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The accuracy analysis of Global Positioning System
(GPS) carrier phase observable measured by a digital GPS
receiver is presented. A digital phase-locked loop (DPLL) is
modeled to extract the carrier phase of the received signal
after a pseudorandom noise (PRN) code synchronization
system despreads the received PRN coded signal. Based on
phase noise characteristics of the input signal, the following
performance of the first, second, and third-order DPLLs is
analyzed mathematically: 1) loop stability and iransient process;
2) steady-state probability density function (pdf), mean and
variance of phase tracking error; 3) carrier phase acquisition
performance; and 4) mean time to the first cycle-slipping.
The theoretical analysis is verified by Monte Carlo computer
simulations. The analysis of the dependency of the phase
observable error on system dynamics, input neise and receiver
design parameters provides with an important reference in
designing the carrier phase synchronization system for high

accuracy GPS positioning.
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I. INTRODUCTION

The NAVSTAR (Navigation Satellite Timing
and Ranging) Global Positioning System (GPS) is a
satellite-based, worldwide, all-weather navigation and
timing system. It is “the most significant development
for safe and efficient navigation and surveillance of
air and spacecraft since the introduction of radio
navigation 50 years ago” [1]. The GPS is designed
to provide precise position, velocity, and timing
information on a global common grid system to an
unlimited number of suitably equipped users. A GPS
receiver is the key for a user to access the system.
The major functions of the receiver are to provide
a navigation processor with accurate pseudorange
time delay, carrier beat phase, and Doppler frequency
shift observables. Fundamentals and general function
modeling of a digital GPS receiver have been
presented in [2]. The pseudorange time delay
observable can be obtained by a pseudorandom noise
(PRN) code synchronizer [3]. The Doppler frequency
shift observable can first be coarsely estimated in
the PRN code synchronization, and then accurately
tracked during the carrier phase synchronization. The
carrier phase observable is a vital factor in achieving
high GPS positioning accuracy [4]. However, the
mathematical analysis of the carrier phase observable
has not been studied in open literature. We present
the modeling and performance analysis of the phase
observable measured by a digital phase-locked loop
(DPLL). It is expected that the analysis will help to
improve the design of the DPLL, therefore, to reduce
the phase observable error and to improve the GPS
positioning accuracy.

DPLLs have been used to extract carrier phase
[5]. Weinberg and Liu [6] first analyzed the first and
second-order DPLLs with nonlinear phase detector
in the presence of noise by numerically solving the
Chapman-Kolmogorov (C-K) equation which describes
the phase error process. Chie [7] extended the work
to nth-order DPLLs. Analysis on DPLLs with a linear
phase detector (digital tanlock loop) was presented
by Lee and Un [8]. In the previous work, the C-K
equation was applied to study the performance of
DPLLs which tried to sample at the zero crossings
of the input signal (i.e., nonuniform sampling). The
phase of the incoming signal is measured against
the reconstructed signal. Nyquist rate (NR)-DPLL is
another type of DPLL, in which the input signal is
sampled at the Nyquist rate (i.e., uniform sampling).
The phase of the input signal is measured against
a fix reference. The design of NR-DPLLs with a
nonlinear phase discriminator was studied in [9, 10],
however, the C-K equation was not used to study
the probabilistic behaviors of the phase tracking
error. Different from the previous work, this paper
has the following two unique aspects in DPLL
performance analysis. 1) DPLLs with a linear phase
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discriminator and uniform sampling are studied. The
linear phase discriminator provides wider lock range,
less steady-state phase error, and improved stability;
and uniform sampling of the received GPS signal

can achieve simplicity and flexibility in the receiver
design. The C-K equation is applied to investigate the
probabilistic performance of phase tracking errors

and other characteristics of the loops, such as phase
acquisition probability, and mean time to the first
cycle slip. 2) The DPLL is inter-connected with the
PRN code synchronizer since GPS system uses spread
spectrum signaling waveforms and the effect of PRN
code synchronization on carrier phase tracking is
considered. Because of very low signal-to-noise ratio
(SNR) of the input signal, the DPLL can only operate
on the code-free signal after the DDLL succeeds

in tracking and despreading the input PRN code.

The special input signal and noise characteristics
result in the necessity of further loop performance
-analysis. Based on phase noise characteristics of

the input signal, the following performance of the
first, second, and third-order DPLLs is analyzed
mathematically: 1) loop stability and transient process;
2) steady-state probability density function (pdf), mean
and variance of phase tracking error; 3) carrier phase
acquisition performance; and 4) mean time to the
first cycle-slipping. The effects of DPLL structures and
parameters on the GPS carrier phase observable error
are analyzed mathematically. The analysis gives an
accurate description of error sources of the observable
and how the sources degrade the observable accuracy.
This work is organized as follows. Section II

presents the DPLL modeling for a GPS receiver, the
analysis of the loop input signal, and carrier phase
noise characteristics. In the absence of the input noise,
the DPLL stable region and phase tracking transient
process are analyzed in Section III. The steady-state
pdf, mean and variance of phase error in the presence
of input noise are derived in Section IV. Section V
studies the performance of phase acquisition and mean
time to the first cycle-slipping. The first, second, and
third-order DPLLs are considered in the analysis.
Section VI demonstrates computer simulation results
which verify the theoretical analysis, followed by the
conclusions in Section VIL

Il SYSTEM MODELING

Fig. 1 is a simplified functional block diagram of
the digital baseband processor (DBP) of the GPS
receiver, which performs the maximum-likelihood
estimation of the GPS observables. The pseudorange
time delay is measured by accurately tracking the PRN
code phase of the input GPS signal using a digital
energy detector and a digital early-late (E-L) delay
lock loop (DDLL). The receiver gencrates an identical
PRN code signal to synchronize the PRN code of
the input signal from a GPS satellite. The digital
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Fig. 1. Functional block diagram of DBP.

energy detector sweeps the uncertainty ranges of the
input code phase and Doppler frequency shift with
discrete steps, and senses the coarse synchronization
(acquisition) of the PRN code phase and Doppler
shift between the input and local signals. The DDLL
accurately tracks the variations of the incoming code
phase and keeps the code phase alignment error within
an allowable limit after the code phase acquisition.
From the accurate tracking of the input PRN code
phase, the pseudorange time delay can be obtained
and the input signal can be despreaded. A “prompt”
(P) channel is set for carrier phase tracking. The
despread inphase (I') and quadrature (Q) components
of the received signal at baseband pass to the DPLL
for carrier phase synchronization. From the carrier
phase tracking, both integer and fractional cycles

of carrier beat phase of the signal derived from
differencing (beating) the incoming Doppler-shifted
carrier with a local signal of no Doppler shift, and

the Doppler shift of the received carrier signal can

be estimated accurately. Coherent correlation for
tracking code phase and carrier phase is then initiated.
Code synchronization and despreading are performed
prior to carrier phase tracking since sufficient SNR

is necessary for the DPLL to operate successfully (to
be discussed). After the PRN code is removed, the
signal SNR is increased by the despreading gain. The
major components of a DPLL are a carrier phase
discriminator, a loop filter and a numerically controlled
oscillator (NCO). The phase and frequency of the
NCO are numerically controllable. Therefore, under
the condition that the phase tracking residual of the
DPLL is negligible, the output of the local NCO can
be used to remove the carrier component of the input
signal and, at the same time, the phase and Doppler
frequency shift of the incoming signal can be obtained
from those of the local NCO (after being modified
with the carrier phase residual) [2].

A. Loop Difference Equations

As shown in Fig. 1, the phase discriminator
works on the outputs of the in-phase and quadrature
correlators at a rate (f;/N) after the DDLL despreads
the PRN code of the input signal, where f; is the
sampling rate and N is the number of data samples in
each DDLL correlation interval. A functional diagram
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Fig. 2. Block diagram of DPLL.

of the DPLL is shown in Fig. 2, where only the prompt
(P) PRN code is shown to remove the input PRN
code for carrier synchronization. The NCO generates
the local in-phase and quadrature reference signals at
the sampling rate f; for noncoherently correlating (in
the carrier phase acquisition process) or coherently
correlating (in the carrier phase fine tracking process)
the input signal. The output of the loop filter modifies
the phase and frequency of the NCO every NT;. The
ith sample GPS received signal at baseband is

r(i) = AP[(1 + {)iT, — ETp | cosf(wp +wq)i + ¢o] + 1)

@
where P[] is a £1-valued PRN code with rate R,
delayed by 7 = £T, with respect to the GPS system
time (7, is the code chip width), w, (= 27 f3T;) and
wq (=27 f,T;) are the digital radian frequencies
corresponding to the baseband carrier frequency fj
and Doppler shift f; (T is the sampling period), ¢o
is the initial carrier phase at i = 0, and (i) is the
equivalent input Gaussian noise at baseband. Because
of the two-fold impact of the Doppler shift on the
received signal (i.e., carrier frequency offset and code
rate offset), the code rate R is equal to (1 + )Ry,
where ¢ = f;/fr (fi, is the RF frequency), and Rp
is the code rate without the Doppler shift. The A/D
converter in front of the DBP can be designed to
provide high immunity to non-Gaussian interference
and jamming, therefore, it is reasonable to assume that
the input noise at baseband is Gaussian band-limited
white noise, with the bandwidth determined by the
lowpass filter preceding the A/D converter. With
the local PRN code signal P[(1 + ¢)iT, — £T,] and
the local inphase and quadrature signals in the kth
correlation interval cos[(wp + @ax )i + ¢x_1] and
sin[(wp +Dax)i + Pr_1] (i =0,1,...,N — 1) respectively
(where % represents the estimate of x), following the
procedure similar to that of deriving [3, (8)—(9)], the
signal /(k) and Q(k) from the in-phase and quadrature
channel correlators (Fig. 2) at the end of the kth

correlation interval are
I(k) = gR(T — F)sinc[(Awg i N /2]

x cos[8(k) — G(k)] + Ni (k) ®
Qk) = gR(T — F)sinc[(Awa)e N /2]

x sin[8(k) — G(k)] + Np (k)

where (Awg)x = wa — @y is the Doppler shift
estimation error in the kth interval, (k) and §(k) are
the phases of the incoming signal and the local NCO
signal at the center of the interval, N;(k) and Np (k)
are the lumped noise components of I(k) and Q(k),
respectively. The linear phase discriminator performs
an arc-tangent operation, which has an output

e(k) = arctan[Q(k)/I(k)] = g (k)] + ne,

e(kye[-m +7m] ®)

where g[-] is the characteristic function of the

phase discriminator, y(k) = (k) — 6(k) is the phase
tracking error due to a noise-free incoming signal and
no(k) € (7 — g[Y (k)] +7 — g[(k)]) is the phase
disturbance due to the input noise. Since the values
of I(k) and Q(k) are known, there is no ambiguity in
distinguishing the phase error in the domain [—7, +7].
In the absence of the noise, e(k) is equal, in the
modulo [-7, +7] sense, to the phase error between
the incoming signal and the local NCO signal at the
center of the kth correlation interval. As a result, the
characteristic curve of the phase discriminator is linear
with period 2,

gly(k)] = Y(k)mod[—m, +7]. @

The linear characteristics due to using arctan][ ]
operation is unique and has many advantages over
the nonlinear characteristics of the arcsin[-] operation
[8, 11-12]. A mathematically equivalent model of

the DPLL is shown in Fig. 3. With the NCO transfer
function D(z) = z~!/(1—z71) and loop filter transfer
function F(z) (where z~! is the unit delay operator
z=Yx(k)} = x(k — 1)), the corresponding loop
equations are

w(k) = 0(k) — (k)

e(k) = g[¥(k)] + no(k)

y(k) = F(2)e(k) ®
k-1

0(k) = D@)y(k) = >_y(D)
i=0

where y(k) is the output of the loop filter at the end of
the kth correlation interval.
B. Characteristics of Phase Noise ny(k)

It has been shown [13] that N;(k) ad Np(k) in (2)
are Gaussian if N > 1, with expectations E[N;(k)] =
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Fig. 3. Mathematical modeling of DPLL.

0, E[Ng (k)] = 0, and variances var[N; (k)] =

var[Np (k)] =~ 62 /2N, respectively (where o2 is

the variance of the input noise component x(i));
furthermore, Ny(k) and Ny (k) are uncorrelated. As a
result, I(k) and Q(k) are also mutually independent
Gaussian random variables with the means and
variances given as follows

E[I(k)] = Dy cosp(k),

E[Q(k)] = Dy sinyp(k)
var[I(k)] = var[Q(k)] = var[N (k)] ©

= var[Np (k)] ~ 02/2N 22

where Dy, = (A/2) - R(T — F) - sinc[(Aw, )i N /2] and
R(:) is the auto-correlation function of the PRN
code. Accordingly, the joint pdf of the amplitude

C(k) —A——{I 2(k) + Q%(k)}% and the phase discriminator
output e(k) is
p(C(k),e(k))

= k)

1
=53 exp{ - EU—Z[CZ(k) + D —2C(k)Dy,

x cos(e(k)—wk))]} %

for C(k) > 0, and p(C(k),e(k)) =0 for C(k) < 0.
Integrating (7) with respect to C(k) from 0 to co, we
obtain the pdf of phase error

1 V2a
P(ek)) = 5-exp(=0) + 5 cos(e(k) - (k)
x exp[—asin’(e(k) — ¥ (k))]
VZa cos(e (k) (k) u?
X / exp (— —2—) du (8)
where
a2D2/20> = 1 .a; N . R¥(1 — 7) - sinc®[(Awq e N /2]
®)
represents the actual SNR value of the input signal

of the phase discriminator, with ¢; & 42/202 being

the SNR value of the received signal at baseband.
By (6), the actual SNR value is increased by the

correlation interval N and is decreased by R%(T — %)
due to the DDLL tracking error (7 — #) and by
sinc?[(Awa )N /2] due to the Doppler frequency

shift tracking error (Awg);. The increase of N is
limited if (Awg); # 0. As a result, in order to achieve
sufficiently high SNR for the DPLL to accurately track
the input carrier phase and frequency, the DDLL
should keep accurate synchronization with the input
PRN code, ie., |1 — 7| — 0, so that R(T — ) — 1.
This confirms that the carrier phase tracking can be
performed only after the input PRN code phase has
been accurately synchronized. It is also noticed that,
although e(k) ranges only from —7 to + because of
the Mod[—, +] operation in the arctan[-] function,
P(e(k)) itself is periodic in e(k) with period 27 and
has peaks occurring at e(k) = g[y (k)] + 2. for all
integer values of I. With e(k) € (—m,+7), p(e(k))
reaches its maximum value at e(k) = g[y(k)] which is
the phase tracking error in the absence of the incoming
noise. Decomposing e(k) into gy (k)] (noise-free
tracking error) and ng(k) (due to the incoming noise)
as shown in (3) and letting |9 (k)| < 7 (i.e., ignoring
the integer cycles of phase error), we have

ne(k) = e(k) -y (k)
ne(k) € (- = g[Y ()}, +m - g [P (k)

From (8) and using the fact that ng(k) are mutually
independent for different & because of the “Average
& Dump” operation in the correlators, the pdf of the
random phase noise component ng(k) is

(10)

p(ne(k)) = %exp(_a) + __\/@%@(k_)

x exp[—asin® ng (k)]

x {§ +erf[V2acosng(k)]}  (11)
where erf(-) is the standard Gaussian distribution
function. Based on (11), if « is large enough so that
the first component of the pdf is much smaller than
the second component, the pdf p(ne(k)) has its peak
at ng(k) = 0, resulting from the fact that p(e(k))

has its peak value at e(k) = ¥ (k) (corresponding to
noise-free tracking error); otherwise, if « is very small,
the noise component 1y (k) dominates the output

of the phase discriminator, and the noise is almost
uniformly distributed from ~7 to +7 irrespective

of the value of (%), in which case accurate phase
tracking becomes impossible.

From the above discussion, the output of the phase
discriminator consists of both error g[y (k)] due to
incoming signal phase dynamics and error ng(k) due to
incoming additive noise. In the following, we analyze
the error component resulting from system dynamics in
Section III and from noise in Section IV.
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lll. LOOP STABILITY AND TRANSIENT PROCESS

In the absence of input noise, the random phase
noise ng(k) vanishes so that e(k) = g[p(k)] =
[G(k) 6(k)Jmod[—m, +7]. The phase tracking error
is called the restricted phase error process and is
represented by ¥ (k). In carrier phase fine tracking,
|6(k) — d(k)| < , the loop (5) can be represented on
z-plane as

0(z)

Y@ =TT FoDE)

which gives the dependency of phase tracking error
1(z) on input phase 6#(z) and loop filter F(z). The
loop locking condition and phase tracking error (due to
input phase dynamics) of first, second, and third-order
loops can be analyzed based on (12).

The First-Order Loop: The transfer function of the
loop filter is F(z) = Gy, therefore, the loop equation is

Yk)—(1-G)ypk —1) =6(k) -6k - 1). (13)

With a linear input carrier phase (k) = a1k + aq,

k >0, (k) converges to a steady-state tracking
error Y5 = a1/ G, independently of the initial phase
error if [1— Gj| < 1 and if |(k)| < 7. The strictest
restriction corresponding to the latter condition is:
when 9k — 1) = £, [¢(k)| must be less than 7. As
a result, the loop locking condition is

(12)

lay/m| < G1 <2~
|a1/7r! <1

a1 /| (14)

If the dynamics parameter |a;| (representing
frequency) of the input phase increases, the possible
range of Gy decreases for a stable loop. The transient
responses are plotted in Fig. 4 for different G; values
with initial phase tracking error ¥(0) = 1 (rad) and
input phase 8(k) = 0.1k +0.5. It is shown that the
steady-state phase tracking error decreases as the

loop gain Gy increases, and the fast convergence is
achieved with Gy = 1.0. The lock-in frequency Aw; of
the DPLL is defined as the maximum initial frequency
offset to achieve synchronization without cycle-slipping
under the worst initial phase conditions [14]. From
(14), it is required that |a;| < 7 for the loop to lock

to the input phase without cycle-slipping. Taking the
correlation interval 7 = NT; into account, the lock-in
frequency is [Awr| = |a1|/T < m/(NT). Reducing the
correlation interval (NT5) increases the loop lock-in
frequency |Awy|.

The Second-Order Loop: The transfer function of
the loop filter is F(z) = G1 + G/(1 — z71), where Gy
and G are loop gain parameters. Substituting F(z)
into (12), we obtain the loop equation

Yk) - 29k = 1) + 9k -2)
= [8(k) — 26(k ~ 1) + 6(k — 2)]

— (G + Gk — 1) + Gk —2). (15)

= 01208
610
| |-Gt

phase tracking error - e(k) (rad)

step number - k

Fig. 4. First-order DPLL transient processes: (k) = 0.1k+
0.5 (rad), €(0) = 1.0 (rad).

With a quadratic phase input (k) = axk? + a1k + ag,
k > 0, for the loop to be stable requires

r81+Gy/Gy > 1

(16)
0<Gi< 737
In addition, it is necessary that |p(k)| < 7 even
when |Y(k — 1)| = [ (k — 2)| = 7. In view of these
properties, the following two conditions must be
satisfied. First, when (kK —2) =7 and 9 (k — 1) = £,
(k) must be inside region (-7, +), which results in

2(12 202

2—

<Gi(r+1)<4-

(a7

Secondly, when 9 (k — 2) = —7 and $(k — 1) = =,
(k) must be inside region (—m, +7), which results in

2(12 az

<Gi(r—-1)<2- (18)

In summary, the overall loop locking condition can be
derived as

+ 22 2‘”‘ <Gi(r+1)<4- 2‘“2‘
2'“2‘ <Gyr-1)<2- =2 2'“"" 19
r>1
las] < =

2

Two examples of the stable region on the loop gain
parameter G —r plane are plotied in Fig. 5, with the
system dynamic parameter 1) |ap| = 0 and 2) |az| =
m/4. It is seen that the stable region is a function of
input phase dynamics; with |a3| increased from 0 to
m/4, the stable region is greatly reduced. The transient
responses are plotted in Fig. 6 for different r values
with initial tracking error ¥(-1) = 0.0, ¥(0) = 1 (rad),
G1 = 1.0, given the input phase (k) = 0.125k2 +

0.5k + 1.0. It is observed that the increase of loop
parameter r reduces the steady-state phase tracking
error; however, for each Gy value in the stable region,
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the selection of r is limited corresponding to each

|az| value (as shown in Fig. 5). The fast convergence
is achieved with r = 2.0. The sccond-order loop can
acquire the input phase of any frequency ai, therefore,
it has very wide lock-in frequency range which is only
limited by f;/2N (i.e., half of the rate which the NCO
updates its phase and frequency).

The Third-Order Loop: The transfer function of
the loop filter is F(z) = G1 +G2/(1—2"1) + G3/
(1—2z~1?, where Gy, G2, and Gs are loop gain
parameters. With a cubic phase input 8(k) = ask>+

ak? + ark + ag, k > 0, and letting p 214 Gy/Gi+

ZHUANG: PERFORMANCE ANALYSIS OF GPS CARRIER PHASE OBSERVABLE

G3/Gj, the loop stability conditions are

P—R>0

P+R-2>0
(P-1)G1—P+R>0
8—(P+R+2)G;>0.

(20)

It is also required that |y(k)| < m when |$(k —3)| =
[ (k —2)| = {¥(k — 1)| = 7. Similar to the analysis
(17)~(18) of a second-order loop, the overall loop
stable conditions independent of the initial phase
tracking error can be further derived as

6|a;)| 6|as|
52 < (- por <22

6
4+—Bﬂ<(p+ncl<6_9Bﬂ
m m
(21)
¢, Sl 6las|
T

<(p+r+2)G1<8——ﬂ_——

6|a3| 6Ja3|
. <QR+r-pGi<2- T

The last condition in (21) requires that a3 < 7/6;
otherwise loop stability is impossible if | (k — 3)| =
[¥(k —2)] = |¢(k — 1)| = 7. Hence, the loop can track
a cubic input phase with dynamic |az| up to /6.
According to (21), the stable region on the 7 — p plane
of loop parameters is shown in Fig. 7 with G; = 1.0
and 1) |as| = 0.0, and 2) |as| = 7/12. The increase of
input phase dynamics shrinks the stable region on the
r — p plane given a G value. Larger r and p values
are required in order for the loop to track an input
phase 8(k) with higher dynamics. Fig. 8 shows the loop
transient responses with initial phase error 3(0) = 1.0
(rad), G; = 1.0, r = 2.0 and several values of p, given
that 6(k) = (0.125/6)k> + 0.25k* + 0.5k + 1.0 (rad). It
is noticed that the increase of the loop gain parameter
p reduces the steady-state phase error, and the fast
convergence is achieved with Gy = 1.0, r = 2.0 and

p = 3.0. However, the largest p value is limited as
seen from Fig. 7. As in the case of the second-order
loop, the third-order loop can acquire the input phase
of any frequency a;, hence it has a very wide lock-in
frequency range which is limited only by f;/2N.

Based on the above noise-free performance
analysis, it is observed that higher order loops have
better dynamic tracking performance (which means
smaller tracking error and faster convergence) and
Jower order loops are more stable. Hence higher order
loops achieve better dynamic tracking capability by
sacrificing loop stability. Both dynamic capability and
stability of the loops must be taken into account in the
DPLL design. In lower system dynamic environments,
Jower order of loops are better due to their stability.
However in higher system dynamic environments,
higher order loops with larger gain parameters
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0(k) = (0.125/6.0)k> + 0.25k + 0.5k + 1.0 (rad).

are preferred because of their improved dynamic
performance.

IV.. THE PDF AND VARIANCE OF PHASE TRACKING
ERROR

Due to the stochastic nature of the input phase
noise, the phase tracking error is also a stochastic
process. In this section, we apply the C-K equation
to study the pdf, mean and variance of the phase
error. The pdf of phase tracking error gives a complete
probabilistic picture of how the input noise affects

phase tracking accuracy. On the other hand, we may -
wish to use a single number, such as the variance
of phase error, to describe the DPLL capability of
suppressing noise effects. In the following, we derive
the mathematical expressions of the pdf and variance
of phase error due to the input noise. Accurate
description of how the phase error depends on the
loop parameters and input noise statistics is presented.
The First-Order Logp: For the lincar input phase,
the loop equation of the unrestricted phase error
process {1(k)} is, from (5),

Plk) =Pk —1) - Gig[v(k — 1] - Ging(k — 1) + a1.
(22
Since the phase noise components ng(k) are mutually
independent for different &, the phase tracking

error process {1 (k)} is a first-order, discrete time,
continuously variable Markov process [15]. Given an

initial phase error ¥y & 1 (0), the pdf of (k) satisfies " -
the following C-K equation ‘

@ w0 = [ aa | wpsldodn @)

where gr_1(% | u) is the conditional pdf of ¥ (k) given
P(k — 1) = u. Because ng(k) € (—m — g[p(k)],+m —

g[w(k)]), from (3), ¥ of gr..1(¥ | u) ranges from
(u + a1~ Gy7) to (u + a; + Gi7). And from (11),
Gr-1(¥ | u) can be derived as

1 Vo Y-
+'G—IWCOS< G, )

N k)
x exp [—ozsm2 ( e P)]
Pe—1(Y | ) = |
x{% + erf [\/(Za)cos (Lz;li‘i)] }

it ye@+a—Gim,u+a+Gir)

1 exp(=a)
G1 2T

0, if ¢§é(u+a1—G17r,u+a1+G11r)
4

where ¥, = u + a; — Gy - g[u]. In the above equation,
1 is defined only in the interval (u + a1 — Gim,u + a1
+G ) although 9 and u are defined in the interval
(—00, +00) in (23). Usually the pdf of the phase
tracking error in the domain (—m, +7) is of interest.
We introduce periodicity into the conditional pdf of
the phase tracking error (which is independent of k) as

ADE i Qi1 (¥ +2n7 | 0) (25)

n=—00

where ¥ (k) 2 g[1h(k)] € (—, +) is the restricted
phase error. The loop equation for the restricted phase
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error process {¥(k)} is
Y(k) = (1-G)¥(k—1)- Ging(k — 1)+ a1. (26)
The pdf of ¥(k) can be obtained by solving the

corresponding C-K equation numerically in the
interval (—m,+7) as

Xy
P90 = [ 1@ DpiaCzIW)az (@)
-7
where ¥ 2 ¥(0). As k — oo, the steady-state pdf of
the phase error ¥ exists and is unique, independent
of initial phase error ¥,. Therefore, limg_, o, px (¥ | ¥o)
S p(¥) could be obtained by solving the following

equation
+r

p¥)= | r(¥|2)p(z)dz

-7

(28)

numerically. From (26), the steady-state mean of the
phase error ¥(k) as k — oo in the presence of noise is

E[\I’SS] = (1 - Gl)E[‘I’ss] ~GiE l:kl-ljgo no(k)J + ay.
(29)

In the case of relatively high SNR of the input signal,
E[¥] can be approximated by a;/G with E[ne(k)]
being very small compared with other terms in the
equation. It is necessary here that |a1/Gq| < 7 since
E[¥] must lie in the interval (—m, +7). By squaring
(26), taking the expectation of both sides and letting
k — o0, it follows

Gy

var[¥s] = E[¥5] — {E[¥s]} = 5— &l

var[ng].
(30)

We notice that var[¥,] decreases as G decreases.
Also, with the increase of input signal SNR value,
var[ne] decreases, so does var{¥s].

The Second-Order Loop: As in the case of the
first-order loop, performance analysis is focused on the
behavior of the restricted phase error process {¥(k)}
in the steady-state. With the quadratic input phase, the
loop equation in the presence of noise is

V(k)-29(k~-1)+¥(k-2) v
=2a; — Gir[¥(k — 1) + ne(k ~ 1)]
+ Gi[¥(k —2) + ng(k —2)]. (1)

This equation does not assure that the phase error
process {¥(k)} is a Markov process, therefore we may
rewrite it in a set of first-order stochastic difference
equations as

x1(k) = x2(k — 1)
x2(k) = (G1— Dxy(k - 1)
+ (2 —rGr)xz2(k — 1) + Ging(k — 1)

(32)
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and the corresponding output difference equation is

(k) = x1 (k) — rxa(k) + %‘—?. (33)
The vector process {x1(k),x2(k)} can be regarded as

a first-order, two-dimensional Markov process, which
satisfies the two-dimensional C-K equation. It can be
derived [14] that the steady-state joint pdf of x; and

x2 is the only solution of the following steady-state

equation
T

p(x1,x2) = / i Fxa| z1,x1)p(a1,x1)dzr - (34)
where

F(x2 | z1,x1) = i Gi(x2 +2nm | z1,x1)  (35)
and T

Gie(x2 | 21,%1)
(Lexp(-e) 1 +a (xz—xzp)

G 2r T Givr P\

X exp [—a sin® (x—zé%) ]

x{% +erf [\/Q_&cos (x—zz;x—z“’)]}

1

if x2€(—z142x1-Gim,—21 +2x1 + Gi7)

0, if x2¢(—2z1+2x1— Gim,— 21 + 2x1 + G17)
(36)
with x2, = (G1—1)z1 + (2 — rG1)x1. From probability

theory [15] and from (33)-(34), the steady-state pdf of
the phase tracking error ¥(k) is

p(\Il)=/ [/ i<x2|zl,\11+rx2—ga—2)
—x | J-m G2

-p (21,‘1' +rxy— EGEZ> dZ1J dxp
z (37

which can be calculated numerically.

The steady-state mean of the phase tracking error
is obtained by taking the expectations of both sides of
(32)-(33) and letting k — oo,

E[xlss] = E[xZSS]
E[xass] = (G1 — DE[x15] + (2~ rG1)E[x2]
+ Gy lim E[ng(k)] (38)

E[%] = E[x1ss] — rE[x2s] + ggg.
2
With E[ng(k)] being very small compared with other
terms, E[¥] = 2a2/G,. Squaring both sides of
(32)—(33) and taking the expectation of each term, in
steady-state, it follows that the variance of the phase
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tracking error due to input noise is
varZss] = E[¥5] — {E[T]}*

_2r—=1+Gi(r+1)
T 4-Gi(r+))

where r > 1 and 0 < Gy < 4/(r + 1) since var[¥g] > 0.
We observe that |E[¥]| decreases as the system
dynamic parameter |a,| decreases and/or loop gain
G-, increases. Also, var[¥] decreases as G and/or

r decreases, and as the SNR value of input signal
increases which reduces var[ng].

The Third-Order Loop: With the cubic input
phase, from (5), the third-order loop difference
equation for the restricted phase tracking error process
{¥(k)} is

U (k)—-3¥(k—1)+3¥(k~2)—¥(k-3)
= 6a3 — pG1[¥(k — 1) + ne(k — 1)]

+ (1 +1r)G1[¥(k —2) — no(k —2)]

var[ng| 39)

~ G1[¥(k —3) + ne(k — 3)]. (40)

The loop equation can be represented in the form of
a set of first-order, three-dimensional state equations
as

x1(k) = xa(k — 1)

xo(k) = xa(k — 1)

x3(k) = (1= Gp)xi(k — 1) (41)
+[(1+ )Gy = 3]xa(k — 1)

+(3—pG)xa(k — 1) + Ging(k — 1)

var[¥g) = E[\Ps,zs] - {E[‘IJSS]}Z

r2+4p? —8rp)+ 2p + p? + 2rp +rp? — 2r — 3r% — r¥G4]GL E[1?
prrp 8

where

Feoa(xs | 21, %1,x2) = D @r1(xs +20m | 24,31, x2)
I=—o00
(44)
and

Gr—1(x3 | 21, %1, %2)

1 — —_
1 exp(-a) + _L_v’_&cos(xg x3p)
Gl 21 Gl ﬁ G]

X exp {—arsin2 (M)]
Gy

| etz

if x3 € (—2z1—32 +323— Gym,21 — 32y 4 323 + G17)

0, if x3¢ (=21 =323 + 323 — G1m,21 - 323 + 323 + Gy7).
(45)

Based on (42) and the joint pdf of the state variables
X1, X2, and x3 obtained from (43), the steady-state pdf
of the phase tracking error ¥ can be calculated from
the following equation

P(‘I’)=/ / lp <yl,y2,w) dyidys.
Py P
(46)

Taking the expectations of both sides of (40), with
Efne(k)] = O, the steady-state mean of the phase
error is obtained as E[¥] ~ 6a3/Gs. From (40), the
variance of the phase error is

- 16(r — p) + (—12r + 12p —10r? +2p2 +8rp)G1 + A +r)(2r + 12— 2p — p)G}’

and the corresponding output equation is

U (k) = —x1(k) + (1 + r)xz(k) — pxs(k) +6a3/Gs.
(42)
The steady-state joint pdf p(x1,x2,x3) exists and
is unique, independent of the initial state of vector

{x1(0),x2(0),x3(0)}. It can be obtained by numerically
solving the equation [13]

T

F(x3 | z1,%1,X2) - p(21,%1,%2) dzy

(43)

P(X1,X2,X3) =/

-7
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“47)

Summarizing the above analysis, it is observed
that the steady-state pdf of the loops depends on
the loop gain parameter(s). With smaller values of
the gain parameters, the steady-state phase tracking
error due to input noise decreases, which can also be
seen from the variances of the phase error (i.e., (30),
(39), and (47)). However, lower loop gain parameters
degrade the dynamic tracking capability of the loops,
as discussed in Section III. Generally, the phase error
comes from both input phase dynamics and noise,
and the selection of optimal loop gain parameter(s)
depends on which, the receiver dynamics or the input
noise, is the dominant source of the phase error.
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V. ACQUISITION PROBABILITY AND MEAN TIME
TO THE FIRST CYCLE-SLIPPING

In the following, we consider statistics related to
instantaneous phase error, including carrier phase
acquisition at the kth step and mean time to the first
cycle-slipping.

Carrier Phase Acquisition Performance: The input
carrier phase acquisition is the process of reducing the
arbitrary initial phase error until it lies in the domain
(—¢, +¢), where ¢ is a small positive number, e.g.,
€ € (0.057,0.10m). The acquisition is reached at the kth
step if, for every i > k, |¥(i)| < e. Here, it is assumed
that the order of the loop is high enough to cope with
the system dynamics so that the steady-state phase
error due to system dynamics is ¥ ~ 0. A valuable
statistic is the number of expected steps required
for the phase error to reach the interval (—¢, +¢)
for the first time given that it was initially at ¥(0),
which can be modeled as a first passage time problem
[16]. To solve this problem, absorbing boundaries
¥ (k) = +¢ are set in the pdf of the phase error ¥ (k)
and the acquisition process is stopped (absorbed) once
the phase error ¥ (k) has fallen within the interval
(—¢, +¢). For a first-order loop, the pdf of the phase
error in the acquisition process is

Pi(¥ | ¥o)
0, <UL +e
.
= / qk-1(¥ | 2)- pr—1(z | Wo)dz,
-7
-r <UL —g, <UL
48)

where gi_1(- | ) is defined in (24). When k& =0,
Po(¥ | ¥o) = 6(¥o), ‘

W (49)
po(®) = [ po(¥ | To) - p(¥o)d¥ = p(¥o)
when k # 0,

-7
0, —e< U< +¢

m

Pr(¥) = / Q—-1(¥ | 2) - pre-1(2)dz,
~T

- <P ~e, +e<<U L7

(50)

In the acquisition process, the pdf of the phase error
is related to the transient response of the initial

phase coarse synchronization, not the steady-state pdf
discussed earlier. As a result, the transient pdf in the
acquisition stage is not independent of initial phase
error. Without a priori information, the initial phase
error ¥(0) is assumed 1o be uniformly distributed over
(—m,+m). The absorption probability at the kth step is

Prea) = [ [pra®) = pelav. (5D
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If the initial phase error ¥ (0) is in the region
[—¢,+¢], then no phase acquisition is needed and
the DPLL goes immediately to phase fine tracking,
The acquisition process is thus necessary only when
[¥(0)| > ¢. Therefore, with an initial phase uniformly
distributed over [, +7], the probability of initial
acquisition is paq(0) = ¢/7. From (49)—(51), the
acquisition probability p,cq(k) can be calculated
numerically.

Mean Time to First Cycle-Slipping: In the fine
synchronization of the phase tracking, due to input
phase dynamics and/or input noise, synchronization
failures may occur, which means that the unrestricted
phase tracking error 1 (k) changes from the initial
lock point %(0) to outside of the interval [¢(0) — 2,
¥(0) + 2], that is, |A|/27 > 1. This phenomenon
is called cycle-slipping. Cycle-slipping characterizes
the dynamic phase error in fine tracking process. It
can be described by the mean number of steps after
which the first cycle-slipping occurs. Cycle-slipping due
to input noise is studied here. We consider 1(0) =0,
which is the case when both the carrier phase and the
frequency of the local NCO is locked to those of the
input signal. For a first-order loop, the phase error
process {(k)} is described by (22) with a¢; = 0. To
calculate the probability of the first cycle-slipping, the
absorbing boundaries of the phase error pdf are set at
Y =427, ie., pr(¥) = 0if || > 27. Once [Y] =27
is reached, the system is assumed to stop functioning.
The corresponding C-K equation is

27
, q( | ) pr_1(u | o = 0)du

(52)

(@ Po=0)=

where gi.1(% | u) is defined in (24) with a; = 0. The
probability of the first cycle slip occurring at the kth
step, pes(k), can be obtained by differencing the
probabilities of cycle slip occurring at step numbers
larger than k — 1 and larger than k, respectively,
ie.,

27
[Pe-1(¥ | Yo = 0) — p(¥ | Yo = 0)]d%.
) (53)

Pes(k) =
-2

The mean number of steps to the first cycle-slipping is
thus

o) r oo
REY kput) =1+ [ 3 ety 4o =0 d
k=1 2% =1
(54)

where the constant 1 comes from the fact that po(1) | 20)
= §(0). Define

P@|Yo=0)= p(¥|%o=0)

k=1

(55)
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then from (52), it follows

P |%o=0)= pes1(¥ | o)

k=0

2%

=q%|0)+ . q(¥ |uw)

-P(u | o = 0)du. (56)
By computing P(Y | ¢ = 0) numerically, the mean
steps K to the first cycle-slipping can be obtained
numerically from the following equation

2%

K=1+] P@lvn=0)ay (57)

and the mean time of the first cycle-slipping is KNTs.
For a second-order loop, the mean step number of the
first cycle-slipping is (see Appendix)

. by 27 +rx;
K=1 +/ dJCQ/ P(xl,xz)dxl (58)
-7 —2m+rxy

where P(x1,x;) can be obtained by

P(xl,x2)=/ F(xz2|z1,%1)- P(z1,x1)dz1  (59)

and 7(x7 | z1,x1) is defined in (35) with x2p, = 2x1 —
z1+ G- glz1 — rxq].

VI. COMPUTER SIMULATION RESULTS

The discrete nature of the digital carrier phase
tracking loop makes it possible to simulate the phase
synchronization process directly on a computer.
Computer simulation results are presented in this
section which verify the theoretical DPLL performance
analysis of phase tracking errors due to input noise,
as discussed in Sections IV-V. In an ideal case with
all perturbing forces removed, a GPS satellite orbit
is modeled as a Keplerian orbit whose properties
are constant with time and can be described by the
satellite broadcast ephemeris message parameters
and the ephemeris reference time. In the following
Montc Carlo simulations, ephemeris data is taken
from [17], with satellite “6” in the 347th week of the
GPS time and with f; =2.1518 MHz and N = 86072.
For a static receiver, the variations of the input signal
parameters result only from the satellite dynamics.
With the example of the satellite orbit data used, the
variations of input signal parameters are very smooth
compared with the bandwidth of the DDLL and
DPLL, therefore, the errors in the GPS observables
result primarily from the input noise. The DPLL
operations (including carrier phase acquisition and
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Fig. 9. Carrier phase error of second-order DPLLs:
C/Ny =40 dB-Hz, T = 20 ms. (a) Pdf: Gy = 1.0, r = 2.0.
(b) Variance: r = 2.0.

1.0x107 |
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0.0x10°
0.

carrier phase tracking) are simulated after a first-order
noncoherent E-L. DDLL accurately despreads the PRN
code of the input signal (with code phase tracking
error less than 0.05 code chip width). After the local
NCO tracks the input carrier phasc with the phase
residual from the DPLL being less than 0.1, the
carrier-aiding technique [2] is used for the code phase
tracking to suppress the input noise effect on code
phase tracking.

Carrier Phase Tracking Error: Figs. 9 and 10 show
the pdf and variance of phase error of second and
third-order DPLLs, respectively, based on simulation
data of 30 s coherent tracking of the input code
phase and carrier phase of the GPS C/A code signal.
For the pdf, the simulation results agree well with
the numerical results obtained from (37) and (46).

As to the variances, the phase tracking error from

the simulation is slightly larger than those from

the numerical analysis. The reason is that, in the
theoretical analysis of Section IV, no frequency
estimation error is taken into account; however, in the
simulation, the frequency estimation error (including
random estimation noise due to input carrier phase
noise) is unavoidable although it is very small (up to a
few Hertz) for the static receiver.

Probability of Carrier Phase Acquisition: Fig. 11
shows the phase acquisition probability p,cq(k) at
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the kth step in the carrier phase acquisition process
for 1) first-order and 2) second-order DPLLs as

a function of input carrier to noise density ratio
C/Np after noncoherent E-L DDLL despreads the
input PRN code. Theoretical pacq(k) is obtained by
numerically solving (51) for the first-order loop. Each
of the simulation data curve is obtained based on
2000 independent carrier phase acquisition processes.
The carrier phase is assumed to be acquired if

the residual phase error from the DPLL is in the
interval (—15°,415°). The slight difference between
the numerical and simulation results, as shown in
Fig. 11(a), is due to a small Doppler frequency shift
estimation error existing in the simulation, which is
not considered in the theoretical analysis. Generally,
after code phase being accurately synchronized, carrier
phase acquisition can be obtained over a few steps
for a static GPS receiver, provided that the Doppler
shift is coarsely acquired. In the receivers, because of
system dynamics, second and third-order DPLLs are
most often used for carrier tracking. Compared with
a second-order loop, a third-order loop can extend
the (dynamic) tracking range at the expense of loop
stability. Hence, a second-order loop is usually used for
phase acquisition. Once the carrier phase is acquired,
the loop filter is then switched to a third-order loop
mode if necessary. Third-order loop acquisition

12
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Fig. 11. Phase acquisition probability. (a) First-order DPLL:
G =10, T =10 ms. (b) Second-order DPLL: T = 10 ms,
G1=1.0, r =20.

is therefore not analyzed and simulated here. It is
observed that, with a higher C/N; value p,q(k)
increases; also, a first-order loop has better acquisition
performance than a second-order loop. The increase of
frequency tracking error, input noise, and input phase
dynamics will degrade the acquisition performance.
Probability of First Cycle-Slipping: Simulations on
the first cycle slipping in carrier phase tracking are
performed for first, second and third-order DPLLs.
Fig. 12 shows the analytical result (obtained from
(57)) and simulation results of the mean step number
of the first cycle slip, K, for a first-order DPLL. It is
observed that the analytical result agrees very well with
the simulation result, particularly when C/Np of the
input signal is equal to or less than 30 dB-Hz. With the
C/ N, value greater than 30 dB-Hz, K increases rapidly
with the increase of C/Np, that is, K is very sensitive
to C /Ny, which leads to the difference between the
analytic and simulation results of K at a C/Ny value
of 35 dB-Hz. Probabilities of the first cycle slip at
the kth step of second and third-order DPLLs are
shown in Fig. 13, with each curve based on 3000
independent phase tracking processes. It is observed
that the probability decreases dramatically when C/No
increases up to a certain value, e.g. 40 dB-Hz. Because
higher order loops are more unstable, the probability
of cycle-slipping increases as the loop order increases.
It should be mentioned that the correlation interval T
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of 1 ms is used in the simulations. Generally T equals
10 ms, 20 ms, or 50 ms, etc. (depending on system
dynamics), which means that the SNR value of the
DPLL input signal (after the DDLL) are increased
correspondingly by 10 dB, 13 dB, or 17 dB, etc. It is
expected from Fig. 13 that with T = 10 ms, 20 ms,

50 ms, etc., the probability of a carrier phase cycle
slip will be very small with Iow system dynamics and
with C /Ny being greater than 35 dB-Hz. Due to the

expected large K value for the situation, it is very time

consuming to simulate the cycle slip processes on a
computer; therefore, the value of T = 1 ms is selected
for the simulations.

VIl.  CONCLUSIONS

The performance of the GPS carrier phase
observable has been investigated. The observable
is obtained by a DPLL. Theoretical analysis has
demonstrated that higher order loops with larger gain
parameters have better phase tracking performance
in the case of highly dynamic input carrier phase, at
the expense of the loop stability and the increase of
the phase error due to input noise; lower order loops
have better phase acquisition performance and less
chance of having a cycle slip. Computer simulation
results have verified the theoretical analysis. This
work provides an important reference in the DPLL
design for high accuracy of the GPS phase observable.
Although the analysis has been focused on the GPS
phase observable, the approach can also be applied to
study other carrier phase synchronization process of a
spread spectrum system.

APPENDIX. THE MEAN STEP NUMBER OF THE
FIRST CYCLE-SLIPPING OF SECOND-ORDER DPLL

For a second-order loop, with a linear input phase,
the loop equation is

V() =29k - +9(k -2)
=—=Gir{g[yp(k — D] + ne(k — 1)}

+G{glpk -] +ne(k~2)  (60)

with the initial phase error 1(—1) = %(0) =0 in
fine phase synchronization. In order to apply the
C-K equation, we describe the loop by 1st-order
two-dimensional state equation as

xi(k) = x(k - 1)
Xo(k) =2x2(k =) —x1(k—1)

+ Giglxi(k — 1) — rxa(k — 1) + Ging(k — 1)
(61)
and the corresponding output equation is
Y(k) = x1(k) — rxa(k). (62)
The C-K equation for the two-dimensional Markov
process {x1(k),x2(k)} is
X

pk(xl,lexlo,xzo)=/ F(x2 | z1,%1)
ki

- Pr—1(z1, %1 | x10,X20) d 21
(63)
where 7(x2 | z1,X1) is defined in (35) with x;, =
2x1—z1 + Gy - g[z1 — rx1]. From the initial condition
of ¥ (k) and (60)—(61), the initial joint pdf of (x10,%2)
can be obtained as

P(xX10,X20) = 6(¥10 — rX20) - P(X20). (64)
Defining
o0 [ee]
Pr(x1,%2) =/ / DPr(xX1,X2 | X10,X20)
-—0Q -0
- p(X10, X20) dx10 d X 20 (65)
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