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QoS-aware Capacity Planning of
Networked PEV Charging Infrastructure
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Plug-in electric vehicle (PEV) charging infrastructure is necessary to accommodate the rapid increase in PEV penetration rate.

Capacity planning of PEV charging infrastructure (EVCI) must ensure not only a satisfactory charging service for PEV users but
also a reliable operation of the power grid. In this paper, we propose a quality-of-service (QoS) aware capacity planning of EVCI.
In particular, the proposed framework accounts for the link between the charging QoS and the power distribution network (PDN)
capability. Towards this end, we firstly optimize charging facility sizes to achieve a targeted QoS level. Then, we minimize the
integration cost for the PDN by attaining the most cost-effective allocation of the energy storage systems (ESSs) and/or upgrading
the PDN substation and feeders. Additionally, we capture the correlation between the occupation levels of neighboring charging
facilities and the blocked PEV user behaviors. We model the EVCI as a queuing network with finite capacity, and utilize the
non-stationary queuing models to study the temporal variability of the PEV charging demand. A network of charging facilities is
used to demonstrate the effectiveness of the proposed framework.

Index Terms—Capacity planning, charging infrastructure, distribution network, energy storage system, non-stationary queues,
queueing networks.

NOMENCLATURE

Indices and Sets
T Set of time segments over a day, indexed by

t.
N Set of all facilities in EVCI, indexed by n.
B Set of all PDN buses, indexed by j.
L Set of all PDN branches, indexed by ij.
S Set of all load scenarios, indexed by s.

Parameters
P PEV penetration rate.
ν Average charging frequency of a PEV.
Θτ Targeted throughput [%].
W τ Targeted expected waiting time [minutes].
CP Cost of ESS power rating [$/kW].
CE Cost of ESS energy rating [$/kWh].
CSb Cost of substation expanding [$/kVA] .
CF Cost of feeder upgrading [$/kVA.km].
OCl Annual ESS operational cost at year l

[$/kWh/year].
L ESS life time [years].
I Annual interest rate [%].
`ij Feeder length [km].
Ces,t Day-ahead hourly energy cost at load scenario

s time t [$/kWh].
ηES ESS charging/discharging efficiency [%].
4t Time segment duration.
vmin, vmax Minimum and maximum bus voltage [p.u].

Variables
λ∗t,n Modified offered load arrival rate to facility n

at time t.
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cn, Bn Number of chargers/waiting positions allo-
cated in facility n.

pit,n Probability of having i PEVs in facility n at
time t.

PRn , ERn Rated power/energy capacity of ESS at facil-
ity n [kW], [kWh].

GRj Rated expansion power of substation con-
nected to bus j [kVA].

SRij Rated upgrade power of the feeder connecting
buses i and j [kVA].

PES
s,t,n ESS charging/discharging power at facility n

at load scenario s at time t [kW].
Es,t,n Stored energy in ESS at facility n at load

scenario s at time t [kWh].
PEV
t,n Power demand of charging facility n at time

t [kW].
PGs,t,j , Q

G
s,t,j Active/reactive power provided by substation

at bus j at load scenario s at time t [MW],
[MVAr].

PDs,t,j , Q
D
s,t,j Active/reactive load demand at bus j at load

scenario s at time t [MW], [MVAr].
Ps,t,ij ,Qs,t,ijActive/reactive power flow at branch connect-

ing buses i and j at load scenario s at time t
[MW], [MVAr].

Ls,t,ij Squared current magnitude of branch connect-
ing buses i and j at load scenario s at time t
[p.u].

Vs,t,j Squared voltage magnitude of bus j at load
scenario s at time t [p.u].

pn Variable controls ESS power rating at facility
n.

en Variable controls ESS energy capacity at fa-
cility n.

gj Variable controls the expansion of substation
connected to bus j.

fij Variable controls the capacity upgrade of
feeder connecting buses i and j.
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I. INTRODUCTION

THE number of plug-in electric vehicles (PEVs) is rapidly
increasing worldwide, because of the increased social

awareness of their environmental and economic benefits [1]. A
PEV charging infrastructure (EVCI), which consist of various
types of public charging facilities, is necessary to accommo-
date the increasing PEV charging demand [2]. Capacity plan-
ning of EVCI is a problem of determining appropriate sizes
for charging facilities that quantify the number of chargers and
waiting positions. Capacity planning of EVCI must deal with
both the PEV user requirements and the service providers util-
ity. From the PEV user perspective, charging facilities should
be appropriately sized to prevent service congestion and fulfill
the stochastic and time-varying charging demand. From the
service provider perspective, capacity planning of EVCI must
minimize the investment cost associated with charging facility
construction and integration with the PDN by optimizing the
numbers of chargers and waiting positions allocated at each
charging facility, and ensuring that the load demand of EVCI
complies with power grid constraints. Charging quality-of-
service (QoS) is a measure of PEV user satisfaction. Although
increasing the facility sizes enhances the charging QoS, it
presents a substantial load to the power grid that may exceed
the capability of power distribution network (PDN). To accom-
modate the expected power demand of charging facilities, PDN
components (i.e., feeders and substations) may need upgrade,
which in turn requires huge investments. Utilizing an energy
storage system (ESS) in charging facilities can be a solution
to alleviate the required PDN upgrades if the ESS cost is less
than the reinforcements cost [3]. Consequently, there are inter-
relationships among the QoS level of EVCI, the required PDN
upgrades, and the ESS allocation in charging facilities. These
inter-relationships offer guidance to size the charging facilities
in a cost-effective manner, in addition to provide insights into
how to make a trade-off between the PEV user satisfaction
and the required investment in PDN.

Existing capacity planning models of EVCI follow two
main approaches [1]. One approach uses stochastic models
to size the charging facilities to achieve a targeted QoS level
[2][4]. A charging facility is modeled as an isolated stationary
queue, while PEVs are modeled as customers in the queue.
These PEVs require a charging service from a limited number
of identical chargers. Charging facilities are sized based on
the expected PEV charging demand at each facility location
and evaluated based on statistical metrics, such as blocking
probability and waiting time [4]. The M/M/c queuing model
can be used to model fast charging stations [4], [5], [6], [7].
This model assumes that all the arrived PEVs will wait for the
charging service, which means unlimited waiting positions in
the charging facility. In order to consider the limited wait-
ing positions in a charging station, the M/M/c/K queuing
model is employed [8][9]. If all the waiting positions in the
facility are occupied, the newly arrived PEV will leave the
facility without charging. Based on the expected PEV charging
demand, the numbers of chargers and waiting positions in
the charging facility can be determined to meet the target
QoS set by the planner [4][8][9]. Although this approach can

ensure a satisfactory charging service with the stochastic PEV
demand, it endangers the reliability of the power system. This
is because the targeted QoS level is set in isolation from the
actual capability of PDN.

The other approach sizes the charging facilities to minimize
the negative impacts on the power grid [10], [11], [12].
The sizing objective is to ensure that the charging facility
load demand complies with the power system operational
constraints by collaboratively planning the EVCI and PDN.
For instance, a multi-objective planning model with a coupled
distribution and transportation networks is proposed in [13].
The planning model optimizes the locations and sizes of
charging facilities to minimize the total energy loss and bus
voltage deviation on the distribution network, in addition to
maximizing the captured traffic flow of charging facilities. An-
other model is to optimize the locations and sizes of charging
facilities to balance between the PEV charging requirement
and power network stability, considering a linearized power
network model [14]. This approach ensures that the PDN
can safely accommodate the peak load demand of charging
facilities; however, PEV user satisfaction is not a focus. This
is because the planning models usually re-locate and/or re-size
the charging facilities to fulfill power grid requirements.

There are a few published papers that deal with both the
charging QoS and the PDN capability in the planning of EVCI.
For instance, a siting and sizing model of fast charging stations
on coupled transportation and power networks is proposed
in [15]. This model utilizes users’ waiting time at charging
facilities as a service level index. Then, an optimization
model is used to size charging stations and determine the
required upgrade in the PDN. In [6], a capacitated flow-
refueling location model is proposed to optimize the planning
of highway fast-charging stations. The proposed model adopts
the M/G/S queuing model to size charging facilities based
on the upper limit of users’ waiting time. This model also
introduces capacity constraints in the siting model. Thereby,
if PEV charging demand cannot be satisfied in a facility, it is
distributed to other facilities in the network.

Even though that capacity planning of EVCI has been
extensively studied in the literature, three issues have not yet
been well studied: 1) Existing capacity planning models do not
capture the inter-relationships among the charging QoS, the
capability of existing PDN, and the possibility of allocating
ESS in charging facilities. Accounting this relationship in
the sizing of charging facility ensures the balance between
the requirements of the power system and charging service;
2) Modeling charging facilities as isolated queues with in-
finite capacity ignores the correlation among the occupation
levels of nearby facilities. In practice, if the capacity of a
charging facility is less than the demand, the blocked PEV
users can spread across the surrounding charging facilities,
which can greatly impact the level of performance in those
facilities. Therefore, charging facilities must be modeled as
a network with a finite capacity to account for the inter-
relationships among nearby facilities, in addition to accounting
for the behavior of blocked PEV users by the overloaded
facilities; 3) Designing charging facilities using the stationary
queueing models do not account the temporal variability of
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PEV charging demand. Two approaches are used to apply
these stationary queuing models to a system with time-varying
demand (PEV arrival rate). The first approach uses stationary
models with the long-run-average arrival rate to simplify the
sizing problem [4]. However, the system can suffer from high
congestion (overload) and low QoS at the peak demands [16].
The second approach divides the time horizon into intervals
and then uses the peak demand (peak arrival rate) as inputs to
the stationary queuing models [2][11]. This approach aims to
fulfill the targeted performance at the peak demand. However,
it fails to capture the random time lag between the time of
peak demand and the time of peak load on the queuing system.
Moreover, this approach does not account for PEVs that are
already in the system (either charging or waiting) from the
preceding time periods [16].

Different from the existing studies, in this paper, we present
a QoS-aware capacity planning framework of networked
EVCI. The major contributions of this study are as follows:

1) The new capacity planning framework takes account
of the inter-relationships among the targeted QoS, ESS
allocation, and PDN upgrade. As illustrated in Fig. 1,
the proposed framework consists of two models that
are solved sequentially: Firstly, the capacity planning
of EVCI model is used to optimize the numbers of
chargers and waiting positions allocated at each charging
facility to realize the targeted QoS level for the entire
networked EVCI. After that, PEV charging demand at
each facility is estimated for inclusion in the PDN load
demand. Finally, the integration with the PDN model
is used to minimize the integration cost of EVCI with
PDN by attaining the most cost-effective ESS allocation
and/or PDN reinforcement;

2) The proposed EVCI model captures the correlation
among the occupation levels of neighboring charging
facilities, in addition to blocked PEV user behaviors.
Towards this end, we model the EVCI as an open
queuing network with finite capacity and blocking;

3) The proposed approach accounts for the temporal vari-
ability of the charging demand by modeling the charging
facilities as non-stationary queue systems. Then, a mod-
ified arrival rate function is derived to approximate the
steady state performance of the systems.

The rest of this paper is organized as follows. Section II
presents the system model, along with an illustration of mod-
eling the EVCI as a queuing network and accounting for the
temporal variability of charging demand. Section III describes
the proposed capacity planning model for EVCI. Section IV
discusses the integration model with PDN. Numerical results
are given in Section V to evaluate the proposed planning
framework. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a typical urban area where the road transportation
network (RTN) is coupled with the PDN according to the
geographical information. The RTN consists of a finite set of
nodes (e.g., road intersections and highway exits) and a finite
set of directed links (e.g., streets and traffic lanes) connecting

any two nodes in the network. The PDN consist of a set
of buses B and a set of branches (feeders) L. The PDN is
connected to the rest of the power grid through substation(s).
Let H (H ⊂ B) be the set of buses connected to substations.
It is assumed that load forecasting studies are conducted at the
PDN to estimate the power demand profile [11]. Furthermore,
voltage limits, branch capacity limits, substation capacity
limits, and the conductance of all branches are known. Time
is partitioned to equal segments, where T denotes the set of
all time segments over a 24-hour time horizon and is indexed
by t. Each time segment duration is chosen to be one hour as
an example. This is because energy trading and scheduling are
conducted on a one-hour interval basis, according to Ontario’s
independent electricity system operator (IESO) [17]. Also,
PEV traffic flows are estimated on the same time intervals.

The EVCI consists of three types of public charging fa-
cilities, which are parking lots (PLs) with AC chargers, DC
fast charging stations (FCSs), and on-road wireless chargers
(OWCs) [2][18]. The OWC is a relatively new charging
technology that enables PEV to dynamically charging while
driving on dedicated charging lanes through wireless power
transfer technology [19]. The set of all charging facilities in
the EVCI is denoted as N , which is composed of three subsets:
subset W for OWCs, subset F for FCSs, and subset P for
PLs, where |W ∪ F ∪ P | = |N |. The locations of charging
facilities are given. FCSs and PLs are allocated on a finite
set of RTN nodes, and OWCs are allocated on a finite set
of RTN links. AC level 3 chargers and DC fast chargers are
deployed in the PLs and FCSs, respectively [18]. Moreover,
some PEVs are capable of charging in OWCs via the dedicated
wireless charging lanes [2]. Hence, a PEV may step into this
charging lane to get a charging service, then return back to the
normal traffic after charging. The load demand of charging
facility equals the aggregated charging demand of all PEVs
simultaneously being charged.

A. Networked EVCI model

The capacity of any charging facility is always finite.
Thereby, a PEV user may be momentarily stopped (rejected)
when a charging facility reaches its maximum capacity. This
phenomenon is called blocking. Subsequently, the blocked
PEV user may move towards one of the neighboring charging
facilities, requesting a charging service. Due to the blocking,
there is a correlation among the PEV occupancy of neigh-
boring charging facilities, and understanding this correlation
helps to explain the propagation of congestion. Consequently,
a realistic model of EVCI should address the finite capacity of
charging stations, in addition to the behavior of blocked PEV
users by the overloaded facilities.

EVCI can be modeled as an open queuing network with
finite capacity and blocking. Different from isolated queue
models, a finite capacity queuing network can capture the
interactions among multiple charging facilities, in addition to
the blocked PEV user behaviors. In such a network, EVCI can
be represented as a set of interconnected charging facilities
(service centers). These service centers are interconnected
through a road system. PEV users enter this open network



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

Locations and 
types of charging 

facilities

Traffic flow data

Typical PDN load 
demand

Networked EVCI 
Model

Analysis of temporal 
variability in 

charging demand

QoS targets

Chargers and 
Waiting Positions 
Allocation Model

Charging facilities 
demand Estimation

Integration with 
PDN Model

Charging facility 
sizes

ESS allocation

PDN reinforcement

Data

System Model
Outcome

Fig. 1. EVCI capacity planning Framework.

from outside (exogenous arrivals), receive charging services,
and eventually leave the network. In order to construct the
queuing network, each charging facility is modeled by two
types of nodes:
• Charging facility node (CN): A charging facility is rep-

resented as a physical node. If the charging facility is
an FCS or a PL, CN n (n ∈ N ) can be modelled as a
finite queuing system M/M/cn/Kn, which has a Poisson
arrival process M [20], exponentially distributed service
time M with service rate µn [7], cn chargers (servers),
and maximum number of PEVs, Kn, in the facility
including the charging and waiting PEVs. If the charging
facility is an OWC, CN node n can be represented as
a loss system M/M/cn/cn, since there is no waiting
position on the charging lanes.

• Decision-making node (DN): A DN is a logical (virtual)
node associated with each CN. DN n is used to model
the behavior of PEV users, who are requesting a charging
service from the associated CN. The decision of each
PEV user can be either to get a charging service from
CN n or move towards another charging facility (DN ń,
where ń 6= n). Thus, the arrivals to a DN can be from an
external population and/or routed from other DNs. DN n
is modeled as a single server queue M/M/1 with a very
high service rate µdn � µn since a driver usually makes
a decision instantaneously without delay.

In the networked EVCI, PEV user behaviors in response to
the occupancy level of charging facilities are described through
a blocking mechanism, called repetitive service with random
destination (RS-RD) [21]. When a PEV user chooses charging
facility n for a service, the user will first arrive at DN n,
then chooses a destination randomly either by attempting to
access CN n or routing towards another DN ń in the network.
If CN n at that time is full, the user will be blocked and
return to DN n, starting to randomly choose a new destination
independent of the previous choice(s). 1 After a PEV is served

1A deadlock problem may occur in the queuing network if all CNs in the
network are full. In this case, a PEV user may be blocked multiple times until
space becomes available at a CN. To avoid a network deadlock, it is sufficient
that the routing matrix is irreducible and the number of PEVs requesting
charging services is less than the total capacity of CNs [22]. In this model,
we assumed that the EVCI is a deadlock-free network.

by a charging facility, it leaves the network with probability
1, under the assumption that the charging demand of a PEV is
unsplittable and a PEV will be charged with sufficient energy
at the visited facility. An illustrative example of a queuing
network composing of two neighboring charging facilities is
shown in Fig. 2.
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Fig. 2. Queuing network model of two neighboring facilities.

The routing probability between two charging facilities
is denoted by αnń, where n 6= ń and n, ń ∈ N , while
αnn denotes the routing probability between DN n and the
associated CN n. The routing probability αnn is larger than
any αnń, for ń 6= n, where αnń are assigned to the neigh-
boring DNs depending on the proximity to CN n. That is,
a blocked PEV will be routed to a nearby charging facility
with a higher probability than those to farther facilities. This
assumption conforms with vehicular traffic modeling [23]. The
routing probability can be estimated based on the multinomial
logit (MNL) model, which is used to predict driver choice
probabilities as a function of a certain utility, such as traveling
distance, traveling time, and charging cost [24]. Due to the
range anxiety of the blocked PEV users, αnń is assumed
depending on the distance dnń between charging facilities and
can be estimated by

1− αnn =
∑
∀i∈N
i 6=n

αni, (1a)

αnń =
(1− αnn)e−dnń∑
∀i∈N
i6=n

e−dni
, ∀n ∈ N. (1b)
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Analysis of queuing networks with finite capacity and
blocking is complex, because the steady-state queue length dis-
tributions do not have a product form, except for some special
cases [21]. However, the steady-state queue length distribution
of the network under investigation can be approximated using
the disaggregation-aggregation (DA) iteration method [25].
Based on DA iterations, the underlying Markov chain model
of a queuing network is approximated through aggregation.
This Markov chain typically has a very large state space and
a sparse transition probability matrix. DA iterations exploit the
marginal aggregate probabilities instead of the complete state
space, in order to approximate a product form solution of the
state probabilities. Calculating the state probabilities facilitates
the evaluation of the performance indicators of the EVCI.

B. Analysis of temporal variability in charging demand

To incorporate the time-varying demand, a charging facility
model can be refined using non-stationary queuing models
Mt/M/c/K and Mt/M/c/c (depending on the facility type)
with a non-homogeneous Poisson arrival process (NHPP) Mt.
The NHPP is a counting process, NNN = {N (t) : t ≥ 0},
having independent and Poisson-distributed increments. The
NHPP has a deterministic arrival rate function at time t, λ(t),
[26].

The analysis of non-stationary queuing models can be
approximated by infinite server model Mt/M/∞, which has
the same arrival process and service time distribution but with
an infinite number of servers [27]. This approximation allows
all users to access the service upon arrival without waiting,
which simplifies the mathematical model. The PEV number,
Nt at time t, in the finite queuing model is approximated by
the number of the busy servers, N∞t , in the infinite server
model. It is proved, in [27] and the references therein, that
N∞t has a Poisson distribution with mean, m∞(t), which is
expressed in terms of the arrival-rate function λ(t) as

m∞(t) ≡ E[N∞t ] = E

[∫ t

t−S
λ(r)dr

]
= E[λ(t− Se)] · E[S] (2)

with S being the service time distribution. In (2), random vari-
able Se is the stationary-excess distribution, which indicates
the distribution of the remaining service time [28]. The time-
varying mean in (2) is the expected number of busy servers in
the system with an infinite number of servers, referred to as
offered load. This formula is complicated as there is a random
time lag, Se, in the arrival rate function. The offered load of
infinite server model provides insight on both the time-lag and
magnitude shift between arrivals and loads of the system.

The offered load approximation in (2) is used to derive
a new arrival rate function, which is used in evaluating the
performance of the non-stationary queuing systems over time.
The new arrival rate function is called modified offered load
(MOL) [16][28]. Based on the MOL, the instantaneous perfor-
mance measures for the Mt/M/c/K and Mt/M/c/c systems
can be approximated with the steady state performance of
the associated stationary models M/M/c/K and M/M/c/c,
respectively. The MOL arrival rate function, λ∗(t), is obtained

from the exponentially weighted moving average of the arrival
rate for the non-stationary models by [28]

λ∗(t) =

∫ t

−∞
µe−µ(t−u)λ(u)du (3)

where µ is the service rate of the queuing model. The MOL ar-
rival rate accounts for the transient behavior and dependencies
among the consecutive intervals. Thereby, the time-dependent
system performance can be analyzed accurately [16].

The non-parametric estimation method is used to estimate
the MOL arrival rate function over time [26]. The MOL arrival
rate function to charging facility n, λ∗t,n, is assumed piecewise
constant on any subinterval [t − 1, t), with t ∈ T , depending
on the number of PEVs intercepted at a charging facility, PEV
penetration rate, and the facility type. Let In1 , I

n
2 , · · · , In|T |

be the numbers of PEVs intercepted at charging facility n,
which are collected over |T | sub-intervals. These numbers
are estimated based on the dynamic traffic assignment model,
which forecasts the time-varying traffic patterns of RTN [2].
Thus, MOL arrival rate function for charging facility n at time
slot t can be calculated by

λ∗t,n =



Pν(1− σ)(1− β)
t∫

u=0

µF e−µ
F (t−u)Inudu, if n ∈ F

Pν(1− σ)β
t∫

u=0

µW e−µ
W (t−u)Inudu, if n ∈W

Pνσ
t∫

u=0

µP e−µ
P (t−u)Inudu, if n ∈ P

(4)
where P represents the PEV penetration rate; ν is the average
charging frequency of a PEV; σ denotes the percentage of
PEV drivers who prefer charging in PLs at trip destinations;
β denotes the percentage of PEVs that have wireless charging
capability; and µF , µW , µP denote service rates of FCS,
OWC, and PL, respectively.

III. CAPACITY PLANNING OF EVCI

This planning stage focuses on developing a capacity plan-
ning model for EVCI as a resource provisioning problem
without considering limits of the PDN. It resolves the issue
of sizing the charging facilities efficiently by optimizing the
number of chargers and waiting positions required at charging
facilities to achieve the targeted QoS level for EVCI.

The allocation of chargers c = {cn,∀n ∈ N} and waiting
positions B = {Bn,∀n ∈ N}, where Bn = Kn − cn,
in charging facilities affects the overall performance of the
charging service and hence customer satisfaction. Obviously,
the numbers of chargers and waiting positions allocated to a
charging facility lead to differences in the facility’s operational
capacity, and hence the blocking probability and the expected
waiting time. Furthermore, with the propagation of congestion
(due to the behaviors of the blocked PEV users), the perfor-
mance of entire networked EVCI may vary in proportional
to the sizes of individual facilities. Thereby, the capacity of
each charging facility must be optimized to realize the targeted
QoS level for the entire networked EVCI, given that both
chargers and waiting positions represent a significant amount
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of investment during the deployment phase. Two performance
metrics are used to measure the QoS at the networked EVCI:

1) The normalized network throughput at time t, Θt,
measures the percentage of PEV users who can get
charging services successfully without being blocked.
The more blocked PEVs in a charging facility, the less
user satisfaction since the blocked users have to go to
another facility to get charging services. The throughput
can be obtained by

Θt(c,B) =

∑
∀n∈N λ

∗
t,n(1− pKt,n)∑
n∈N λ

∗
t,n

(5)

where pKt,n
denotes the blocking probability of charging

facility n at time t. Note that Θt is a function of the
time-varying MOL arrival rate to charging facilities, in
addition to the numbers of servers and waiting positions
of all facilities in the networked EVCI. The lower bound
of the normalized network throughput, Θ, is defined as

Θ(c,B) = min
∀t∈T

Θt ∗ 100%. (6)

2) The expected waiting time, E[Wt,n], measures the speed
of getting a charging service. As PEV users wait longer,
their satisfaction level decreases. The expected waiting
time at charging facility n at time t can be obtained by

E[Wt,n(c,B)] =

∑Kn

i=cn+1(i− cn)pit,n
λ∗t,n(1− pKt,n)

(7)

where pit,n denotes the probability of having i PEVs
in charging facility n at time t. On the entire network
level, the weighted average at time t over all charging
facilities, WNet

t , and the upper bound, WNet, of the
expected waiting time metric are given by

WNet
t (c,B) =

1

|N |
∑
∀n∈N

ω
′

t,nE[Wt,n] (8a)

WNet(c,B) = max
t∈T

WNet
t (8b)

where ω
′

t,n =
λ∗t,n∑

n∈N λ∗t,n
is a weighting factor that ac-

counts for the differences in charging facility demands.
It gives more weight to facilities with a higher demand,
and vice versa. Again, WNet

t is a function of the MOL
arrival rates and the networked EVCI characteristics.

It assumed that PEV users do not have prior knowledge
about the current QoS at the chosen facility. Upon arriving
at a charging facility, a PEV user spontaneously attempts to
access the charging facility to get a charging service. If the
charging facility at that time is full, the user will be blocked
and choose a new destination. The investigation of how the
QoS and charging price affect the PEV user behaviors is left
for our future research.

In the sizing problem, both numbers of chargers and waiting
positions are minimized to fulfill the given QoS targets for the
networked EVCI, which is formulated as

min
c,B

{ ∑
∀n∈N

ωncn +
∑
∀n∈N

(1− ωn)Bn

}
(9a)

s.t. Θ(c,B) ≥ Θτ (9b)

WNet(c,B) ≤ W τ (9c)
cn ∈ {1, 2, . . .}, ∀n ∈ N (9d)

Bn =

{
{0, 1, 2, . . .}, if n ∈ {F ∪ P}
0, if n ∈ {W}. (9e)

The objective function (9a) minimizes the total number
of the allocated chargers and waiting positions in the given
queuing network. For each charging facility, a relative cost
variable, ωn, is assigned to the chargers and (1 − ωn) to the
waiting positions. The value of ωn reflects the relative cost of
a charger versus that of a waiting position for each specific
charging facility, n ∈ N . Constraint (9b) ensures that Θ(c,B)
is not less than predefined targeted network throughput Θτ .
Constraint (9c) ensures that WNet(c,B) is not larger than
predefined maximum expected waiting time threshold W τ .
Constraint (9d) forces the number of chargers to be a positive
integer. Constraint (9e) forces the number of waiting positions
to be a positive integer if the charging facility is an FCS or
PL, and to be 0 if the charging facility is an OWC.

The optimization problem simultaneously determines c and
B to satisfy the targeted QoS level. However, establishing
appropriate QoS thresholds is not a trivial task. These thresh-
olds are determined based on the actual capability of PDN as
described in the next section. The sizing problem in (9) is a
difficult nonlinear integer programming (NIP) problem with
black-box constraints. Because the analytical expressions of
the two performance metrics (i.e., Θ(c,B) and WNet(c,B))
of the networked EVCI are unknown, and exact derivatives
cannot be provided for those black-box constraints. The values
of these functions can be evaluated only through the expensive
(time-consuming) DA iteration algorithm.

It is shown that the optimal allocation of the scarce re-
sources in a network is anNP-hard problem [29]. The number
of integer variables in the problem is 2N , and the solution
space of the sizing problem grows exponentially with an
increase of the number of the networked charging facilities.
Additionally, the evaluation time of the black-box constraints
grows exponentially with an increase of both the number of
nodes in the network and the capacity of the individual nodes.

The mixed-integer sequential quadratic programming
(MISQP) algorithm is chosen to solve the optimization prob-
lem. The MISQP is a derivative-free heuristic iterative algo-
rithm that searches for a local minimum solution relaying on
information obtained from the evaluation of several points in
the search space [30][31]. This algorithm is used in solving
the problems with a relatively small number of variables, in
which the integer variables are not relaxable (i.e. the function
variables can only evaluated at integer points). The MISQP
requires a few number of function evaluations, which is a
suitable choice for the expensive black-box constraints in the
sizing problem. To increase the chances of finding the global
optimal solution, the solution algorithm can be initialized with
different random starting solutions.
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IV. EVCI INTEGRATION INTO POWER GRID

So far, the sizes of networked EVCI are optimized to satisfy
the targeted QoS metrics, but without accounting for the
operational and electrical constraints of the existing PDN. The
next step is to integrate charging facilities into PDN, which add
a substantial load to the power grid. Originally, the existing
system components of the PDN may not be designed to
accommodate the power demand of charging facilities [32]. To
facilitate the integration of charging facilities, PDN substations
and feeders may need to be reinforced, which requires new
investments. Alternatively, ESSs can be allocated in charging
facilities to alleviate the PDN integration cost if using ESS is
more cost-effective. When utilizing an ESS, energy is stored
during off-peak times and released when the total system load
(i.e., system demand in addition to EVCI demand) is high.
The charging service provider will benefit from covering PEV
charging demand in charging facilities, in addition to energy
arbitrage profit if the ESS is used on the system demand.
This section presents a planning framework that minimizes
the integration cost of EVCI into PDN by attaining the most
cost-effective ESS allocation and/or PDN reinforcement.

PEV charging demand at each facility is firstly estimated for
inclusion in the PDN load demand. This estimation is based
on the average number of busy chargers E[Bt,n] at time t in
charging facility n, in addition to the charging power, PChn ,
and the charging efficiency, ηCh

n , of chargers at facility n. 2

The calculation of E[Bt,n] can be done based on the analysis
of the networked EVCI [33], as discussed in Subsection II-A.
The power demand, PEV

t,n , of charging facility n at time slot
t can be computed by

E[Bt,n] =

cn∑
i=0

ipit,n + cn

Kn∑
i=cn+1

pit,n (10a)

PEV
t,n = ηCh

n PChn E[Bt,n]. (10b)

To reduce the charging time, it is recommended that PEV
users charge their PEV batteries to about 80% of capacity
using constant current charging mode [6]. Based on this
assumption and to simplify the calculations, PChn is regarded
as constant [14][32]. Although the charging power is assumed
constant, the charging duration of each PEV is assumed to
be an independently and exponentially distributed random
variable, as discussed in Subsection II-A. This assumption
conforms with the PEV battery charging behavior model and
reflects the stochastic variability of PEV characteristics and
users charging/driving behaviors [7]. After estimating the load
demand of charging facilities, EVCI can be integrated into
PDN, in which the objective function and constraint sets are
described as follows.

A. Objective function

The objective function aims to minimize the total capital
cost of EVCI integration into PDN, which includes two parts.

2To estimate the PEV load demand, each charging facility is assumed
to contain a homogeneous type of chargers with the same charging power.
Further study is needed to model charging facilities with multiple types of
chargers at one location.

The first one is the total investment cost, including the cost
ESS allocation in charging facilities, in addition to the cost
of upgrading the PDN substation(s) and/or feeders. The ESS
cost consists of three components [34]: 1) The ESS power cost
CP , which represents the cost of power electronics equipment
such as inverters and rectifiers; 2) The ESS energy cost CE ,
which is the cost of the storage elements such as the batteries;
3) The ESS annual operational cost COl at year l. The total
ESS operational cost is brought to the year of investment by
aggregating the annual costs over the ESS lifetime L and
multiplied by the present value factor, with annual interest rate
I. Let CSb and CF denote the costs of substation expanding
and feeder upgrade, respectively. The total investment cost can
be expressed as

CInv =
∑
∀n∈N

{
CPPRn + CEERn +

L∑
l=1

COl E
R
n

(1 + I)l−1

}
+
∑
∀j∈H

CSbGRj +
∑
∀ij∈L

CF `ijS
R
ij .

(11)

The second part of the objective function is the present value
of the system daily operational cost during the ESS lifetime.
It includes 1) the cost of importing energy from the upstream
grid, which is calculated based on the day-ahead hourly energy
cost Ces,t and the power injected to the system through the
substation(s), and 2) the benefit from ESS energy arbitrage,
which is the profit resulting from ESS charging during the off-
peak periods at a low price and ESS discharging at the peak
periods at a high price [3]. Let Ds denote the number of days
in load scenario s in one year. Including the energy arbitrage in
the objective function optimizes the ESS charging/discharging
schedule. The total operational cost can be expressed as

COpr =

L∑
l=1

1

(1 + I)l−1

∑
∀s∈S

Ds
{∑
∀t∈T

{ ∑
∀j∈H

Ces,tP
G
s,t,j

+
∑
∀n∈N

Ces,tP
ES
s,t,n

}}
.

(12)

B. ESS operational constraints

The following constraints regulate the ESS allocation and
operation in charging facilities. These constraints should be
satisfied for ∀n ∈ N , ∀s ∈ S, and ∀t ∈ T :

PRn = PSpn ≤ PR,max
n (13a)

ERn = ESen ≤ ER,max
n (13b)

Es,t+1,n = Es,t,n + ηESPES
s,t,n∆t (13c)

Es,0,n = Es,|T |,n = EIn (13d)

Emin ≤ Es,t,n ≤ ERn (13e)

− PRn ≤ PES
s,t,n ≤ PRn . (13f)

Constraints (13a) and (13b) determine the power rating and
energy capacity of the allocated ESSs, respectively. Decision
variables pn (≥ 0) and en (≥ 0) are chosen to be integers
because ESS components are usually available in discrete sizes
(modules) [3], where PS and ES denote the available module
steps for ESS power rating and energy capacity, respectively.
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The maximum rated power and energy of an ESS in charging
facility n are limited to PR,max

n and ER,max
n , respectively.

Constraint (13c) models the state-of-charge (SoC) dynamics
of an ESS at any time slot, where 4t is time segment duration
and η is the charging/discharging efficiency. Constraint (13d)
represents the daily initial and final SoC requirements, where
EIn denotes the daily initial SoC of an ESS. The operator can
set the value of EIn based on the required reserve of power.
This constraint links between consecutive days by ensuring
that the stored energy at the end of each day is transferred
to the next day [35][36]. Constraint (13e) enforces the SoC
upper and lower bound limitations, where Emin denotes the
minimum SoC of an ESS. Constraint (13f) limits the inject-
ing/extracting power into/from the ESS; positive power means
that the ESS is charging, while negative power means that the
ESS is discharging.

C. System upgrade constraints

The following constraints regulate the substation(s) and
feeders capacity upgrades.3 These constraints should be satis-
fied for ∀j ∈ H, ∀ij ∈ L, ∀s ∈ S, and ∀t ∈ T :

GRj = GSgj (14a)

SRij = FSfij (14b)

0 ≤ PGs,t,j ≤ PG,max
j +GRj (14c)

QG,min
j ≤ QGs,t,j ≤ QG,max

j (14d)

− (Smax
ij + SRij) ≤ Ps,t,ij ≤ (Smax

ij + SRij) (14e)

− (Smax
ij + SRij) ≤ Qs,t,ij ≤ (Smax

ij + SRij) (14f)

−
√

2(Smax
ij + SRij) ≤ Ps,t,ij +Qs,t,ij ≤

√
2(Smax

ij + SRij) (14g)

−
√

2(Smax
ij + SRij) ≤ Ps,t,ij −Qs,t,ij ≤

√
2(Smax

ij + SRij).
(14h)

Constraints (14a) and (14b) determine the required reinforce-
ments of the substation(s) and feeders capacities. Decision
variables gj(≥ 0) and fij(≥ 0) are chosen to be integers be-
cause substation and feeder upgrade is assumed to be available
in discrete steps, where GS and FS denote the available steps
for substation and feeder upgrade, respectively. Constraints
(14c) and (14d) limit the active and reactive power supplied
by the substation(s), where PG,max

j , QG,max
j , and QG,min

j

denote the maximum active power, maximum reactive power,
and minimum reactive power of existing substation connected
to bus j, repectively. Constraints (14e)-(14h) represent the
linearized branch power capacity limitations [39].

D. PDN operational constraints

A second order cone programming (SOCP) relaxation of the
DistFlow model [40] is adopted in the power flow analysis of
the balanced radial PDN. The following constraints should be
satisfied for ∀ij ∈ L, ∀j ∈ B, ∀s ∈ S, and ∀t ∈ T :

3This model makes preliminary decisions on the substation(s) and feeder
capacity upgrades. More detailed PDN expansion models that include various
types of substation transformers and feeder conductors as well as accounting
for any revised impedances resulting from upgrades can be found in [37][38].

Ps,t,ij =− PGs,t,j + PES
s,t,n + PEV

t,n + PDs,t,j

+ rijLs,t,ij +
∑

m:j→m

Ps,t,jm, if n→ j (15a)

Qs,t,ij = −QGs,t,j +QDs,t,j + xijLs,t,ij +
∑

m:j→m

Qs,t,jm (15b)

Vs,t,i − Vs,t,j = −(r2ij + x2ij)Ls,t,ij + 2(rijPs,t,ij + xijQs,t,ij)
(15c)

Ls,t,ijVs,t,i ≥ P 2
s,t,ij +Q2

s,t,ij (15d)

(vmin)2 ≤ Vs,t,i ≤ (vmax)2. (15e)

Constraints (15a) and (15b) represent real and reactive power
balance at PDN branches, where n → j and j → m denote
a direct line connection either between charging facility n
and bus j or between bus j and another bus m, respectively.
Branch resistance and reactance are denoted by rij and xij .
Bus voltage and current flow constraints are introduced in
(15c) and (15d), respectively. Finally, constraint (15e) enforces
the upper and lower bounds on bus voltage magnitude.

Based on the preceding discussion, the integration problem
is formulated as a mixed integer SOCP problem given by

min
p,e,g,f

COpr + CInv (11)− (12)

s.t. ESS operational constraints (13a)− (13f)

System upgrade constraints (14a)− (14h)

PDN operational constraints (15a)− (15e).

(16)

V. NUMERICAL RESULTS

The performance of the proposed capacity planning frame-
work is evaluated in this section. We consider a small network
of three charging facilities, and explore the key relationships
among network characteristics. Throughout this case study,
we use the Nguyen-Dupuis RTN, which is shown in Fig.
3a, where the network attributes are given in [2]. The time-
varying traffic volumes are simulated based on the dynamic
traffic assignment model using the traffic simulator SUMO.
The PDN under study is a 33-bus radial system, as shown in
Fig. 3b, where buses and branches data are given in [41]. The
RTN nodes/links geographically overlap with the PDN buses,
which means that each RTN node or link is served by one
electric bus of PDN. In the integration with PDN model, we
considered four typical daily load scenarios (winter, spring,
fall, and summer), which follow the hourly load shape of the
IEEE-RTS [42]. Moreover, the energy prices follow the hourly
Ontario energy price provided by IESO for diffrent seasons
[17]. Each RTN node or link is physically connected to a
PDN bus. The sizing problem is solved by nonlinear black-
box optimizer Knitro version 12. The EVCI integration into
the PDN problem is solved by Gurobi Optimizer version 8.1.
Both models are implemented in a Python 3.7 environment.
The numerical results are obtained on a laptop computer with
a 2.3-GHz Intel(R) Core(TM) i5-8300H CPU and 8 GB of
memory.

We consider EVCI consists of three charging facilities
allocated on the Nguyen-Dupuis RTN, which are FCS at node
6, OWC at link 18, and PL at node 3. In this case study,
FCS, OWC, and PL are connected to PDN buses 21, 5 and
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(a) Nguyen-Dupuis RTN [2]

(b) 33-bus radial PDN [41]

Fig. 3. System under study.

24, respectively. These charging facilities are serving 1500
PEVs uniformly distributed within origin-destination pairs of
the RTN. DC level 2 chargers with 90 kW charging power
are assigned in the FCS, and three-phase AC level 3 chargers
with 43.5 kW are used in the PL [18]. The charging power
of wireless chargers is not standardized yet; however, 22 kW
wireless charging panels are assumed for the OWC [19].
Currently popular PEV models (e.g., Tesla Model S) have
battery capacity 95 kWh. Such PEV can be fully charged
using a DC fast charger in 38 minutes and a three-phase AC
charger in 6 hours. PEV manufacturers recommend battery
charging to about 80% SoC to reduce charging time. Thus, the
mean charging time is set to 30 minutes (µF = 2) in FCSs, 10
minutes (µW = 6) in OWC, and 3 hours (µP = 0.3) in PLs.
An open queuing network with finite capacity and RS-RD
blocking is constructed as described in Subsection II-A. The
state probabilities of the queuing network nodes are evaluated
based on the DA algorithm. The routing probability between a
DN and the associated CN is set at 0.6. The routing probability
between any two facilities in the network is calculated based
on (1).

We firstly examine the performance of the EVCI with
stationary arrival rates to explore the relationships among
network characteristics. Subsequently, we present the capacity
planning of the charging network with more realistic time-
varying arrival process and evaluate the time-varying per-
formance metrics. It is shown that the capacity planning
framework can achieve targeted performance metrics. Finally,
we integrate the EVCI into the PDN, and investigate the rela-
tionship between the targeted QoS and the required investment
in PDN.

A. Performance with stationary arrivals

This experiment demonstrates the interplay between char-
acteristics of a charging facility on the performance of the
other facilities in the network. The blocking probabilities of
the three charging facilities are inspected under the alteration
of external arrival rate, service rate, number of chargers,
and number of waiting positions of the FCS. Number of
chargers and waiting positions are set at c = {3, 2, 5} and
B = {2, 0, 2} for FCS, OWC, and PL, respectively. The arrival
process at OWC and PL are stationary with rate λOWC = 5
PEV/h and λPL = 3 PEV/h, while the arrival rate at FCS
is varied with λFCS = {7, 5, 3} PEV/h. As shown in Fig.
4a, increasing λFCS leads to a proportional increase in the
blocking probabilities of the three facilities, and vice verse. It
can be noted also that the variations are higher in the OWC
statistics than the PL. This is because the routing probability
towards OWC is higher than PL. A similar effect is observed
if we alter the service rate, the number of chargers, and the
number of waiting positions, as shown in Fig. 4b, 4c, and
4d, respectively. This experiment shows that the performance
of a charging facility in a network may be highly impacted
by the characteristics of the neighboring charging facilities.
Consequently, EVCI must be designed as a network to account
for the inter-relationships among nearby facilities.

B. Performance with time-varying arrivals

We present the capacity planning of the networked EVCI
with more realistic time-varying arrival rates. The objective
of the experiment is to optimize the charging facility sizes to
achieve the predetermined targeted performance metrics for
the networked EVCI. These targets are set to be 90% mini-
mum network throughput and 10 minutes maximum expected
waiting time.

TABLE I
PARAMETERS SETTINGS

Parameter Value Parameter Value
ν 0.65 [11] ηCh 90% [18]
µF 2 PEV/h [2] σ 30%
µW 6 PEV/h [2] β 40%
µP 0.3 PEV/h [2] L 5 years [35]
CP 175 $/kW [3] I 1% [3]
CE 305 $/kWh [3] ηES 95% [43]
COy 15 $/kWh/year [3] EIn 50% [43]
CSb 788 $/kVA [6] Emin 10% [43]
CF 120 $/kVA.km [6] vmin/vmax 0.9/1.1 p.u. [10]

In order to solve this sizing problem, the MOL arrival rates
are firstly estimated based on (4). The time-varying numbers
of PEVs intercepted with charging facilities are extracted from
traffic simulation. The statistical parameters used in arrival rate
estimation are given and summarized in Table I. The listed
PEV population parameters are used for illustration purposes.
In practice, the system planner should adopt the actual PEV
statistical parameters, which can be collected from market
surveys.

Fig. 5 shows the external arrival rate and the MOL arrival
rate of both FCS and PL as a function of the time slot index.
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Fig. 4. Assessment of EVCI blocking probabilities against the variation of FCS characteristics: a) Arrival rate, b) Service rate, c) Number of chargers, d)
Number of waiting positions.
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Fig. 5. External arrival rate versus MOL arrival rate.

It can be noted that there are a magnitude difference and a
phase shift between λt and λ∗t , which account for time-lag
and magnitude difference between the external arrivals and
the system loads. This difference is significantly increased as

the service time of the facility increases, as shown in Fig.
5b. The MOL arrival rate functions are used to analyze the
non-stationary queuing models.
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The sizing problem, in (9), minimizes the total numbers of
chargers and waiting positions allocated in charging facilities
to achieve the targeted network throughput and average wait-
ing time. Both chargers and waiting positions are assumed to
have a similar cost ωn = 0.5,∀n ∈ N . The objective function
has a minimal value at c = {7, 4, 22} and B = {1, 0, 2}.
Fig. 6a shows the time-varying performance metrics of the
networked EVCI. It is observed that Θ = 90.13% and
WNet = 51.6 seconds, which achieve the predetermined QoS
targets. A similar trend can be observed in the performance
of the individual charging facilities, as shown in Fig. 6b.

Substantial differences appear when comparing the results
of the proposed sizing approach with those of sizing models
based on the isolated stationary queuing employed in [2],
[8]. Based on the M/M/c/K queuing model, the numbers
of allocated chargers and waiting positions in the EVCI are
c = {3, 1, 21} and B = {1, 0, 1}, respectively. Note that the
numbers of the allocated chargers and waiting positions based
on the isolated stationary queuing model are less than those
using our proposed approach. This is because the isolated
queuing models do not account for the propagation of con-
gestion due to the behaviors of the blocked PEV users. Also,
stationary queuing models determine the charging facility size
based on the daily peak demand without considering the PEVs
that are already in the facility from the preceding time periods.

The computational time of the sizing problem is highly
dependent on the number of charging facilities in the net-
work. For instance, the solution time for the EVCI under
investigation is 19 hours. However, the solution time for a
network of two charging facilities is around 1 hour. Since
the sizing problem should be solved offline in the system
planning stage, the computation complexity should not pose a
significant challenge.

C. Integration into PDN

In integrating the EVCI network with the PDN, we aim to
investigate the relationship between the targeted QoS level and
the required investment in the PDN. The proposed integration
model minimizes the total investment and operation cost by
allocating ESS in charging facilities and/or upgrading the PDN
substation and feeders. The substation capacity is 5 MVA,
and the system peak load demand is 3.715 MW (without
EVCI loads). The ESSs are available in discrete power and
energy capacities with step size of 100 kW and 100 kWh,
respectively. The reinforcement of the substation and feeders
are available with step size of 250 kVA. Other financial and
technical parameters are summarized in Table I.

We analyze the effect of varying network throughput target
on the investment cost of the EVCI network integration into
the PDN. Fig. 7 illustrates the total investment cost for each
QoS target, and the detailed integration plans are shown in
Table II. When the targeted network throughput is set to 60%,
ESSs are allocated in the EVCI. On the other hand, when
the QoS target is set to 70%, upgrading the PDN substation
and feeders is a more cost-efficient solution. In the case
of Θτ = 60%, it can be noted that the allocated ESS is
higher than the other cases. This is because ESS capacities,

60% 70% 80% 90%
Target network throughput, 
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Fig. 7. QoS targets versus the required PDN investment.

as well as feeders and substation reinforcement, are assumed
available in discrete steps. Then, the proposed model chooses
the lowest cost combination of the allocated ESS and PDN
reinforcement to minimize the total capital cost. Hence, in
the case of a 60% throughput target, it is cheaper to allocate
ESSs than upgrade the feeders and substation. The solution
time for the integration into PDN problem under investigation
is 8 minutes. Consequently, the required investment in the
PDN is highly dependent on the capability of the existing
PDN components and the targeted QoS of the EVCI. Also,
allocating ESSs in charging facilities can be a cost-effective
solution to alleviate the required PDN upgrades if ESS cost is
less than the reinforcement cost.

D. Sensitivity Analysis

1) Impact of time segment duration
Time segment duration (i.e., 4t) effect is investigated with
4t = 15 min and compared with the results with4t = 1 hour.
As shown in Fig. 8a, using the shorter time interval scales
down the MOL arrival rate at charging facilities. However,
the observed EVCI performance is similar for both cases,
as shown in Fig. 8b. This is because the proposed approach
utilizes the nonstationary queuing models, which account for
PEVs that are already in the system (either charging or
waiting) from the preceding time periods.

2) Impact of the routing probability value between a DN
and the associated CN

A slight shift in the performance occurs at the overloaded
charging facility with an increase of the routing probability
value between a DN and the associated CN (i.e., αnn), as
shown in Fig. 9. This is because, in the networked EVCI
model, only a small percentage of the blocked PEVs are
choosing the same charging facility instead of routing to
another facility. In practice, a PEV user will choose another
facility after being blocked at one facility. Since this shift in
the performance is observed only at the overloaded charging
facilities, it may not affect the capacity planning problem with
acceptable QoS targets.

3) Impact of the variations of the mean charging time
We have examined the EVCI performance with different

PEV charging power capability. For instance, if most of the
PEVs in the system can only charge with 50 kW DC fast
chargers at FCS and 7.4 kW AC level 2 chargers at PL, the
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TABLE II
DETAILED INTEGRATION PLANS FOR THE EVCI NETWORK WITH THE PDN

QoS target 60% 70% 80% 90%
Total capital cost $3.77×106 $4.17×106 $4.24×106 $4.33×106

Upgrade 0 0.5 MVA 0.5 MVA 0.5 MVASubstation Cost 0 $394,000 $394,000 $394,000
Upgrade 0 (0,1): 0.5 MVA (0,1): 0.5 MVA (0,1): 0.5 MVAFeeders Cost 0 $60,000 $60,000 $60,000

Allocated (0.2 MW, 0.5 MWh)
(0.1 MW, 0.1 MWh) 0 (0.1 MW, 0.1 MWh) (0.1 MW, 0.1 MWh)

(0.1 MW, 0.2 MWh)ESS
Cost $279,618 0 $55,353 $148,559

Energy cost $3.53×106 $3.72×106 $3.74 ×106 $3.75×106

Arbitrage profit $36,061 0 $9,066 $23,416
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Fig. 8. EVCI performance with different time intervals.

PEV charging time at these facilities increases. In this case,
for the commonly available PEVs with 60-70 kWh battery
capacity, the service time is 1 hour (µF = 1) in FCS and 5
hours (µP = 0.2) in PL [44]. As shown in Fig. 10, the EVCI
throughput decreases with the increasing of the mean service
time, as charging facilities will be occupied for a longer time.
Thereby, the capacity planning of EVCI must account for the
charging characteristic of PEVs in the system to achieve the
targeted performance.

VI. CONCLUSIONS

In this paper, we study capacity planning of EVCI and
propose a framework that sizes charging facilities to fulfill
the given QoS targets. The proposed framework minimizes
the cost of EVCI integration into PDN by either allocating
ESSs in charging facilities and/or reinforcing the PDN. The
link between the targeted QoS level and the PDN capability
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Fig. 9. FCS throughput versus arrival rate with various routing probabilities.
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Fig. 10. Influence of mean charging time on EVCI throughput.

offers insights into how to make a trade-off between the PEV
user satisfaction and the required investment in PDN. Our
framework captures the correlation among the occupancy of
neighboring charging facilities, which ensures that the targeted
QoS level is achieved for the entire networked EVCI. Fur-
thermore, the proposed framework accounts for the temporal
variability of PEV charging demand by addressing the time-lag
and magnitude shift between arrivals and loads of the system.
The numerical results demonstrates that the inter-relationship
between the targeted QoS level and the required investment
in the PDN plays a vital role in capacity planning of EVCI.
The proposed framework can be extended by optimizing the
QoS target to maximize user satisfaction within a budget limit.
In this case, both the EVCI capacity planning model and
integration with the PDN model can be simultaneously solved.
This extension is to address the trade-off between the targeted
QoS level of EVCI and the required investment in both EVCI
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and PDN.
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