batch method,
the stochastic method is more efficient for large-scale learning
problems according to practical and theoretical analysis. In
SGD, the model update in iteration C, C ∈ N is formulated as:

lC+1 = lC − [C6(lC ; bC), (2)

gi

ω

ω =ω-η/n∑giω =ω-η/n∑gi

θ

1 α

1

α

k

11

αα

kk

α

L

kk

αα

LL

θ

i

/

θ

q

θθθθ

α

1

1

α

L

qq

α

kk

θ

i

θθθ

q

θ

θθ

1

θ

i

θ

1 α

1

α

k

α

111

α

α

L

kkk

α

LL

θ

i

θ

q

αααα

111

αα

LL

αα

kkkk

qq

θθ

θθ

1111

i

θθ

i

θ

1 α

1

α

k

αα

111

αα

α

L

kkk

αα

LL

θ

i

θ

q

θ

αα

1111

11

α

LL

qq

α

kkk

θ

qq

θ

1111

i

θ

ii

θ

1 α

1

α

k

αα

1111

αα

α

L

kkk

αα

LL

θ

i

θ

q

θ

αα

α

q

αθ

qq

θθ

1111

i

θθ

ii

θ

1 α

1

α

k

αα

1111

αα

α

L

kkk

αα

LL

θ

i

θ

q

θ

q

θ

qq

θθ

111

i

θθ

ii

Workers

Server
Pull

Push

Data

Model

Fig. 2. Illustration of Parameter Server for Distributed Machine Learning.

Parameter Server (PS) architecture is one of the most popular
learning paradigm for large scale machine learning. In PS, data
are distributed over multiple workers and a global model are
cooperatively optimized with the coordination of servers [5],
[6]. As to the algorithm running in PS for solving training
problems, distributed Stochastic Gradient Descent (D-SGD) is
usually adopted. The typical PS based learning architecture
and the distributed learning algorithm are illustrated in Fig. 2.
In each iteration of D-SGD with BSP mode, each worker
8 independently computes the local stochastic gradient and
pushes the gradient to the server. After receiving gradients

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 4

from all workers, the server computes the average of them and
updates the global model as following.

lC+1 = lC −
[C

%

%∑
8=1

6(l8C ; b8C), (3)

where % is the number of workers. Then, the model synchro-
nization procedure distributes the updated model to all workers
for the next step computation. Traditional BSP mode will
introduce huge communication cost and large synchronization
delay with the ever-increasing size of machine models and
the constraint of bandwidth. It is unrealistic for large-scale
distributed machine learning systems. Consequently, we focus
on deriving an efficient synchronization mechanism with low
communication complexity for solving the problem (1) with
D-SGD.

IV. THE FRAMEWORK OF OVERLAP SYNCHRONOUS
PARALLEL WITH LOCAL COMPENSATION

In this section, we propose an efficient distributed machine
learning framework, LOSP, that applies local compensation in
overlap synchronous parallel. By overlapping the computation
and communication processes in distributed training, LOSP can
significantly the waiting time of works caused by synchroniza-
tion delay. Moreover, the number of communication rounds is
significantly reduced due to multiple local updates. We firstly
elaborate the design principle of LOSP based D-SGD in the
PS architecture and then present the detailed algorithm design.

A. Overlap Synchronization with Local Compensation

The model updating process of D-SGD runs iteratively and
has two steps in each iteration, i.e., computing gradient by
each work and synchronizing the global model by the server.
These two steps are executed sequentially in traditional parallel
modes, e.g., BSP and SSP. Examples are shown in Figure 3(a)
and Figure 3(b). Each worker firstly computes and transmits
gradient to the server. Then, the server updates the global
model according to the aggregation of gradients and transmits
the updated models to each work. With the rapid growth of
computing capacity of high-performance processing units, e.g.,
Graphics Processing Units (GPUs) and Neural Processing Units
(NPUs), the synchronization procedure that mainly relies on
network bandwidth becomes the main bottleneck in distributed
machine learning.
Overlap. The two steps can de-facto be parallel as well such
that the large delay incurred by synchronization can be totally
diminished. We first propose the Overlap Synchronization Par-
allel (OSP) where the processes of local gradient computation
and model synchronization are overlapped. Specifically, each
worker creates two threads P and M that are responsible for
computation and communication, respectively.

At the beginning of the (C − 1)-th iteration, both the server
and the workers hold the same model lC−1. The communication
thread M in each worker pushes the computed gradient
6(lC−2, b

8
C−2) obtained in the (C − 2)-th iteration to the server.

1 2

W1

W2

W3

Master

3Iteration

(a) BSP

1 2

W1

W2

W3

Master
4Iteration 3 5 6 7 8 9

(b) SSP

1 2

W1

W2

W3

Master

3Iteration

(c) OSP and LOSP

Gradient

Compute
Push Pull Stop

(d) Legend

Fig. 3. Four different parallel models of D-SGD in parameter server. Workers
of OSP and LOSP compute gradient and make synchronization in parallel.
Fast workers will keep computing gradients until reaching a number, e.g., 3, of
iterations. Specially, the accumulated gradients are quantized for transmission
to further accelerate the training process.

After receiving all gradients from all workers, the server updates
the global model by

lC = lC−1 −
[C−1
%

%∑
8=1

6(lC−2, b
8
C−2), (4)

and then returns it back. At the same time, the computation
thread P in each worker 8 computes the local gradient
6(lC−1, b

8
C−1) with respect to the model lC−1. Once finishing the

overlapped two steps, the system goes into the next iteration.
Likewise, the communication thread M updates the global
model lC with the gradient obtained in the (C − 1)-th iteration:

lC+1 = lC −
[C

%

%∑
8=1

6(lC−1, b
8
C−1). (5)

Local Compensation. Although the overlapping method sig-
nificantly reduces the overhead caused by communication, it
incurs a staleness issue. By comparing the update formula
(5) of OSP and the update rule (3) of BSP, it can be easily
concluded that the gradient used in OSP is calculated from the
stale model lC−1 instead of the newest model lC , yielding a
gap between the used model update of OSP and the desired
one. Specially, when there exist multiple local updates in each
iteration as specified later, the gap between two models is
amplified, resulting in the worse performance.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 5

Master

Worker
i

t t+1 t+2

(a) Local SGD

Master

Worker
i

t t+1 t+2

(b) OSP

Master

Worker
i

Local
Compensation

t t+1 t+2

(c) LOSP

Global
Model

Local
Model

Aggregated
Gradient

Local
Gradient

(d) Legend

Fig. 4. Illustration of the differences among Local SGD, OSP and LOSP.

To fill this gap, we refine the OSP to LOSP by introducing
a local compensation, as shown in Fig. 4. The core idea of
LOSP is that each worker approximates the current global
model lC using the received lC−1 and its historical gradients.
Specifically, the difference is [C−1

%

∑%
8=1 6(lC−2, b

8
C−2) which is

the average of all gradients as presented in (4). Fortunately,
each worker 8 holds the local gradient 6(lC−2, b

8
C−2) which can

be exactly utilized to approximate the difference. Accordingly,
we propose using the local gradient to fill the gap caused by
the overlap. At the beginning of the (C − 1)-th iteration, each
worker 8 firstly compensates the received model lC−1 with the
locally cached gradient 6(lC−2, b

8
C−2) as

l8C−1,0 = lC−1 − W[C−16(lC−2, b
8
C−2), (6)

where W is the compensated step size that controls the proximity
between the local gradient and the global average. Then, each
worker computes the gradient 6(l8

C−1,0, b
8
C−1) and sends it to

the server. After receiving all gradients, the global model lC

in the C-th iteration is updated by

lC+1 = lC −
[C

%

%∑
8=1

6(l8C−1,0, b
8
C−1). (7)

The LOSP has better performance than OSP because the model
used by LOSP for computing the gradient is l8

C−1,0, being much
closer to lC than lC−1 used by OSP. The principle behind the
method is general fact for continuous function that two closer
points have closer functional values.
Allowing Adaptive Local Updates. Considering that the
communication process generally has a longer duration than the
computation process, we further relax the strict synchronization
rule by allowing adaptive local updates specific for the
overlap method to fully leverage the computing resources.
The proposed scheme is shown in the Fig.3(c) and Fig.4(c).
In the computation thread P, the gradients 6(l8

C−1,: , b
8
C−1,:)

are continuously computed based on the local model while the
local model l8

C−1,: is updated with the gradients

l8C−1,:+1 = l8C−1,: − [C−16(l8C−1,: , b
8
C−1,:), (8)

where : ∈ N denotes the index of local iteration and l8
C−1,0 is

the compensated model. The local updating process runs until
the number of local iterations reaching a bounded number g,
or the worker pulling a new global model from the server. At
the same time, the gradients are accumulated locally. Denoting
the total number of local iterations in worker 8 as 8C , the
accumulated gradient can be written as

�8C =

 8
C −1∑
:=0

6(l8C−1,: , b
8
C−1,:). (9)

In parallel with the computation thread, the communication
thread pulls the updated model lC from the server and pushes
the locally accumulated gradient �8C to the server. The global
model in the server is thus updated by

lC+1 = lC − [C
1
%

%∑
8=1

�8C , (10)

and the local model is compensated in the worker by

l8C ,0 = lC − W[C�8C . (11)

The differences among BSP with multiple local updates,
namely Local SGD, OSP, and LOSP are illustrated in Fig. 4.
From this figure, we can find that OSP updates the global
model with the gradient calculated under the stale model. OSP
mitigates this issue by adding a local compensation in each
iteration such that its convergence efficiency is close to the
Local SGD but has higher communication efficiency.

Note that the computing cost of the synchronization step
is negligible and thus little additional delay is introduced
in the computation step. By elaborating the policy of local
updates, i.e., adjusting the bounded number of iteration g,
the computation capability of workers will be fully exploited.
Besides, the number g in computation thread is not the same as
the staleness threshold in SSP. The staleness threshold in SSP
is designed to limit the lag between the local version of model
in worker and the global version of model in server. Gradients

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 6

computed by the stale model have a significant impact on
convergence properties, which has been widely investigated
[9], [14], [43]. Here the number of bounded iterations, g, is used
to restrict the number of local updates in a worker, aiming
to reduce the variance of local gradients and the diversity
of searching directions between workers to guarantee the
convergence rate of the algorithm.

B. Algorithm Description

The workflow of LOSP is shown in Algorithm 1. Each
worker 8 creates two parallel threads P and M that are
responsible for computation and communication respectively.
In each iteration, Thread M pulls the current global model
lC and then pushes the local accumulated gradient �8C to the
server. Correspondingly, Thread P replaces its local model
l8
C ,:

with global model lC and compensates it with locally
accumulated gradient �8 as soon as the global model is pulled
back. Otherwise, Thread P will update local model l8

C ,:
with

the gradient calculated by itself. As to the server, it only
interacts with ThreadM of workers. It updates the model with
the aggregated local updates � and then sends the updated
model back to all workers.

V. THEORETICAL ANALYSIS

Since the convergence efficiency of LOSP is affected by both
overlap synchronization and local compensation, we provide
the theoretical analysis of the convergence rate to validate
the efficiency of our method. According to the theoretical
results, the LOSP essentially has the same convergence rate
as non-compression SGD, but significantly improves the
synchronization efficiency and reduces the communication cost.
For the clarity of theoretical analysis, we first introduce some
assumptions for SGD-based optimization and overlap settings.

A. Assumptions for LOSP

Similar to previous studies [44], we make the following
assumptions, which are widely adopted for analyzing the
convergence property of D-SGD.

Assumption 1. Assumptions for D-SGD in machine learning
optimization:
(1) Lipschitz smooth. The objective function � : R3 → R is

continuously differentiable and the gradient function of �
is Lipschitz continuous with Lipschitz constant ! > 0, i.e.,

‖∇� (l) − ∇� (l̃)‖2 ≤ !‖l − l̃‖2
for all l, l̃ ∈ R;

(2) Bounded loss. The sequence of iterations lC is contained
in an open set over which � is bounded below by a scalar
�8= 5 ;

(3) Unbiased gradient with bounded variance. The stochastic
gradient 6(l; b) computed from random samples b is
unbiased for every parameter l, i.e.,

Eb [6(l; b)] = ∇� (l).

The variance of stochastic gradient is bounded

Eb (‖6(l; b) − ∇� (l)‖2) ≤ f2

Algorithm 1: LOSP: Overlap Synchronization Parallel
with Local Compensation

Input : the learning rate [C , the compensated step size
W, and the iteration threshold g

Output : Final parameter l

1 In worker i=1,. . . ,P:
2 Initialize: : = 0, 8B%D;; = 5 0;B4, �80 = 0
3 Parallel Thread M and Thread P:
4 Communication Thread M:
5 repeat
6 pulls lC from the server
7 if �8

C+1 is not 0 then
8 copies the local update �8 ← �8

C+1
9 sets the pulled flag 8B%D;; ←)AD4

10 clears the local update �8
C+1 ← 0

11 pushes local update �8 to the server
12 end
13 until �>=E4A64=24;
14 Computation Thread P:
15 repeat
16 if : ≥ g then
17 wait until 8B%D;; is)AD4
18 end
19 if 8B%D;; is)AD4 then
20 resets the flag 8B%D;; ← 5 0;B4

21 updates local model l8
C ,:
← lC − W[C�8

22 resets the local clock : ← 0
23 updates global clock C ← C + 1
24 end
25 computes stochastic gradient 68

C ,:
← ∇ 5b (l8C ,:)

26 accumulates the local gradients �8C ← �8C + 68C ,:
27 updates local model l8

C ,:+1 ← l8
C ,:
− [C68C ,:

28 updates local clock : ← : + 1
29 until �>=E4A64=24;
30 In server:
31 Initialize: C = 0, initialize l0 randomly
32 repeat
33 for 8 = 1 to % do
34 receives �8C from worker 8
35 end

36 updates global model lC+1 ← lC − [C
%

%∑
8=1
�8C

37 updates global clock C ← C + 1
38 broadcasts lC to all workers
39 until �>=E4A64=24;

where f2 is a constant.

Next, we introduce two conditions for each iteration of
LOSP, i.e., the constant average number of local updates and
bounded variance of the number of local updates. In practical
systems, these two conditions can be easily satisfied given that
the computational resources of the whole cluster are almost
stable and robust.

Assumption 2. Conditions for the number of local updates:

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 7

(1) The average number of local updates ̄ = 1
%

%∑
8=1
 8C does

not change for each iteration C = 1, 2, . . . , #;
(2) The variance of the number of local updates is bounded

for each iteration C = 1, 2, . . . , # , i.e.,

1
%

%∑
8=1
‖ 8C − ̄ ‖22 ≤ ".

B. Convergence Rate of LOSP

As specified in the Section IV, the update rules of LOSP
can be summarized as

l8C−1,0 = lC−1 − W[C−1�
8
C−1,

l8C−1,:+1 = l8C−1,: − [C−16(l8C−1,: , b
8
C−1,:), : = 0, . . . , 8C − 1,

�8C =

 8
C −1∑
:=0

6(l8C−1,: , b
8
C−1,:),

lC+1 = lC −
[C

%

%∑
8=1

�8C .

Jointly leveraging the above assumptions, we derive the con-
vergence properties of LOSP without assuming the convexity
of the loss function.

Theorem 1. (LOSP, Nonconvex objective, fixed stepsize) Sup-
pose algorithm runs with fixed learning rate [C = [̄ satisfying

[̄! <0G (1+3[̄! <0G/2+3[̄! ̄ +3[̄!W2 <0G −3[̄!/2) ≤ 1,

where <0G ≤ g is defined as max{ 8C , C = 1, 2, . . . , # 0=3 8 =

1, 2, . . . , %}. The expected average squared gradient norms of
� satisfy the following bound for all # ∈ N:

1
#

#∑
C=1
E‖∇� (lC)‖22 ≤

2(� (l1) − � (l★))
#[̄ ̄

+ [̄!f
2

 ̄

(3[̄!"
2

+ 3[̄! ̄2

2
+ 3[̄!W2 (̄2 + ") − 3[̄! ̄

2
+ 3[̄! ̄2

%
+ ̄
%

)
. (12)

Proof: See appendix.
From equation (12), we know that LOSP converges to a

non-zero constant under a fixed learning rate as # →∞. The
final non-zero constant mainly comes from the second term
because the first term being the initial distance approaches to
zero gradually. As we can see, the second term is unrelated to
the number of iterations # and it diminishes with the learning
rate [. To show the relationship between the convergence result
and the number of iterations, we have the following corollary.

Corollary 2. Under the condition of Theorem 1, if we set

[̄ =

√
(� (l1) − � (l★))%

 ̄!f2#
, (13)

then for any iteration number

≥ "0G(�2, �4), (14)

the output of Algorithm 1 satisfies the following ergodic
convergence rate

1
#

#∑
C=1
E‖∇� (lC)‖22 ≤ 4

√
(� (l1) − � (l★))!f2

 ̄%
∗ 1
√
#
, (15)

where

�1 =
3!"

2
+ 3! ̄2

2
+ 3!W2 (̄2 + ") − 3! ̄

2
+ 3! ̄2

%
,

�2 =
2(� (l1) − � (l★))�2

1%
3

 ̄3!f2 ,

�3 = 3 <0G/2 + 3 ̄ + 3W2 <0G − 3/2,

�4 =
 <0G%(� (l1) − � (l★))

2 ̄f2

·
(√
! <0G +

√
! <0G + 4�3

)2
.

Proof: See appendix.
Corollary 2 shows that the average squared gradient con-

verges to zero with a speed $ (1√
#%
) as the learning rate

diminishes. The convergence rate of LOSP is in the same
order as the sequential SGD when the iteration number #
is sufficiently large. Besides, such convergence speed also
indicates a linear speedup in terms of the number of workers.
Though the convergence rate of LOSP is similar to that of OSP,
its performance has a significant improvement empirically.

VI. PERFORMANCE EVALUATION

In this section, we present extensive experiments to evaluate
both OSP and LOSP.

A. Experimental Setup

Baseline. We compare our methods with the following popular
methods:
• Bulk Synchronous Parallel (BSP). BSP synchronizes all

workers in each iteration. Specifically, the server updates
the global model only when it receives gradients from all
workers.

• K Batch Asynchronous Parallel (KBatchAsync) [45].
KBatchAsync can be viewed as a general version of Total
Asynchronous Parallel (TAP) [10]. In each iteration, the
server updates the global model after receiving any mini-
batches of gradient from all workers. TAP can tolerate
stragglers when compared to BSP.

• Stale Synchronous Parallel (SSP) [11], [12], [46]. SSP
is also an asynchronous parallel model but controls the
maximum staleness of TAP. Specifically, the fast workers
are forced to stop computing as they exceed the slowest
worker by a given number of steps.

• Local-SGD [47] is an extension of BSP model in which
each worker computes multiple local iterations before
computing average of all workers.

• CoCoD-SGD [48] is an extension of Local-SGD but
decouples the computation and communication.

It can be observed that the first three methods are various
synchronization modes and the last two methods are conver-
gence optimization techniques. As a consequence, we firstly
compare our designed method to the first methods in terms
of the synchronization efficiency, i.e., using OSP with only
synchronization technique. Then, we compare the OSP with

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 8

local compensation, i.e., LOSP, to the last two methods in
terms of convergence efficiency.
Datasets and Models. To guarantee the generality of evalu-
ations, the experiments include both convex and non-convex
models. Specifically, we adopt the Logistic Regression (LR) the
deep neural network as the convex model and the non-convex
model, respectively. Besides, the size of the machine learning
models range from small to large.
• Mnist dataset [49]. It is composed of 60 28×28 training

images and has 10 classes. On top of the dataset, we run
the LR model and the popular MnistCNN [50].

• Cifar10 dataset [51]. It includes 50 32 × 32 training
images and 10 test images and has 10 classes. We run
the deep neural network ResNet34 [52] and AlexNet [53]
on this dataset.

• Cifar100 dataset [51]. The dataset also consists of 50
32 × 32 training images and 10 test images but has 100
classes. The neural network DenseNet121 [54] is executed
on this dataset.

• Penn Treebank corpus dataset (PTB) [55]. The dataset
consists of 923, 000 training and 82, 000 test words. We
run a 2-layer LSTM [56] on it.

Clusters. For generality, we conduct experiments on both CPU
and GPU clusters. Specifically, we build four types of clusters.
1) Cluster A. It includes 8 Virtual Machines (VMs) as 8 workers
and 1 VM as the server. Each VM is configured with 4 cores
(2.6GHz) and 8GB RAM, and all VMs are connected by 10-
Gbps Ethernet. 2) Cluster B. It uses the same configurations
as cluster A but consists of 16 VMs as workers. 3) Cluster
C. It includes 9 VMs and each VM is configured with a GTX
1080TI GPU. We employ one of the VMs as the server and
others as the workers. The VMs are connected through the
links with 10 Gbps bandwidth. 4) Cluster D. The cluster is built
on a real commercial cloud, i.e., Aliyun [57]. It consists of 9
homogeneous VMs including 8 workers and 1 server, in which
each node is equipped with a Tesla P4 GPU and all VMs are
connected through the 100 Mbps links. The main difference
between cluster C and D is that their network bandwidth
is different, which simulates different practical settings. We
implement all methods on PyTorch and run them on top of
64-bit Centos 7.1 operating system. The source code can be
found in [58].

Metrics. We adopt two general metrics, i.e., convergence
speed and convergence rate, to evaluate the methods. The
convergence speed is to measure the time required to reach
some given error threshold. Similarly, the convergence rate is
to measure the iterations required to reach some given error
threshold. Beside of the two metrics, we in this paper also
investigate the impact of our method on the computing resource
usage by the ratio of computing time to the total execution
time.

B. Experimental Results

1) Impact of Synchronization Mechanism: We firstly present
the results on convex models and then non-convex models.

Results on Convex Problems. The mini-batch size and the
learning rate of all methods are set to be � = 200 and [= 0.01

0 5 10 15 20 25 30
��	���102��

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

��
��

�

�

��
�

BSP
KBatchAsync
OSP
SSP

OSP BSP SSP KBatchAsync0.0

0.5

1.0

1.5

2.0

2.5

��
��

�
�

�	

�
��

�
��
��

��
��

(a) LR on Mnist

0 5 10 15 20 25 30 35 40
��	���102��

1.60

1.65

1.70

1.75

1.80

1.85

1.90

��
��

�

�

��
�

BSP
KBatchAsync
OSP
SSP

OSP BSP SSP KBatchAsync0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

��
��

�
�

�	

�
��

�
��
��

��
��

(b) LR on Cifar10

Fig. 5. Comparison of different synchronization mechanisms for convex
problems on the cluster B.

0 5 10 15 20 25 30 35 40
����
�������	��

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

��

�
��

��
��

�

BSP
KBatchAsync
OSP
SSP

0 5 10 15 20 25 30 35
����
�������	��

1.60

1.65

1.70

1.75

1.80

1.85

1.90

��

�
��

��
��

�

BSP
KBatchAsync
OSP
SSP

Fig. 6. Comparison of different parallel mechanisms for convex problems on
the cluster B.

respectively. Besides, the staleness threshold of SSP and the
batches of KBatchAsync are set to 16 and = 8, respectively,
which are the best setting in our tests. In the following figures,
the black dashed line is an auxiliary line that indicates the
convergence threshold of the training loss. It can help to clearly
show the convergence speed, i.e., time duration or the number
of iterations required to reach a given training loss.

The results of convergence speed of using LR are shown in
Fig. 5. Besides, our method OSP also outperforms the other
methods in terms of the convergence efficiency. When reaching
convergence for LR on Mnist and Cifar10, BSP costs nearly
1600B and 1500B that are far from the performance of OSP
which only costs 250B and 400B. Besides, in our tests, BSP
even performs better than asynchronous parallel models, i.e.,
SSP and KBatchAsync. This phenomenon arises because the
clusters used in the experiments are special-purpose that has
little chances of having stragglers.

The results of convergence rate of using LR are shown in
Fig. 6. We observe that OSP achieves a better converence
quality than BSP. In fact, this is because each worker of OSP
iterates more local steps in each global iteration than that
of BSP, which is also verified theoratically in Corollary 2.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 9

0 5 10 15 20
��
���������

0.10

0.15

0.20

0.25

0.30

��
	�
��
��

��
��
�

BSP
KBatchAsync
OSP
SSP

OSP BSP SSP KBatchAsync0.0

0.2

0.4

0.6

0.8

1.0

1.2

��
��

�
�

�	

�
��

�
��
��

��
��

(a) MnistCNN on the cluster A.

0 5 10 15 20 25 30 35 40 45 50 55
��	���102��

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

��
��

�

�

��
�

BSP
KBatchAsync
OSP
SSP

OSP BSP SSP KBatchAsync0.0

0.5

1.0

1.5

2.0

2.5

3.0
��

��

�
�

�	

�
��

�
��
��

��
��

(b) MnistCNN on the cluster B.

0 2 4 6 8
��
���������

0.0

0.5

1.0

1.5

2.0

��
	�
��
��

��
��
�

BSP
KBatchAsync
OSP
SSP

OSP BSP SSP KBatchAsync0

1

2

3

4

5

6

��
��

�
�

�	

�
��

�
��
��

��
��

(c) AlexNet on the cluster A.

0 5 10 15 20
��
���������

0.0

0.5

1.0

1.5

2.0

��
	�
��
��

��
��
�

BSP
KBatchAsync
OSP
SSP

OSP BSP SSP KBatchAsync0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

��
��

�
�

�	

�
��

�
��
��

��
��

(d) AlexNet on the cluster B.

Fig. 7. Convergence speed comparison of different parallel mechanisms.

0 5 10 15 20 25 30 35
����
�������	��

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

��

�
��

��
��

�

BSP
KBatchAsync
OSP
SSP

0 5 10 15 20 25
����
�������	��

0.0

0.5

1.0

1.5

2.0

��

�
��

��
��

�

BSP
KBatchAsync
OSP
SSP

Fig. 8. Comparison of different parallel mechanisms for non-convex models
on the cluster B.

Besides, both SSP and KBatchAsync have poorer convergence
performance than BSP, not to mention in comparison with our
method OSP.

Results on Non-convex Problems. The mini-batch size of
all methods is set to� = 200. The learning rate is set to0.1
initially and decayed by multiplying 0.1 in 50Cℎ epoch (25000Cℎ
iteration for BSP). The configuration of the staleness threshold
for SSP and the number of batches for KBatchAsync are the
same as that in the convex case.

The results for convergence speed of non-convex models
are shown in Fig. 7. Similar to convex models, OSP performs
the best in all cases. Taking MnistCNN on 16-workers cluster
as an example, the time reaching convergence required by
OSP is approximate 500B which is only a quarter of best
baseline, i.e., approximately 2000B of SSP. The difference from
convex problems is that BSP performs worse than asynchronous
methods in most cases. BSP causes communication burst in
synchronizing phase that is more severe when the quantity of
parameters in machine learning models is large.

The results for convergence rate of non-convex models are
shown in Fig. 8. SSP performs the worst due to the staleness of
the gradient and the smaller batch size than the other methods.

2 4 6 8
��
���������

0.0

0.1

0.2

0.3

0.4

0.5

0.6
��

	�
��
��

��
��
�

BSP
OSP

0.2 0.4 0.6 0.8 1.0
����
�������	��

0.00

0.05

0.10

0.15

0.20

0.25

0.30

��

�
��

��
��

�

BSP
OSP

(a) ResNet18 on the cluster A.

2 4 6
��
���������

0.0

0.1

0.2

0.3

0.4

0.5

0.6

��
	�
��
��

��
��
�

BSP
OSP

0.0 0.2 0.4 0.6 0.8 1.0
����
�������	��

0.0

0.2

0.4

0.6

0.8

1.0
��

�
��

��
��

�
BSP
OSP

(b) ResNet18 on the cluster B.

Fig. 9. Convergence speed comparison of different parallel mechanisms.

Similar to the results in Fig. 6, BSP performs better than SSP
and KBatchAsync. However, it is still worse than OSP.

2) Impact of Synchronization Mechanism on Computing
Resource Usage: In this section, we investigate if our method
OSP can improve the computing resource usage of the cluster.
Computing resource usage is presented in terms of the ratio
of computing time to total time. Denote the computing time
of worker 8 as C8 and the total time of worker 8 as)8 , then the
computing resource usage is

∑%
8=1 C8∑%
8=1)8

.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 10

P=8 P=8 P=16 P=16
����
��

0

20

40

60

80

100

��

��
��

�
���

�	
�

���

�

OSP
BSP

Fig. 10. Computing resource usage of OSP and BSP. Computing resource
usage of OSP is nearly 100 percent.

We do experiments on ResNet18 with the mini-batch size
of 200 and learning rate of 0.1. The results are shown in
Fig. 10, from which we observe that the computing resource
usage of OSP is nearly 100%. To understand the impact of
computing resource usage, we compare the performance of
OSP to BSP in both Fig. 10 and Fig. 9. As shown in Fig. 9 (a),
the convergence time of BSP is approximately 1.5 times and
its computing resource usage is 2/5 of OSP. As the computing
resource usage of BSP decreases to be 1/5 of OSP in the
16-workers cluster, the convergence time also increases to be
3.5 times of OSP. Hence, OSP can really improve the training
efficiency through improving the resource usage.

3) Impact of Local Compensation: In this section, we
present the results of LOSP that investigates the effectiveness of
local compensation on the convergence efficiency. The number
of local iterations is set to be 64 for ResNet34 and DenseNet121
and 16 for LSTM. For generality, we set the compensated rate
W of LOSP to be 0.2 for all experiments. The learning rate
is set to be 0.1 for ResNet34 and DenseNet121 and 20 for
LSTM.

0 20 40 60 80 100
��
��

0.0

0.5

1.0

1.5

2.0

2.5

��
��
	�
	�

��

LocalSGD
LOSP
OSP

0 1 2 3 4 5
��	���103�

0.0

0.5

1.0

1.5

2.0

2.5

��
��

�

�

��
�

LocalSGD
LOSP
OSP

(a) Training Loss.

0 20 40 60 80 100
�	���

20

30

40

50

60

70

80

��
���
�
��

��
�

LocalSGD
LOSP
OSP

0 1 2 3 4 5
��	���103��

20

30

40

50

60

70

80

��
���

�
��

��

�

LocalSGD
LOSP
OSP

(b) Test Accuracy.

Fig. 11. ResNet34 on the cluster C.

0 20 40 60 80
��
��

0

1

2

3

4

��
��
	�
	�

��

LocalSGD
LOSP
OSP

0 1 2 3 4 5 6 7
��	���103�

0

1

2

3

4

5

��
��

�

�

��
�

LocalSGD
LOSP
OSP

(a) Training Loss.

20 40 60 80
�	���

10
15
20
25
30
35
40
45
50

��
���
�
��

��
�

LocalSGD
LOSP
OSP

0 1 2 3 4 5 6 7
��	���103��

10

20

30

40

50

��
���

�
��

��

�

LocalSGD
LOSP
OSP

(b) Test Accuracy.

Fig. 12. Densenet121 on the cluster C.

0 25 50 75 100 125 150 175 200
��
��

4.5

5.0

5.5

6.0

6.5

7.0

��
��
	�
	�

��

LocalSGD
LOSP
OSP

0 5 10 15 20 25 30 35
��	���103�

4.5

5.0

5.5

6.0

6.5

7.0

��
��

�

�

��
�

LocalSGD
LOSP
OSP

(a) Training Loss.

0 25 50 75 100 125 150 175 200
�����

100

200

300

400

500

600

��
	�
��
��

�

LocalSGD
LOSP
OSP

0 5 10 15 20 25 30 35
������103��

100

200

300

400

500

600

��

	
��
�
��

LocalSGD
LOSP
OSP

(b) Test Accuracy.

Fig. 13. LSTM on the cluster C.

The results for ResNet34, DenseNet121, and LSTM are
shown in Fig. 12-14. On one hand, the results show that all three
methods perform almost the same in terms of the convergence
rate, i.e., training loss vs. epoch. On the other hand, our methods
LOSP and OSP perform slightly worse than LocalSGD in terms
of the generalization performance, i.e., accuracy vs. epoch.
This phenomenon exhibits that the staleness incurred by the
overlap can deteriorate the generalization performance. In fact,
the results have demonstrated the effectiveness of the local
compensation for the staleness issue. LOSP achieves significant
performance gain over OSP in terms of the generalization

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 11

20 40 60 80 100
��
��

20

30

40

50

60

70
��

��
	�
	�

��

K=16
K=32
K=48
K=64

0 2 4 6 8 10 12 14
��	���103��

20

30

40

50

60

70

��
���

�
��

��

�

K=16
K=32
K=48
K=64

Fig. 14. Impact of over OSP. AlexNet on Cifar10 dataset on the cluster A.

performance.
Furthermore, the results also show that LOSP performs

the fastest in terms of the convergence speed for all mod-
els. Notably, LOSP achieves more than 2× improvement in
terms of convergence speed as compared to the LocalSGD
for DenseNet121. Besides, the results also show that OSP
converges almost the same as the two other methods in terms of
speed although it has worse generalization, which demonstrates
the efficiency of the overlapping technique.

Notably, the training losses of OSP and LOSP are very
similar, but their test accuracy is quite different, as shown
in Fig.12. This is mainly because the inherent computing
principles for the training loss and test accuracy is different.
Specifically, the training loss is derived from training the local
model over the local training dataset, while the test accuracy is
calculated from the global over the global test dataset. OSP and
LOSP possess the same local training process, hence yielding
the similar training losses. By contrast, the global model of
OSP is updated by the stale gradient, resulting in worse test
accuracy than that of the LOSP with the mitigated staleness.

4) Impact of the Number of Local Updates : To fully
investigate the impact of the number of local updates, we
conduct experiments for both OSP and LOSP with various
local updates.

As shown in Fig. 14, the experiments for OSP are conducted
on the cluster A. It can be seen that the convergence rate
decreases as the number of local iterations increases. For
example, the OSP with = 16 converges within fewer epochs
than that with = 64. The reason arises from the increased
gradient variance and staleness incurred by the reduced number
of synchronization and overlap, respectively. On the other hand,
the convergence speed grows with the number of where the
OSP with = 64 converges the fastest. It is also worthwhile
to note that the performance between OSP with = 48 and
 = 64 is similar. In our experiment, the synchronization time
is close to the computation time with 64 local iterations. As
a consequence, as gets closer to 64, the performance gain
in reducing the communication time becomes small, while the
convergence rate starts to dominate the performance. Hence,
although OSP with = 64 has better computing efficiency,
the lower convergence rate slows it down.

The experiments for LOSP are shown in Fig. 15, in which the
AlexNet are conducted on the cluster A and the ResNet34 are
conducted on the cluster C. It can be observed that the LOSP
with = 16 performs the worst in terms of both convergence
rate and speed for both two models. In fact, the reason for

20 40 60 80
Epoch

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

K=16
K=32
K=48
K=64

0 2 4 6 8 10 12 14
��	���103��

10

20

30

40

50

60

70

��
���

�
��

��

�

K=16
K=32
K=48
K=64

(a) AlexNet

10 20 30 40 50 60 70 80 90
�	���

60

65

70

75

80

85

��
���
�
��

��
�

K=16
K=32
K=48
K=64

0 2 4 6 8 10 12
��	���103��

20

30

40

50

60

70

80

��
���

�
��

��

�

K=16
K=32
K=48
K=64

(b) ResNet34

Fig. 15. Impact of over LOSP. (a) and (b) are results of AlexNet and
ResNet34 with different on the cluster C.

this phenomenon has been well presented by the right item
of the inequality 12 in the Theorem 1, where the minimum
is achieved as is some value that is larger than 0. In the
two figures, the optimal values of for maximizing the final
accuracy are 32. As increases from 32, the accuracy and
convergence rate starts to decrease.

5) Impact of Local Step Size W: We investigate the impact
of the W on the convergence rate by uniformly ranging the
value of W from 0 to 0.5. The hyper-parameters adopted are
the same as the experiments in Fig. 11. The results are shown
in Fig. 16. We can find that the performance of LOSP receives
a sudden change from W = 0 to W = 0.1. After that, LOSP
is less sensitive to the W. Such a phenomenon arises from
the existence of the local compensation and indicates that we
can simply employ any value of 60<<0 between 0.1 and 0.5.
Besides, we can also observe that the performance of LOSP
with W = 0.2 has higher final accuracy than its neighbors, i.e.,
W = 0.1 and W = 0.3. For simplicity, we can always take 0.2
as the value of W in practice.

6) Impact of Straggler: The experiments on the impact
of stragglers in LOSP are conducted on the cluster A. We
generate the stragglers by randomly running the single-alone
LR classification program in the background. In each interval,
only one VM runs with the LR program and all VMs run in a
round-robin manner. The experimental results show that the
stragglers have a negative impact on the OSP model. We think
that this phenomenon arises from the huge unbalanced number
of local iterations. With local compensation, the influence of
the unbalanced number is greatly mitigated. The final accuracy
achieved by LOSP is even higher than that of LocalSGD with
balanced : on workers.

7) Impact of Low-bandwidth Network: To better adapt to
the low-bandwidth of the network, we have minor changes on
some hyper-parameters. For the learning rate of MnistCNN and
AlexNet, we adopt 0.0004 and 0.025 respectively. The batch
size of each worker is set to32. The period for the averaging

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 12

0 20 40 60 80
Epoch

20

30

40

50

60

70
Te

st
 A

cc
ur

ac
y

=0.1
=0.2
=0.3
=0.4
=0.5
=0

0 0.1 0.2 0.3 0.4 0.5
66

67

68

69

70

71

72

Te
st

 A
ac

cu
ra

cy

(a) AlexNet

20 40 60 80
Epoch

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

=0.1
=0.2
=0.3
=0.4
=0.5
=0

0 0.1 0.2 0.3 0.4 0.5
84.0

84.2

84.4

84.6

84.8

85.0

Te
st

 A
ac

cu
ra

cy

(b) ResNet34

Fig. 16. Impact of W over LOSP. (a) and (b) are results of AlexNet and
ResNet34 with different W on the cluster C.

0 20 40 60 80 100
�	���

10

20

30

40

50

60

70

��
���
�
��

��
�

LocalSGD
LOSP
OSP

1 2 3 4 5
��	���103��

35
40
45
50
55
60
65
70

��
���

�
��

��

�

LocalSGD
LOSP
OSP

Fig. 17. Impact of straggler. AlexNet on Cifar10 dataset on the cluster A.

of LocalSGD nad CoCoD-SGD is set to 256. Similarly, the
threshold of the number of local iterations of LOSP and OSP
is also set to be 256. For MnistCNN, the compensated factor
W of LOSP is initially set to be 0.0006 and decayed to be
0.0001 at 10th epoch. For AlexNet, the compensated factor W
is initially set to be 0.025 and diminished to be 0.01 at 120-th
epoch.

The results of different methods on MnistCNN are shown
in Fig. 18. It can be observed that LOSP achieves the highest
accuracy as 95.35%, and then the LOSP with 95.25%. Local-
SGD obtains the lowest accuracy being 94.93%. In our
experiment, CoCoD-SGD could not converge. Except the final
accuracy, LOSP also converges faster than LocalSGD in terms
of the time. Specifically, LOSP costs 1264 seconds which
reduces by a factor of 36% when compared to the 1971 seconds
of LocalSGD.

In fact, when considering the large machine learning model,
the advantages of LOSP can be further delivered. The results

TABLE II
ACCURACY OF DIFFERENT METHODS

Models
Methods

Local-SGD OSP LOSP CoCoD-SGD
MnistCNN 94.93 95.25 95.35 Diverge

AlexNet 66.01 64.928 70.14 Diverge

0 30 60 90
��
��

0.3

0.6

0.9

1.2

1.5

1.8

2.1

��
��
	�
	�

��

LocalSGD
LOSP
OSP

0 500 1000 1500 2000
��	���

0.5

1.0

1.5

2.0

��
��

�

�

��
�

LocalSGD
LOSP
OSP

(a) Training Loss.

20 40 60 80 100
�	���

70

75

80

85

90

95

��
���
�
��

��
�

LocalSGD
LOSP
OSP

300 600 900 120015001800
��	�����

84

86

88

90

92

94

96

��
���

�
��

��

�

LocalSGD
LOSP
OSP

(b) Test Accuracy.

Fig. 18. Convergence Time of different methods on MnistCNN with running
on the cluster D.

0 50 100 150 200
��
��

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

��
��
	�
	�

��

LocalSGD
LOSP
OSP

500 1000 1500 2000
��	���

0.8

1.2

1.6

2.0

��
��

�

�

��
�

LocalSGD
LOSP
OSP

(a) Training Loss.

0 25 50 75 100 125 150 175 200
�	���

16

24

32

40

48

56

64

72

��
���
�
��

��
�

LocalSGD
LOSP
OSP

0 500 1000 1500 2000
��	�����

10

20

30

40

50

60

70

��
���

�
��

��

�

LocalSGD
LOSP
OSP

(b) Test Accuracy.

Fig. 19. Convergence Time of different methods on AlexNet with running on
the cluster D.

of different methods running AlexNet are shown in Fig. 19. As
expected, LOSP significantly outperforms the other methods
with the highest accuracy 70.14%. OSP and LocalSGD only
obtain 64.928% and 66.01% respectively. Similar to that of
MnistCNN, CoCoD-SGD still diverges. The results of different
methods are further summarized in Table II.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 13

VII. CONCLUSION

In this paper, we propose a new distributed machine learning
mechanism named LOSP. It accelerates distributed machine
learning by overlapping the computation and communication
of the training process. The convergence of LOSP is further
established without assuming convexity. The theoretical results
show that the convergence rate of LOSP is in the same order as
sequential (��. Finally, extensive experiments on both convex
models and non-convex models are conducted to verify our
results. Experimental results present that LOSP outperforms
all the state-of-the-art methods.

APPENDIX A
PROOF OF GENERAL LEMMAS

For the clarity of presentation, we introduce a notation for

the local update in iteration C as �8C =
 8

C −1∑
:=0

6(l8
C−1,: , b

8
C ,:
).

Besides, we have the following facts for LOSP:

lC−1 − l8C−1,0 = W[C�
8
C−1, (16)

l8C−1,0 − l
8
C−1,: = [C

:−1∑
9=0
6(l8C−1, 9 , b

8
C−1, 9). (17)

To support the convergence analysis for LOSP, we derive the
following lemmas.

Lemma 3. The expected squared norm of the local stochastic
gradients is bounded by

E‖�8C ‖22 ≤
8
Cf

2 + E‖
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2, (18)

E‖
%∑
8=1

�8C ‖22 ≤
%∑
8=1

 8Cf
2 + E‖

%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2. (19)

Proof. According to the definition of �8C , we have

E‖�8C ‖22 = E‖�8C −
 8

C −1∑
:=0
∇� (l8C−1,:) +

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2

= E‖�8C −
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2 + E‖

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2

+ 2E < �8C −
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2,

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2 >

= E‖�8C −
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2 + E‖

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2

=

 8
C −1∑
:=0
E‖6(l8C−1,: , b

8
C−1,:) − ∇� (l

8
C−1,:)‖

2
2

+ E‖
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2 +

 8
C −1∑
:≠ 9

E < 6(l8C−1,: , b
8
C−1,:)

− ∇� (l8C−1,:), 6(l
8
C−1, 9 , b

8
C−1, 9) − ∇� (l

8
C−1, 9) >

=

 8
C −1∑
:=0
E‖6(l8C−1,: , b

8
C−1,:) − ∇� (l

8
C−1,:)‖

2
2

+ E‖
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2

≤ 8Cf2 + ‖
 8

C −1∑
:=0
∇� (l8C−1,:)‖

2
2, (20)

where the third and last equalities hold due to unbiased gradient
of Assumption 1-(4), and the last inequality uses the bounded

variance of Assumption 1-(4). The bound of E‖
%∑
8=1
�8C ‖22 in

(19) is similar to that of E‖�8C ‖22. �

Lemma 4. For any : = 0, 1, . . . , 8C , the squared norm of local
update is bounded by

E‖l8C−1,0 − l
8
C−1,: ‖

2
2 ≤ 3[2

C !
2:f2 + 3[2

C !
2‖

:−1∑
9=0
∇� (l8C−1, 9)‖

2
2.

(21)

Proof. From the workflow of Algorithm 1, we have

E‖l8C−1,0 − l
8
C−1,: ‖

2
2 = E‖[C

:−1∑
9=0
6(l8C−1, 9 , b

8
C−1, 9)‖

2
2

= [2
C E‖

:−1∑
9=0
[6(l8C−1, 9 , b

8
C−1, 9) − ∇� (l

8
C−1, 9)] +

:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

= [2
C E‖

:−1∑
9=0
[6(l8C−1, 9 , b

8
C−1, 9) − ∇� (l

8
C−1, 9)] ‖

2
2

+ [2
C E‖

:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

+ 2[2
C E <

:−1∑
9=0
[6(l8C−1, 9 , b

8
C−1, 9) − ∇� (l

8
C−1, 9)],

:−1∑
9=0
∇� (l8C−1, 9) >

= [2
C E‖

:−1∑
9=0
[6(l8C−1, 9 , b

8
C−1, 9) − ∇� (l

8
C−1, 9)] ‖

2
2

+ [2
C E‖

:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

≤ [2
C :f

2 + [2
C ‖

:−1∑
9=0
∇� (l8C−1, 9)‖

2
2, (22)

where the last equality holds because the unbiased gradient
of Assumption 1-(3) and the last inequality uses the bounded
variance of Assumption 1-(3). �

Lemma 5. The difference of worker 8 between global model
and locally compensated model is bounded by

E‖lC−1 − l8C−1,0‖
2
2

≤ W2[2
Cf

2 8C−1 + W
2[2
C ‖

 8
C−1−1∑
:=0
∇� (l8C−2,:)‖

2
2. (23)

Proof. With the workflow in Algorithm 1, we have

E‖lC−1 − l8C−1,0‖
2
2 = E‖W[C�8C−1‖

2
2

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 14

≤ W2[2
Cf

2 8C−1 + W
2[2
C ‖

 8
C−1−1∑
:=0
∇� (l8C−2,:)‖

2
2, (24)

where the inequality uses (19) in Lemma 3. �

APPENDIX B
PROOF OF THEOREM 1

According to the algorithm, the one-step updated fomula of
global parameter lC+1 is

lC+1 = lC − [C
1
%

%∑
8=1

 8
C −1∑
:=0

6(l8C−1,: , b
8
C ,:), (25)

where l8
C−1,0 = lC−1−W[C

 8
C−1−1∑
:=0

6(l8
C−2,: , b

8
C−2,:). The one-step

update can be bounded by the following lemma.

Lemma 6. The squared norm of the one-step update in
Algorithm 1 is bounded by

E‖lC+1 − lC ‖22 ≤
[2
Cf

2

%2

%∑
8=1

 8C

+
[2
C

%2 ‖
%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2. (26)

Proof. From (25), we have

E‖lC+1 − lC ‖22 = E‖[C
1
%

%∑
8=1

�8C ‖22

≤
[2
Cf

2

%2

%∑
8=1

 8C +
[2
C

%2 ‖
%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2, (27)

where the last equality uses (3) in Lemma 3. �

Based on this lemma, we give the detailed proof of Theorem
1.

Proof. To prove the covergence of LOSP, we firstly bound the
update of one step � (lC+1) − � (lC) and then summarize all
steps from 1 to # to achieve the overall convergence.

Based on Assumption 1 and the conclusion of Appendix B
of [4], the bound of one iteration is

� (lC+1) − � (lC)

≤ 〈∇� (lC), lC+1 − lC 〉 +
!

2
‖lC+1 − lC ‖22

=

〈
∇� (lC),−[C

1
%

%∑
8=1

 8
C −1∑
:=0

6(l8C−1,: , b
8
C ,:)

〉
+ !

2
‖lC+1 − lC ‖22. (28)

Because b8
C ,:

in our algorithm are i.i.d. for all C, :, 8, by taking
expectation for both sides of (28) upon b8

C ,:
and combining

Asssumption 3, we can immediately get

E� (lC+1) − � (lC)

≤
{ 〈
∇� (lC),−[C

1
%

%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)

〉 }
)1

+ !
2
E‖lC+1 − lC ‖22. (29)

We present the bound of)1 as follows:

)1 =

〈
∇� (lC),−[C

1
%

%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)

〉
(30)

= −[C
%

%∑
8=1

 8
C −1∑
:=0

〈
∇� (lC),∇� (l8C−1,:)

〉
(31)

= − [C
2%

%∑
8=1

 8
C −1∑
:=0
[‖∇� (lC)‖22 + ‖∇� (l

8
C−1,:)‖

2
2] (32)

+ [C
2%

%∑
8=1

 8
C −1∑
:=0

{
‖∇� (lC) − ∇� (l8C−1,:)‖

2
2

}
)2

, (33)

where the third item is because −2 < 0, 1 >= ‖0−1‖2−‖0‖2−
‖1‖2. According to Assumption 1,)2 can be bounded as

)2 = ‖∇� (lC) − ∇� (l8C−1,:)‖
2
2

≤ !2‖lC − l8C−1,: ‖
2
2

≤ !2‖lC − lC−1 + lC−1 − l8C−1,0 + l
8
C−1,0 − l

8
C−1,: ‖

2
2

≤ 3!2 (‖lC − lC−1‖22 + ‖lC−1 − l8C−1,0‖
2
2 + ‖l

8
C−1,0 − l

8
C−1,: ‖

2
2).

Using Lemma 4, Lemma 5, and Lemma 6, we could obtain

)2 ≤
3[2
C−1!

2f2

%2

%∑
8=1

 8C−1 +
3[2
C−1!

2

%2 ‖
%∑
8=1

 8
C−1−1∑
:=0
∇� (l8C−2,:)‖

2
2

+ 3[2
C !

2:f2 + 3[2
C !

2‖
:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

+ 3!2W2[2
Cf

2 8C−1 + 3!2W2[2
C ‖

 8
C−1−1∑
:=0
∇� (l8C−2,:)‖

2
2. (34)

Putting)2 back into)1, we get

)1 ≤ −
[C

2%

%∑
8=1

 8
C −1∑
:=0
[‖∇� (lC)‖22 + ‖∇� (l

8
C−1,:)‖

2
2]

+ [C
2%

%∑
8=1

 8
C −1∑
:=0

[3[2
C−1!

2f2

%2

%∑
9=1

9

C−1 + 3[2
C !

2:f2

+ 3!2W2[2
Cf

2 8C−1 + 3[2
C !

2‖
:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

+
3[2
C−1!

2

%2 ‖
%∑
9=1

9

C−1−1∑
;=0
∇� (l 9

C−2,;)‖
2
2

+ 3!2W2[2
C ‖

 8
C−1−1∑
:=0
∇� (l8C−2,:)‖

2
2

]
. (35)

Now, following from (29), together with the bound of E‖lC+1−
lC ‖22 derived in Lemma 25, we have the following inequality:

E� (lC+1) − � (lC)

≤ − [C
2%

%∑
8=1

 8
C −1∑
:=0
[‖∇� (lC)‖22 + ‖∇� (l

8
C−1,:)‖

2
2]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 15

+ [C
2%

%∑
8=1

 8
C −1∑
:=0

[3[2
C−1!

2f2

%2

%∑
9=1

9

C−1 + 3[2
C !

2:f2

+ 3!2W2[2
Cf

2 8C−1 + 3[2
C !

2‖
:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

+
3[2
C−1!

2

%2 ‖
%∑
9=1

9

C−1−1∑
;=0
∇� (l 9

C−2,;)‖
2
2

+ 3!2W2[2
C ‖

 8
C−1−1∑
;=0
∇� (l8C−2,;)‖

2
2

]
+
[2
C !f

2

2%2

%∑
8=1

 8C +
[2
C !

2%2 ‖
%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2

= − ̄[C
2
‖∇� (lC)‖22 +

{
3!2W2[3

Cf
2

2%

%∑
8=1

 8
C −1∑
:=0

 8C−1+

+
[2
C !f

2

2%2

%∑
8=1

 8C +
3[3
C !

2f2

4%

%∑
8=1
(8C − 1) 8C

+
3[C[2

C−1!
2f2

2%3

%∑
8=1

 8
C −1∑
:=0

%∑
9=1

9

C−1

}
)3

+
{
− [C

2%

%∑
8=1

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

+
[2
C !

2%2 ‖
%∑
8=1

 8
C −1∑
:=0
∇� (l8C−1,:)‖

2
2

+
3[3
C !

2

2%

%∑
8=1

 8
C −1∑
:=0
‖
:−1∑
9=0
∇� (l8C−1, 9)‖

2
2

+
3[C[2

C−1!
2

2%3

%∑
8=1

 8
C −1∑
:=0
‖
%∑
9=1

 8
C−1−1∑
;=0
∇� (l 9

C−2,;)‖
2
2

+
3[3
C !

2W2

2%

%∑
8=1

 8
C −1∑
:=0
‖
 8

C−1−1∑
;=0
∇� (l8C−2,;)‖

2
2

}
)4

. (36)

We further simplify the bound of E� (lC+1) − � (lC). Ac-
cording to Assumption 2-(1) and Assumption 2-(2), we have

)3 =
3!2W2[3

Cf
2

2%

%∑
8=1

 8
C −1∑
:=0

 8C−1 +
[2
C !f

2

2%2

%∑
8=1

 8C

+
3[3
C !

2f2

4%

%∑
8=1
(8C − 1) 8C +

3[C[2
C−1!

2f2

2%3

%∑
8=1

 8
C −1∑
:=0

%∑
9=1

9

C−1

≤
3!2W2[3

Cf
2

4%

%∑
8=1
((8C)2 + (8C−1)

2) + +
[2
C !f

2

2%
 ̄

+
3[3
C !

2f2

4%

%∑
8=1
((8C)2 − 8C) +

3[C[2
C−1!

2f2

2%2

%∑
8=1

 8
C −1∑
:=0

 ̄

≤
3[3
C !

2W2f2

2
(̄2 + ") +

3[3
C !

2f2"

4
+

3[3
C !

2f2 ̄2

4

−
3[3
C !

2f2 ̄

4
+

3[C[2
C−1!

2f2 ̄2

2%
+
[2
C !f

2 ̄

2%
. (37)

Similarly, we show bound of)4

)4 ≤ −
[C

2%

%∑
8=1

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

+
[2
C !

2%

%∑
8=1

 8C

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

+
3[3
C !

2

2%

%∑
8=1

 8
C −1∑
:=0

:

:−1∑
9=0
‖∇� (l8C−1, 9)‖

2
2

+
3[C[2

C−1!
2

2%2

%∑
8=1

 8
C −1∑
:=0

%∑
9=1

9

C−1

9

C−1−1∑
;=0
‖∇� (l 9

C−2,;)‖
2
2

+
3[3
C !

2W2

2%

%∑
8=1

 8
C −1∑
:=0

 8C−1

 8
C−1−1∑
;=0
‖∇� (l8C−2,;)‖

2
2

≤ − [C
2%

%∑
8=1

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

+
[2
C !

2%

%∑
8=1

 8C

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

+
3[3
C !

2

4%

%∑
8=1

 8
C −1∑
:=0
(8C − 1) 8C ‖∇� (l8C−1,:)‖

2
2

+
3[C[2

C−1!
2 ̄

2%

%∑
8=1

 8
C−1−1∑
:=0

 8C−1‖∇� (l
8
C−2,:)‖

2
2

+
3[3
C !

2W2

2%

%∑
8=1

 8C
8
C−1

 8
C−1−1∑
;=0
‖∇� (l8C−2,;)‖

2
2

=

%∑
8=1

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

[
− [C

2%
+
[2
C !

8
C

2%

+
3[3
C !

2 (8C − 1) 8C
4%

]
+

%∑
8=1

 8
C−1−1∑
:=0
‖∇� (l8C−2,:)‖

2
2[3[C[2

C−1!
2 ̄

2%
 8C−1 +

3[3
C !

2W2

2%
 8C

8
C−1

]
, (38)

where the first iequality is due to CauchyCSchwarz inequality
and the second iequality is due to Assumption 2-(1) and
Assumption 2-(2). When considering all # iterations, we have

#∑
C=1

)4 ≤
#∑
C=1

%∑
8=1

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

[
− [C

2%
+
[2
C !

8
C

2%

+
3[3
C !

2 (8C − 1) 8C
4%

]
+

#∑
C=1

%∑
8=1

 8
C−1−1∑
:=0
‖∇� (l8C−2,:)‖

2
2[3[C[2

C−1!
2 ̄

2%
 8C−1 +

3[3
C !

2W2

2%
 8C

8
C−1

]
≤

#∑
C=1

%∑
8=1

 8
C −1∑
:=0
‖∇� (l8C−1,:)‖

2
2

{[
− [C

2%
+
[2
C !

8
C

2%

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 16

+
3[3
C !

2 (8C − 1) 8C
4%

+
3[C+1[2

C !
2 ̄ 8C

2%

+
3[3
C+1!

2W2

2%
 8C+1

8
C

]}
)5

. (39)

Since <0G = max
{
 8C

���8 = 1, . . . , %, C = 1, . . . , #
}

and
 8C ≥ 1, we have

)5 ≤
[C

2%
[−1 + [C! <0G + 3[2

C !
2 (<0G − 1) <0G/2

+ 3[C+1[C!2 ̄ <0G + 3[3
C+1!

2W2 2
<0G/[C] (40)

Obviously, if

! <0G ([C + 3[2
C ! <0G/2 + 3[C+1[C! ̄

+ 3[3
C+1!W

2 <0G/[C − 3[2
C !/2) ≤ 1, (41)

then

)5 ≤ 0,
#∑
C=1

)4 ≤ 0. (42)

So, when summing up (36) from C = 1 to C = # , and together
with (37) and (38), we could get the following bound

E� (l#+1) − � (l1)

≤ − ̄
2

#∑
C=1

[C ‖∇� (lC)‖22 +
#∑
C=1

)3 +
#∑
C=1

)4

≤ − ̄
2

#∑
C=1

[C ‖∇� (lC)‖22 +
#∑
C=1

[3[3
C !

2W2f2

2
(̄2 + ")

+
3[3
C !

2f2"

4
+

3[3
C !

2f2 ̄2

4
−

3[3
C !

2f2 ̄

4

+
3[C[2

C−1!
2f2 ̄2

2%
+
[2
C !f

2 ̄

2%

]
. (43)

By denoting l★ as the global optimal point that achieves the
�8= 5 in Assumption 2, we have

� (l★) − � (l1) ≤ E� (l#+1) − � (l1). (44)

Moving sum of squared gradients to left, we have
#∑
C=1

[CE‖∇� (lC)‖22 ≤
2(� (l1) − � (l★))

 ̄

+
#∑
C=1

[C

 ̄
[3[2

C !
2W2f2 (̄2 + ") +

3[2
C !

2f2"

2

+
3[2
C !

2f2 ̄2

2
−

3[2
C !

2f2 ̄

2
+

3[2
C−1!

2f2 ̄2

%
+ [C!f

2 ̄

%
] .

(45)
Considering a fixed learning rate [C = [̄, the condition in

(41) is equivalent to

[̄! <0G (1 + 3[̄! <0G/2 + 3[̄! ̄ + 3[̄!W2 <0G − 3[̄!/2) ≤ 1,
(46)

and then the bound of average squared gradient is

1
#

#∑
C=1
E‖∇� (lC)‖22 ≤

2(� (l1) − � (l★))
#[̄ ̄

+ [̄!f
2

 ̄

[3[̄!"
2

+ 3[̄! ̄2

2
+ 3[̄!W2 (̄2 + ") − 3[̄! ̄

2
+ 3[̄! ̄2

%
+ ̄
%

]
,

which completes the proof. �

APPENDIX C
PROOF OF COROLLARY 2

Proof. If

[̄

(3!"
2
+ 3! ̄2

2
+ 3!W2 (̄2 + ") − 3! ̄

2
+ 3! ̄2

%

)
≤ ̄
%
,

(47)

then the bound in (12) can be written as

1
#

#∑
C=1
E‖∇� (lC)‖22 ≤

2 [� (l1) − � (l★)]
#[̄ ̄

+ 2[̄!f2

%
. (48)

Define 5 ([̄) = 2[� (l1)−� (l★)]
[̄ ̄

+ 2[̄!f2

%
, and let 5 ′([̄) = 0. We

have

[̄ =

√
2(� (l1) − � (l★))%

̄!f2 , (49)

and

5 ([̄) ≥ 4

√
(� (l1) − � (l★))f2

 ̄%
∗ 1
√
#
. (50)

Bring the value of [̄ in (49) back into (47), we have√
2(� (l1) − � (l★))%

̄!f2

(3!"
2
+ 3! ̄2

2

+ 3!W2 (̄2 + ") − 3! ̄
2
+ 3! ̄2

%

)
≤ ̄
%
. (51)

Setting �1 = 3!"
2 + 3! ̄ 2

2 + 3!W2 (̄2 +") − 3! ̄
2 +

3! ̄ 2

%
, (51)

yields

≥ �2, (52)

where �2 =
2(� (l1)−� (l★))�2

1%
3

 ̄ 3!f2 . Besides, by setting �3 =

3 <0G/2 + 3 ̄ + 3W2 <0G − 3/2, the bound of learning rate [̄
in (49) becomes

[̄! <0G (1 + [̄!�3) ≤ 1. (53)

Together with the value of [̄ in (49), we have

≥ �4, (54)

where �4 =
 <0G% (� (l1)−� (l★))

(
√
! <0G+

√
! <0G+4�3

)2

2 ̄ f2 . Con-
sidering (52) and (54) together, we obtain that, if

≥ "0G(�2, �4), (55)

then

1
#

#∑
C=1
E‖∇� (lC)‖22 ≤ 4

√
(� (l1) − � (l★))f2

 ̄%
∗ 1
√
#
. (56)

�

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 17

REFERENCES

[1] H. Wang, S. Guo, and R. Li, “OSP: overlapping computation and
communication in parameter server for fast machine learning,” in
Proceedings of the 48th International Conference on Parallel Processing,
ICPP, 2019.

[2] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP, 2013.

[3] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li,
“Large-scale video classification with convolutional neural networks,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2014.

[4] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for
sensor-based activity recognition: A survey,” Pattern Recognition Letters,
vol. 119, pp. 3–11, 2019.

[5] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B. Su, “Scaling distributed machine learning
with the parameter server,” in Proceedings of USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2014.

[6] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” in Proceedings
of Annual Conference on Neural Information Processing Systems 2014,
NeurIPS, 2014.

[7] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: agile ML elasticity through tiered reliability in dynamic
resource markets,” in Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys, 2017.

[8] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei, P. Xie,
and E. P. Xing, “Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters,” in Proceedings of USENIX
Annual Technical Conference, ATC, 2017.

[9] J. Chen, R. Monga, S. Bengio, and R. Józefowicz, “Revisiting distributed
synchronous SGD,” CoRR, 2016.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Proceedings of Annual Conference
on Neural Information Processing Systems,NeurIPS, 2012.

[11] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton,
and E. P. Xing, “Solving the straggler problem with bounded staleness,”
in 14th Workshop on Hot Topics in Operating Systems, HotOS, 2013.

[12] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ML via a
stale synchronous parallel parameter server,” in Proceedings of Annual
Conference on Neural Information Processing Systems, NeurIPS, 2013.

[13] S. Wang, A. Pi, and X. Zhou, “Scalable distributed DL training: Batching
communication and computation,” in The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019.

[14] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z. Ma, and T. Liu,
“Asynchronous stochastic gradient descent with delay compensation,” in
Proceedings of the 34th International Conference on Machine Learning,
ICML, 2017.

[15] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable
and energy efficient deep learning with smart memory cubes,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 2, pp. 420–434, 2018.

[16] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P. Pande,
D. Marculescu, and R. Marculescu, “On-chip communication network
for efficient training of deep convolutional networks on heterogeneous
manycore systems,” IEEE Trans. Computers, vol. 67, no. 5, pp. 672–686,
2018.

[17] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scalable
near-memory architecture for training deep neural networks on large in-
memory datasets,” IEEE Trans. Computers, vol. 68, no. 4, pp. 484–497,
2019.

[18] X. Chen, D. Z. Chen, Y. Han, and X. S. Hu, “modnn: Memory optimal
deep neural network training on graphics processing units,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 3, pp. 646–661, 2019.

[19] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case study
for decentralized parallel stochastic gradient descent,” in Proceedings of
Advances in Neural Information Processing Systems, NeurIPS, 2017.

[20] L. Fu, S. Ma, L. Kong, S. Liang, and X. Wang, “FINE: A framework
for distributed learning on incomplete observations for heterogeneous
crowdsensing networks,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp.
1092–1109, 2018.

[21] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster
convergence and less communication: Demystifying why model averaging
works for deep learning,” in The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019.

[22] S. U. Stich, “Local SGD converges fast and communicates little,” in 7th
International Conference on Learning Representations, ICLR 2019.

[23] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of communication-efficient SGD algorithms,”
Workshop on International Conference on Machine Learning, ICML
Workshop, 2019.

[24] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[25] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proceedings of
Machine Learning and Systems 2019, MLSys 2019.

[26] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and E. Dutkiewicz, “Optimal
online data partitioning for geo-distributed machine learning in edge of
wireless networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 10, pp. 2393–2406, 2019.

[27] Y. You, I. Gitman, and B. Ginsburg, “Scaling SGD batch size to 32k for
imagenet training,” CoRR, 2017.

[28] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” in Proceedings of the 47th International Conference
on Parallel Processing, ICPP, 2018.

[29] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch SGD:
training resnet-50 on imagenet in 15 minutes,” CoRR, 2017.

[30] D. Yin, A. Pananjady, M. Lam, D. S. Papailiopoulos, K. Ramchandran,
and P. Bartlett, “Gradient diversity: a key ingredient for scalable
distributed learning,” in International Conference on Artificial Intelligence
and Statistics, AISTATS, 2018.

[31] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous
parallel distributed training for deep learning,” in 39th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2019.

[32] S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchronization
with partial processing for iterative ML jobs on clusters,” in Proceedings
of the 19th International Middleware Conference, Middleware, 2018.

[33] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani,
“Robust and communication-efficient collaborative learning,” in Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS, 2019.

[34] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mitigat-
ing communication bottlenecks in parameter servers,” in 2019 IEEE
Conference on Computer Communications, INFOCOM, 2019.

[35] J. H. Lee and H. Kim, “Stalelearn: Learning acceleration with asyn-
chronous synchronization between model replicas on PIM,” IEEE Trans.
Computers, vol. 67, no. 6, pp. 861–873, 2018.

[36] A. Sharif-Nassab, S. Salehkaleybar, and S. J. Golestani, “Order optimal
one-shot distributed learning,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS, 2019.

[37] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. G. Schwing,
H. Esmaeilzadeh, and N. S. Kim, “A network-centric hardware/algorithm
co-design to accelerate distributed training of deep neural networks,” in
Proceedings of International Symposium on Microarchitecture, MICRO,
2018.

[38] Q. Zhou, K. Wang, P. Li, D. Zeng, S. Guo, B. Ye, and M. Guo,
“Fast coflow scheduling via traffic compression and stage pipelining
in datacenter networks,” IEEE Trans. Computers, vol. 68, no. 12, pp.
1755–1771, 2019.

[39] D. Gündüz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy,
and M. van der Schaar, “Machine learning in the air,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 10, pp. 2184–2199,
2019.

[40] A. Sapio, M. Canini, C. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishna-
murthy, M. Moshref, D. R. K. Ports, and P. Richtárik, “Scaling distributed
machine learning with in-network aggregation,” CoRR, 2019.

[41] M. Assran, N. Loizou, N. Ballas, and M. G. Rabbat, “Stochastic
gradient push for distributed deep learning,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019.

[42] J. Wang, H. Liang, and G. Joshi, “Overlap local-sgd: An algorithmic
approach to hide communication delays in distributed SGD,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2020.

[43] S. Sra, A. W. Yu, M. Li, and A. J. Smola, “Adadelay: Delay adaptive
distributed stochastic convex optimization,” CoRR, 2015.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, MANUSCRIPT 18

[44] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

[45] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Proceedings of Annual Confer-
ence on Neural Information Processing Systems, NeurIPS, 2015.

[46] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in Proceedings of International Conference on
Management of Data, SIGMOD, 2017.

[47] F. Zhou and G. Cong, “On the convergence properties of a k-step aver-
aging stochastic gradient descent algorithm for nonconvex optimization,”
in Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI, 2018.

[48] S. Shen, L. Xu, J. Liu, X. Liang, and Y. Cheng, “Faster distributed
deep net training: Computation and communication decoupled stochastic
gradient descent,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI, 2019.

[49] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[50] PyTorch, “Source code for MnistCNN,” https://github.com/pytorch/
examples/tree/server/mnist.

[51] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2016.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Annual Conference on
Neural Information Processing Systems, NeurIPS, 2012.

[54] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2017.

[55] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” Comput. Linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[56] H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and word
classifiers: A loss framework for language modeling,” in 5th International
Conference on Learning Representations, ICLR, 2017.

[57] Aliyun, https://cn.aliyun.com/.
[58] H. Wang, “Source code for LOSP,” https://github.com/AragornThorongil/

JSAC2020/, 2020.

Haozhao Wang is currently a Ph.D. candidate in
the School of Computer Science and Technology
at Huazhong University of Science and Technology
and a research assistant in the Department of Com-
puting at The Hong Kong Polytechnic University.
His research interests include Distributed Machine
Learning and Federated Learning.

Zhihao Qu received his B.S. and Ph.D. degree in
computer science from Nanjing University, Nanjing,
China, in 2009, and 2018, respectively. He is currently
an assistant researcher in the School of Computer and
Information at Hohai University and in the Depart-
ment of Computing at The Hong Kong Polytechnic
University. His research interests are mainly in the
areas of wireless networks, edge computing, and
distributed machine learning. He is a member of
IEEE.

Song Guo is a Full Professor in the Department of
Computing at The Hong Kong Polytechnic University.
He also holds a Changjiang Chair Professorship
awarded by the Ministry of Education of China. His
research interests are mainly in the areas of big data,
edge AI, mobile computing, and distributed systems.
With many impactful papers published in top venues
in these areas, he has been recognized as a Highly
Cited Researcher (Web of Science) and received over
12 Best Paper Awards from IEEE/ACM conferences,
journals and technical committees. Prof. Guo is the

Editor-in-Chief of IEEE Open Journal of the Computer Society. He has served
on IEEE Communications Society Board of Governors, IEEE Computer Society
Fellow Evaluation Committee, and editorial board of a number of prestigious
international journals like IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Cloud Computing, IEEE Internet of Things
Journal, etc. He has also served as chair of organizing and technical committees
of many international conferences. Prof. Guo is an IEEE Fellow and an ACM
Distinguished Member.

Ningqi Wang received the BE degree in computer
science from Tongji University, Shanghai, China,
in 2020. He is currently enrolled at INI, Carnegie
Mellon University, USA, for his master’s degree.
His research interests include distributed system and
networking.

Ruixuan Li is a professor in the School of Computer
Science and Technology at Huazhong University
of Science and Technology. He received the B.S.,
M.S. and Ph.D. in computer science from Huazhong
University of Science and Technology, China in
1997, 2000 and 2004 respectively. He was a visiting
researcher in Department of Electrical and Computer
Engineering at University of Toronto from 2009 to
2010. His research interests include cloud and edge
computing, big data management, and distributed
system security. He is a member of IEEE and ACM.

Weihua Zhuang (M’93–SM’01–F’08) has been with
the Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada, since 1993,
where she is a Professor and a Tier I Canada Research
Chair in Wireless Communication Networks. Her
current research focuses on resource allocation and
QoS provisioning in wireless networks, and on smart
grid. She is a co-recipient of several best paper awards
from IEEE conferences. Dr. Zhuang was the Editor-in-
Chief of IEEE Transactions on Vehicular Technology
(2007-2013), and the Technical Program Chair/Co-

Chair of the IEEE VTC Fall 2017/2016. She is a Fellow of the IEEE, a
Fellow of the Canadian Academy of Engineering, a Fellow of the Engineering
Institute of Canada, and an elected member in the Board of Governors and
VP Publications of the IEEE Vehicular Technology Society.

https://github.com/pytorch/examples/tree/server/mnist
https://github.com/pytorch/examples/tree/server/mnist
https://cn.aliyun.com/
https://github.com/AragornThorongil/JSAC2020/
https://github.com/AragornThorongil/JSAC2020/

	Introduction
	Related Work
	Problem Definition and Preliminaries
	The Framework of Overlap Synchronous Parallel with Local Compensation
	Overlap Synchronization with Local Compensation
	Algorithm Description

	Theoretical Analysis
	Assumptions for LOSP
	Convergence Rate of LOSP

	Performance Evaluation
	Experimental Setup
	Experimental Results
	Impact of Synchronization Mechanism
	Impact of Synchronization Mechanism on Computing Resource Usage
	Impact of Local Compensation
	Impact of the Number of Local Updates K
	Impact of Local Step Size
	Impact of Straggler
	Impact of Low-bandwidth Network

	Conclusion
	Appendix A: Proof of General Lemmas
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Corollary 2
	References
	Biographies
	Haozhao Wang
	Zhihao Qu
	Song Guo
	Ningqi Wang
	Ruixuan Li
	Weihua Zhuang

