
Wireless Networks

Liang Xiao
Helin Yang
Weihua Zhuang
Minghui Min

Reinforcement 
Learning 
for Maritime 
Communications



Wireless Networks 

Series Editor 

Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada



The purpose of Springer’s Wireless Networks book series is to establish the state 
of the art and set the course for future research and development in wireless 
communication networks. The scope of this series includes not only all aspects 
of wireless networks (including cellular networks, WiFi, sensor networks, and 
vehicular networks), but related areas such as cloud computing and big data. 
The series serves as a central source of references for wireless networks research 
and development. It aims to publish thorough and cohesive overviews on specific 
topics in wireless networks, as well as works that are larger in scope than survey 
articles and that contain more detailed background information. The series also 
provides coverage of advanced and timely topics worthy of monographs, contributed 
volumes, textbooks and handbooks.



Liang Xiao • Helin Yang • Weihua Zhuang •
Minghui Min 

Reinforcement Learning for 
Maritime Communications



Liang Xiao 
Department of Information 
and Communication Engineering 
Xiamen University 
Xiamen, Fujian, China 

Weihua Zhuang 
Wireless Communication Networks 
University of Waterloo 
Waterloo, ON, Canada 

Helin Yang 
Department of Information 
and Communication Engineering 
Xiamen University 
Xiamen, Fujian, China 

Minghui Min 
School of Information and Control 
Engineering 
China University of Mining and Technology 
Xuzhou, Jiangsu, China 

ISSN 2366-1186 ISSN 2366-1445 (electronic) 
Wireless Networks 
ISBN 978-3-031-32137-5 ISBN 978-3-031-32138-2 (eBook) 
https://doi.org/10.1007/978-3-031-32138-2 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2023 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2
https://doi.org/10.1007/978-3-031-32138-2


Preface 

This book provides a broad coverage of maritime wireless communication issues, 
such as reliability, security, resource management, and privacy protection. Rein-
forcement learning enables maritime communication systems to address these 
issues. This book includes four chapters from international researchers working 
in this area. Professionals and researchers can find Reinforcement Learning for 
Maritime Communications a useful reference. The material serves as a useful 
reference for researchers, graduate students, and practitioners seeking solutions to 
maritime wireless communication and information security-related issues. 

In Chap. 1, we mainly introduce the development, related work, and challenges 
of maritime wireless communications. The motivation, objective, and major contri-
butions of this book are provided. 

In Chap. 2, we present the system model and problem formulation of intelli-
gent reflecting surface aided maritime wireless communications. A reinforcement 
learning-based solution is provided and its performance is evaluated via theoretic 
analysis and simulation results. 

In Chap. 3, we review the related work and challenges of privacy protection for 
the maritime Internet of Things (IoT) offloading process and propose a reinforce-
ment learning-based privacy-aware offloading scheme to help IoT devices protect 
both the user location and the service usage pattern privacy. 

In Chap. 4, we describe a reinforcement learning-based resource management 
for ultra-reliable low-latency maritime communications. The resource management 
algorithm design principle and simulation results are analyzed as well. 

In Chap. 5, we review the related work and challenges to protect the semantic 
location privacy for the location-based services and propose a reinforcement 
learning-based location privacy protection scheme. Differential privacy is applied 
to randomize the released maritime devices’ locations and the perturbation policy is 
optimized to improve both the privacy protection level and the service performance. 

In Chap. 6, we draw conclusions of this book and identify the future research 
directions. 

This book investigates various research topics, including intelligent reflect-
ing surface-aided communications, privacy-aware IoT communications, intelligent

v



vi Preface

resource management, and semantic location perturbation for maritime communi-
cations. 

This book could not have been made possible without the contributions from 
Shiyu Xu, Shi Yu, Siyao Li, and Jingchen Xu in the book writing and valuable 
discussions. We would also like to thank all the colleagues whose work enlightened 
our thoughts and research presented in this book. Arun Siva Shanmugam. 

Xiamen, Fujian, China Liang Xiao 
Xiamen, Fujian, China Helin Yang 
Waterloo, ON, Canada Weihua Zhuang 
Xuzhou, Jiangsu, China Minghui Min 
October 2022
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Chapter 1 
Introduction 

Maritime communication systems have attracted ever-increasing research attention 
and become an important part of the fifth-/sixth-generation (5G/6G) communica-
tions. Maritime communication networks support ship-to-ship, ship-to-shore, and 
ship-to-sensor communications, where channel interference mitigation, reliable 
communication, secure transmission, and jamming resistance are important. In this 
chapter, we review related works and summarize the main content of this book. 

1.1 Maritime Communications 

The development of maritime communication systems depends on the reliable and 
secure communication under various quality of service (QoS) requirements of the 
booming maritime services, such as smart maritime surveillance, auto navigations, 
maritime leisure services, and electronic chart managements. 

With the increasing number of ships, vessels, offshore platforms, and Internet 
of Things (IoTs) equipment, the demand for high-speed and ultrareliable maritime 
communication is growing under large-scale dynamic maritime networks. A large 
amount of data are produced by maritime applications, such as the surveillance 
videos collected from bridge, engine room, or other critical regions of a vessel. For 
instance, text, voice, and video data have to be transmitted in real time with ultralow 
bit error rates to support the ship-to-ship and ship-to-shore coordination. 

1.1.1 Related Works 

Marine communications, including the ship-to-ship, ship-to-shore, ship-to-satellite, 
and ship-to-sensor communications, are required to support services with various 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
L. Xiao et al., Reinforcement Learning for Maritime Communications, Wireless 
Networks, https://doi.org/10.1007/978-3-031-32138-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32138-2protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1
https://doi.org/10.1007/978-3-031-32138-2_1


2 1 Introduction

QoS requirements such as in terms of the data rates, packet loss rates, bit 
error rates (BER), energy consumption, and spectral efficiency. For example, a 
navigational automated identification system applies the high-frequency (HF)-, 
very-high-frequency (VHF)-, and ultrahigh-frequency (UHF)-based shore-to-ship 
communications to support and provide voice, fax, and text services for ships up 
to 740 kilometers (km) away from shores [1–3]. The long-term evolution (LTE) 
system applies orthogonal frequency-division multiplexing (OFDM) and carrier 
aggregation to provide over 10 Mbps broadband multimedia services[4]. The 
Windsurfing World Cup based on 5G systems operating at 28 GHz relays the 4K 
resolution video stream from ships to ground base stations [5]. 

Vessel networks consist of vessels, beacons, and buoys that expand the commu-
nication coverage and reliability against severe channel attenuation due to ultra-long 
communication distances and obstacles. For instance, mobile ad hoc networks 
(MANETs) support up to five hops between 27 MHz and 40 MHz to carry low-speed 
data at sea off Nishinomiya and Kushimoto [6]. A satellite-aided mesh network 
among the adjacent vessels, maritime beacons, and buoys uses IEEE 802.16 to 
provide broadband services for up to 225 km. 2 maritime area [7]. 

Satellite communication systems establish the communication link between the 
far-offshore vessels and the satellites in low Earth orbit (LEO), medium Earth 
orbit (MEO), geostationary orbit (GEO), and high elliptical orbit (HEO) [8]. As 
an important GEO-based communication system, Inmarsat-6 provides both 2 GHz 
and 28 GHz dual service with data rates up to 60 Mbps [9]. The first MEO system, 
O3B, operates on 20 satellites, at 28 GHz, to provide 500 Mb broadband maritime 
data services with less than 140 ms latency [10]. Consisting of 66 LEO satellites, 
iridium, provides reliable and low-latency maritime safety communications for 
global coverage [11]. 

Due to the deployment flexibility and the line-of-sight (LoS) propagation, 
unmanned aerial vehicles (UAVs) and balloons act as relays or aerial base sta-
tions (BSs) to enhance the maritime communication coverage, data rates, and 
reliability [12]. As an example of multi-hop air-based maritime communications, 
BLUECOM+ uses tethered balloons to provide broadband communication services 
[13]. The UAV trajectory control based on reinforcement learning (RL) improves 
the maritime communication performance to support emergency field and radar 
surveillance under complicated maritime environments [14–16]. 

In a general maritime wireless communication system model as shown in 
Fig. 1.1, the ships choose the UAVs as relay to connect to the BSs at an island 
and use the satellite communications as the backup. The space-air-ground hybrid 
network consists of the shore-based maritime communication system, satellite-
based system, and air-based system to enhance the coverage and user capacity 
[17]. For instance, the tower-borne cellular BSs and the space-air-ground hybrid 
network provide wide-area seamless coverage for offshore maritime devices [18]. 
The data rate, energy efficiency, and coverage of the 6G network can be improved 
by a joint link scheduling and rate control algorithm as presented in [19] with the 
QoS guarantee.
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Fig. 1.1 Illustration of maritime wireless communications 

Recently, machine learning (ML) has gained huge attention from industry and 
academia. The development of ML has inspired great research efforts toward the 
realization of maritime communication services under the heterogeneous maritime 
network architecture [20]. The accuracy of modulation recognition will severely 
degrade in multipath fading channels, which is a critical problem for maritime 
wireless communications. A novel blind equalization-aided deep learning (DL) 
proposed in [21] employs the structure of ResNet and improves the recognition 
accuracy under severe multipath scenarios. 

RL is a type of ML which can achieve the optimal strategy via trial and errors 
without the knowledge of the environment. This characteristic is suitable for the 
complex marine environment and results in more extensive attention as compared 
with other methods. With the rapid enhancement of maritime communication 
services, IoT devices are improving synchronously, and QoS of data transmission 
becomes a bottleneck, restricting the development of maritime communication. 
However, the QoS such as latency and energy efficiency of data transmission can 
be optimized by RL [22, 23]. The anti-jamming scheme as proposed in [23] uses  
deep RL to optimize the transmit power based on the state that consists of the current 
locations of the vessels and UAVs without relying on a jamming model. Two dueling 
networks are used in this scheme to reduce the overestimation. Table 1.1 provides 
the summary of related works in maritime communications.
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Table 1.1 Related works in maritime communications 

Project/system Frequency Maximum coverage Maximum rate Application/feature 

Navigational 
automated 
identification 
system [1–3] 

HF, VHF, UHF 
band 

740 km 130 Kbps Voice, fax, and 
text 

Long-term 
evolution (LTE) 
[4] 

2.6 GHz 30 km 10 Mbps Multimedia 
services 

5G [5] 28 GHz 1 km 1 Gbps Multimedia 
services 

Mobile ad hoc 
network 
(MANET) [6] 

27 MHz/40 
MHz 

70 km 1.2 Kbps Multi-hop 
services 

TRITON [7] 5.8 GHz 15 km 5 Mbps Broadband 
services 

GEO-based 
Inmarsat-6 [9] 

2 GHz/28 GHz 100% of the Earth 60 Mbps GEO 

MEO-based 
O3B [10] 

28 GHz Within 45 degrees 
of the Equator 

500 Mbps MEO 

LEO-based 
iridium [11] 

L band 100% of the Earth 1.4 Mbps LEO 

BLUECOM+ 
[13] 

500 MHz/800 
MHz 

100 km 3 Mbps Broadband 
services 

1.1.2 Challenges 

Compared with terrestrial wireless communication systems, maritime commu-
nication has to address more severe propagation degradation, communication 
interference, and jamming. In addition, the RL-based communication schemes 
are challenged by the unreliable feedback of the communication policy from the 
environment due to dynamic maritime environments with narrowband connectivity 
[24]. With the booming of smart maritime applications such as ship detection, 
monitoring, and border patrol, maritime communications are expected to meet 
various QoS requirements in terms of the communication latency, packet loss rate, 
energy consumption, and throughput. In addition, security and privacy are also 
critical to support smart maritime applications, e.g., the authentication framework 
has to address spoofing attacks and man-in-the-middle attacks [25]. 

With the dynamic random 3D movements of the sea surface, maritime commu-
nication is challenged by the antenna misalignment and the time-variant antenna 
orientations and heights, which in turn results in highly dynamic channel states 
[7]. The wave occlusions further degenerate the channel gains and often break 
communication link for seconds [26]. The rough sea surface under bad weather 
such as storms usually results in rich scattering, large path loss, and severe shadow
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fading [27]. The resulting maritime channel model has to be analyzed in depth via 
large-scale field measurements and data mining [28]. 

The construction of a maritime communication system is challenging, which 
needs to meet ubiquitous connectivity, traffic nonuniformity, device heterogeneity, 
simplicity, and interoperability. For example, the maritime communication system 
needs to provide ubiquitous connectivity between vessels and shore, especially over 
open oceans including the polar regions, to ensure the unbroken and consistent 
existence of maritime services. Heavy traffic concentration is typical in ports, 
nearshore, and waterways, while the maritime traffic is highly unevenly distributed. 
For device heterogeneity, the maritime communication system needs to adapt to 
the high degree of heterogeneity of the devices for communication capabilities, 
including hardware and power supplies. Furthermore, maritime communication 
devices should be reliable and robust in the complex marine environment including 
harsh weather. At the same time, the system should have simplicity and low cost. At 
last, the maritime MTC system will provide different maritime IoT applications and 
services with the ability to seamlessly access the network within and across network 
boundaries, and to provide efficient and reliable service across the entire spectrum 
of maritime IoT services with no or minimal effort from end users or hosts [29, 30]. 
Maritime communication needs to address severe propagation degradation, commu-
nication interference and jamming, dynamic maritime environments, random sea 
surface, and the challenges from the booming of smart maritime applications, as 
illustrated in Fig. 1.2. Table 1.2 lists the challenges in maritime communications. 

Maritime communication 

Jamming 

Interference 

Dynamic enviroments 

Various QoS of maritime 
applications 

Random sea surface 

Long communication distance Propagation degradation 

Fig. 1.2 Maritime wireless communication channels
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Table 1.2 Related work on secure maritime communications 

Communication environment Attacks Application/feature 

Sea surface [27] Interference and jamming Various maritime 
applications 

Dynamic maritime 
environments [24] 

Eavesdropping Heavy traffic 
concentration 

Severe propagation degradation 
[26] 

Man-in-the-middle attacks Device 
heterogeneity 

Antenna misalignment [7] DoS attacks Robust low-cost and 
simple system 

1.1.3 Secure Maritime Communications 

Maritime communications are vulnerable to attacks such as eavesdropping, spoof-
ing, virus, and jamming [31]. For example, the Petya virus attacked the vessel 
tracking system of MAERSK shipping company in 2017, resulting in nearly 24-
hour congestion of Port of Los Angeles and the loss of 0.3 billion dollars [32]. 
The secure maritime communication system as presented in [32] uses the identity-
based encryption to protect the shared data among the vessels and authenticates 
the user request based on the unique user ID to prevent data leakage. The vessel 
automatic identification system as proposed in [33] that applies the time-efficient 
stream loss-tolerant authentication protocol to broadcast the vessel identification 
and position exploits compressed bloom filters to address both eavesdropping and 
spoofing attacks with low overhead. Maritime IoT protects data for applications 
such as real-time cargo status management against eavesdropping and jamming. For 
instance, the maritime ship data system in [34] uses the backward induction-based 
resource allocation and amplify-and-forward relay. 

Moreover, mobile edge computing helps the maritime transportation systems 
handle the latency-sensitive tasks at the edge of the network with less latency 
and energy consumption and reduce the probability of tampering the tasks by the 
attackers compared with cloud computing. As the real-time tasks are offloaded to the 
edge for faster processing, there are also security issues such as the transmission of 
vessels’ sensitive information in the maritime transportation systems. To secure the 
sensitive information transmitted and to decrease the delay and energy consumption, 
an IoT-based collaborative processing system can use a blockchain to protect 
the transmission data and a verifiable random function and reputation voting-
based mechanism to reduce the communication cost in blockchain consensus 
communication process [35]. 

For the maritime industry, advanced wireless technologies such as Worldwide 
Interoperability for Microwave Access (WiMAX) have been applied in maritime 
communications to improve the data transmission performance. However, some 
security and privacy issues need to be addressed in these maritime communication 
systems. For example, WiMAX technology provides high data rate and satisfies 
the increasing demand of data traffic for the large capacity vessel data. To handle
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the authentication of a group of vessels, a WiMAX-based secure communication 
network can use elliptic curve Diffie-Hellman-based authentication protocol to 
secure the continuous data exchange between the ships and the BS or the shore 
with low computational complexity and overhead [25]. 

In addition, ML such as RL as an advanced technology can be used in maritime 
communication to resist attacks. In [16], a UAV-assisted maritime rescue scheme 
is presented, which uses Q-learning to optimize the UAV moving path against 
jamming attacks. To further improve the network performance, a deep RL-based 
maritime communication scheme is proposed in [23] to optimize the maritime 
transmit power and reduce the bit error rate of the message. The secure maritime 
transportation system in [36] applies an adaptive incremental passive-aggressive 
machine learning method to detect the cyberattacks and uses an approximate linear 
dependence and a modified hybrid forgetting mechanism to update the detection 
model. 

In the communication between both ship-to-ship and shore-to-ship, it is impor-
tant for the servers to obtain and monitor the vessels’ parameters. IoT as an 
intelligent technique can be used in maritime transportation systems to acquire more 
data about the physical parameters of the vessels and share them for monitoring the 
vessels [37, 38]. During the transmission of IoT data between the coast-side servers 
and the vessels, there is a need to ensure that the data is accessed securely. In [32], 
an identity-based secure information sharing scheme is proposed for the maritime 
transport system, which uses identity-based encryption and blockchain to protect the 
data and improve the security of maritime transport networks. Table 1.3 provides a 
summary of studies on secure maritime communication systems. 

1.1.4 Reliable Maritime Communications 

With the rapid growth of maritime activities and the development of the maritime 
economy, the MF/HF/VHF maritime communication systems and long-distance and 
shore-ship mobile communications [24] have to meet various QoS requirements of 
the maritime applications against both interference and jamming in dynamic and 
heterogeneous networks [29]. In particular, maritime weather such as big storms 
severely degrade the performance of 4G or Wi-Fi systems, and maritime network 
has to address the interference and jamming signals sent from a larger area than 
terrestrial networks [39]. 

MEC enables data processing closer to users with less transmission latency and 
energy consumption and provides reliable data-driven maritime services [40, 41]. 
For example, the maritime MEC network as proposed in [40] integrates software-
defined networks to achieve ultra-reliability, scalability, and low latency. The two-
stage maritime offloading in [41] optimizes the computation and communication 
resource allocation for massive maritime data in terms of the low latency and energy 
consumption.
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Table 1.3 Summary of works for secure maritime communication systems 

Methods Performance Attacks Systems 

Q-learning [16] High throughput Jamming UAV-assisted 
maritime rescue 

Deep reinforcement 
learning [23] 

Low bit error rate Jamming UAV-assisted 
maritime 
communication 

Elliptic curve 
Diffie-Hellman-based 
authentication [25] 

Low computational 
complexity and 
overhead 

Man-in-the-middle 
attacks 

WiMAX-based 
maritime 
communications 

Identity-based 
encryption and 
blockchain [32] 

High quality of 
service 

Data leakage IoT-enabled maritime 
transportation systems 

Time-efficient stream 
loss-tolerant 
authentication [33] 

Low communication 
overhead 

Eavesdropping and 
spoofing 

Maritime 
communication 
systems 

Backward induction 
and 
amplify-and-forward 
relay [34] 

High throughput Eavesdropping and 
jamming 

Maritime ship data 
systems 

Blockchain [35] Low delay and energy 
consumption 

Replay attack and 
camouflage attack 

Maritime IoT systems 

Adaptive incremental 
passive-aggressive 
[36] 

High attack detection 
accuracy and low 
latency 

DDOS attacks Maritime IoT systems 

Relay enhances the communication coverage and reliability due to the spatial 
diversity gain [14, 18, 42–46]. For example, the relay-based maritime multicast 
system improves both throughput and energy efficiency for maritime equipment 
such as radar, sonar, and ocean sensors in [42]. The offshore mesh network in [43] 
chooses buoys to relay the BS messages and provide the energy source for maritime 
applications such as monitoring stream sensing data in marine surveillance. The 
high-altitude balloon-enabled maritime relay system in [44] integrates dynamic 
balloon networks to guarantee reliable maritime communication in a large area. 

UAV-assisted relay communication systems have been widely used in maritime 
communications due to their deployment flexibility [14, 18]. As an example of 
the UAV-aided maritime communication, the caching UAV-assisted decode-and-
forward relay communication system in [14] applies the one-dimensional linear 
search method to obtain the optimal UAV placement and thus achieves higher 
communication performance in the downlink maritime communication. The space-
air-surface three-tier heterogeneous network constructed in [18] deploys drones as 
on-demand aerial access points to improve the connectivity, capacity, and flexibility 
for maritime wireless communications. However, the vast and complex ocean 
operating environment seriously degrades the communication performance of the 
UAV-assisted relay networks in practice, especially for meeting the all-weather and 
long-endurance requirements.
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Jammer 

Ship 1Base Station 

UAV 1 

Ship 2 

UAV 2 

Edge server 

Fig. 1.3 Reliable maritime communication systems against jamming attacks and interference 

Unmanned surface vehicles (USVs) with sufficient endurance and payload help 
improve the coverage and the transmission performance in maritime wireless 
communications [45, 46]. The USV-enabled maritime wireless network as proposed 
in [45] employed USVs to assist the communication between the terrestrial BS and 
ships and thus significantly improve transmission performance. In [46], a UAV-
assisted cooperative transmission scheme is proposed to achieve the high-reliable 
and low-latency transmission in the maritime environment. Figure 1.3 shows the 
reliable maritime communication system model, where the system needs to reduce 
attacks from the jammer. 

ML techniques including supervised learning, unsupervised learning, and RL 
have been widely applied to improve network reliability in maritime communica-
tions [47–52]. In [47], a K-means algorithm is combined with a genetic algorithm to 
efficiently avoid collision in dynamic vessel networks. The proactive link adaptation 
scheme proposed in [48] uses a nonlinear autoregressive neural network to predict 
the near-sea-surface channel link status and thus improve the channel utility and the 
link capacity for maritime communication networks. Table 1.4 provides a summary 
of works for reliable maritime communications. 

1.2 Motivation and Objective 

In this book, we investigate reliable, secure, and efficient maritime communications 
based on RL, which enables the maritime devices to optimize their communication 
and security performance in the dynamic games. For example, DQN enables 
maritime mobile devices to optimize the AP and edge selection based on the channel 
quality and the computation capacity to reduce the computation and communication 
costs and increase the service incomes. The corresponding deep neural network
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Table 1.4 Related works on reliable maritime communications 

Applications Techniques Performance 

Seacoast BS [40] Software-defined networking Low latency 

Edge computing 

Coastal BS [41] Two-stage joint optimal 
offloading algorithm 

Low latency

Low-energy consumption 

Ship [42] Joint beamforming optimization High throughput 

Relay selection Low energy consumption 

Buoys [43] Energy harvesting Low energy consumption 

Relay selection 

Balloon [44] Integer programming-based 
relay selection 

Low reconfiguration 
frequency 

High accepted traffic 

UAV [14] One-dimensional linear 
search-based relay selection 

High achievable rate 

USV [45] Successive convex 
approximation and interior-point 
methods 

High throughput 

Drone [18] Multicast beamforming High spectral efficiency 

Relay selection Low required capacity 

USV [46] Many-to-one matching theory Low latency 

Mother ship relay selection 

Vessel [47] K-means Low latency 

Maritime IoT terminals [48] Nonlinear autoregressive neural 
network 

High channel utility

High link capacity 

structure, as shown in Fig. 1.4, consists of the four CNNs, each having two 
convolutional (Conv.) layers and four fully connected (FC) layers. 

1.2.1 Learning-Based Secure Maritime Communications 

RL-based secure maritime communications enable ships, maritime sensors, and 
satellite phones to enhance the performance to support the maritime tasks such as 
fish tracking and monitoring [53] against jamming, spoofing, and eavesdropping. 
For example, the power allocation and relay selection can apply RL algorithms such 
as Q-learning, Dyna-Q, post-decision state (PDS), and deep Q-network (DQN) to 
improve the secrecy rate and the BER. 

For example, the deep RL-based UAV-assisted maritime communication scheme 
in [23] designs two dueling neural networks to optimize the ship transmit power 
and mobility policy to reduce the BER and the ship energy consumption against 
reactive jamming attacks. In [54], deep Q-learning-based transmission scheduling 
scheme designs a dual network including the main network and the target network
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Task generation 

Tasks 

MEC servers 

State 

Channel quality 

Computation 

capability 

Deep neural networks 

E-network 

Q-network Policy 

distribution 

AP selection 

Edge selection 

Action 

Costs of renting

 computation resources 

Costs of renting 

communication 

Utility 

Received incomes 

of providing service 

Fig. 1.4 RL-based maritime communications in [51] 

to optimize data packet selection policy to reduce energy consumption and increase 
throughput. In [16], Q-learning-based trajectory plan scheme for cooperative search 
and rescue is designed to improve communication throughput. 

1.2.2 Learning-Based Reliable Maritime Communications 

RL-based reliable maritime communications address the dependence of the convex 
optimization- and Lagrangian optimization-based scheme on the accurate network 
and channel model. Instead, the learning-based resource allocation depends on the 
trial and error with the observation of the state consisting of the channel states, 
computation capability, and transmission quality, e.g., signal-to-interference-plus-
noise ratio (SINR) obtained from the feedback control channel. The reward or utility 
depends on the weighted sum of the BER of the received messages, transmission 
latency, throughput, and energy consumption. 

In the RL-based secure maritime communication as shown in Fig. 1.5, the  
maritime mobile device as the learning agent chooses the maritime communication 
policy such as transmit power, relay policy, and frequency channel. The state 
consists of the channel states, RSSI, BER, and jamming power, and the utility is 
the weighted sum of the throughput, latency, energy consumption, and computing 
efficiency. 

For example, the formation network of unmanned ship in [49] integrates the RL 
strategy into the basic whale optimization algorithm to effectively improve data 
transfer rate, transmission latency, and network throughput in maritime broadband
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Fig. 1.5 An illustration of RL-based reliable maritime communications 

Table 1.5 Learning-based maritime secure and reliable maritime communication 

Agent RL techniques Policy Performances 

Ship [54] DQN Data packet selection Low energy consumption 

High throughput 

UAV [23] DQN Transmit power Low BER 

Low energy consumption 

Ship [49] Q-learning Node access Low transmission latency 

Ship [50] Q-learning Router selection High packet delivery ratio 

User [51] DQN AP and edge selection High computing efficiency 

Vessels [52] Multi-agent DRL Offloading rate Low latency 

UAV [16] Q-learning UAV trajectory High throughput 

communications. Q-learning as a model-free RL technique has been used to 
optimize the end-to-end delay and packet delivery ratio and thus improve the 
reliability of the maritime emergency video transmission in maritime search and 
rescue networks [50]. The DQN is applied in [51] to improve the communication 
and computing efficiency of maritime networks. 

In [52], the vessels apply multi-agent deep RL to achieve the ultra-reliable and 
low-latency communications based on the channel states between the terrestrial BS 
and the vessels in the maritime communication networks. Table 1.5 provides the 
summary of learning-based maritime secure and reliable maritime communications. 

1.3 Integrated Space-Air-Ground-Ocean Communication 
Networks 

Wireless networks have evolved from the first-generation (1G) networks to the 
upcoming/recent 5G networks with focuses on data rate, end-to-end latency, 
reliability, energy efficiency, coverage, and spectrum utilization. According to 
the International Telecommunication Union (ITU), 5G networks have three main 
types of usage scenarios: enhanced mobile broadband (eMBB), ultra-reliable and
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low-latency communication (URLLC), and massive machine-type communications 
(mMTC) to account for supporting diverse services [17, 55]. In that regard, tech-
nologies including millimeter-wave (mmWave), massive multiple-input multiple-
output (MIMO), and device-to-device (D2D) transmissions and so on are employed 
to provide users with better QoS and quality of experience (QoE), as well as to 
improve the network performance [17, 55], where QoS is a description of the overall 
performance of a service, while QoE is a measurement of the delight or annoyance 
of a device’s experiences with a service. 

While 5G networks are being deployed, people from both the industry and 
academia have already paid attention to the research on 6G networks [56–60], 
where 6G networks are expected to effectively support high-quality services, new 
emerging applications (e.g., virtual and augmented reality, remote surgery, and 
holographic projection), and unlimited connectivity for the massive number of smart 
terminals. For instance, the roadmap toward 6G networks is discussed [56] along 
with requirements, enabling techniques and architectures. 

Different from previous generation networks, 6G networks will be required to 
revolutionize themselves by realizing intelligence to meet more stringent require-
ments and demands for the intelligent information society of 2030, which include 
[56–60] ultrahigh data rates, a peak data rate of at least 1 Tb/s, and a user-
experienced data rate of 1 Gb/s; ultralow latency, less than 1 ms end-to-end delay, 
even 10–100 us; ultrahigh reliability, about 1–10. −9; high energy efficiency (EE), on 
the order of 1 pJ/b; very high mobility, up to 1000 km/h; massive connection, up to 
10. 7 devices/km. 2 and traffic capacity of up to 1 Gbs/m. 2; large frequency bands (e.g., 
1 THz–3 THz); and connected intelligence with AI capability. 

Furthermore, in order to support near-instant and seamless super-connectivity, 
an integrated space-air-ground-ocean network (ISAGON) will be the core potential 
architecture of 6G networks [56, 57], as shown in Fig. 1.6. Note: V2X for vehicle to 
everything, VLC for visible light communication, RAN for radio access networks, 
SDN for software-defined networking, NFV for network function virtualization, 
PHY for physical layer, and MAC for medium access control. The objective of 
ISAGON is to extremely provide broad coverage and seamless connectivity for 
space, airborne, ground, and underwater areas, such as airplanes in the sky, ships 
at sea, monitors at remote areas, or vehicles on land. As a result, human activities 
will dramatically expand from the ground to air, space, and deep sea. At the same 
time, centralized and edge computing clouds are deployed at RAN with SND and 
NFV to provide powerful computational processing and massive data acquisition 
for ISAGON. The ISAGON mainly consists of the following four tiers. 

The pace-network tier deploys low Earth orbit, medium Earth orbit, and geo-
stationary Earth orbit satellites [56, 57] to provide orbit or space services for 
areas not covered by ground networks. Air-network tier employs various aerial 
platforms including UAVs, airships, and balloons associated with flying BSs to 
support flexible and reliable wireless connectivity for remote areas or urgent events, 
and the ground-network tier is the main solution for supporting diverse services for 
a massive number of devices. In order to satisfy various services, this layer mainly 
exploits low-frequency, microwave, mmWave, visible light, and terahertz (THz)
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Fig. 1.6 The typical architecture of 6G network (ISAGUN) 

bands for 6G networks, and the ocean-network tier aims to provide underwater 
communication connectivity, observation, and monitoring services for broad-sea 
and deep-sea activities. 

According to the evolution rules of networks, initial 6G networks will be mainly 
supported by the existing 5G infrastructures, such as the architectures of SDN, NFV, 
and network slicing (NS). However, compared with 5G networks, 6G networks are 
required to support the abovementioned stringent requirements (e.g., ultrahigh data 
rates, ultralow latency, ultrahigh reliability, and seamless connectivity). At the same 
time, the development of 6G networks (ISAGON) has large dimension and high 
complexity, dynamicity, and heterogeneity characteristics. All the abovementioned 
issues call for a new architecture that is flexible, adaptive, agile, and intelligent. 
Artificial intelligence (AI) [56, 58], with strong learning ability, powerful reasoning 
ability, and intelligent recognition ability, allows the architecture of 6G networks 
to learn and adapt itself to support diverse services accordingly without human 
intervention. In [56, 57], AI-enabled techniques are applied to achieve network 
intelligentization, closed-loop optimization, and intelligent wireless communication 
for 6G networks. Kato et al. [56, 58] use deep learning to optimize the performance 
of space-air-ground-integrated networks and show how to employ deep learning 
to select the most suitable paths for satellite networks. Furthermore, DRL is
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adopted to preserve reliable wireless connectivity for UAV-enabled networks by 
learning the environment dynamics [10]. Simulation results demonstrated that DRL 
significantly outperforms conventional methods. Hence, it is promising to adopt 
AI to 6G networks to optimize the network architecture and improve the network 
performance. 

Although in the studies [56, 58] AI is applied to enable intelligent wireless 
networks, it is yet to investigate how to systematically sense data from envi-
ronments, analyze collected data, and then apply the discovered knowledge to 
optimize network performance for 6G. Hence, in the following, an AI-enabled 
intelligent architecture for 6G networks is presented to realize smart resource 
management, automatic network adjustment, and intelligent service provisioning 
with a high level of intelligence, where the architecture consists of four layers: 
sensing layer, data mining and analytics layer, control layer, and application layer. 
The proposed architecture aims at intelligently extracting valuable information from 
massive data, learning and supporting different functions for self-configuration, self-
optimization, and self-healing in 6G networks, in order to tackle optimized physical 
layer design, complicated decision-making, network management, and resource 
optimization tasks. Based on AI-enabled intelligent 6G networks, we introduce 
the applications of AI techniques in the context of AI-empowered mobile edge 
computing, intelligent mobility and handover management, and smart spectrum 
management. After that, we discuss important future research directions for AI-
enabled 6G intelligent networks. Finally, some conclusions are drawn. 

1.3.1 AI-Enabled Intelligent Space-Air-Ground-Ocean 
Communication Networks 

The development of ISAGON networks will be large-scale, multilayered, highly 
complex, dynamic, and heterogeneous. In addition, ISAGON networks need to 
support seamless connectivity and guarantee diverse QoS requirements of the 
huge number of devices, as well as process large amount of data generated 
from physical environments. AI techniques with powerful analysis ability, learning 
ability, optimizing ability, and intelligent recognition ability can be employed into 
ISAGON networks to intelligently carry out performance optimization, knowledge 
discovery, sophisticated learning, structure organization, and complicated decision-
making. With the help of AI, we present an AI-enabled intelligent architecture for 
ISAGON networks which is mainly divided into four layers: intelligent sensing 
layer, data mining and analytics layer, intelligent control layer, and smart application 
layer, as shown in Fig. 1.7. 

Here, we introduce some common AI techniques as follows. AI techniques sub-
sume multidisciplinary techniques including machine learning (supervised learning, 
unsupervised learning, and reinforcement learning), deep learning, optimization 
theory, game theory, and meta-heuristics [58]. Among them, machine learning, deep
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Fig. 1.7 The architecture of an AI-enabled intelligent ISAGON network 

learning in particular, is the most popular AI subfield which is widely adopted in 
wireless networks. 

Supervised Learning: Supervised learning uses a set of exclusive labeled data 
to build the learning model (also called training), which is broadly divided into 
classification and regression subfields. Classification analysis aims to assign a 
categorical label to every input sample, which mainly includes decision trees 
(DT), support vector machine (SVM), and K-nearest neighbors (KNN). Regression 
analysis contains support vector regression (SVR) and Gaussian process regression 
(GPR) algorithms, and it estimates or predicts continuous values based on the input 
statistical features. 

Unsupervised Learning: The task of unsupervised learning is to discover hidden 
patterns as well as to extract the useful features from unlabeled data. It is generally 
divided into clustering and dimension reduction. Clustering seeks to group a set of 
samples into different clusters according to their similarities, and it mainly includes 
K-means clustering and hierarchical clustering algorithms. Dimension reduction 
transforms a high-dimensional data space into a low-dimensional space without 
losing much useful information. Principal component analysis (PCA) and isometric 
mapping (ISOMAP) are two classic dimension reduction algorithms. 

Reinforcement Learning: In RL, each agent learns to map situations to actions 
and makes suitable decisions on what actions to take through interacting with the 
environment, so as to maximize a long-term reward. Classic RL algorithms include 
Markov decision process (MDP), Q-learning, policy learning, actor critic (AC), 
DRL, and multi-armed bandit (MRB).
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Deep Learning: Deep learning is an AI function that realizes the working of 
the human brain in understanding the data representations and creating patterns 
based on artificial neural networks. It consists of multiple layers of neurons, and 
the learning model can be supervised, semi-supervised, and unsupervised. Classic 
deep learning algorithms include deep neural network (DNN), convolutional neural 
network (CNN), recurrent neural network (RNN), and long short-term memory 
(LSTM). 

Intelligent Sensing Layer Generally, sensing and detection are the most primitive 
tasks in ISAGON networks, where ISAGON networks tend to intelligently sense 
and detect the data from a physical environment via enormous devices (e.g., 
cameras, sensors, vehicles, drones, and smartphones) or crowds of human beings. 
AI-enabled sensing and detecting are capable of intelligently collecting a large 
amount of dynamic, diverse, and scalable data by directly interfacing the physical 
environment, mainly including radio-frequency utilization identification, environ-
ment monitoring, spectrum sensing, intrusion detection, interference detection, and 
so on. 

It is worth noticing that high accurate sensing, real-time sensing, and robust 
sensing are of great interest, since ISAGON networks need to support ultrahigh reli-
ability and ultralow-latency communication services. In addition, dynamic ISAGON 
networks lead to spectrum characteristic uncertainty, which entails great difficulty 
in robust and accurate sensing. AI techniques can realize accurate, real-time, and 
robust spectrum sensing, where fuzzy SVM and nonparallel hyperplane SVM are 
robust to environment uncertainties, CNN-based cooperative sensing can improve 
sensing accuracy with low complexity, the combination of K-means clustering 
and SVM is capable of achieving real-time sensing by training low-dimensional 
input samples, and Bayesian learning can address large-scale heterogeneous sensing 
problems by tackling heterogeneous data fusion. 

For example, in ISAGON networks, spectrum sensing is an important technique 
to improve the spectrum usage efficiency and address spectrum scarcity problems. 
However, spectrum sensing in large-scale ISAGON networks is very challenging 
since a massive number of devices aim to sense spectrum simultaneously, and the 
massive spectrum usage detections lead to high-dimensional search problems. In 
this case, AI technologies can be applied to identify the spectrum characteristics and 
intelligently establish suitable training models to sense spectrum working status. 
In detail, AI-enabled learning models (e.g., SVM and DNN) detect the spectrum 
working status by categorizing each feature vector (spectrum) into either of the two 
classes, namely, the “spectrum idle class” and “spectrum buy class,” and adaptively 
update the learning models based on dynamic environments. 

Data Mining and Analytics Layer This layer has a core task that aims to 
process and analyze a massive amount of raw data generated from the huge 
number of devices in ISAGON networks and achieve semantic derivation and 
knowledge discovery. The massive collected data from physical environments may 
be heterogeneous, nonlinear, and high dimensional, so data mining and analytics 
can be applied in ISAGON networks to address the challenges of processing the
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massive amount of data, as well as to analyze the collected data toward knowledge 
discovery. 

On the one hand, it is costly to transmit or store the massive raw data in dense 
networks. Hence, it is necessary to reduce data dimension of the raw data, filter 
abnormal data, and finally achieve a more reasonable dataset. In AI-based data 
mining, PCA and ISOMAP are the two common AI algorithms that can help 
ISAGON networks to transform higher-dimensional data into a lower-dimensional 
subspace [56, 58], to dramatically decrease the computing time, storage space, 
and model complexity. For example, the massive collected channel information, 
traffic flows, images, and videos from sensors, devices, or social media are high-
dimensional data, which can be compressed into a small set of useful variables of 
the raw data by using PCA or ISOMAP. In addition, the collected data from physical 
environments also have abnormal data (e.g., interference, incomplete, and useless 
data), which can be filtered by utilizing PCA or ISOMAP. 

On the other hand, data analytics is responsible for intelligently analyzing the 
collected data to discover useful information and form valuable knowledge. In 
ISAGON networks, massive data are collected from physical environment, cyber 
world, and social network which contain valuable information and meaningful 
features. Data analytics have brought us an excellent opportunity to understand 
the essential characteristics of wireless networks and achieve more clear and in-
depth knowledge of the behavior of ISAGON networks; finally valuable patterns 
or rules can be discovered as knowledge to provide suitable solutions for resource 
management, protocol adaptation, architecture slicing, cloud computing, signal 
processing, and so on. For instance, based on the discovered knowledge, ISAGON is 
able to efficiently understand the mobility patterns of UAVs in the sky, establish the 
channel path loss model of a satellite-ground link, and predict the device behavior 
in ground networks. 

Intelligent Control Layer Briefly, intelligent control layer mainly consists of 
learning, optimization, and decision-making. It utilizes the appropriate knowledge 
from lower layers to enable massive agents (e.g., devices and BSs) to smartly learn, 
optimize, and choose the most suitable actions (e.g., power control, spectrum access, 
routing management, and network association), with dual functions to support 
diverse services for social networks. Such function is realized by applying AI 
techniques in ISAGON networks, where each agent is equipped with an intelligent 
brain (learning model) to automatically learn to make decisions by itself. 

Learning is a process of utilizing or modifying existing knowledge and expe-
rience to improve the behavior of each device or service center, so that ISAGON 
networks can intelligently realize optimal network slicing, end-to-end PHY design, 
edge computing, resource management, heterogeneous network design, and so on, 
according to different requirements of applications. Intelligence is an important 
characteristic of ISAGON networks, where the combination of AI and ISAGON net-
works can learn to achieve self-configuration, self-optimization, self-organization, 
and self-healing, finally increasing the feasibility level. For instance, post-massive 
multiple-input multiple-output (PM-MIMO) will be employed in ISAGON net-
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works to support hundreds or thousands of transmit/receive antennas with mmWave 
or THz transmissions [56]. How to achieve optimal energy-efficient beamforming 
variables and mitigate RF nonlinearities is challenging. An RNN-based solution has 
the ability to capture the nonlinearities of RF components, where RNN learns the 
nonlinearities of power amplifier arrays and optimizes minimal transmitted power 
levels at transmitters [11]. 

The task of optimization is to run a deterministic and rule-based algorithm with 
parameter optimization based on global objectives (e.g., QoS, QoE, connectivity, 
and coverage). Traditional optimization algorithms (e.g., Lagrangian duality and 
gradient methods) have heavy mathematical models which may not be suitable 
for ISAGON networks, since ISAGON networks will be significantly dynamic 
and complex. In AI-enabled intelligent ISAGON networks, network parameters 
and architectures can be optimized through AI techniques, instead of traditional 
tedious computation. AI techniques provide the best opportunity to train auto-
learning models to realize network optimization for ISAGON wireless networks, 
allowing providers or operators to optimize the network parameters, resources, 
or architectures to better adapt services for devices, making ISAGON networks 
intelligent, agile, and adapting. For instance, deep learning can enable SDN/NFV 
into an intelligent network architecture with fast learning, quick adaptation, and 
self-healing, which is capable of quickly optimizing network parameters and 
architectures to achieve intelligent softwarization, cloudization, virtualization, and 
slicing. 

Decision-making is an important cognitive task that enables massive agents 
to intelligently reason, plan, and choose the most suitable decisions to meet the 
high-quality service requirements. In decision-making, each agent simultaneously 
attempts to obtain the new knowledge of other machines (called “exploration”) and 
selects the global actions with the highest benefit based on existing knowledge 
(called “exploitation”). The objective of decision-making is common in ISAGON 
networks, e.g., selecting the optimal precoding variables in mmWave or THz 
transceiver systems, choosing the suitable routing strategy for dynamic ISAGON, 
and selecting the flexible spectrum management framework for massive multi-
access scenario; all these decision-making issues can be effectively achieved by 
using AI techniques (e.g., MDP, game theory, RL, and optimization theory). 

Smart Application Layer The main responsibilities of this layer are to deliver 
application-specific services to the human beings according to their colorful require-
ments and to evaluate the provisioned services before feedbacking the evaluation 
results to the intelligence process. Intelligent programming and management can 
be achieved by the impetus of AI to support various high-level smart applications, 
such as automated services, smart city, smart industry, smart transportation, smart 
grid, and smart health and to handle global management relevant to all smart-
type applications. All activities of smart devices, terminals, and infrastructures in 
ISAGON networks are managed by the smart application layer through the AI 
techniques to realize network self-organization ability.
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Another objective of this layer is to evaluate the service performance, where 
lots of considerations and factors can be involved, such as QoS, QoE, quality 
of collected data, and quality of learned knowledge. At the same time, the cost 
dimension metric in terms of resource efficiency is required to be taken into account, 
such as spectrum utilization efficiency, computational efficiency, energy efficiency, 
and storage efficiency. All the abovementioned evaluation metrics can be utilized 
to improve intelligent resource management, automatic network slicing, and smart 
service provisioning. 

1.3.2 AI Techniques for Maritime Communication Networks 

In this section, we elaborate how the AI techniques grant preliminary intelligence 
for maritime communication networks in terms of AI-empowered mobile edge 
computing, intelligent mobility and handover management, and smart spectrum 
management. 

AI-Empowered Mobile Edge Computing MEC will be an important enabling 
technology for the emerging ISAGON networks, where it provides computing, 
management, and analytics facilities inside RAN or SDN in close proximity to var-
ious devices. In MEC, the decision-making optimization, knowledge discovery, and 
pattern learning are sophisticated due to the multidimensional, randomly uncertain, 
and dynamic characteristics. Hence, traditional algorithms (e.g., Lagrangian duality) 
may face a limitation in such complex networks. AI techniques can extract valuable 
information from collected data, learning and supporting different functions for 
optimization, prediction, and decision in MEC. Figure 1.8 shows the framework of 
AI-empowered mobile edge computing, which consists of central cloud computing 
and edge computing. 

In edge computing servers, due to the limited capability, lightweight AI algo-
rithms can be utilized to provide smart applications for edge scenarios (e.g., 
transportation and agriculture), as shown in Fig. 1.8b. For example, RL-based edge 
computing resource management is a model-free scheme which does not need 
historical knowledge and can be used to learn the environment dynamics and 
make suitable control decisions in real time. In the RL framework, at each step, 
after obtaining the state (e.g., device mobility, requirement dynamics, and resource 
condition) by interacting with environments, the possible resource management 
solutions (e.g., energy management, resource allocation, and task scheduling) are 
contained into the set of possible actions. Each RL agent (e.g., device or service 
center) selects the best action from a set of possible actions or chooses one action 
randomly to maximize its reward, where the reward can be determined by data rate, 
latency, reliability, and so on. 

In the central cloud with powerful computation capability, complex centralized 
large-scale AI algorithms can be employed to provide various learning functions, 
as shown in Fig. 1.8a. For instance, as service applications in MEC networks are
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Fig. 1.8 The framework of AI-empowered MEC 

diverse and dynamic, AI-based classification can be used to efficiently customize 
traffic flow decision for various service features. In addition, MEC server association 
can be obtained by AI-based cluster instead of individual decision, which will be 
more effective in reducing the number of participants. A central cloud server may 
receive massive data from edge computing servers and the data need to be trained to 
automatically extract features and discover knowledge. In this case, deep learning 
can be adopted to train computational models to achieve service recognition, traffic 
and behavior prediction, security detection, and so on. Moreover, in complex and 
dynamic MEC, the mapping between resource management decisions and the effect 
on the physical environments is not easy to be analytically defined. DRL can be 
adopted to search the optimal resource management policy under high-dimensional 
observation spaces. Experience replay is also adopted in DRL to utilize the historical 
knowledge to improve learning efficiency and accuracy, allowing the MEC to 
support high-quality services for edge devices. 

Intelligent Mobility and Handover Management Mobility and handover man-
agement are probably the two most challenging issues of ISAGON networks, since 
ISAGON networks are highly dynamic, multilayer, and high dimensional, leading to 
frequent handovers. AI techniques can be adopted to intelligently achieve mobility
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Fig. 1.9 DRL in the context of mobility and handover management 

prediction and optimal handover solutions to guarantee communication connectivity 
[61]. 

For example, UAV communications will be integrated into ISAGON networks, 
and the high-speed mobility of UAVs may lead to frequent handovers. In addition, 
the diverse service requirements in terms of high data rate, high reliability, and low 
latency increase the difficulty in processing efficient handover. At the same time, the 
high mobility of devices and UAVs results in uncertainties of their locations. One 
of the AI techniques, namely, DRL (DRL combines DL with RL to learn itself from 
experience), is capable of solving complex decision-making tasks, which learns 
to optimize the handover strategies in real time by exhibiting dynamic temporal 
mobility behaviors of devices or UAVs in an online manner while minimizing the 
transmission latency and guaranteeing reliable wireless connectivity [61]. Figure 1.9 
shows the context of intelligent mobility and handover management based on 
DRL for UAV-enabled networks, where each UAV can be regarded as a learning 
agent to learn management policy by interacting with its environments. Each agent 
senses the environment states (e.g., link quality, current location, and velocity) and 
discovers the most suitable actions (e.g., mobility and handover parameters) to 
obtain the maximal reward, where the reward can be determined by communication 
connectivity, latency, capacity, and so on. In the DRL framework, UAVs can learn 
how to move and hand over automatically and robustly, how to reduce the latency 
and the handover failure probability, and finally, how to provide better services for 
ground devices. 

ISAGON networks need to meet high-speed mobility and delay-sensitive require-
ments of vehicles in large-scale vehicular networks, so efficient mobility man-
agement is a key evaluation to satisfy reliability, continuity, and low latency 
requirements of vehicular communications. Deep learning (such as RNN and 
ANN)-based predictive mobility management and fuzzy Q-learning-based handover 
parameter optimization can learn the mobility patterns of high-speed vehicular 
users, which can effectively avoid frequent handovers, handover failures, or connec-
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tivity failures [61]. In addition, LSTM is a powerful AI tool for solving handover 
problems, as it exploits both the previous and future mobility contexts of vehicles 
for learning a sequence of future time-dependent movement states and predicts 
vehicles’ trajectories to optimize handover parameters to avoid frequent handovers. 

1.4 Major Contributions and Structural Arrangements 

This book investigates RL-based secure and reliable maritime communications 
which provide a broad coverage of the maritime wireless communication issues, 
such as reliability, security, resource management, and privacy protection. This book 
consists of four rigorously refereed research topics as follows. 

Chapter 2 presents the system model and problem formulation of IRS-aided 
maritime wireless communications. The RL-based solution and performance evalu-
ations are also provided. 

Chapter 3 mainly introduces the related works and challenges of privacy 
protection during the offloading process in maritime scenarios. In addition, we 
propose an RL-based privacy-aware offloading scheme to enable IoT devices to 
protect both the user location and usage pattern privacy. 

Chapter 4 proposes an RL-based resource management algorithm for ultra-
reliable low-latency maritime communications. The algorithm design and simula-
tion results are provided in this chapter. 

Chapter 5 mainly introduces the related works and challenges of location 
privacy protection in the location-based service system. In addition, we propose 
an RL-based-sensitive semantic location privacy protection scheme. This scheme 
uses differential privacy technique to randomize the released vehicle locations 
and adaptively selects the perturbation policy to improve the privacy protection 
performance. 

Finally, we draw conclusions of this book in Chap. 6 and identify the future 
research directions. 
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Chapter 2 
Learning-Based Intelligent Reflecting 
Surface-Aided Secure Maritime 
Communications 

Physical layer security (PLS) has attracted increasing attention as an alternative 
to cryptography-based techniques for maritime wireless communications [1]. For 
instance, secure communication services in [1, 2] exploit the wireless channel 
features to address eavesdropping without relying on shared secret keys. So 
far, a variety of approaches have been reported to improve security in wireless 
communication systems, which can be used in maritime wireless communications, 
e.g., cooperative relaying strategies [3, 4], artificial noise-assisted beamforming 
[5, 6], and cooperative jamming [7, 8]. However, employing a large number of 
antennas and relays in PLS systems incurs excessive hardware costs and high 
system complexity. Moreover, cooperative jamming and transmitting artificial noise 
require extra transmit power to guarantee transmission, and thus raise challenges to 
implement in maritime wireless communication systems. 

To tackle these challenges of the existing approaches in [3–8], a new paradigm, 
called intelligent reflecting surface (IRS) [9–13], has been proposed as a promising 
technique to increase spectrum efficiency and energy efficiency and enhance secrecy 
rate in the 5G and beyond wireless communication systems. In particular, IRS 
is a uniform planar array consisting of low-cost passive reflecting elements, and 
each IRS element adaptively adjusts its reflection amplitude and/or phase to control 
the strength and direction of the electromagnetic wave. Hence, IRS is capable of 
enhancing and/or weakening the reflected signals at different users [3]. The reflected 
signal by IRS can increase the received signal at legitimate users while suppressing 
the signal at the eavesdropper ship [9–13]. Based on the innovative studies devoted 
to performance optimization for IRS-aided secure communications [14–25], we 
discuss the RL-based IRS-aided secure maritime wireless communications against 
eavesdropping in this chapter. 
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2.1 Related Work 

Initial studies on IRS-aided secure communication systems have been reported in 
[14–17], which assume that a simple system model with only a single-antenna 
legitimate user and a single-antenna eavesdropper ship. In particular, in [14] and 
[15], alternative optimization (AO) is applied to jointly optimize the transmit 
beamforming vector at the BS and the phase elements at the IRS to maximize the 
secrecy rate for the single-user IRS-assisted wireless communication systems. 

In recent years, both AO and semidefinite programming (SDP) relaxation is 
applied in the power allocation and the IRS reflecting beamforming in [18] to save  
the transmit power at the AP subject to the secrecy rate constraint. In addition, 
the secure IRS transmission framework is studied in [19] to reduce the transmit 
power for rank-one and full-rank AP-IRS links, and a closed-form expression of the 
beamforming matrix is derived. 

Based on the secure communication against single eavesdropping in [14– 
19], secure communications against multiple eavesdroppers were investigated in 
[20–22]. For instance, a minimum-secrecy-rate maximization-based secure IRS-
aided multiuser multiple-input single-output (MISO) communication system against 
multiple eavesdroppers is presented in [20]. However, the simplified system model 
in the optimization problem sometimes degrades the performance. 

In addition, in [23] and [24], an IRS-aided MIMO system applies the suboptimal 
secrecy rate maximization to choose the beamforming policy against eavesdroppers 
with multiple antennas and the minorization-maximization (MM) algorithm to 
jointly optimize the AP beamforming and the IRS phase shift coefficients. 

Moreover, the authors in [22] and [25] employed the artificial noise-aided 
beamforming for IRS-aided MISO communication systems to improve the secrecy 
rate. An AO-based solution was applied to jointly optimize the AP’s beamforming, 
artificial noise interference vector, and IRS’s reflecting beamforming to maximize 
the secrecy rate. Existing studies in [14–20, 22–25] assume perfect channel state 
information (CSI) of legitimate users or eavesdropper ship available at the AP. The 
assumption is not practical in most dynamic maritime communications, because 
perfect CSI is challenging to obtain at the AP and the estimated CSI usually has 
a large error in the time-varying channel due to the transmission and processing 
delay, as well as high mobility of users. Hence, in [21], an IRS-aided secure 
communication optimization problem with outdated CSI of the eavesdropping 
channels is investigated, and a robust solution against multiple eavesdropper ships 
is proposed. 

The above studies presented in [14–25] mainly applied the traditional opti-
mization techniques, e.g., AO, SDP, or MM algorithms, to optimize the AP’s 
beamforming and the IRS’s reflecting beamforming for secure communications, 
which suffer from severe performance degradation in large-scale systems. Inspired 
by the recent advances of artificial intelligence, several works attempted to utilize 
AI algorithms to optimize IRS’s reflecting beamforming [26–29]. In particular, DL 
has been exploited to search the IRS reflection matrices that maximize the achiev-
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able system rate, and simulation results demonstrate the significant performance 
gain over conventional optimization algorithms. In [28] and [29], the DRL-based 
approach that addresses the non-convex optimization problem of the phase shifts at 
the IRS is proposed. 

However, the works [26–29] aim to maximize the system achievable rate of a 
single ship, but the multiple-ship secure communication with imperfect CSI has to 
be further explored. In [30] and [31], an RL-based smart AP beamforming aided 
by IRS against an eavesdropper ship in complex environments is proposed, but the 
IRS’s reflecting beamforming has to be jointly optimized with the AP’s transmit 
beamforming. 

In this chapter, we investigate an IRS-aided secure communication system to 
maximize the secrecy rate of multiple legitimate ships against multiple eavesdropper 
ships in time-varying maritime wireless channels and guarantee the QoS require-
ments of legitimate ships. A novel DRL-based secure beamforming approach is 
presented to jointly optimize the AP beamforming matrix, and the IRS reflecting 
beamforming matrix (reflection phases) in dynamic environments, with major 
contributions summarized as follows: 

• The physical secure communication based on IRS with multiple eavesdropper 
ships is investigated under the time-varying channel states. In addition, we 
formulate a joint AP’s transmit beamforming and IRS’s reflecting beamforming 
optimization problem to maximize the system secrecy rate and satisfy the QoS 
requirements of legitimate ships. 

• An RL-based intelligent beamforming framework is presented to achieve the 
optimal AP’s beamforming and the IRS’s reflecting beamforming, where the 
central controller optimizes the beamforming policy according to the instanta-
neous observations from the dynamic environment. Specifically, a QoS-aware 
reward function is constructed to cover both the secrecy rate and ships’ QoS 
requirements into the learning process. 

• A DRL-based secure beamforming approach is proposed to exploit the informa-
tion of complex structure of the beamforming policy domain and improve the 
learning efficiency and secrecy performance. This approach designs a modified 
PDS learning structure to trace the channel dynamic against channel uncertainty 
and prioritizes experience replay (PER) to enhance the learning efficiency. 

• Simulation results are discussed to demonstrate the effectiveness of the deep 
learning-based secure beamforming approach in terms of the secrecy rate and 
the QoS satisfaction, compared with the approach [14] in time-varying channel 
conditions. 

The rest of this chapter is organized as follows. Section 2.2 presents the system 
model and problem formulation. The optimization problem is formulated as an 
RL problem in Sect. 2.3. Section 2.4 proposes a deep PDS-PER-based secure 
beamforming approach. Section 2.5 provides simulation results, and Sect. 2.6 
concludes the chapter. 

Notations: In this chapter, vectors and matrices are represented by boldface 
lowercase and uppercase letters, respectively. .Tr(·), . (·)∗, and .(·)H denote the trace,
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the conjugate, and the conjugate transpose operations, respectively. .| · | and . || · ||
stand for the absolute value of a scalar and the Euclidean norm of a vector or matrix, 
respectively. .E[·] denotes the expectation operation. .CM×N represents the space of 
complex-valued matrices. 

2.2 System Model and Problem Formulation 

In an IRS-aided secure maritime wireless communication system, as shown in 
Fig. 2.1, the AP at one ship is equipped with N antennas to serve K single-antenna 
legitimate ships in the presence of M single-antenna eavesdropper ship. An IRS 
with L reflecting elements assists the secure communication from the AP to the 
legitimate ships and is equipped with a controller to coordinate with the AP. 

For the ease of practical implementation, the IRS is assumed to have the maximal 
reflection without power loss, and the reflecting elements are designed to maximize 
the desired signal power to the legitimate ships [13–23]. In addition, unauthorized 
eavesdropper ships aim to eavesdrop the data streams from the legitimate ships, 
and the ships are assumed to use the multiple access mechanism to avoid network 
collision [5, 6, 18–21]. Hence, the IRS chooses the reflecting beamforming to 
improve the achievable secrecy rate at the legitimate ships and suppress the 
wiretapped data rate at the eavesdropper ship. 

2.2.1 System Model 

In the IRS-aided secure maritime wireless communication system, let . K =
{1, 2, . . . , K}, .M = {1, 2, . . . , M}, and .L = {1, 2, . . . , L} denote the legitimate 

Fig. 2.1 IRS-aided secure maritime wireless communication under multiple eavesdropper ships
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ship set, the eavesdropper ship set, and the IRS reflecting element set, respectively. 
Let .Hbr ∈ C

L×N , .hH
bu,k ∈ C

1×N , .hH
ru,k ∈ C

1×L, .hH
be,m ∈ C

1×N , and . hH
re,m ∈ C

1×L

correspond to the channel coefficients from the AP to the IRS, from the AP to the k-
th legitimate ship, from the IRS to the k-th legitimate ship, from the AP to the m-th 
eavesdropper ship, and from the IRS to the m-th eavesdropper ship, respectively. 

Let .G = diag(χ1e
jθ1 , χ2e

jθ2 , . . . , χLejθL) denote the reflection coefficient 
matrix associated with effective phase shifts at the IRS, where .χl ∈ [0, 1] and 
.θl ∈ [0, 2π ] represent the amplitude reflection factor and the phase shift coefficient 
on the combined transmitted signal, respectively. Each phase shift is designed to 
achieve full reflection, and thus we assume .χl = 1, .∀l ∈ L in this chapter. 

The AP is assumed to use the beamforming vector for the k-th legitimate ship 
denoted as .vk ∈ C

N×1 and applies the continuous linear precoding [11–16, 23]. 
Thus, the transmitted signal for all legitimate ships at the AP is given by . x =∑K

k=1 vksk , where . sk is the transmitted symbol for the k-th legitimate ship and can 
be modeled as independent and identically distributed (i.i.d.) random variables with 
zero mean and unit variance [11–16, 23], and .sk ∼ C N (0, 1). The total transmit 
power at the AP is subject to the maximum power constraint, 

.E[∣∣|x|∣∣2] = Tr(VVH ) ≤ Pmax, (2.1) 

where .V Δ= [v1, v2, . . . , vK ] ∈ C
M×K , and .Pmax is the maximum AP transmit 

power. 
If the AP transmits a secret message to the k-th legitimate ship, the legitimate 

ship will receive the signal from the AP and the reflected signal from the IRS. 
Accordingly, the received signal at legitimate ship k can be given by 

. 

yk =
(
hH
ru,kGHbr + hH

bu,k

)
vksk

︸ ︷︷ ︸
desired signal

+
∑

i∈K ,i �=k

(
hH
ru,kGHbr + hH

bu,k

)
vi si

︸ ︷︷ ︸
inter−user interference

+nk,

(2.2) 
where . nk denotes the additive complex Gaussian noise (AWGN) with zero mean and 
variance . δ2k at the k-th MU. In (2.2), in addition to the AP signal, each legitimate 
mobile device also receives inter-user interference (IUI). The signal received by 
eavesdropper m is given by 

.
ym =

(
hH
re,mGHbr + hH

be,m

) ∑

k∈K

vksk + nm, (2.3) 

where . nm is the AWGN of eavesdropper m with variance . δ2m. 
In practical maritime communication systems, neither the AP nor the IRS can 

obtain perfect CSI [9, 21], due to the transmission and processing delay, as well as 
the ship mobility. The estimation error and latency of CSI employed in beamforming 
results in substantial performance loss [21].
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Let T denote the delay between the estimated CSI and the real CSI. In other 
words, upon receiving the pilot sequence from the legitimate ship at the time slot t , 
the AP uses the channel estimation results in the transmission to the legitimate ships 
at time slot .t + T . Hence, the relation between the estimated channel vector . h(t)

and the real channel vector .h(t + T ) is modeled as 

.h(t + T ) = ρh(t) +
√

1 − ρ2ĥ(t + T ), (2.4) 

where each element in .ĥ(t + T ) is an independent identically distributed complex 
Gaussian random variable with N(0, 1). .ρ ∈ [0, 1] as the autocorrelation function 
(outdated CSI coefficient) of the channel gain .h(t) is given by 

. ρ = J0(2πpifDT ), (2.5) 

where .J0(·) is the zero-th order Bessel function of the first kind. . fD is the Doppler 
spread, which is generally a function of the velocity (. υ) of the transceivers, the 
carrier frequency (. fc), and the speed of light . (c), i.e., .fD = υfc/c. 

As the outdated CSI introduces the channel uncertainty, the actual channel 
coefficients can be rewritten as 

.

hbu,k = h̃bu,k + Δhbu,k, ∀k ∈ K

hru,k = h̃ru,k + Δhru,k, ∀k ∈ K

hbe,m = h̃be,m + Δhbe,m, ∀m ∈ M

hre,m = h̃re,m + Δhre,m, ∀m ∈ M ,

(2.6) 

where .h̃bu,k , .h̃ru,k , .h̃be,m, and .h̃re,m denote the estimated channel vectors. .Δhbu,k , 
.Δhru,k , .Δhbe,m, and .Δhre,m are the corresponding channel error vectors. 

The channel error vectors of each legitimate ship and each eavesdropper are 
bounded with respect to the Euclidean norm by using norm-bounded error model, 
i.e., 

.
∣
∣|Δhi |

∣
∣2 ≤ (ςi)

2, i = bu, ru, be, and re, (2.7) 

where . ςbu, . ςru, . ςbe, and . ςre refer to the radii of the deterministically bounded error 
regions. 

Based on the channel uncertainty model in Eq. (2.7), the achievable rate of the 
k-th legitimate ship is given by 

. R
u
k = log2

⎛

⎜
⎜
⎝1 +

∣
∣
∣(hH

ru,kGHbr + hH
bu,k)vk

∣
∣
∣
2

| ∑

i∈K ,i �=k

(hH
ru,kGHbr + hH

bu,k)vi |2 + δ2k

⎞

⎟
⎟
⎠ . (2.8)
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If the m-th eavesdropper attempts to obtain the signal of the k-th legitimate ship, 
the resulting achievable rate is given by 

. Re
m,k = log2

⎛

⎝1 +
∣
∣
∣(hH

re,mGHbr+hH
be,m)vk

∣
∣
∣
2

| ∑

i∈K ,i �=k

(hH
re,mGHbr+hH

be,m)vi |2+δ2m

⎞

⎠ . (2.9) 

Since each eavesdropper can eavesdrop any signals from the K legitimate ships, 
according to [14–25], the achievable secrecy rate at the k-th legitimate ship is given 
by 

. Rsec
k =

[

Ru
k − max∀m

Re
m,k

]+
, (2.10) 

where .[z]+ = max(0, z). 

2.2.2 Problem Formulation 

Our objective is to jointly optimize the AP beamforming matrix . V and the IRS 
reflecting beamforming matrix . G from the beamforming codebook . F to maximize 
the worst-case secrecy rate with the data rate constraints, the AP transmit power 
constraint, and the IRS reflecting unit constraint. As such, the optimization problem 
is formulated as 

.

max
V,G

min{Δh}
∑

k∈K
Rsec

k

s.t. (a) : Rsec
k ≥ R

sec,min
k , ∀k

(b) : (Ru
k ) ≥ Rmin

k , ∀k

(c) : Tr
(
VVH

) ≤ Pmax

(d) : |χejθl | = 1, 0 ≤ θl ≤ 2π, ∀l,

(2.11) 

where .R
sec ,min
k is the target secrecy rate of the k-th legitimate ship and .Rmin

k denotes 
its target data rate. 

The constraints in (2.11a) and (2.11b) represent the worst-case secrecy rate and 
data rate requirements, respectively. The constraint in (2.11c) is set to satisfy the 
AP’s maximum power constraint. The constraint in (2.11d) is the constraint of the 
IRS reflecting elements. Obviously, it is challenging to obtain an optimal solution to 
the optimization (2.11), since the objective function in (2.11) is non-concave with 
respect to either . V or . G, and the coupling of the optimization variables (. V and 
. G) and the unit-norm constraints in (2.11d) are non-convex. In addition, the robust 
beamforming aims to maximize the worst-case achievable secrecy rate of the system 
and guarantee the worst-case constraints.
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2.3 Problem Transformation Based on RL 

The optimization problem in (2.11) is difficult to address as it is non-convex and 
realistic IRS-aided secure communication systems have time-varying capabilities of 
legitimate ships, channel quality, and service applications. Moreover, the solution to 
the problem in (2.11) sometimes converges to a suboptimal solution with greedy-
search performance due to the ignorance of the state correlation and the long-term 
benefit. Hence, it is generally infeasible to apply the traditional optimization 
techniques, such as AO, SDP, and MM, to achieve an effective secure beamforming 
policy in maritime communication environments. 

Model-free RL is a dynamic programming tool which can be adopted to solve the 
decision-making problem by learning the optimal solution in dynamic environments 
[32]. Hence, we model the secure beamforming optimization problem as an RL 
problem. In RL, the IRS-aided secure communication system is treated as an 
environment, and the central controller at the AP is a learning agent, with key 
learning elements defined as follows. 

State Space Let . S denote the state space. The state .s ∈ S includes the channel 
states of all the ships, the secrecy rate, the transmission data rate of the previous 
time slot, and the QoS satisfaction level and is defined as 

. s = {{hk}k∈K , {hm}m∈M , {Rsec
k }

k∈K , {Rk}k∈K , {QoSk}k∈K

}
, (2.12) 

where . hk and . hm are the channel coefficients of the k-th legitimate ship and m-th 
eavesdropper, respectively. .QoSk is the feedback QoS satisfaction level of the k-th 
MU, consisting of both the minimum secrecy rate satisfaction level in (2.11a) and 
the minimum data rate satisfaction level in (2.11b). 

Action Space Let . A denote the action space. According to the observed state . s, 
the central controller chooses the beamforming vector .{vk}k∈K at the AP and the 
IRS reflecting beamforming coefficient or phase shift .{θl}l∈L at the IRS with the 
action .a ∈ A given by 

. a = {{vk}k∈K , {θl}l∈L

}
. (2.13) 

Transition Probability Let .T (s′|s, a) be transition probability that represents the 
probability of transitioning to a new state .s′ ∈ S , given the action . a executed in the 
state . s. 

Reward Function In RL, the reward acts as a signal for the controller, the learning 
agent, to evaluate the performance of the secure beamforming policy at the current 
state. The system performance will be enhanced if the reward function at each 
learning step correlates with the desired objective. Thus, it is important to design 
an efficient reward function to improve the legitimate ships’ QoS satisfaction levels. 

The reward function that represents the optimization objective consists of the 
system secrecy rate of all legitimate ships and the level to guarantee the QoS
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requirements. Thus, the QoS-aware reward function is given by 

.

r =
∑

k∈K

Rsec
k

︸ ︷︷ ︸
part 1

−
∑

k∈K

μ1p
sec
k

︸ ︷︷ ︸
part 2

−
∑

k∈K

μ2p
u
k

︸ ︷︷ ︸
part 3

,

(2.14) 

where 

. psec
k =

{
1, if Rsec

k < R
sec ,min
k ,∀k ∈ K

0, otherwise,
(2.15) 

. pu
k =

{
1, if Rk < Rmin

k ,∀k ∈ K

0, otherwise.
(2.16) 

In (2.14), the first term represents the immediate utility (system secrecy rate), and 
the second and third terms are the cost functions in terms of the unsatisfied secrecy 
rate requirement and the unsatisfied minimum rate requirement, respectively. The 
coefficients . μ1 and . μ2 are the positive constants of the latter two terms, respectively, 
as a trade-off between the utility and cost [33–35]. 

The goals of (2.15) and (2.16) impose the QoS satisfaction levels of both the 
secrecy rate and the minimum data rate requirements, respectively. If the QoS 
requirement is satisfied in the current time slot, then .psec

k = 0 or .pu
k = 0, indicating 

no punishment of the reward function due to the successful QoS guarantees. 
The learning agent aims to search for an optimal policy . π∗ (. π is a mapping from 

states in . S to the probabilities of choosing an action in . A : .π(s) : S → A ) that 
maximizes the long-term expected discounted reward. The cumulative discounted 
reward function can be defined as 

. Ut =
∞∑

τ=0

γτ rt+τ+1, (2.17) 

where .γ ∈ (0, 1] denotes the discount factor. Under a certain policy . π , the state-
action function of the agent with a state-action pair (s, a) is given by 

. Qπ(st , at ) = Eπ [Ut |st = s, at = a] . (2.18) 

The Q-table is updated based on the Bellman equation as follows: 

.

Qπ(st , at ) = Eπ

[

rt + γ
∑

st+1∈S
T (st+1|st , at )

∑

at+1∈A
π(st+1, at+1)Q

π(st+1, at+1)

]

.

(2.19)
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The optimal action-value function in (2.17) is equivalent to the Bellman optimal-
ity equation given by 

. Q
∗(st , at ) = rt + γ max

at+1
Q∗(st+1, at+1), (2.20) 

and the state-value function is achieved as follows: 

. V (st ) = max
at∈A

Q(st , at ). (2.21) 

In addition, the Q-value is updated as follows: 

. Qt+1(st , at ) = (1 − αt )Qt (st , at ) + αt [rt + γVt (st+1)] , (2.22) 

where .αt ∈ (0, 1] is the learning rate. Based on a lookup Q-table .Q(s, a), the  
agent selects actions following the greedy policy in each learning step [32]. More 
specifically, the action with the maximum Q-table value is chosen with probability 
.1−ε, whereas a random action is picked with probability . ε to avoid achieving stuck 
at nonoptimal policies [32]. Once the optimal Q-function .Q∗(s, a) is achieved, the 
optimal policy is given by 

. π
∗(s, a) = argmax

a∈A
Q∗(s, a). (2.23) 

2.4 Deep PDS-PER Learning-Based Secure Beamforming 

The secure beamforming policy discussed in Sect. 2.3 can be numerically achieved 
by using Q-Learning, policy gradient, and deep Q-network (DQN) algorithms [32]. 
However, Q-learning is not an efficient learning algorithm because it cannot deal 
with continuous state space and it has slow learning convergence speed. The policy 
gradient algorithm has the ability to handle continuous state-action spaces, but 
it may converge to a suboptimal solution. In addition, it is intractable for Q-
learning and policy gradient algorithms to solve the optimization problem under 
high-dimensional input state space. Although DQN performs well in policy learning 
under high-dimensional state space, its nonlinear Q-function estimator may lead to 
unstable learning process. 

Considering the fact that the IRS-aided secure communication system has high-
dimensional and high-dynamical characteristics according to the system state that 
is defined in (2.12) and uncertain CSI that is shown in (2.4) and (2.6), we propose a 
deep PDS-PER learning-based secure beamforming approach, as shown in Fig. 2.2, 
where PDS learning and PER mechanisms are utilized to enable the learning agent 
to learn and adapt faster in dynamic environments. In detail, the agent utilizes 
the observed state (i.e., CSI, previous secrecy rate, QoS satisfaction level) and the 
feedback reward from the environment as well as the historical experience from the
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Fig. 2.2 Deep PDS-PER learning-based beamforming for IRS-aided secure communications 

replay buffer to train its learning model. After that, the agent employs the trained 
model to make decision (beamforming matrices . V and . G) based on its learned 
policy. The procedures of the proposed learning-based secure beamforming are 
provided in the following subchapters. 

Note that the policy optimization (in terms of the AP’s beamforming matrix 
. V and the RIS’s reflecting beamforming matrix . G) in the IRS-aided secure 
communication system can be performed at the AP and that the optimized reflecting 
beamforming matrix can be transferred in an offline manner to the IRS by the 
controller to adjust the corresponding reflecting elements accordingly. 

2.4.1 Proposed Deep PDS-PER Learning 

As discussed in Chap. 2, CSI is unlikely to be known accurately due to the 
transmission delay, processing delay, and mobility of ships. At the same time, 
beamforming with outdated CSI will decrease the secrecy capacity, and therefore, 
a fast optimization solution needs to be designed to reduce processing delay. PDS 
learning as a well-known algorithm has been used to improve the learning speed 
by exploiting extra partial information (e.g., the previous location information and 
the mobility velocity of legitimate ships or eavesdropper ship that affect the channel 
coefficients) and search for an optimized policy in dynamic environments [33–35]. 
Motivated by this, we devise a modified deep PDS learning to trace the environment 
dynamic characteristics and then adjust the transmit beamforming at the AP and 
the reflecting elements at the IRS accordingly, which can speed up the learning 
efficiency in dynamic environments.
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PDS learning can be defined as an immediate system state .s̃t ∈ S that happens 
after executing an action . at at the current state . st and before the next time state .st+1. 
In detail, the PDS learning agent takes an action . at at state . st and then will receive a 
known reward .rk(st , at ) from the environment before transitioning the current state 
. st to the PDS state . ̃st with a known transition probability .T k(s̃t |st , at ). After that, 
the PDS state further transforms to the next state .st+1 with an unknown transition 
probability .T u(st+1|s̃t , at ) and an unknown reward .ru(st , at ), which corresponds 
to the wireless CSI dynamics. In PDS learning, .st+1 is independent of . st given the 
PDS state . ̃st , and the reward .r(st , at ) is decomposed into the sum of .rk(st , at ) and 
.ru(st , at ) at . ̃st and .st+1, respectively. Mathematically, the state transition probability 
in PDS learning from . st to .st+1 admits 

. T (st+1|st , at ) =
∑

s̃t
T u(st+1|s̃t , at )T

k(s̃t |st , at ). (2.24) 

Moreover, it can be verified that the reward of the current state-action pair . (st , at )

is expressed by 

. r(st , at ) = rk(st , at ) +
∑

s̃t
T k(s̃t |st , at )r

u(s̃t , at ). (2.25) 

At the time slot t , the PDS action-value function .Q̃(s̃t , at ) of the current PDS 
state-action pair .(s̃t , at ) is defined as 

.
Q̃(s̃t , at ) = ru(s̃t , at ) + γ

∑

st+1

T u(st+1|s̃t , at )V (st+1). (2.26) 

By employing the extra information (the known transition probability 
.T k(s̃t |st , at ) and known reward .rk(st , at )), the Q-function .Q̂(st , at ) in PDS 
learning can be further expanded under all state-action pairs .(s, a), which is 
expressed by 

. Q̂(st , at ) = rk(st , at ) +
∑

s̃t
T k(s̃t |st , at )Q̃(s̃t , at ). (2.27) 

The state-value function in PDS learning is defined by 

. V̂t (st ) =
∑

st+1
T k(st+1|st , at )Ṽ (st+1), (2.28) 

where .Ṽt (st+1) = max
at∈A

Q̃t (s̃t+1, at ). At each time slot, the PDS action-value 

function .Q̃(s̃t , at ) is updated by 

. Q̃
t+1(s̃t , at ) = (1 − αt )Q̃t (s̃t , at ) + αt

(
ru(s̃t , at ) + γ V̂t (st+1)

)
. (2.29)
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After updating .Q̃
t+1(s̃t , at ), the action-value function .Q̂

t+1(st , at ) can be updated 
by plugging .Q̃

t+1(s̃t , at ) into (2.27). 
After presenting in the above-modified PDS learning, a deep PDS learning 

algorithm is presented. In the presented learning algorithm, the traditional DQN is 
adopted to estimate the action-value Q-function .Q(s, a) by using .Q(s, a; θ), where 
. θ denotes the DNN parameter. The objective of DQN is to minimize the following 
loss function at each time slot: 

.

L (θt ) =
[(

V̂t (st ; θt ) − Q̂(st , at ; θt )
)2] = [(

r(st , at )

+γ max
at+1∈A

Q̂t (st+1, at+1; θt ) − Q̂(st , at ; θt )
)2

]

,
(2.30) 

where .V̂t (st ; θt ) = r(st , at ) + γ max
at+1∈A

Q̂t (st+1, at+1; θt ) is the target value. The 

error between .V̂t (st ; θt ) and the estimated value .Q̂(st , at ; θt ) is usually called 
temporal difference (TD) error, which is expressed by 

. δt = V̂t (st ; θt ) − Q̂(st , at ; θt ). (2.31) 

The DNN parameter . θ is achieved by taking the partial differentiation of the 
objective function (2.30) with respect to . θ , which is given by 

. θt+1 = θt + β∇L (θt ), (2.32) 

where . β is the learning rate of . θ and .∇(·) denotes the first-order partial derivative. 
Accordingly, the policy .π̂t (s) of the modified deep PDS learning algorithm is 

given by 

. π̂t (s) = arg max
at∈A

Q̂(st , at ; θt ). (2.33) 

Although DQN is capable of performing well in policy learning with contin-
uous and high-dimensional state space, DNN may learn ineffectively and cause 
divergence owing to the nonstationary targets and correlations between samples. 
Experience replay is utilized to avoid the divergence of the RL algorithm. However, 
classical DQN uniformly samples each transition .et = 〈st , at , rt , s̃t , st+1〉 from the 
experience replay, which may lead to an uncertain or negative effect on learning 
a better policy. The reason is that different transitions (experience information) in 
the replay buffer have different importance for the learning policy, and sampling 
every transition equally may unavoidably result in inefficient usage of meaningful 
transitions. Therefore, a prioritized experience replay (PER) scheme has been 
presented to address this issue and enhance the sampling efficiency [36, 37], where 
the priority of transition is determined by the values of TD error. In PER, a transition 
with higher absolute TD error has higher priority in the sense that it has more 
aggressive correction for the action-value function.
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In the deep PDS-PER learning algorithm, similar to classical DQN, the agent 
collects and stores each experience .et = 〈st , at , rt , s̃t , st+1〉 into its experience 
replay buffer, and DNN updates the parameter by sampling a minibatch of tuples 
from the replay buffer. So far, PER was adopted only for DRL and Q-learning and 
has never been employed with the PDS learning algorithm to learn the dynamic 
information. In this chapter, we further extend this PER scheme to enable prioritized 
experience replay in the proposed deep PDS-PER learning framework, in order to 
improve the learning convergence rate. 

The probability of sampling transition i (experience i) based on the absolute TD 
error is defined by 

. p(i) =
∣
∣
∣δ(i)

∣
∣
∣
η1

/∑

j ′

∣
∣
∣δ(j ′)

∣
∣
∣
η1

, (2.34) 

where the exponent . η1 weights how legitimate shipch prioritization is used, with 
.η1 = 0 corresponding to being uniform sampling. The transition with higher . p(i)

will be more likely to be replayed from the replay buffer, which is associated 
with very successful attempts by preventing the DNN from being over-fitting. With 
the help of PER, the proposed deep PDS-PER learning algorithm tends to replay 
valuable experience and hence learns more effectively to find the best policy. 

It is worth noting that experiences with high absolute TD error are more 
frequently replayed, which alters the visitation frequency of some experiences and 
hence causes the training process of the DNN prone to diverge. To address this 
problem, importance-sampling (IS) weights are adopted in the calculation of weight 
changes: 

. W(i) = (
D · p(i)

)−η2 , (2.35) 

where D is the size of the experience replay buffer and the parameter . η2 is used to 
adjust the amount of correction used. 

Accordingly, by using the PER scheme into the deep PDS-PER learning, 
the DNN loss function (2.30) and the corresponding parameters are rewritten 
respectively as follows: 

. L (θt ) = 1

H

H∑

i=1

(
WiLi (θt )

)
, (2.36) 

. θt+1 = θt + βδt∇θL (θt ). (2.37) 

The presented deep PDS-PER learning can converge to the optimal . Q̂(st , at )

of the MDP with probability 1 when the learning rate sequence . αt meets the 
following conditions: .αt ∈ [0, 1), .∑∞

t=0 αt = ∞ and .
∑∞

t=0 α2
t < ∞, where the 

aforementioned requirements have been appeared in most of the RL algorithms and
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they are not specific to the proposed deep PDS-PER learning algorithm. The existing 
references [34] and [35] have provided the proof. 

2.4.2 Secure Beamforming Based on Proposed Deep PDS-PER 
Learning 

Similar to most DRL algorithms, our proposed deep PDS-PER learning-based 
secure beamforming approach consists of two stages, i.e., the training stage and 
implementation stage. The training process of the proposed approach is shown 
in Algorithm 1. A central controller at the AP is responsible for collecting 
environment information and making decision for secure beamforming. 

In the training stage, similar to RL-based policy control, the controller initializes 
network parameters and observes the current system state including CSI of all ships, 
the previous predicted secrecy rate, and the transmission data rate. Then, the state 
vector is input into DQN to train the learning model. The .ε-greedy scheme is 
leveraged to balance both the exploration and exploitation, i.e., the action with the 
maximum reward is selected probability 1-. ε according to the current information 
(exploitation, which is known knowledge), while a random action is chosen with 
probability . ε based on the unknown knowledge (i.e., keep trying new actions, hoping 
it brings even higher reward (exploration, which is unknown knowledge)). 

After executing the selected action, the agent receives a reward from the 
environment and observes the state transition from . st to PDS state . ̃st and then to 
the next state .st+1. Then, PDS learning is used to update the PDS action-value 
function .Q̃(s̃t , at ; θt ) and Q-function .Q̂(st , at ; θt ), before collecting and storing the 
transition tuple (also called experience) .et = 〈st , at , rt , s̃t , st+1〉 into the experience 
replay memory buffer . D , which includes the current system state, selected action, 
instantaneous reward, and PDS state along with the next state. The experience in the 
replay buffer is selected by the PER scheme to generate minibatches and they are 
used to train DQN. 

In detail, the priority of each transition .p(i) is calculated by using (34) and then 
get its IS weight .W(i) in (35), where the priorities ensure that high-TD-value (. δ(i)) 
transitions are replayed more frequently. The weight .W(i) is integrated into deep 
PDS learning to update both the loss function .L (θ) and DNN parameter . θ . Once 
DQN converges, the deep PDS-PER learning model is achieved. 

After adequate training in Algorithm 1, the learning model is loaded for the 
implementation stage. During the implementation stage, the controller uses the 
trained learning model to output its selected action a by going through the DNN 
parameter . θ , with the observed state s from the IRS-aided secure communication 
system. Specifically, it chooses an action a, with the maximum value based on the 
trained deep PDS-PER learning model. Afterward, the environment feeds back an 
instantaneous reward and a new system state to the agent. Finally, the beamforming
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Algorithm 1 Deep PDS-PER learning-based secure beamforming 
1: Input: IRS-aided secure communication simulator and QoS requirements of all legitimate 
ships (e.g., minimum secrecy rate and transmission rate). 
2: Initialize: DQN with initial Q-function Q(s, a; θ), parameters θ , learning rate α and β. 
3: Initialize: experience replay buffer D with size D, and minibatch size H . 
4: for each episode =1, 2, . . . ,  N epi do 
5: Observe an initial system state s; 
6: for each time step t=0,  1,  2,  . . . ,  T do 
7: Select action based on the ε-greedy policy at current state st : choose a random action at with 
probability ε; 
8: Otherwise, at = arg max 

at∈A 
Q(st , at ; θt ); 

9: Execute action at , receive an immediate reward rk(st , at ) and observe the state transition 
from st to PDS state s̃t and then to the next state st+1; 
10: Update the reward function r(st , at ) under PDS learning using (2.25); 
11: Update the PDS action-value function Q̃(s̃t , at ; θt ) using (2.29); 
12: Update the Q-function Q̂(st , at ; θt ) using (2.25); 
13: Store PDS experience et = 〈st , at , rt , s̃t , st+1〉 in experience replay buffer D , if  D is full, 
remove least used experience from D ; 
14: for i=  1,  2,  . . . ,  H do 
15: Sample transition i with the probability p(i) using (2.34); 
16: Calculate the absolute TD-error |δ(i)| in (2.31); 
17: Update the corresponding IS weight Wi using (2.35); 
18: Update the priority of transition i based on |δ(i)|; 

19: end for 
20: Update the loss function L (θ) and parameter θ of DQN using (2.36) and (2.37), respectively; 
21: end for 
22: end for 
23: Output: Return the deep PDS-PER learning model. 

matrix . V∗ at the AP and the phase shift matrix . G∗ (reflecting beamforming) at the 
IRS are achieved according to the selected action. 

We would like to point out that the training stage needs a powerful computation 
server which can be performed offline at the AP, while the implementation stage can 
be completed online. The trained learning model requires to be updated only when 
the environment (IRS-aided secure communication system) has experienced great 
changes, mainly depending on the environment dynamics and service requirements. 

2.4.3 Computational Complexity Analysis 

For the training stage, in DNN, let L, . Z0, and . Zl denote the training layers, the size 
of the input layer (which is proportional to the number of states), and the number of 
neurons in the l-th layer, respectively. The computational complexity in each time 
step for the agent is .O(Z0Zl +∑L−1

l=1 ZlZl+1). In the training phase, each minibatch 
has .Nepi episodes with each episode being T time steps, and each trained model is
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completed iteratively until convergence. Hence, the total computational complexity 

in DNN is .O
(
NepiT (Z0Zl + ∑L−1

l=1 ZlZl+1)
)
. The high computational complexity 

of the DNN training phase can be performed offline for a finite number of episodes 
at a centralized powerful unit (such as the AP). 

In our proposed deep PDS-PER learning algorithm, PDS learning and PER 
schemes are utilized to improve the learning efficiency and enhance the convergence 
speed, which requires extra computational complexity. In PDS learning leaning, 
since the set of PDS states is the same as the set of MDP states . S [30–32], 
the computational complexity of the classical DQN algorithm and the deep PDS 
learning algorithm are .O(|S |2 × |A |) and .O(2|S |2 × |A |), respectively. In 
PER, since the relay buffer size is D, the system requires to make both updating 
and sampling .O

(
log2D

)
operations, so the computational complexity of the PER 

scheme is .O
(
log2D

)
. 

According the above analysis, the complexity of the classical DQN algorithm 

is .O
(
INepiT (Z0Zl + ∑L−1

l=1 ZlZl+1) + |S |2 × |A |
)
, while the proposed deep 

PDS-PER learning algorithm is . O
(
INepiT (Z0Zl+ ∑L−1

l=1 ZlZl+1)+2|S |2 × |A |
.+log2D

)
, indicating that the complexity of the proposed algorithm is slightly 

higher than the classical DQN learning algorithm. However, our proposed algorithm 
achieves better performance than that of the classical DQN algorithm, which will be 
shown in the next section. 

2.4.4 Implementation Details of DRL 

This subchapter provides extensive details regarding the generation of training, 
validation, and testing dataset production. 

Generation of Training As shown in Fig. 2.3, K single-antenna legitimate ships 
and M single-antenna eavesdropper ship are randomly located in the . 100m× 100m
half right-hand side rectangular grid plane of Fig. 2.3 (light blue area) in a two-
dimensional x-y rectangular grid plane. The AP and the IRS are located at (0, 0) and 
(100, 100) in meter (m), respectively. The x-y grid has dimensions . 100m × 100m
with a resolution of .2.5m, i.e., a total of 1600 points. 

In the presented IRS-assisted maritime wireless communication system, the 
system beamforming codebook . F includes the AP’s beamforming codebook . FBS
and the IRS’s beamforming codebook .FIRS. Both the AP’s beamforming matrix 
. V and the IRS’s reflecting beamforming matrix . G are picked from the pre-defined 
codebook .FBS and .FIRS, respectively. The data points of sampled channel vector 
and the corresponding reward vector .〈h, r〉 are added into the DNN training dataset 
. D . The sampled channel, . h, is the input to DQN. All the samples are normalized 
by using the normalization scheme to realize a simple per-dataset scaling. After 
training, the selected AP’s beamforming matrix . V and IRS’s beamforming matrix
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Fig. 2.3 Simulation setup 

. G with the highest achievable reward are used to reflect the security communication 
performance. 

The DQN learning model is trained using an empirical hyper-parameter, where 
DNN is trained for 1000 epochs with 128 minibatches being utilized in each epoch. 
In the training process, 80% and 20% of all generated data are selected as the 
training and validation (test) datasets, respectively. The experience replay buffer 
size is 32,000 where the corresponding samples are randomly sampled from this 
number of the most recent experiences. 

DQN Structure The DQN model is designed as a multilayer perceptron network, 
which is also referred to as the feedforward fully connected network. Note here 
that multilayer perceptron network is widely used to build an advanced estimator, 
which fulfills the relation between the environment descriptors and the beamforming 
matrices (both the AP’s beamforming matrix and the IRS’s reflecting beamforming 
matrix). 

The DQN model is comprised of L layers, as illustrated in Fig. 2.2, where the first 
layer is the input layer, the last layer is the output layer, and the remaining layers are 
the hidden layers. The l-th hidden layer in the network has a stack of neurons, each 
of which connects all the outputs of the previous layer. Each unit operates on a single 
input value outputting another single value. The input of the input layer consist of 
the system states, i.e., channel samples, the achievable rate, and QoS satisfaction 
level information in the last time slot, while the output layer outputs the predicted 
reward values with beamforming matrices in terms of the AP’s beamforming matrix 
and the IRS’s reflecting beamforming matrix. The DQN construction is used for 
training stability. The network parameters will be provided in the next chapter. 

Training Loss Function The objective of DRL model is to find the best beam-
forming matrices, i.e., . V and . G, from the beamforming codebook with the highest 
achievable reward from the environment. In this case, having the highest achievable 
reward estimation, the regression loss function is adopted to train the learning 
model, where DNN is trained to make its output, . ̂r, as close as possible to the 
desired normalized reward, . ̄r. Formally, the training is driven by minimizing the 
loss function, .L (θ), defined as
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. L (θ) = MSE
(
r̂, r̄

)
, (2.38) 

where . θ is the set of all DNN parameters and .MSE(·) denotes the mean squared 
error between . ̂r and . ̄r. Note that the outputs of DNN, . ̂r can be acted as functions of 
. θ and the inputs of DNN are the system states shown in (12) in the chapter. 

2.5 Simulation Results and Analysis 

We evaluate the performance of the IRS-aided secure maritime wireless communi-
cation system. The background noise power of legitimate ships and eavesdropper 
ships is equal to . −90 dBm. We set the number of antennas at the AP as .N = 4, 
the number of legitimate ships as .K = 2, and the number of eavesdropper ships as 
.M = 2. The transmit power .Pmax at the AP varies between 15 dBm and 40 dBm, 
the number of IRS elements L varies between 10 and 60, and the outdated CSI 
coefficient . ρ varies from 0.5 to 1 for different simulation settings. The minimum 
secrecy rate and the minimum transmission data rate are 3 bits/s/Hz and 5 bits/s/Hz, 
respectively. 

The path loss model is defined by .PL = (PL0 − 10ς log 10(d/d0)) dB, where 
.PL0 = 30 dB is the path loss at the reference distance .d0 = 1 m [9, 38], . ς = 3
is the path loss exponent, and d is the distance from the transmitter to the receiver. 
The learning model consists of three connected hidden layers, containing 500, 250, 
and 200 neurons [39], respectively. The learning rate is set to .α = 0.002 and the 
discount factor is set to .γ = 0.95. The exploration rate . ε is linearly annealed from 
0.8 to 0.1 over the beginning 300 episodes and remains constant afterward. The 
parameters . μ1 and . μ2 in (12) are set to .μ1 = μ2 = 2 to balance the utility and cost 
[33–35]. Similar to the IRS-aided communication systems [9, 13] and [17], the path 
loss exponent from the AP to the ships is set to 3.2, from the AP to IRS is set to 2.2, 
and from the IRS to the ships is set to 2.2. 

The selection of the network parameters decides the learning convergence speed 
and efficiency. Here, we take the network parameters, i.e., the learning rate, as 
an example to demonstrate the importance of the network parameter selection. 
Figure 2.4 shows the average system reward versus training episodes under the 
learning rate, i.e., .α = 0.002. It can be observed that two learning algorithms 
have different convergence speed and reward performances. Specifically, there 
exist oscillations in behavior for the reward performance before achieving the 
convergence. We can see that the proposed deep PSD-PER algorithm obtains better 
convergence speed and reward value than those of the DQN algorithm. 

In addition, simulation results are provided to evaluate the performance of the 
proposed deep PDS-PER learning-based secure beamforming approach (denoted as 
deep PDS-PER beamforming) in the IRS-aided secure communication system and 
compare the proposed approach with the following existing approaches:
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Fig. 2.4 Average reward 
performance versus episodes 

• The classical DQN-based secure beamforming approach (denoted as DQN-based 
beamforming), where DNN is employed to estimate the Q-value function, when 
acting and choosing the secure beamforming policy corresponding to the highest 
Q-value. 

• The optimal AP’s transmit beamforming approach without IRS assistance 
(denoted as optimal AP without IRS). Without IRS, the optimization problem 
(2.11) transformed as 

.

max
V

min{Δh}
∑

k∈K
Rsec

k

s.t. (a) : Rsec
k ≥ Rsec

k,min, ∀k

(b) : (Ru
k ) ≥ Rmin

k , ∀k

(c) : Tr
(
VVH

) ≤ Pmax

(d) : |χejθl | = 1, 0 ≤ θl ≤ 2π, ∀l.

(2.39) 

From the optimization problem (2.39), the system only needs to optimize the 
AP’s transmit beamforming matrix . Problem (2.39) is non-convex due to the rate 
constraints, and hence we consider semidefinite programming (SDP) relaxation 
to solve it. After transforming problem (2.39), into a convex optimization 
problem, we can use CVX to obtain the solution [12–16]. 

Figure 2.5 shows the average secrecy rate versus the maximum transmit power 
.Pmax, when .L = 40 and .ρ = 0.95. As expected, the secrecy rates of all the 
approaches enhance monotonically with increasing .Pmax. The reason is that when 
.Pmax increases, the received SINR at legitimate ships improves, leading to the 
performance improvement. In addition, we find that our proposed learning approach 
outperforms the Baseline1 approach. In fact, our approach jointly optimizes the 
beamforming matrices . V and . G, which can simultaneously facilitate more favorable 
channel propagation benefit for legitimate ships and impair eavesdropper ship, while



2.5 Simulation Results and Analysis 47

Fig. 2.5 Performance 
comparisons versus the 
maximum transmit power at 
the AP 

the Baseline1 approach optimizes the beamforming matrixes in an iterative way. 
Moreover, our proposed approach has higher performance than DQN in terms of 
secrecy rate, due to its efficient learning capacity by utilizing PDS learning and 
PER schemes in the dynamic environment. From Fig. 2.5, we also find that the three 
IRS-assisted secure beamforming approaches provide significant higher secrecy rate 
probability than the traditional system without IRS. This indicates that the IRS 
can effectively guarantee secure communication via reflecting beamforming, where 
reflecting elements (IRS-induced phases) at the IRS can be adjusted to maximize the 
received SINR at legitimate ships and suppress the wiretapped rate at eavesdropper 
ships. 

In Fig. 2.6, the achievable secrecy rate and QoS satisfaction level performance 
of all approaches are evaluated through changing the IRS elements, i.e., from 
.L = 10 to 60, when .Pmax = 30 dBm and .ρ = 0.95. For the secure beamforming 
approaches assisted by the IRS, their achievable secrecy rates and QoS satisfaction 
levels significantly increase with the number of the IRS elements. The improvement 
results from the fact that more IRS elements, more signal paths and signal power can 
be reflected by the IRS to improve the received SINR at the legitimate ships but to 
decrease the received SINR at the eavesdropper ship. In addition, the performance 
of the approach without IRS remains constant under the different numbers of the 
IRS elements. 

From Fig. 2.6a, it is found that the secrecy rate of the proposed learning approach 
is higher than those of the Baseline 1 and DQN approaches; especially their 
performance gap also obviously increases with L. This is because with more 
reflecting elements at the IRS, the proposed deep PDS-PER learning-based secure 
communication approach becomes more flexible for optimal phase shift (reflecting 
beamforming) design and hence achieves higher gains. In addition, from Fig. 2.6b 
compared with the DQN approaches, as the reflecting elements at the IRS increase, 
we observe that the proposed learning approach is the first one that attains 100%
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Fig. 2.6 Performance 
comparisons versus the 
number of IRS elements. (a) 
Average secrecy rate. (b) QoS  
satisfaction 

QoS satisfaction level. These superior achievements are based on the particular 
design of the QoS-aware reward function shown in (2.14) for secure communication. 

In Fig. 2.7, we further analyze how the system secrecy rate and QoS satisfaction 
level performances are affected by the outdated CSI coefficient . ρ in the system, i.e., 
from .ρ = 0.5 to 1, when .Pmax = 30 dBm and .L = 40. Note that as . ρ decreases, the 
CSI becomes more outdated as shown in (4) and (6), and .ρ = 1 means non-outdated 
CSI. It can be observed from all beamforming approaches, when CSI becomes more 
outdated (as . ρ decreases), that the average secrecy rate and QoS satisfaction level 
decrease. The reason is that a higher value of . ρ indicates more accurate CSI, which 
will enable all the approaches to optimize secure beamforming policy to achieve 
higher average secrecy rate and QoS satisfaction level in the system. 

It can be observed that reducing . ρ has more effects on the performance of the 
other three approaches, while our proposed learning approach still maintains the
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Fig. 2.7 Performance 
comparisons versus outdated 
CSI coefficient . ρ. (a) Average  
secrecy rate. (b) QoS  
satisfaction 

performance at a favorable level, indicating that the other three approaches are more 
sensitive to the uncertainty of CSI and the robustness of the proposed learning 
approach. For instance, the proposed learning approach achieves a secrecy rate 
and QoS satisfaction level improvements of about 17% and 9%, compared with 
the Baseline 1 approach when .ρ = 0.7. Moreover, in comparison, the proposed 
learning approach achieves the best performance among all approaches against 
channel uncertainty. The reason is that the proposed learning approach considers 
the time-varying channels and takes advantage of PDS learning to effectively learn 
the dynamic environment.
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2.6 Conclusion 

In this work, we have investigated the joint AP’s beamforming and IRS’s reflecting 
beamforming optimization problem under the time-varying channel conditions in 
maritime wireless communications. As the system is highly dynamic and complex, 
we have exploited the recent advances of machine learning and formulated the 
secure beamforming optimization problem as an RL problem. A deep PDS-PER 
learning-based secure beamforming approach has been proposed to jointly optimize 
both the AP’s beamforming and the IRS’s reflecting beamforming in the dynamic 
IRS-aided secure communication system, where PDS and PER schemes have 
been utilized to improve the learning convergence rate and efficiency. Simulation 
results have verified that the proposed learning approach outperforms other existing 
approaches in terms of enhancing the system secrecy rate and the QoS satisfaction 
probability for maritime wireless communications. 
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Chapter 3 
Learning-Based Privacy-Aware Maritime 
IoT Communications 

Mobile edge computing helps maritime IoT devices with energy harvesting to 
provide satisfactory experiences for computation-intensive applications in maritime 
communication systems, such as real-time cargo status notification, emergency 
rescue in maritime affairs, and accurate early warning. In this chapter, we present 
an RL-based privacy-aware offloading scheme to help maritime IoT devices protect 
both the user location privacy and the usage pattern privacy. More specifically, this 
scheme enables a maritime IoT device to choose the offloading rate that improves 
the computation performance, protects user privacy, and saves the energy of the 
IoT devices without being aware of the privacy leakage, energy consumption, 
and edge computation model. This scheme uses transfer learning to reduce the 
random exploration at the initial learning process and applies a Dyna architecture 
that provides simulated offloading experiences to accelerate the learning process. 
Furthermore, a post-decision state learning method uses the known channel state 
model to improve the offloading performance. The performance bound of this 
scheme is provided regarding the privacy level, the energy consumption, and the 
computation latency for three typical ship offloading scenarios. 

3.1 Introduction 

The main techniques used in this chapter are introduced first, including MEC and 
energy harvesting (EH). Then, the privacy issue in MEC IoT is highlighted. 
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3.1.1 Mobile Edge Computing 

With the rapid development of IoT, the number of mobile terminal devices and 
the amount of sensing data are increasing exponentially, which puts forward 
new requirements for the IoT devices’ storage and computing capabilities. MEC 
technology helps IoT devices support computational-intensive and latency-sensitive 
applications with reduced energy consumption and computation latency, regarded 
as one of the key technologies of 5G. 

As shown in Fig. 3.1, a MEC system mainly includes mobile devices (such as 
ships, end users, clients, service subscribers, etc.) and edge devices. Edge devices 
are typically small data centers like small base stations, access points, or laptops. 
MEC is widely used in smart device applications, maritime IoT, medical and health 
monitoring systems, Internet of vehicles, and monitoring networks. IoT devices 
offload local computation tasks to the MEC network to solve the shortage of 
local resource storage and computation performance of IoT devices, which has 
a significant effect on reducing computation latency, energy consumption, and 
saving network bandwidth, to meet the requirements of scenarios with lower latency 
and higher bandwidth [1]. For instance, the binary offloading as proposed in [2] 
chooses the data transmission rate under a stochastic wireless channel with a single 
edge to reduce the computation overhead for resource-constrained mobile devices. 
The partial offloading scheme as proposed in [3] uses the time-division and the 
orthogonal frequency-division multiple access to reduce the energy consumption 
under a latency constraint in a multiuser MEC network. The mobile offloading 

Fig. 3.1 System architecture of mobile edge computing network
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scheme, as proposed in [4], uses the Lyapunov optimization to reduce the execution 
latency and the task failure rate for the case with a single known MEC server, 
assuming that both the transmission delay model and the local execution model 
are known. 

The application of MEC technology in implementing different IoT systems is 
summarized in a comprehensive survey [5] and analyzes how MEC can improve the 
performance of IoT networks. In popular scenarios such as the Internet of vehicles 
and the industrial IoT, the intelligent offloading framework is used to offload the 
computation tasks from a single IoT device to multiple edge server devices, and 
the task allocation accompanied by CPU frequency is jointly optimized to minimize 
the execution latency and energy consumption [6]. For the maritime IoT scenario, 
a novel two-stage offloading optimization for energy-latency tradeoff with MEC in 
maritime IoT is investigated in [7], providing an efficient guideline for optimizing 
the maritime communication networks. In addition, the risk of data privacy leakage 
of a maritime mobile terminal (MMT) during the offloading tasks is analyzed in [8], 
and an attribute sensitivity-based differential privacy (AS-DP) algorithm to balance 
the security and availability of data is proposed. 

3.1.2 Energy Harvesting 

EH is a promising technique to prolong the battery lifetime and provide a satisfac-
tory experience for IoT devices [9]. In the traditional IoT system, using the power 
grid will inevitably lead to a large number of carbon emissions, which does not 
meet the needs of energy conservation and emission reduction. Thanks to the rapid 
development of EH technology, renewable energy (such as solar energy [10], water 
wave [11], wind energy [12], and ambient radio-frequency signals [13]) has become 
a promising source of power supply for various information systems in recent years. 
Additionally, using renewable energy for power also reduces manual interventions 
such as battery replacement/charging, especially for hazardous or hard-to-reach 
applications. 

EH technology has facilitated the development of MEC systems powered by 
renewable energy, as shown in Fig. 3.2, which includes renewable energy-powered 
edge devices and mobile IoT devices. An optimization scheme for EH and task 
calculation based on a differential evolution algorithm is proposed in [14], which 
not only has higher optimization efficiency and low energy consumption but also can 
effectively alleviate the energy shortage of micro devices and extend their service 
life. A renewable-powered MEC system combines the value iteration with the RL 
technique to improve the edge computing performance of the mobile device for 
delay-sensitive applications with intermittent and unpredictable renewable energy 
[15]. The wireless-powered multiuser MEC system as proposed in [16] jointly 
improves the AP beamforming and the user time allocation to save the AP energy 
consumption subject to the users’ latency constraints.
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Fig. 3.2 Mobile edge computing network based on energy harvesting technology 

A self-sustaining broadband long-range maritime communication system is 
proposed in [17], where the EH unit generates electrical energy from ocean waves to 
support the operation of the wireless communication unit. Moreover, tidal energy is 
captured and powered for the underwater IoT networks [11]. In addition, the ocean 
thermal energy associated with vertical temperature differentials between the warm 
surface and cold deep water can potentially be a sustainable power for autonomous 
underwater vehicles and sensors indefinitely [18]. 

The fundamental problem that needs to be solved for a MEC system powered by 
renewable energy is green energy awareness resource allocation and computation 
offloading. In the case of renewable energy power supply, the design principle 
of MEC systems is no longer to minimize energy consumption to satisfy user 
experience requirements, but to optimize system performance under the given 
energy constraints. In addition, for mobile edge computing systems powered by 
renewable energy, the production capacity of renewable energy plays a crucial role 
in system decision-making. Due to the intermittent and unpredictable nature of 
renewable energy, the capacity situation changes with the external environment 
(such as weather), which challenges the formulation of computation offloading 
strategies for MEC systems (such as unreliable computation offloading or the risk 
of task computation failure). 

3.1.3 Privacy in MEC IoTs 

The popularization and application of MEC technology in the IoT environment 
bring new challenges of privacy leakage. To meet the computation requirements
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Fig. 3.3 The application of MEC in maritime scenario and its privacy threat 

of resource-constrained IoT devices for task-intensive and latency-sensitive tasks 
(such as augmented reality/virtual reality, AR/VR), MEC has become a promising 
technology [1, 19]. IoT devices offload computation tasks to edge devices to 
improve task computation efficiency, reduce computation latency, and extend the 
IoT devices’ lifetime. For example, as shown in Fig. 3.3, the maritime IoT devices 
offload the locally generated sensing marine data to the surrounding edge devices. 
The edge device assists in the task computation and feedbacks the computation 
results to the IoT users on time, providing timely and effective maritime emergency 
accident diagnosis. However, when users upload local data to the edge device via 
wireless communication channels, not fully trusted/honest but curious edge devices 
or eavesdropping attackers can analyze or reuse users’ data for illegal financial gain 
[20], so user privacy is at risk. Therefore, it is crucial to ensure user privacy and 
security while using MEC technique [21]. Currently, most of the research on MEC 
offloading focuses on improving the computation performance of the system while 
ignoring privacy protection [4, 15]. 

Several papers point out that privacy protection is critical for edge computing 
of IoT applications [21–24]. For instance, the IoT computation offloading scheme 
as proposed in [25, 26] uses steganography and homomorphic encryption to hide 
the image privacy and save energy and protect privacy, respectively. A privacy-
preserving opportunistic computing framework for m-Healthcare emergence as 
proposed in [27] exploits the attribute-based access control and the privacy-
preserving scalar product computation technique to reduce the medical data privacy 
disclosure. 

3.2 Related Work 

IoT devices are widely used in maritime communication systems such as ship-to-
shore connectivity to provide real-time cargo status notification, emergency rescue 
in maritime affairs, and accurate early warning [28]. Maritime IoT devices can 
apply the EH technique to use the energy from the environment, such as solar
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energy, wind energy, and water wave, to extend the battery life [9, 29]. MEC 
also saves energy for IoT devices by processing the maritime monitoring data 
at the edge devices, such as the BSs and other neighbor ships that have more 
computation and energy resources [30–34]. The space-air-ground-edge (SAGE) 
maritime communication network architecture was first proposed in [35], which 
was used to offload computing-intensive applications and services for IoT users in 
the marine environment. For instance, an edge device can help the user in a ship 
evaluate the monitored emergency data and make effective operations. 

Maritime IoT devices with EH have to resist eavesdroppers that analyze the mar-
itime sensing data via radio channels to reveal the user location and characteristics, 
such as the usage pattern privacy [22, 23, 36, 37]. More specifically, the user location 
privacy can be inferred from the offloading data size, e.g., a user is very likely to 
stay in the outage locations or far away from the edge device if the IoT device 
locally computes all the maritime sensing data under severe radio channel condition 
connecting to the edge device. An attacker can estimate the size of the maritime 
sensing data newly generated and thus evaluate the usage pattern if the IoT device 
offloads all the maritime sensing data to the edge device under a good radio channel 
state. Therefore, the IoT device must protect both the user location and usage pattern 
privacy in mobile offloading. 

Current steganography and homomorphic encryption techniques are not always 
applicable for maritime IoT devices with limited computation resources during the 
edge computing [25, 26], and most existing mobile offloading schemes such as 
[4, 15, 16] ignore user privacy. The seminar work on the privacy-aware mobile 
computing as presented in [20] allows mobile devices to choose the offloading 
policy and formulates a constrained Markov decision process (CMDP) to ensure 
the pre-specified privacy level for a simplified offloading scenario with reduced 
computation latency and energy consumption. This scheme suffers from a slow 
learning speed and the offloading performance degrades in practical maritime IoT 
devices with energy harvesting. 

Reinforcement learning techniques have been applied for offloading in MEC. For 
instance, a Q-learning-based traffic offloading scheme as presented in [38] makes a 
trade-off between energy consumption and the quality of service for mobile devices 
in heterogeneous cellular networks. An online learning-based resource management 
algorithm in [15] uses the post-decision state to choose the on-the-fly workload 
offloading rate to both the centralized cloud and the edge server to reduce both 
the service delay and the operational cost. The computation offloading strategy 
proposed in [39] uses Q-learning to help IoT devices choose the offloading rate 
and reduce the attack rate of smart attackers without being aware of the channel 
model. DRL can be considered as an advanced RL technique implemented with 
DNNs, by exploiting the function approximation property, faced with offloading 
policy selection for high-dimensional and continuous computing of IoT devices 
of DNNs. A novel offloading strategy based on the deep Q network (DQN) was 
designed in [40] to study a multiuser MEC network, where tasks from users can be 
partially offloaded to multiple computational access points (CAPs). Moreover, the
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hybrid DQN was proposed to solve the mixed-integer non-convex problem in [41], 
whose performance was demonstrated better than the pure-DQN approach. 

In this chapter, we present a privacy-aware offloading scheme to improve the 
privacy level, reduce the computation latency, and save the energy consumption of 
maritime IoT devices. In this scheme, the offloading rate and the local processing 
rate of an IoT device are chosen based on the current radio channel state, the size 
and priority of the maritime sensing data or computation tasks, the estimated energy 
harvesting state, and the battery level. For instance, more maritime sensing data are 
offloaded to the edge device under a good radio channel state. Otherwise, the IoT 
device locally processes the maritime sensing data in rare cases with narrow radio 
bandwidth to save computation latency. Therefore, the presented offloading scheme 
optimizes the offloading rate according to the radio channel state to improve the 
computation performance of the IoT device. This scheme analyzes the difference 
between the amount of maritime sensing data and the size of the offloading data 
under different channel power gains to avoid privacy leakage. 

The optimal offloading policy depends on the accurate knowledge of the 
privacy leakage, the energy consumption, and the edge computation model in each 
time slot, which is challenging to determine especially in dynamic maritime IoT 
communication systems. As the future state observed by a maritime IoT device is 
independent of the previous states for a given current state and offloading policy in 
a repeated offloading process, we have an MDP, and thus a maritime IoT device can 
apply RL techniques, such as Q-learning to achieve the optimal offloading policy 
via trial and error without being aware of the underlying models [42]. We present an 
RL-based privacy-aware offloading algorithm for a maritime IoT device to choose 
the offloading and local computing policy. This offloading algorithm uses the model 
learning method that exploits the offloading experiences to build a Dyna architecture 
and generate simulated experiences accordingly to update the value function of the 
reinforcement learning technique. A PDS method as investigated in [43] is also  
applied to use the known radio channel model to accelerate the learning process. 
A transfer learning method as developed in [44] is used to exploit the offloading 
experiences in similar scenarios for the initialization of the learning parameters and 
thus save the initial exploration in the offloading process. 

We prove that the presented scheme achieves the optimal offloading policy after 
long enough time slots in the dynamic game. The offloading performance bound is 
provided in terms of the privacy level, the total computation latency, and the energy 
consumption of the maritime IoT device with EH. This offloading algorithm can 
improve the privacy level of the ship, which depends on the amount of computation 
tasks. Both the computation latency and the energy consumption of the IoT device 
linearly increase with the size of the maritime sensing data. More specifically, the 
major contribution of this chapter is summarized as follows: 

1. A privacy-aware offloading scheme for an EH-powered maritime IoT device is 
investigated to select the offloading rate and the local computation rate to process 
the maritime sensing data. This scheme considers the current radio channel state, 
the size and the priority of the new maritime sensing data, the estimated energy
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harvesting state, the battery level, and the task computation history to decrease 
the computation latency, save the energy consumption of the IoT device, and 
improve the privacy level. 

2. We present an RL-based offloading algorithm for an IoT device to achieve the 
optimal offloading policy via trial and error without being aware of the privacy 
leakage, energy consumption, and edge computation model. This algorithm uses 
the transfer learning technique, the PDS method, and the Dyna architecture to 
accelerate the learning process of an IoT device. 

3. We provide the performance bound of the RL-based offloading scheme in terms 
of the privacy level, energy consumption, and computation latency and prove its 
convergence to the optimal performance in the dynamic offloading process. 

The remainder of this chapter is organized as follows. Chapter 3.3 presents the 
system model. The privacy leakage threats and protection schemes are illustrated in 
Chap. 3.4. We present an RL-based privacy-aware offloading scheme for maritime 
IoT devices and analyze its performance in Chap. 3.5. We provide simulation results 
in Chap. 3.6 and conclude this work in Chap. 3.7. 

3.3 System Model 

We consider a maritime IoT device that uses multiple sensors to measure and 
evaluate the maritime data, such as the movement of ships near the shore and the 
ship performance data to provide real-time cargo status notification, emergency 
rescue in maritime affairs, and accurate early warning. Powered with both the 
battery and the energy harvesting module, the IoT device can locally process some 
computation tasks, offload some tasks to the edge device, and save the others to 
process in the next time slot, as shown in Fig. 3.4. 

The IoT device at time slot k is assumed to generate new maritime sensing data 
of size .C(k)

1 and has to process the previous sensing data stored in the buffer of 

size .C(k)
0 . The time index k in the superscript is omitted if no confusion occurs. 

By applying the computation partition scheme proposed in [45], the maritime IoT 
device divides the sensing data of size .C(k)

1 + C
(k)
0 into N equivalent computation 

tasks for simplicity. The priority of such sensing data denoted by .χ(k) can be 
estimated according to the data analysis algorithm [46]. 

The IoT device offloads .x(k)
1 the computation tasks to the edge device over the 

radio channel with the radio channel power gain . h(k), locally processes .x(k)
0 of the 

sensing data with the local CPU at the computation speed of f bits per second, and 
stores the rest of the tasks in the buffer to process in the future, with . {x(k)

0 , x
(k)
1 } ∈

{l0/N, l1/N}0≤l0,l1≤N . The radio channel power gain .h(k) is formulated as a Markov 
chain model with 

.Pr
(
h(k+1) = m|h(k) = n

)
= hmn,∀ m, n ∈ H, (3.1)
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Fig. 3.4 Illustration of the privacy-aware offloading of the EH-powered maritime IoT device (e.g., 
ship) 

where . H is the radio channel state set. The IoT device consumes . ς energy to process 
one bit sensing data and uses P energy to send one bit sensing data to the edge 
device. 

The edge device sends the computation results to the IoT device. An attacker 
(e.g., edge device or eavesdropper ship) might be curious about the user privacy, 
such as the user location and the usage pattern of the IoT device. An edge device 
can infer the location privacy and the usage pattern of the IoT device based on the 
offloading history under different channel states that depend on the distance between 
the user and the edge node [20]. The privacy level is associated with the size of 
sensing data and the offloading rate. 

The IoT device applies the privacy metric similar to [20] to evaluate the privacy 
level denoted by .R(k), estimate the queuing cost denoted by .W(k), and measure the 
computation latency denoted by .T (k) and the energy consumption denoted by .E(k). 
The computation latency is the maximum of the local processing latency .T (k)

0 and 

the processing delay of offloading .T
(k)
1 , i.e., 

.T = max
{
T

(k)
0 , T

(k)
1

}
. (3.2) 

The energy consumption of the IoT device consists of the local processing energy 
consumption .E

(k)
0 and the transmission cost .E(k)

1 . 
The solar energy harvester and piezoelectric materials enable the IoT device to 

convert renewable energy (such as solar energy, wind energy, and water wave) to 
electricity [29, 47, 48]. The maritime IoT device obtains .ρ(k) harvested energy at 
time slot k to support the local data processing and offloading. The battery level at 
the beginning of time slot k denoted by .b(k) is related to the previous battery level, 
the energy consumption, and the harvested energy given by
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Table 3.1 List of notations 

Symbol Description 

.C
(k)
1 Amount of the maritime sensing data newly generated at time slot k 

.χ(k) Priority of the maritime data 

.h(k) Channel power gain between the maritime IoT device and the edge device 

.ρ(k) Amount of the harvested energy 

.C
(k)
0 Amount of the maritime data in the buffer 

.b(k) Battery level 

.x(k) ∈ A Offloading strategy 

P Energy consumption per bit for offloading the maritime data to the edge device 

.ς Energy consumption for the maritime IoT device to process a bit data 

f Computation capability of the maritime IoT device 

.R(k) Achieved privacy level 

.W(k)/Ŵ (k) Actual/measured queuing cost 

.E(k)/Ê(k) Actual/measured energy consumption 

.T (k)/T̂ (k) Actual/measured computation latency 

.b(k) = b(k−1) − E(k−1) + ρ(k−1). (3.3) 

Note that the IoT device drops the computation tasks at time slot k, if its energy is 
insufficient, i.e., .b(k+1) < 0 [4]. Important symbols are summarized in Table 3.1. 

3.4 Privacy in MEC 

In this section, we introduce the privacy issues in MEC, including location privacy 
and usage pattern privacy. After that, we provide a privacy protection scheme by 
adjusting the offloading policy. 

3.4.1 Privacy Issues in MEC 

In the maritime IoT environment, the maritime IoT device uses the MEC technology 
to perform task computing and sends the computation task to the edge device 
through a wireless communication channel. In general, in order to reduce the energy 
consumption and computation latency in the offloading process, when the wireless 
communication channel status is good, the IoT device will offload all the sensing 
data to the edge device; when the wireless communication channel status is poor, the 
IoT device will choose to process all the sensing data locally to reduce computation 
latency.
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Fig. 3.5 Illustration of the privacy leakage in MEC 

However, this simple computation offloading mechanism exposes the private 
information of IoT users. As shown in Fig. 3.5, an untrusted edge device or 
eavesdropping attacker can obtain the sensing data of the maritime IoT device (such 
as a ship user) and use big data analysis technology and traffic analysis technology 
to infer the user’s usage pattern privacy based on the user’s task volume [20]. In 
addition, as shown in Fig. 3.5, the attacker can infer the channel state between the 
IoT device and the edge device according to the amount of tasks that assist the 
IoT device in processing and further locate the IoT device [19]. Therefore, IoT 
devices’ location privacy is at risk. Specifically, in the process of MEC offloading, 
when the IoT device is closer to the edge device, the channel fading is small, 
and the communication channel state is better, and then the IoT device chooses 
to offload all computation tasks to the edge device for processing. When the IoT 
device is far away from the edge device, the channel fading is serious, and the 
communication channel state is poor. At this time, the IoT device chooses to process 
all tasks locally. Therefore, the edge device can infer the state of its communication 
channel according to the size of the offloading task of the IoT device and use this 
to infer the location of the IoT device. The above computation offloading policy 
selection is only considered from the perspective of optimizing computation latency 
and reducing computation energy consumption while ignoring the location privacy 
leakage of IoT users.
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3.4.2 Location and Usage Pattern Privacy Protection 

The privacy protection scheme developed in this chapter optimizes the computation 
task offloading rate based on the wireless communication channel state and 
improves the computation performance of maritime IoT devices. This scheme can 
reduce the attacker’s information inference accuracy by adjusting the difference 
between the amount of sensing data and the amount of offloading data under 
different communication channel states, protecting location privacy and usage 
pattern privacy. As shown in Fig. 3.6, when the channel state continues to be in a 
good state (i.e., .h > ĥ, with . ĥ be the good channel index), the maritime IoT device 
will not offload all computation tasks to the edge device, but will choose to process 
some tasks locally. As shown in Fig. 3.7, when the channel state is relatively poor 
(i.e., .h < ȟ, with . ̂h be the bad channel index), maritime IoT devices will not process 
all tasks locally, but choose to offload some tasks to the edge device. Through the 
above methods, the attacker cannot know the amount of tasks actually sensed by the 
maritime IoT device and the processing status of the tasks and thus cannot obtain 
the user’s private information through traffic analysis or other inference methods. 

However, the above privacy protection scheme design will inevitably increase 
the computation delay and energy consumption of maritime IoT devices, thereby 
affecting the overall computation efficiency of the maritime IoT system. Therefore, 
in order to balance the privacy protection requirements of maritime IoT devices 
with energy consumption and computation latency, we propose a privacy-aware 
offloading scheme based on reinforcement learning. This scheme can achieve the 
optimal offloading policy via trial and error without being aware of the underlying 
models, which can reduce the computation latency, save energy consumption, and 
improve the privacy level of the maritime IoT device. 

Fig. 3.6 Illustration of the usage pattern privacy protection in MEC
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Fig. 3.7 Illustration of the location privacy protection in MEC 

3.5 Learning-Based Privacy-Aware Offloading with Energy 
Harvesting 

We present an RL-based privacy-aware offloading scheme, as shown in Fig. 3.8, for  
a maritime IoT device to choose both the offloading rate and the local processing 
rate. More specifically, the offloading policy is chosen based on the expected 
discounted long-term utility or Q-function denoted by Q for the current state. The 
offloading policy is chosen based on the current state .s(k) that consists of the size 
and priority of the new maritime sensing data, the current radio channel state, the 
estimated renewable energy generated in the time slot, the current battery level of 
the IoT device, and the computation history. This scheme applies the known radio 
channel model and generates simulated experiences to reduce the time required to 
learn the optimal policy. 

3.5.1 Privacy-Aware Offloading 

As shown in Algorithm 2, upon measuring the maritime data of size .C
(k)
1 at time slot 

k, a maritime IoT device briefly evaluates the priority of the maritime data denoted 
by .χ(k) and estimates the channel power gain to the edge device . h(k). According 
to the historical record and the offloading experiences, the IoT device estimates the 
amount of the harvested energy .ρ̂(k) and observes the current battery level of the
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Fig. 3.8 Illustration of the RL-based privacy-aware offloading for maritime IoT devices 

IoT device . b(k). The state is chosen as .s(k) = {C(k)
1 , χ(k), h(k), ρ̂(k), C

(k)
0 , b(k)}. Let  

. Λ be the state space. 
The new and buffered maritime data with a size of .C(k)

0 +C
(k)
1 are divided into N 

equivalent computation tasks based on the computation partition method [45]. The 
offloading policy .x(k) = [x(k)

0 , x
(k)
1 ] ∈ A is chosen according to the .ε-greedy policy 

to make a trade-off between exploration and exploitation [42]. More specifically, the 
offloading policy that maximizes .Q(s(k), x) is chosen with .1− ε, and other feasible 
offloading policies are randomly selected with a small probability. The maritime 
IoT device offloads .x(k)

1 (C
(k)
1 + C

(k)
0 ) maritime data to the edge device, processes 

.x
(k)
0 (C

(k)
1 +C

(k)
0 ) of the data locally, and stores the rest in the buffer to be processed 

in the future. 
After receiving the computation report from the edge device and finishing the 

local processing, the IoT device analyzes the difference between the size of the 
sensed data and the size of the offloading data, as well as the current channel states, 
to evaluate the achieved privacy level .R(k). 

More specifically, the IoT device tends to offload all the data to the edge device 
under a good radio channel state compared with the good channel index . ̂h. On the  
other hand, the IoT device processes all the data locally under a bad channel state 
compared with the bad channel index . ̌h. Let  . ω denote the importance of location 
privacy over usage pattern privacy. The indicator function denoted by .I(·) equals 1 
if the statement is true, and 0 otherwise. The achieved privacy level consists of both 
the achieved usage pattern privacy and the location privacy. The former is modeled 
with .|C(k)

1 −x
(k)
1 (C

(k)
1 +C

(k)
0 )|I(h(k) ≥ ĥ), and the latter is given by . ωI(x

(k)
1 (C

(k)
1 +

C
(k)
0 ) > 0)I(h(k) ≤ ȟ). The IoT device achieves the privacy level, . ξ if .ȟ < h(k) < ĥ. 

Similar to [20], the privacy level .R(k) is estimated by
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Algorithm 2 RL-based privacy-aware IoT offloading algorithm 
1: Initialize α, γ and δ 
2: Hotbooting process 
3: Set Q = Q, Φ = 0, Φ ′ = 0, G′ = 0, G = 0, Π = 0 
4: for k = 1, 2, 3, ... do 
5: Observe C (k) 

1 , C (k) 
0 and b(k) 

6: Evaluate χ(k) 

7: Estimate h(k) and ρ̂(k) 

8: s(k) = {C (k) 
1 , χ(k) , h(k) , ρ̂(k) , C  (k) 

0 , b(k)} 
9: Divide the maritime data with size of C (k) 

0 + C (k) 
1 into N equivalent computation tasks 

10: Choose x(k) = [x (k) 
0 , x  (k) 

1 ] ∈  A with ε-greedy policy 
11: Offload x (k) 

1 (C (k) 
1 + C (k) 

0 ) maritime data to the edge device, process x (k) 
0 (C (k) 

1 + C (k) 
0 ) of 

the data locally, and store the rest in the buffer 
12: Evaluate the achieved privacy R̂(k), the total energy consumption Ê(k), and the computation 

latency T̂ (k) 

13: Evaluate u(k) via (3.5) 
14: Estimate s̃(k) via (3.6) 
15: Evaluate b(k+1) via (3.3) 
16: Update Q(s̃(k) , x(k) ) via (3.7) 
17: Update Q(s(k) , x(k) ) via (3.8) 
18: Formulate the real experience (s(k) , x(k) , u(k) , s(k+1) ) 
19: Update Φ ′ (s(k) , x(k) , s(k+1)

)
via (3.9) 

20: Update Φ
(
s(k) , x(k)

)
via (3.10) 

21: Update the state transition probability function Π
(
s(k) , x(k) , s(k+1)

)
via (3.11) 

22: Calculate the reward record G′ (s(k) , x(k) , Φ
(
s(k) , x(k)

))
via (3.12) 

23: Update the reward function G
(
s(k) , x(k)

)
via (3.13) 

24: for j = 1 to  J do 
25: Randomly select

(
s̄(j) , x̄(j)

)
26: Select s̄(j+1) based on Π

(
s(j) , x(j) , s(j+1)

)
27: Calculate û(j) = G

(
s̄(j) , x̄(j)

)
via (3.14) 

28: Update Q
(
s̄(j) , x̄(j)

)
via (3.7) 

29: end for 
30: end for 

. R(k) =
∣∣∣C(k)

1 − x
(k)
1

(
C

(k)
1 + C

(k)
0

)∣∣∣ I
(
h(k) ≥ ĥ

)

+ ωI
(
x

(k)
1

(
C

(k)
1 + C

(k)
0

)
> 0

)
I

(
h(k) ≤ ȟ

)

+ ξI
(
ȟ < h(k) < ĥ

)
. (3.4) 

An IoT device deliberately reduces the offloading rate under a good channel 
state and increases the offloading rate under low channel power gains to protect 
privacy. The usage pattern privacy as indicated in the first term of (3.4) represents 
the difference between the actual sensing data size and the offloading data size under 
high radio channel power gains. The location privacy as indicated in the third term
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Fig. 3.9 State transition of the maritime IoT device based on PDS learning in the dynamic 
maritime communication system 

of (3.4) shows whether the IoT device stays in some specific locations with severe 
radio channel degradations. 

The utility of the IoT device depends on the queuing cost .Ŵ (k), the computation 
latency .T̂ (k), and the energy consumption .Ê(k). Let  . ψ represent the loss to the IoT 
device due to the failure to carry out a computation task in time and . ν be the queuing 
weight. Let . β and . μ denote the importance of energy saving and fast computation, 
respectively. The utility .u(k) is estimated by 

. u(k) =R(k) − ψI

(
b(k+1) < 0

)
− βÊ(k)

− μT̂ (k) − νŴ (k). (3.5) 

The next channel power gain .h(k+1) is estimated based on the channel model 

given by (3.1). As shown in Fig. 3.9, the state . ̃s(k) =
[
C

(k)
1 , χ(k), h(k+1), ρ̂(k), C

(k)
0 ,

.b(k)
]
with a known transition probability . hmn, i.e., 

.Pr
(
s̃(k)

∣∣s(k), x(k)
)

= hmn. (3.6) 

The IoT device estimates intermediate utility .u(s̃(k), x(k)) via (3.5). Based on the 
received offloading reports, the estimated energy consumption, and the computation 
latency, the IoT device obtains the next state .s(k+1). The Q-function .Q

(
s̃, x

)
is then 

updated based on the immediate state .s̃(k) and utility .u(s̃(k), x(k)) according to the 
iterated Bellman equation as follows: 

. Q
(
s̃(k), x(k)

)
← (1 − α) Q

(
s̃(k), x(k)

)
+ α

(
u

(
s̃(k), x(k)

)

+ γ max
x′∈A

Q
(
s(k+1), x′)

)
, (3.7)
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where the learning rate .α ∈ (0, 1] weighs the current offloading experience and the 
discount factor .γ ∈ [0, 1] indicates the myopic view of the IoT device regarding the 
future reward. The quality function is then updated as follows: 

.Q(s, x) ←
∑
s̃∈Λ

Pr
(
s̃|s, x) Q

(
s̃, x

)
. (3.8) 

The offloading experience .(s(k), x(k), u(k), s(k+1)) is used to build the Dyna archi-
tecture and generate J simulated experiences in each time slot. More specifically, 
the model learning depends on an occurrence count vector of the next state denoted 
by . Φ ′, which is updated by 

.Φ ′ (s(k), x(k), s(k+1)
)

← Φ ′ (s(k), x(k), s(k+1)
)

+ 1. (3.9) 

The occurrence count vector in the simulated experience denoted by . Φ is updated 
in each real offloading experience by 

.Φ
(
s(k), x(k)

)
←

∑
s′∈Λ

Φ ′ (s(k), x(k), s′
)

. (3.10) 

The transition probability to reach the state .s(k+1) from the state-action pair 
.
(
s(k), x(k)

)
is denoted by .Π

(
s(k), x(k), s(k+1)

)
and updated by 

.Π
(
s(k), x(k), s(k+1)

)
← Φ ′ (s(k), x(k), s(k+1)

)

Φ
(
s(k), x(k)

) . (3.11) 

The reward record denoted by . G′ is the utility of the IoT device from the real 
offloading experience . u(k), i.e., 

.G′
(
s(k), x(k), Φ

(
s(k), x(k)

) )
= u(k). (3.12) 

The average reward function over all the occurrence realizations denoted by G is 
updated by 

.G
(
s(k), x(k)

)
= 1

Φ
(
s(k), x(k)

)
Φ

(
s(k),x(k)

)
∑
κ=1

G′ (s(k), x(k), κ
)

. (3.13) 

The J simulated experiences are then generated from the Dyna architecture 
model .(Π,G) via search control. Each simulated experience at time slot k leads to 
an additional Q-function update. More specifically, in the j -th update, the IoT device 
first randomly chooses a state-action pair .(s̄(j), x̄(j)) and selects the next state . ̄s(j+1)

based on the state transition probability . Π given by (3.11). The modeled reward .û(j)
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depends on the reward function G in (3.13) with the state-action pair .(s̄(j), x̄(j)) as 
follows: 

.û(j)
(
s̄(j), x̄(j)

)
= G

(
s̄(j), x̄(j)

)
. (3.14) 

The Q-function for .(s̄(j), x̄(j)) is updated via the iterated Bellman equation again 
with (3.7). 

As shown in Fig. 3.8, this scheme uses a transfer learning method named hotboot-
ing as developed in [49] to initialize the Q-values with the computation offloading 
experiences in similar environments to save the initial random exploration. More 
specifically, the Q-values of the offloading algorithms after . ξ offloading experiences 
are randomly selected from the offloading experience pool, which are denoted by . Q
and used to initialize the Q-values in Algorithm 2. 

3.5.2 Performance Analysis 

We analyze the performance of the RL-based privacy-aware offloading scheme 
regarding the privacy level, energy consumption, computation latency, and utility. 
Similar to [4] and [50], we focus on the delay-sensitive applications, i.e., both the 
local execution and the task offloading can be performed within a time slot. For 
simplicity, both the computation latency of the edge device and the transmission 
latency of the computation results are assumed to be negligible, while this algorithm 
works in the other scenarios as well. 

At time slot k, the IoT device offloads .x(k)
1 (C

(k)
1 + C

(k)
0 ) maritime data to 

the edge device, locally processes .x(k)
0 (C

(k)
1 + C

(k)
0 ) data, and stores the rest in 

the buffer to be processed in the future. According to [2, 51], the IoT device 
consumes .ςx

(k)
0 (C

(k)
1 + C

(k)
0 ) energy to compute the sensing data locally and takes 

.Px
(k)
1 (C

(k)
1 + C

(k)
0 ) energy in the offloading process. Thus, we have 

.E = Px1 (C1 + C0) + ςx0 (C1 + C0) . (3.15) 

The data rate in the offloading can be modeled with .log2(1+Ph). The  IoT device  
takes .T (k)

0 = x
(k)
0 (C

(k)
1 + C

(k)
0 )/f to compute the local sensing data at time slot k 

[51], and the resulting offloading latency is . T (k)
1 = x

(k)
1 (C

(k)
1 + C

(k)
0 )/ log2(1 +

Ph(k)). Thus, by (3.2), the total computation latency of the IoT device denoted by 
.T (k) is given by 

.T = max

{
x0 (C1 + C0)

f
,

x1 (C1 + C0)

log2 (1 + Ph)

}
. (3.16)



3.5 Learning-Based Privacy-Aware Offloading with Energy Harvesting 71

According to [52], the average queuing delay linearly increases with the average 
queue length and the priority of the generated maritime data .χ(k). Thus, the queuing 
cost denoted by .W(k) is defined as 

.W = χ (1 − x0 − x1) (C1 + C0) . (3.17) 

The offloading selection over multiple time slots can be viewed as an MDP, as 
the future state is independent of the previous states for the given current state and 
offloading policy. Therefore, the RL-based offloading scheme in Algorithm 2 can 
achieve the optimal policy via trial and error without being aware of the privacy 
leakage, energy consumption, and edge computation model. 

Theorem 3.1 The maritime IoT device that uses Algorithm 2 in the dynamic 
offloading game can achieve the optimal policy given by .x∗ = [0, 1], and the privacy 
level is . C0. The computation latency, the energy consumption, and the utility are 
given respectively by 

.T = C1 + C0

log2 (1 + Ph)
. (3.18) 

E = P (C1 + C0) . (3.19) 

u = C0 −
(

βP + μ 
log2 (1 + Ph)

)
(C1 + C0) , (3.20) 

if 

.h > ĥ. (3.21) 

μ <  (νχ + 1 − βP ) log2 (1 + Ph) . (3.22) 

νχ < βς . (3.23) 

b + ρ >  P  (C1 + C0) . (3.24) 

Proof By (3.5), if (3.21) and . b + ρ − ς (C1 + C0) x0 > P (C1 + C0) x1, we have  

. u(x) =
(

νχ − βP + 1 − μ

log2 (1 + Ph)

)
(C1 + C0) x1

+ (νχ − βς) (C1 + C0) x0 − C1 − νχ (C1 + C0)

− ψI (b + ρ − ς (C1 + C0) x0 − P (C1 + C0) x1)

=
(

νχ − βP + 1 − μ

log2 (1 + Ph)

)
(C1 + C0) x1

+ (νχ − βς) (C1 + C0) x0 − C1 − νχ (C1 + C0) . (3.25) 

If (3.22)–(3.23), .∀ x ∈ A,
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.
∂u

∂x0
= (νχ − βς) (C0 + C1) < 0, (3.26) 

indicating that the utility decreases with . x0. 

.
∂u

∂x1
=

(
νχ − βP + 1 − μ

log2 (1 + Ph)

)
(C0 + C1) > 0, (3.27) 

indicating that the utility with . x1. As  .x0 ∈ [0, 1] and .x1 ∈ [0, 1], we have  
.argmaxx∈A u = [0, 1]. 

According to [42], this RL-based scheme can achieve the optimal policy . x∗ =
[0, 1] in theMDP after a sufficiently long time. Therefore, this algorithm can achieve 
.x∗ = [0, 1]. If (3.24), by (3.4), (3.16) and (3.15), we have .R = C0 and prove (3.18)– 
(3.20). 

Remark 1 A maritime IoT device applies the RL-based privacy-aware offloading 
algorithm to achieve the optimal policy without being aware of the privacy leakage, 
energy consumption, and edge computing model in the dynamic offloading process. 
If the IoT device has a good radio channel to the edge device as shown in (3.22), 
the local processing energy overhead is high as shown in (3.23), and the offloading 
energy consumption is low as shown in (3.24), and the IoT device will offload all 
the computation tasks to the edge device. In this case, the privacy level of the IoT 
device equals the size of the buffered tasks, and both the computation latency and 
energy consumption increase linearly with the size of the total computation tasks as 
indicated in (3.18) and (3.19). 

Theorem 3.2 The maritime IoT device using Algorithm 2 in the dynamic offloading 
game can achieve the optimal policy given by .x∗ = [1, 0], and the privacy level 
is . C1. The computation latency, the energy consumption, and the utility are given 
respectively by 

.T = C1 + C0

f
. (3.28) 

E = ς (C1 + C0) . (3.29) 

u = C1 −
(

βς + 
μ 
f

)
(C1 + C0) , (3.30) 

if 

.h > ĥ. (3.31) 

νχ < βP + 1. (3.32) 

μ < f  (νχ − βς) . (3.33) 

b + ρ >  ς  (C1 + C0) . (3.34)
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Proof The proof is similar to that of Theorem 3.1. 

Remark 2 If the maritime sensing data seem normal as shown in (3.32), the 
offloading energy overhead is high, as shown in (3.33), and the IoT device has 
powerful computation resources, as shown in (3.34), and the IoT device will process 
all the computation tasks locally. In this case, the privacy level equals the size of the 
new sensing data, and both the IoT energy consumption and the computation latency 
increase with the total computation task size as indicated in (3.28) and (3.29). 

Theorem 3.3 The maritime IoT device using Algorithm 2 in the dynamic offloading 
game can achieve the optimal policy given by .x∗ = [0, C0/(C1 + C0)], and the 
privacy level is . ω. The computation latency, the energy consumption, and the utility 
are given respectively by 

.T = C0

log2 (1 + Ph)
. (3.35) 

E = PC0. (3.36) 

u = ω − ψ −
(

βP − μ 
log2 (1 + Ph)

)
C0, (3.37) 

if 

.h < ȟ. (3.38) 

μ <  (νχ − βP ) log2 (1 + Ph) . (3.39) 

νχ < βς . (3.40) 

b + ρ <  PC0. (3.41) 

Proof The proof is similar to that of Theorem 3.1. 

Remark 3 If the offloading energy overhead is low as shown in (3.39), the local 
processing energy overhead is high as shown in (3.40), and the IoT device has 
insufficient computation resources as shown in (3.41); thus, the IoT device will 
offload some sensing data to the edge device and store the rest of the tasks to the 
buffer to protect the user privacy. In this case, the IoT device can achieve a privacy 
level given by . ω, and both the computation latency and the energy consumption 
increase linearly with the size of the buffered tasks as indicated in (3.35) and (3.36). 

3.6 Simulation Results 

Simulations have been performed to evaluate the RL-based privacy-aware offloading 
scheme in dynamic maritime IoT communication systems. In the simulations, each
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time slot lasts 1 s, and the maritime IoT device generates new maritime data of 30 
kb. According to [4], the IoT device consumes .10−4 J energy to locally process 
one bit sensing data and uses 0.2 J energy to send one bit sensing data to the 
edge device. The queuing delay, the location privacy over usage pattern privacy, 
the energy consumption, and the computation latency are weighted with 40, 5, 2.5, 
and 5, respectively. If not specified otherwise, the learning rate is 0.8, the discount 
factor is 0.7, and . ε is 0.1 according to [53]. The CMDP-based offloading scheme in 
[20] has been evaluated in the simulations as a benchmark. 

As shown in Fig. 3.10, the RL-based offloading scheme converges to the 
performance bound given by Theorem 3.2. This scheme exceeds the CMDP-based 
offloading scheme as proposed in [20] with a higher privacy level. This scheme also 
saves the energy consumption of the IoT device, reduces the computation latency, 
and increases the utility of the IoT device. For instance, this scheme improves 
36.63% of the privacy level, saves 9.63% of the energy consumption, and decreases 
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Fig. 3.10 Performance of the privacy-aware offloading scheme in a maritime IoT device with EH. 
(a) Achieved privacy level. (b) Energy consumption of the maritime IoT device. (c) Computation 
latency. (d) Utility of the maritime IoT device



3.6 Simulation Results 75

10 20 30 40 50 

Amount of new sensing data (kb) 

8.8 

9 

9.2 

9.4 

9.6 

9.8 

10 

10.2 

10.4 

10.6 

10.8 
P

riv
ac

y 
le

ve
l 

CMDP 
RL 

(a) (b) 

(c) (d) 

10 20 30 40 50 

Amount of new sensing data (kb) 

100 

105 

110 

115 

120 

125 

130 

E
ne

rg
y 

co
ns

um
pt

io
n 

CMDP 
RL 

10 20 30 40 50 

Amount of new sensing data (kb) 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

C
om

pu
ta

tio
n 

la
te

nc
y 

CMDP 
RL 

10 20 30 40 50 

Amount of new sensing data (kb) 

5 

5.5 

6 

6.5 

7 

7.5 
U

til
ity

 o
f t

he
 m

ar
iti

m
e 

Io
T

 d
ev

ic
e 

CMDP 
RL 

Fig. 3.11 Performance of the privacy-aware offloading scheme in a maritime IoT device with 
EH that generates an amount of the sensing data in each time slot. (a) Achieved privacy level. 
(b) Energy consumption of the maritime IoT device. (c) Computation latency. (d) Utility of the 
maritime IoT device 

68.79% of the computation latency, compared with the CMDP-based scheme at the 
2200-th time slot. Consequently, as shown in Fig. 3.10d, the utility of the maritime 
IoT device increases about two times compared with that of the CMDP-based 
scheme. Figure 3.10 shows that the RL-based scheme accelerates the learning speed, 
e.g., this scheme saves 40% of time slots to reach the privacy level of 11 compared 
with the CMDP. This is due to the fact that the transfer learning technique, a PDS 
method, and a Dyna architecture are used to accelerate the learning speed of the 
maritime IoT device with the extended state space. 

The offloading performance averaged over the first 4500 time slots in the 
dynamic offloading game is shown in Fig. 3.11. In the simulations, an IoT device 
has to compute 10 to 50 kb new maritime sensing data in each time slot. The privacy 
level of the IoT device increases, as the amount of the sensing data changes from 
10 kb to 50 kb. For instance, if the ship has to process 50 kb maritime data instead
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of 10 kb maritime data, the privacy level, the energy consumption, the computation 
latency, and the utility of the maritime IoT device with RL-based offloading increase 
by 28.93%, 40.78%, 1 time, and 28.79%, respectively. If the maritime IoT device has 
to process 50 kb maritime data in each time slot as shown in Fig. 3.11, the RL-based 
offloading scheme exceeds the benchmark CMDP scheme with 12.39% higher 
privacy level, 5.38% lower energy consumption, and 32.35% shorter computation 
latency. 

3.7 Conclusion 

In this chapter, we have presented an RL-based privacy-aware offloading scheme 
for an EH-powered maritime IoT device to choose the offloading rate and the 
local computing rate without being aware of the privacy leakage, IoT energy 
consumption, and edge computation model. This scheme evaluates the privacy level, 
the energy consumption, and the computation latency to choose the offloading 
policy to the edge device in each time slot. The RL-based offloading scheme uses the 
transfer learning technique, a known radio channel model, and a Dyna architecture 
to accelerate the learning speed for dynamic maritime IoT communication systems. 
We prove that this scheme can achieve the optimal offloading policy in the dynamic 
offloading process and provide its performance upper bound in terms of the privacy 
level, the computation latency, and the energy consumption. Simulation results show 
that this scheme improves the privacy level by 36.63%, saves 9.63% of the energy 
consumption, and decreases 68.79% of the computation latency compared with the 
benchmark CMDP scheme. 
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Chapter 4 
Learning-Based Resource Management 
for Maritime Communications 

With the rapid development of smart maritime services, more and more underwater 
vehicles, ships, sensors and underwater industrial the 5G networks need to support 
interconnect of a large number of smart maritime communication devices [1–3], 
which make decisions independently or collaboratively based on reinforcement 
learning techniques [3]. However, the learning-based wireless networks that support 
maritime applications in smart ocean, intelligent transportation, automatic industry, 
meter auto reporting, and remote sensing give rise to key challenges. 

First, the large amount of data generated by massive smart devices raises 
challenges of collecting, integrating, storing, accessing, and processing data, as well 
as data mining for the behavior and characteristic discovery of wireless maritime 
networks [3–5]. 

Second, due to the extremely long range of service requirements of maritime 
devices and the complex/dynamic communication environments, existing wireless 
communication systems are still not smart enough to tackle optimized physical layer 
designs, sophisticated learning, complicated decision-making, and efficient resource 
management tasks [1]. To fulfill the potential benefits of maritime networks and 
deal with the growing challenges, recent research on machine learning has drawn 
attentions as a promising solution. 

Machine learning, as the most powerful artificial intelligence technique, has 
already been widely applied in computer vision, signal/language processing, social 
behavior analysis, projection management, and so on [6]. Explicitly, machine 
learning methods analyze observations/data/experience to find the patterns and 
underlying structures and enable machines/systems to learn automatically without 
human intervention and adjust actions accordingly. 

Machine learning mainly consists of three categories: supervised learning, unsu-
pervised learning, and reinforcement learning [6]. Supervised learning algorithms 
depend on labeled training samples, while unsupervised learning algorithms do not 
rely on the labels of the training data to provide inference services and reinforcement 
learning that has attracted extensive research attentions in the field of wireless 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
L. Xiao et al., Reinforcement Learning for Maritime Communications, Wireless 
Networks, https://doi.org/10.1007/978-3-031-32138-2_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32138-2protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4
https://doi.org/10.1007/978-3-031-32138-2_4


80 4 Learning-Based Resource Management for Maritime Communications

Fig. 4.1 Functional diagram of intelligent maritime communications 

communications and security and enables communication devices to learn how to 
map situations to actions to maximize a reward by interacting with the network 
environment. 

As shown in Fig. 4.1, thanks to machine learning techniques, intelligent wireless 
maritime communication networks are capable of tackling the detection and 
sensing tasks (e.g., robust detection and efficient data collection), data analysis 
and discovery tasks (e.g., knowledge discovery and behavior prediction), as well 
as decision-making tasks (e.g., resource management and policy control) from the 
physical layer to the application layer. 

In particular, machine learning offers a versatile set of algorithms to analyze 
numerous data/observations and discover the depth knowledge. This effectively 
assists cognitive wireless networks to adapt network protocols and decision-making 
for different services in different communication scenarios and solve various 
technical problems, such as signal processing, parameter optimization, behavior 
analysis, mobile management, and resource management [1], [4], [5], [7–15]. 
However, how to design machine learning algorithms to address the above problems 
in maritime wireless networks remains a significant challenge. 

In this chapter, we consider how to apply machine learning, such as reinforce-
ment learning techniques, to address the challenges mentioned above in maritime 
communication networks. Table 4.1 presents the family tree of the three categories 
of machine learning (i.e., supervised, unsupervised, and reinforcement learning) and 
their potential applications in maritime communication networks. We review basic
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Table 4.1 Machine learning for maritime communications 

Category Tasks Algorithms Applications and 
references 

Supervised learning 
Classification Support vector 

machine, K-nearest 
neighbors 

Security/interference 
detection, 
image/service 
behavior 
classification, 
spectrum sensing 

Regression Linear regression, 
support vector 
regression, Gaussian 
process regression 

Channel estimation, 
mobility prediction, 
cross-layer handover 

Unsupervised learning 
Clustering K-means clustering, 

neural network 
Device clustering, 
filtering designs, 
localization, service 
segmentation 

Dimension reduction Principal component 
analysis, isometric 
mapping 

Big data 
visualization, 
interference filtering, 
data compression, 
feature elicitation 

Reinforcement 
learning 

Policy/value iteration 
learning 

Markov decision 
process, Q-learning, 
policy gradient, actor 
critic, deep 
Q-network, 

Decision-making, 
packet transmission, 
spectrum access, 
network association, 
energy 
harvesting/efficiency, 
adaptive routing, 
resource management 

algorithms in each category and discuss typical examples on how to apply such 
algorithms to improve the performance of wireless maritime networks. 

4.1 Reinforcement Learning Principle 

In particular, reinforcement learning enables a learning agent to choose the actions 
via trial and errors in the MDP even in dynamic environments, to maximize the long-
term expected reward. Algorithms. For example, MDP, Q-learning, policy gradient, 
actor critic (AC), and DRL have been applied to improve wireless communication 
efficiency and security [6]. 

MDP Models for Network Association and Vehicular Routing Models In the 
Markov decision process, in which the future states are independent of the previous 
states given the action taken in the current state, and the RL is promising to yield, 
the optimal policy based on the interaction with the environment in discrete time
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steps. At each time k, the agent takes action . a from the current state . sk to a new 
state .sk+1 and calculates the corresponding reward . Uk . During this process, the 
probability of moving from the current state to a new state is described by the 
transition probability P . The learning agent evaluates the quality of the action . a
based on the immediate reward . u as well as the cumulative reward to explore the 
optimal policy in the next time step. In MDP, if a learning agent only has partial 
knowledge of the environment state or the reward of each action, possibly due to 
the limited feedback from the environment and state estimation errors, the learning 
problem is viewed as a partially observable Markov decision process (POMDP), 
which often corresponds to severe learning performance degradation. 

Applications In cognitive wireless networks, the MDP or POMDP model has been 
applied in [4], [10], [11], [14] to improve the spectrum access, network association, 
energy harvesting, and load-balancing, in which the smart communication devices 
as the learning agents interact with the network that constitutes the environment. 
For example, in cognitive wireless networks, a large amount of wireless smart 
devices always choose the evolved NodeB (eNB) with the best signal quality for the 
attachment, thereby leading to serious network congestion and overload. In the eNB 
selection problem, the fixed bandwidth of eNB, the limited energy of devices, and 
the time-variant channels define environment features, and the devices’ connection, 
their transmission power, and the transmit packet size can be regarded as the actions 
in each time slot. 

Due to uncertainties in the state of mobile devices and their actions’ effect to the 
state dynamics, such as the partial observation of the environment and imperfect 
position tracking/navigation, the decision-making problem can be formulated as a 
POMDP model under the partial knowledge. For instance, in large-scale vehicular 
cognitive wireless networks, the traffic situations are highly complicated, uncertain, 
dynamic, and only partially observable. Hence, the decision-making problem (e.g., 
automated driving, adaptive routing) can be formulated as a POMDP model, which 
can effectively avoid collisions and decrease the traffic congestion and enhance the 
driving safety and vehicle-network resource utilization efficiency [11]. 

Value/Policy-Iteration Learning Models for Policy Control and Resource Allo-
cation Models Existing RL algorithms can be approximately divided into two 
groups: value iteration and policy iteration. Value iteration, e.g., Q-learning, starts 
with a random value function and then iteratively updates the value function until 
achieving the optimal value function. The best policy can be derived based on the 
optimal value function. In contrast, policy iteration, e.g., policy gradient, randomly 
selects a starting policy and iterates towards the optimal policy until the policy 
converges based on the value function evaluation [6]. Q-learning, as a model-free 
and value-iteration RL algorithm, solves the MDP problem even in dynamic and 
unknown environment models. The learning agent in the Q-learning model uses a 
Q-function to estimate its accumulated reward. 

In policy gradients (PG), the learning agent seeks to directly optimize the 
policy function instead of the Q-function in Q-learning in the policy space. The
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optimization is derived directly by maximizing the expected reward. As another 
important RL algorithm, AC combines the benefits of the value-iteration and policy-
iteration models and designs both the actor and the critic network. More specifically, 
the actor is represented by adopting a control policy with action selections. The critic 
evaluates the input policy by a reward function. In addition, DRL applies the deep 
learning techniques, e.g., deep neural networks, to compress the high-dimensional 
state space observed by the learning agent and directly use the deep learning network 
to represent the value function or policy model, such as the deep Q-learning and 
deep Q-network. 

Applications The RL algorithms have been widely applied in large-scale cog-
nitive wireless networks to support the intelligent decision-making for resource 
management, channel access, interference coordination, transmission scheduling, 
power control, and so on [1], [7–11], [14], [15]. The RL algorithms enable the 
network to optimize the policies independently among devices with the minimal 
human interaction. For example, a large number of smart devices entail a significant 
increase in the energy consumption in cognitive wireless networks, and thus the 
energy minimization problem becomes more challenging. Hence, the scheduling 
framework incorporating RL enables the scheduler to intelligently develop an 
association between the optimal action and the current state of the environment to 
minimize the energy consumption with variable workloads. 

Conventional RL algorithms such as Q-learning and AC are suitable to make 
decisions with handcrafted features or low-dimensional data. On the other hand, 
DRL enables communication devices to learn their action-value policies directly 
from complex high-dimensional states. For instance, in dynamic networks, the 
channel conditions, ship requirements, and cache storage are all time-varying, and 
the network has a large number of environment states, e.g., device status (sleep or 
active), channel quality, and channel status (busy or idle). The DRL-based resource 
allocation uses deep learning to estimate the reward of each feasible policy for the 
devices with sufficient computing resources for faster learning speed [14]. 

Motivated by the above analysis and observations, in order to address the 
abovementioned challenges in massive access for 5G and B5G wireless networks, 
this chapter not only studies how to manage the massive access requests from a huge 
number of devices but also takes various QoS requirements (ranging from strict low 
latency and high reliability to minimum data rate) into consideration. Besides, a 
novel distributed cooperative learning approach-based QoS-aware massive access 
is presented to optimize the joint subchannel assignment and transmission power 
control strategy without a centralized controller. The main contributions of the 
chapter are summarized as follows:

• We formulate a joint subchannel assignment and transmission power control 
problem for massive access considering different practical QoS requirements, 
and the energy-efficient massive access management problem is modeled as a 
multi-agent RL problem. Hence, each ship has the ability to intelligently make 
its spectrum access decision according to its own instantaneous observations.
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• A distributed cooperative subchannel assignment and transmission power control 
approach based on DRL is proposed for the first time to guarantee both 
the strict reliability and latency requirements on ultrareliable and low-latency 
communication (URLLC) services in a massive access scenario, where the 
latency constraint is transformed into a data rate constraint which can make the 
optimization problem tractable. Specifically, a proper QoS-aware reward function 
is built to cover both the network EE and devices’ QoS requirements in the 
learning process.

• In addition, we apply transfer learning and cooperative learning mechanisms to 
enable communication links to work cooperatively in a distributed cooperative 
manner, in order to improve the network performance and transmission success 
probability based on local observation information. In detail, in transfer learning, 
if a new ship joins the network or applies a new service, or one communication 
link achieves poor performance (e.g., low QoS satisfaction level or low conver-
gence speed), then it can directly search the expert agent from the neighbors 
and utilize the transfer learning model from the expert agent instead of building 
a new learning model. In cooperative learning, ships are encouraged to share 
their selected actions with their neighbors and take turns to make decisions, 
which can enhance the overall benefit by choosing the actions jointly instead 
of independently.

• Extensive simulation results are presented to verify the effectiveness of the 
proposed distributed cooperative learning approach in massive access scenario 
and demonstrate the superiority of the proposed learning approach in terms of 
meeting the network EE and improving the transmission success probability 
compared with other existing approaches. 

The rest of this chapter is organized as follows. The related work is provided 
in Sect. 4.2. In Sect. 4.3, the system model and problem formulation are provided. 
The massive access management problem is modeled as a Markov decision-making 
process in Sect. 4.4. Section 4.5 proposes a distributed cooperative multi-agent 
learning-based massive access approach. Section 4.6 provides simulation results, 
and Sect. 4.7 concludes the chapter. 

4.2 Related Work 

With the rapid development of the IoTs, IoT devices access maritime wireless 
networks to support diverse applications, e.g., smart ocean animal tracking systems 
[1] and 5G and beyond 5G (B5G) networks are required to provide seamless access 
for maritime IoT devices with various services. 

URLLC is one of the most challenging services with stringent low-latency and 
high-reliability requirements. For example, a general URLLC requirement of a 
one-way radio is 99.999% target reliability with 1 ms latency [4]. Consequently,
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URLLC entails great difficulty in massive access in 5G and B5G wireless networks, 
especially in maritime wireless communications. 

To relieve the network congestion resulting from radio spectrum access in mar-
itime communication, the hierarchical contention-based access model is proposed 
in [5] to enhance the access success probability and meet the QoS requirements 
of maritime devices. In [6], a time-division-multiple-access transmission protocol 
was presented to deal with the congestion caused by video packet transmission in 
maritime communications. Liu et al. in [8] investigated a priority-based multiple 
access protocol to ensure the data delivery for the given limit of the energy 
consumption and delay. 

Furthermore, a relay-aided random access scheme as proposed in [9] provides 
IoT device access to the smart ocean. Interestingly, a distributed D2D resource 
allocation for maritime communication was designed to optimize the general energy 
efficiency of the network [10]. 

Besides, several methods were presented to enhance the traditional random 
access performance, such as access class barring (ACB), slotted access, and backoff 
[11], [12]. For instance, in [12], an efficient random access procedure based on 
ACB was investigated to decrease the access delay and the power consumption for 
the large-scale wireless networks with massive access. 

The mentioned spectrum access approaches in [5–12] are simple, flexible, and 
able to support massive wireless connections without relying on central coordinator. 
However, the high transmission success probability is not easily guaranteed for 
URLLC applications. 

To satisfy the critical requirements of URLLC in massive IoT or mMTC, recent 
studies have presented spectrum access solutions in [13–19]. For instance, Weeras-
inghe et al. proposed a priority-based massive access approach to support reliable 
and low-latency access for mMTC devices [13], where devices are categorized 
into a number of groups with different priority access levels. A probability density 
function of signal-to-noise ratio (SNR) was derived for a large number of uplink 
URLLC devices in [14], and numerical results verified that the presented model 
can satisfy the critical requirements of URLLC. Popovski et al. in [15] discussed 
the principles of wireless access for URLLC and provided a perspective on the 
relationship between latency, packet size, and bandwidth. In [16] and [17], grant-
free spectrum access was adopted to reduce transmission latency and improve 
spectrum utilization in URLLC scenarios. In [18] and [19], different resource 
management schemes were developed to show how to update the system parameters 
that meet the URLLC requirements in industrial IoT networks, since industrial 
automation requires strict low latency and high reliability for manufacturing control. 

Nevertheless, very few literatures such as [13] and [14] investigated how to meet 
strict URRLC requirements in massive access scenarios. Moreover, even in [13] and 
[14], the optimization objective is a single time slot optimization, and the massive 
access decision approaches sometimes converge to the suboptimal solution. 

To address the massive access management problem in maritime communi-
cations, and support the stringent reliability and latency constraints, emerging 
technologies of 5G, i.e., massive MIMO, non-orthogonal multiple access (NOMA),
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and D2D communications, support massive connectivity over limited available radio 
resources. For example, Chen et al. in [12] and [20] presented non-orthogonal 
communication frameworks based on massive NOMA to support massive connec-
tions, and the transmit power values were optimized to mitigate severe co-channel 
interference by using interference cancellation techniques [21]. In addition, an 
application-specific NOMA-based communication architecture was investigated for 
future URLLC Tactile Internet [22]. 

In [14], [15], [23], and [24], coordinated and uncoordinated access protocols 
support massive connectivity in massive MIMO systems by exploiting large spatial 
degrees of freedom to admit massive IoT devices. Specifically, in [14] and [15], 
massive MIMO can be acted as a natural enabler for URLLC to support high 
capacity, spatial multiplexing, and diversity links. Moreover, a potential solution 
for the massive access is to offload a large amount of traffic onto D2D communi-
cation links [25], [26], to reduce the energy consumption and transmission delay, 
and improve spectrum efficiency. D2D-based URLLC transmission protocols as 
proposed in [27] and [28] classify the communication devices into groups based on 
their QoS requirements, i.e., stringent low-latency and high-reliability requirements, 
and allocate the radio resources accordingly. 

In addition, EE plays an important role in green wireless networks. The reasons 
are that most of devices (e.g., sensors, actuators, and wearable devices) are power 
constrained and energy consumption is massive and expensive under high-density 
scenario of devices. In [29] and [30], the authors optimized the joint radio access 
and power resource allocation to maximize EE while guaranteeing the transmission 
delay requirements and transmit power constraints of a huge number of devices. 
To mitigate co-channel interference and further enhance the EE performance of 
NOMA-based systems with massive IoT devices, subchannel allocation and power 
control approaches were proposed in [19], [29], [31]. Furthermore, Miao et al. [32] 
proposed an energy-efficient clustering scheme to address spectrum access problem 
for massive M2M communications. Although the authors in [29–32] mainly focused 
on the EE maximization-based massive access, the different QoS requirements (such 
as latency and reliability) of devices have not been well studied in massive access 
scenario. 

Considering that intelligence is an important characteristic of future wireless 
networks, many studies have investigated application of RL in the field of massive 
access management recently [9], [23], [18–21, 33–38]. Different distributed RL 
frameworks were proposed to address the massive access management problem 
under massive scale and stringent resource constraints [33], [34], where each 
device has the ability to intelligently make its informed transmission decision by 
itself without a central controller. The authors in [9] and [23] adopted the sparse 
dictionary learning to facilitate massive connectivity for a massive-device multiple 
access communication system, and the learning structure does not need any prior 
knowledge of active devices. 

Furthermore, the delay-aware access control of massive random access for 
mMTC and M2M was studied in [33], [35], and [36], and spectrum access 
algorithms based on RL were proposed to determine the access decision with high
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successful connections and low network access latency. As future wireless networks 
are complex and large scale, RL cannot effectively deal with the high-dimensional 
input state space. DRL (DRL combines deep learning with RL to learn itself from 
experience) was developed to solve complex spectrum access decision-making tasks 
under large-state space [18–21, 37, 38]. 

The authors in [18, 19, 37] proposed distributed dynamic spectrum access (DSA) 
approaches based on DRL to search the optimal solution for the DSA problem under 
the large-state space and local observation information. These distributed learning 
approaches are capable of encouraging devices to make spectrum access decisions 
according to their own observations without central controller, and hence they have 
a great potential for finding efficient solutions for real-time services. Hua et al. in 
[20] presented a network-powered deep distributional Q-network to allocate radio 
resources for diversified services in 5G networks. 

Moreover, Yu et al. in [21] investigated a DRL-based multiple access protocol 
to learn the optimal spectrum access policy considering service fairness, and 
Mohammadi et al. in [38] employed a DQN algorithm for cognitive radio underlay 
DSA which outperforms the distributed multi-resource allocation. However, the 
above works [18–21, 37, 38] did not investigate how to address the massive access 
management problem in their presented spectrum access approaches based on 
DRL, and most of the works did not consider the stringent reliability and latency 
constraints into the optimization problem. 

4.3 System Model and Problem Formulation 

We consider a maritime wireless communication network, as shown in Fig. 4.2, 
which consists of a BS at the center and a large number of ships with each ship 
being equipped with a single antenna. The ships are mainly divided into two 
types: cellular ships (C-ship) which communicate with the BS over the orthogonal 
spectrum subchannels and D2D ships (D-ship) which establish D2D communication 
links if two of them want to communicate with each other and they are close enough. 
In the network, D-ships can opportunistically access subchannels of C-ships while 
ensuring that the generated interference from D2D pairs to C-ships should not affect 
the QoS requirements of C-ships. We assume that each C-ship can be allocated with 
multiple subchannels, and each subchannel only serve for at most one C-ship in one 
time slot. In addition, each D2D pair can share multiple subchannels of C-ships. 

Let K , M , and N denote the number of C-ships, D2D pairs, and subchannels, 
respectively. The sets of the corresponding C-ship , D2D pair, and subchannel are 
denoted by .K = {1, 2, . . . , K}, .M = {1, 2, . . . , M} and .N = {1, 2, . . . , N}, 
respectively. Let Z denote the total number of communication links, Z = K + M , 
and its corresponding communication link set is defined by .Z = {1, 2, . . . , Z}. 
Let . hk and .hm be the channel coefficients of the desired transmission links from 
the k-th C-ship to the BS and the transmitter to the receiver in the m-th D2D pair, 
respectively. Denote by .gk,m, .gm,B and .gm′,m the interference channel gains from
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Fig. 4.2 Illustration of maritime wireless communication networks 

the k-th C-ship to the receiver of D2D pair m, the transmitter of D2D pair m to the 
BS, and the transmitter of the .m′-th D2D pair to the receiver of the m-th D2D pair, 
respectively. 

In the spectrum reusing case, C-ships suffer co-channel interference from the 
transmitters of D2D pairs if they share the subchannels with D2D pairs. As a result, 
the received signal-to-interference-plus-noise ratio (SINR) at the BS for C-ship k on 
the n-th subchannel is expressed by 

.
SINRk,n = Pk,nhk

∑

m∈M
ρm,nPm,ngm,B + δ2

k

, (4.1) 

where .Pk,n and .Pm,n denote the transmission power values of the k-th C-ship and 
the m-th D2D pair’s transmitter on the n-th subchannel, respectively. .ρm,n is the 
subchannel access indicator, .ρm,n ∈ {0, 1}; .ρm,n = 1 indicates that the m-th 
D2D pair assigns on the n-th subchannel; otherwise, .ρm,n = 0. . δ2

k is the additive 
white Gaussian noise power. In (4.1), .

∑
m∈M ρm,nPm,ngm,B is the co-channel 

interference. 
In addition, subchannel sharing also leads to the co-channel interference to 

D2D pairs, which is the generated interference from the co-channel C-ship and co-
channel D2D pairs on the same subchannel. Hence, the received SINR at the m-th 
D2D pair’s receiver when it reuses the n-th subchannel of the k-th C-ship is given 
by
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.
SINRm,n = Pm,nhm

Pk,ngk,m + ∑

m′∈M ,m′ �=m

ρm,m′,nPm′,ngm′,m + δ2
m

, (4.2) 

where .ρm,m′,n is the subchannel access indicator, .ρm,m′,n ∈ {0, 1} ; . ρm,m′,n = 1
indicates that both the m-th D2D pair and .m′-th D2D pair assign on the same n-
th subchannel in one time slot; otherwise, .ρm,m′,n = 0. . δ2

m is the additive white 
Gaussian noise power. 

Then, the data rate of the k-th C-ship and the m-th D2D pair on their assigned 
subchannels are respectively expressed by 

.
Rk =

∑

n∈N

ρk,nlog2
(
1 + SINRk,n

)
, (4.3) 

and 

.
Rm =

∑

n∈N

ρm,nlog2
(
1 + SINRm,n

)
, (4.4) 

where .ρk,n is the subchannel access indicator which has the same definition of . ρm,n

and .ρm,m′,n as aforementioned above. 

4.3.1 Network Requirements 

(1) URLLC Requirements: In 5G and B5G networks, different ships have different 
QoS requirements, i.e., some ships have ultrahigh-reliability communication 
requirements, some ships need strict low-latency services, and even some 
ships have both the stringent low-latency and high-reliability requirements. 
For example, intelligent transportation and factory automation have stringent 
URLLC requirements for real-time safety information exchange or hazard 
monitoring, where the maximum latency is less than 5 ms (even about 0.1 ms) 
and the transmission reliability needs to be higher than that 1 − 10−5 (or even 
1 − 10−5), but they do not need the high data rate. 

For URLLC requirements, we assume that the packet arrival process of the 
i-th (i ∈ Z ) communication link is independent and identically distributed 
and follows Poisson distribution with the arrival rate λi [11]. Let Li denote 
the packet size in bits of the i-th communication link, and it follows the 
exponential distribution with mean packet size L̄i . Generally, the total latency 
mainly includes the transmission delay (Tr), queuing waiting delay (Tw), and 
processing/computing delay (Tc), which can be expressed by [11] 

. T=Tr + Tw + Tc. (4.5)
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In (4.5), the transmission delay of the packet Li can be given by Tr = 
Li/(W × Ri), where W is the bandwidth of each subchannel and Ri is the 
data rate given in (4.3) or (4.4), respectively. 

Due to the low-latency constraint, each packet requires to be successfully 
transmitted in a given time period. Let Tmax denote the maximum tolerable 
latency threshold, so the latency outage probability of URLLC can be given 
by 

. pi = Pr{T > Tmax} ≤ pmax, (4.6) 

where pmax is the maximum SINR violation probability. 
It is hard to directly calculate the ship’s packet latency shown in (4.5), and 

hence the outrage probability in (4.6) is difficult to be achieved. However, we 
can transform the latency constraint (4.6) into the data rate constraint by using 
max-plus queuing methods [18]. 

To guarantee the latency outage probability constraint shown in (4.7), the 
data rate Ri of each URLLC service of the i-th communication link should 
meet 

.Ri ≥ L̄i

WTmax

(

Fi − f−1

(
pmaxFie

Fi

))

, (4.7) 

where f−1(·) : [−e−1, 0) → [−1,∞)] denotes the lower branch of Lambert 
function meeting y = f−1(yey ) [18], Fi = λiTmax/(1 − eλiTmax) , and Ri,min 
is the minimum data rate to ensure the latency constraint shown in (4.6). The 
relevant proof of (4.7) can be seen in [18, Th. 2]. If the transmission data rate is 
less than the minimum data rate threshold, in other words, the latency exceeds 
the maximum latency threshold, the current URLLC service is unsuccessful and 
its corresponding packet transmission is stopped. 

In addition, the SINR value can be used to characterize the reliability of 
URLLC. In detail, the received SINR at the receiver should be beyond the min-
imum SINR threshold. Otherwise, the received signal cannot be successfully 
demodulated. Hence, the outage probability in terms of SINR can be given by 

. Pr{SINRi,n < SINRmin
i,n } ≤ pmax, (4.8) 

where SINRmin 
i,n denotes the minimum SINR threshold of communication link i 

on the n-th subchannel and poutage 
max denotes the maximum violation probability. 

(2) Minimum Data Rate Requirements: In addition to the high-reliability and low-
latency requirements mentioned in Sect. 4.2, some C-ships and D2D pairs may 
have the minimum data rate requirements. Let Rk,min and Rm,min denote the 
minimum data rate requirements of the k-th C-ship and the m-th D2D pair, 
respectively. Then, the minimum data rate requirements are given by 

. Rk ≥ Rk,min, ∀k; Rm ≥ Rm,min, ∀m. (4.9)
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4.3.2 Problem Formulation 

The objective of this chapter is to maximize the overall network ratio of the sum 
data rate and the sum energy consumption (EE) while guaranteeing the network 
requirements. Then, the massive access management problem (joint subchannel 
access and transmission power control) is formulated as follows: 

. 

max
ρ,P

η =
∑

k∈K
Rk+ ∑

m∈M
Rm

∑

n∈N

(
∑

k∈K
ρk,nPk,n+ ∑

m∈M
ρm,nPm,n

)

+ZPc

s.t. (a) : (4.7), (4.8), (4.9) 
(b) : ρk,n ∈ {0, 1}, ρm,n ∈ {0, 1}, ∀k, m, n 
(c) : ∑

k∈K 
ρn,k ≤ 1, ∀n ∈ N 

(d) : ∑

n∈N 
ρk,nPk,n ≤ P max 

k , ∀k ∈ K 

(e) : ∑

n∈N 
ρm,nPm,n ≤ P max 

m , ∀m ∈ M , 

(4.10) 

where . ρ and . P denote the subchannel assignment and power control strategies, 
respectively. .P max

k and .P max
m denote the maximum transmission power values of 

each C-ship and each D-ship, respectively. . Pc denotes the circuit power consump-
tion of one communication link. Constraint (4.10c) guarantees that each subchannel 
is allocated at most one C-ship. Constraints (4.10d) and (4.10e) are imposed to 
ensure the power constraints of ships. 

4.4 Problem Transformation 

Clearly, the optimization problem given in (4.10) is not easy to be solved as it is a 
non-convex combination and NP-hard problem. More importantly, the optimization 
objective is just a single time slot optimization problem, where the massive access 
decision is only based on the current state with the fixed optimization function. The 
single time slot massive access decision approaches may converge to the suboptimal 
solution and obtain the greedy-search like performance due to the lack of the 
historical network state and the long-term benefit. 

Hence, model-free RL as a dynamic programming tool can be applied to address 
the decision-making problem by learning the optimal solutions over dynamic 
environment. Similar to most of existing studies, we apply MDP to model the 
massive access decision-making problem in the RL framework by transforming the 
optimization problem (4.10) into MDP.  

In the MDP model, each communication link acts as an agent by interacting with 
outside environment, and the MDP model is defined as a tuple .(S ,A ,P, r, γ ), 
where . S is the state space set, . A denotes the action space set, . P indicates the
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transition probability: .P(st+1|st , at ) is the probability of transferring from a current 
state .st ∈ S to a new state .st+1 ∈ S after taking an action .st ∈ A , r denotes the 
immediate reward, and .γ ∈ (0, 1) denotes the discount factor. More details of the 
MDP model for massive maritime access management are presented as follows. 

Agent: Each communication transmitter in the maritime wireless network. 
State: In 5G and B5G networks, the network state is defined as . s = {scha, scq, str,

.sQoS} ∈ S , where .scha indicates the subchannel working status (idle or busy), 

. scq is the channel quality (i.e., SINR), . str is the traffic load of each packet, and 

.sQoS represents the QoS satisfaction level (the transmission success probability), 
such as the satisfaction levels of the minimum data rate, latency, and reliability. 

Action: For the massive access management problem, each agent will decide 
which subchannels can be assigned and how much transmit power should be 
allocated on the assigned subchannels. Hence, the action can be defined as 
.a = {ρcha, Ppow} ∈ A which includes the subchannel assignment indicator 
(.ρcha) and the transmission power (.Ppow). At each time slot, the action of each 
ship consists of channel assignment indicator .ρcha ∈ {0, 1} and transmission 
power level .Ppow ∈ {50, 150, 300, 500} in mW where the transmission power is 
discretized into four levels. The action space of each ship is not large in general, 
but the overall action space of all the ships in the massive access scenario is large. 
Hence, we discretize the transmission power levels, e.g., as small as possible, we 
choose the four transmission power levels instead of more levels. 

Reward function: In order to exploit the ship communication experiences, the 
RL-based communication scheme designs a reward function in the learning 
process. More specifically, each learning agent searches its decision-making 
policy by maximizing its reward in the interaction with environment. Hence, it 
is important to design an efficient reward function to improve the ships’ service 
satisfaction level. 

Here, let .Z ′ denotes the set of communication links in the URLLC scenario 
where the ships have both the reliability and latency requirements, and .Z ′′ denotes 
the set of communication links in the normal scenario where the ships have 
minimum data requirements. .|Z ′| = Z′ and .|Z ′′| = Z′′. Let .Rnor

i and . Rnor
i,min

denote the instantaneous data rate and the minimum data rate threshold in the normal 
scenario, respectively. 

According the optimization problem shown in (4.10), considering the different 
QoS requirements, we design a new QoS-aware reward function for the massive 
access management problem, where the reward function of the i-th communication 
link includes the network EE, as well as the reliability, latency, and minimum data 
rate requirements, which is expressed by 

. r = ηi,EE − c1χ
URLLC
i − c2χ

nor
i , (4.11)
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where 

. χURLLC
i =

{
0, if (4.7) and (4.8) are satisfied, 
1, otherwise. 

(4.12) 

. χnor
i =

{
1, if Rnor

i < Rnor
i,min ,

0, otherwise.
(4.13) 

In (4.11), the part 1 indicates the immediate utility (network EE), and the 
part 2 and part 3 are the cost functions of the transmission failures which are 
defined as the unsatisfied URLLC requirements and the unsatisfied minimum data 
rate requirements, respectively. The parameters . ci , .i ∈ {1, 2} denote the positive 
constants of the latter two parts in (4.11), and they are adopted for balancing the 
utility and cost [19], [28], [19]. 

The objectives of (4.12) and (4.13) are to refract the QoS satisfaction levels of 
both the URLLC services and normal services, respectively. In detail, if the URLLC 
requirement of one packet is satisfied in the current time slot, then .χURLLC

i = 0; if  
the minimum data rate is satisfied, then .χnor

i = 0. This means that there is no cost or 
punishment of the reward due to the successful transmission with QoS guarantees. 
Otherwise, .χURLLC

i = 1, or .χnor
i = 1. 

The reward function shown in (4.11) may have the same reward values for some 
cases. For example, the following two cases may have the same reward for different 
values: Case I, the URLLC requirement is not satisfied, while the minimum data 
rate requirement is satisfied, and then .χURLLC = 1 and .χnor = 0; Case II, the  
URLLC requirement is satisfied, while the minimum data rate requirement is not 
satisfied, and then .χURLLC = 0 and .χnor = 1. For these two cases, they may have 
the same reward function values: .r = ηEE − c1 ∗ 1 − c2 ∗ 0 and . r = ηEE − c1 ∗
0 − c2 ∗ 1 with .c1 = c2 being the punishment factors. If the punishment factors 
.c1 �= c2, the two cases have different reward function values. We would like to 
mention that the values of the punishment factors . c1 and . c2 have important impacts 
on the reward function, if .c1 > c2, the URLLC requirement has the higher impact on 
the final reward value than that of the minimum data rate requirement; by contract, 
if .c1 < c2, the minimum data rate requirement has the higher impact on the final 
reward value than that of the URLLC requirement. Furthermore, if .c1 = c2, both the 
URLLC requirement and minimum data rate requirement have the same impacts on 
the reward value. 

In RL, each agent in the MPD model tries to select a policy . π to maximize 
a discounted accumulative reward, where . π is a mapping from state . s with the 
probability distribution over actions that the agent can take: .π(s) : S → A . The  
discounted accumulative reward is also a called the state-value function for starting 
the state . s with the current policy . π , and it is defined by
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. V
π(s) =

{ ∞∑

t=1

γ t rt (st , at ) |s0 = s, π

}

. (4.14) 

The function .V π (s) in (4.14) is usually applied to test the quality of the selected 
policy . π when the agent selects the action .mathbf a. The MPD model tries to search 
the optimal state-value function .V ∗(s), which is expressed by 

. V
∗(s) = max

π
V π(s). (4.15) 

Once .V ∗(s) is achieved, the optimal policy .π∗ (st ) under the current state . st is 
determined by 

.
π∗ (st ) = arg max

at∈A
Ūt (st , at ) +

∑

st+1

P (st+1|st , at )V
∗ (st+1) , (4.16) 

where .Ūt (st , at ) denotes the expected reward by selecting action . at at state . st . To  
calculate .V ∗(s), the iterative algorithms can be applied. However, it is difficult 
to get the transition probability .P(st+1|st , at ) in practical environments, but RL 
algorithms, such as Q-learning, policy gradient, and DQN, are widely employed to 
address MDP problems under environment uncertainty. 

In Q-learning algorithm, the Q-function is used to calculate the accumulative 
reward for starting from a state . s by taking an action . a with the selected policy . π , 
which can be given by 

. Q
π (s, a) =

{ ∞∑

t=1

γ t rt (st , at ) |s0 = s, a0 = a, π

}

. (4.17) 

Similarly, the optimal Q-function is obtained by 

. Q
∗(s, a) = max

π
V π(s, a). (4.18) 

In Q-learning algorithm, the Q-function is updated by 

. Qt+1 (st , at ) = Qt (st , at ) + α
(
rt+1 + γ max

at+1
Qt (st+1, at+1) − Qt (st , at )

)
,

(4.19) 
where . α denotes the learning rate. When .Q∗(s, a) is achieved, the optimal policy is 
determined by 

. π
∗(s) = arg max

a∈A
Q∗ (s, a) . (4.20)
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4.5 Distributed Cooperative Multi-agent RL-Based Massive 
Access 

Even though Q-learning is widely adopted to design the resource management 
policy in wireless networks without knowing the transition probability in advance, 
it has some key limitations for its application in large-scale 5G and B5G networks, 
such as Q-learning has slow convergence speed under large-state space, and it 
cannot deal with large continuous state-action spaces. Recently, a great potential is 
demonstrated by DRL that combines neural networks (NNs) with Q-learning, called 
DQN, which can efficiently address the abovementioned problems and achieve 
better performance owing to the following reasons. Firstly, DQN adopts NNs to map 
from the observed state to action between different layers, instead of using storage 
memory to store the Q-values. Secondly, large-scale models can be represented from 
high-dimensional raw data by using NNs. Furthermore, by applying experience 
replay and generalization capability brought by NNs, DQN can improve network 
performance. 

In 5G and B5G networks shown in Fig. 4.2, massive communication links aim 
to access the limited radio spectrum, which can be modeled as a multi-agent 
RL problem, where each communication link is regarded as a learning agent 
to interact with network environment to learn its experience, and the learned 
experience is then utilized to optimize its own spectrum access strategy. Massive 
agents explore the outside network environment and search spectrum access and 
power control strategies according to the observations of the network state. The 
proposed deep multi-agent RL-based approach consists of two stages, a training 
stage and a distributed cooperative implementation stage. The main contributions 
of the proposed distributed cooperative multi-agent RL-based approach for massive 
access are provided as follows in detail. 

4.5.1 Training Stage of Multi-agent RL for Massive Access 

For the training stage, we adopt DQN with experience relay to train the multi-
agent RL for efficient learning of massive access policies. Figure 4.3 indicates the 
training process. All communication links are regarded as agents and the wireless 
network acts as the environment. Firstly, each agent intelligently observes its current 
state (e.g., subchannel status (busy or idle), channel quality, traffic load, and QoS 
satisfaction levels) by integrating with the environment. Then, it makes decision 
and chooses one action according to its learned policy. After that, the environment 
feedbacks a new state and an immediate reward to each agent. Based on the 
feedback, all agents smartly learn new policies in the next time step. The optimal 
parameters of DQN can be trained with an infinite number of time steps. In addition, 
the experience replay mechanism is adopted to improve the learning speed, the 
learning efficiency, and the learning stability toward the optimal policy for the
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Fig. 4.3 DQN training-based intelligent subchannel assignment and power control for massive 
access 

massive access management. The training data is stored in the storage memory, and 
a random mini-batch data is sampled from the storage memory and used to optimize 
DQN. 

At each training or learning step, each DQN agent updates its weight, . θ , to  
minimize the loss function defined by 

.

Loss(θt ) =
(
rt+1(st , at ) + γ max

a∈A
Qt (st+1, at+1, θt ) − Qt (st , at , θt )

)2 . (4.21) 

One important reason of adopting DQN is to update the loss functions given in 
(4.21) at each tainting step to decrease the computational complexity for large-scale 
learning problems [19–23]. The DQN weight . θ is obtained by using the gradient 
descent method, which can be expressed as 

. θt+1 = θt + β∇Loss(θt ), (4.22) 

where . β denotes the learning rate of the weight . θ and .∇(.) is the first-order partial 
derivative. 

Then, each agent selects its action according to the selected policy .π(st , θt ), 
which is given by 

. π(st , θt ) = arg max
a∈A

Qt (st , at , θt ). (4.23)
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Algorithm 3 DQN Training Stage of Subchannel Assignment and Power Control with Multi-
agent RL for Massive Access 

1: Input: DQN structure, environment simulator and QoS requirements of all ships (e.g., reliability, 
latency and minimum data rate). 
2: for each episode j=1,2,. . . ,  N epi do 
3: Initialize: Initial Q-networks for all agents (e.g., Q-function Q(s, a), policy strategy π(s, a), 
and weight θ ) and experience replay D. 
4: for each iteration step t=0,1,2,. . . ,  T do 
5: Each agent observes its state st ; 
6: Select a random action at with the probability ε; 
7: Otherwise, choose the action at = arg max 

a∈A 
Qt(st , at , θt ); 

8: Execute action at , then obtain a reward rt by (4.15), and observe a new state st+1; 
9: Save experience et = (st , at , r(st , at ), st+1) into the storage memory D; 
10: end for 
11: for each agent do 
12: Sample a random mini-batch data et from D; 
13: Update the loss function by (4.21); 
14: Perform a gradient descent step to update θt+1 by (4.22); 
15: Update the policy π with maximum Q-value by (4.23), and chose an action based on π ; 
16: end for 
17: end for 
18: return: Return trained DQN models. 

Pseudocode for training DQN is presented in Algorithm 3. The communication 
environment contains both the C-ships and D-ships and their positions in the served 
coverage area of the BS, and the channel gains are generated based on their 
positions. Each agent has its trained DQN model that takes as input of current 
observed state . st and outputs the Q-function with the selected action . at . The training 
loop has a finite number of episodes .Nepi (i.e., tasks) and each episode has T 
training iterations. At each training step, after observing the current state . st , all  
agents explore the state-action space by applying the . ε− greedy method, where each 
action . at is randomly selected with the probability . εt , while the action is chosen 
with the largest Q-value .Qt(st , at , θt ) with the probability .1 − εt . After executing 
. at (subchannel assignment and power control), agents will receive an immediate 
reward . rt and observe a new state .st+1 from the environment. Then, the experience 
.et = (st , at , r(st , at ), st+1) is stored into the replay memory D. At each episode, a 
mini-batch data from the memory is sampled to update the weight . θt of DQN. 

4.5.2 Distributed Cooperative Implementation of Multi-agent 
RL for Massive Access 

The abovementioned trained DQN models with the computation intensive training 
procedure are shown in Sect. 4.4, which can be completed offline at BS since 
BS has powerful computing capacity to train large-scale models. After adequate
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Fig. 4.4 Distributed cooperative multi-agent RL framework 

training, the trained models are utilized for implementation. Here, we propose a 
distributed cooperative learning approach to optimize the network performance in 
massive access scenario. 

During the distributed cooperative implementation stage, at each learning step, 
each communication link (agent) utilizes its local observation and information to 
choose its action with the maximum Q-value. In this case, each agent has no 
knowledge of actions chosen by other agents if the actions are updated simulta-
neously, and new joined agents need to train their own learning model with extra 
training computational time or cost. In order to address this issue, motivated by 
the concept of transfer learning and cooperative learning, we present a distributed 
cooperative learning approach to improve the learning efficiency and enhance the 
service performance of each agent, where ships are encouraged to communicate and 
share their learned experiences and decisions within a small number of neighbors, 
and finally learn with each other, as shown in Figs. 4.3 and 4.4. 

(1) Transfer Learning: 

(i) The Expert Agent Selection: When a new ship joins 5G and B5G 
networks, or one ship applies a new communication service, instead of 
building a new learning model, it can communicate with neighboring ships 
to search one suitable expert to utilize the expert’s current learning model. 
In addition, if one communication link has poor performance (e.g., low 
convergence speed and poor QoS satisfaction levels) according to its current 
learning strategy, it can search one neighboring communication link (agent) 
as the expert and then utilizes the learned model or policy from the expert. 

Generally, to find the expert, ships exchange the following several 
metrics with their neighbors: (a) the types of ship, e.g., C-ship and D2D 
ship; (b) the communication services, which mainly refer to URLLC service
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and normal service; and (c) the related QoS parameters, such as the 
target thresholds of reliability and latency, and the minimum data rate. 
The similarity of the agents can be evaluated by adopting the manifold 
learning, which is also called the Bregman ball [19]. The Bregman ball 
is defined as the minimum manifold with a central .Θcen (the information 
of the learning agent, where information refers to the types of ship, 
communication services, and QoS parameters mentioned above), and a 
radius .Ψrad. Any information point .Θpoi (the information of neighbors) is 
inside this ball, and the agent tries to search the information point which 
has the highest similarity with .Θcen. The distance between any point and 
the central .Θcen is defined by 

. Dis (Θcen, Ψrad) = {
Θpoi ∈ Θ : Dis

(
Θpoi,Θcen

) ≤ Ψrad
}
. (4.24) 

After the highest similarity level (the smallest distance achieved by 
(4.24)) between the learning agent and the expert agent is found, the 
learning agent can use the learned DQN model of the selected expert agent. 

(ii) Learning from Expert Agent: As analyzed above, after finding the expert 
agent, the learning agent uses the transferred DQN model .QT(s, a) from 
the expert agent and its current native DQN model .QC(s, a) to generate an 
overall DQN model. Accordingly, the new Q-table of the learning agent can 
be expressed as 

. QN(s, a) = μQT (s, a) + (1 − μ) QC (s, a) , (4.25) 

where .μ ∈ [0, 1] is the transfer rate, and it will be gradually decreased after 
each learning step to reduce the effect of the transferred DQN model from 
the expert agent on the new DQN model. 

In the distributed cooperative manner, the policy vector of all agents are 
updated as follows: 
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where .Qi
t+1(s

i
t , a

i
t , θ

i
t ) denotes the Q-function of the i-th agent (communication 

link) with its current state-action pair .(sit , a
i
t ) at the current time slot in its DQN 

model.
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When the state-action pairs are visited for many enough times for conver-
gence, all Q-tables will converge to the final point . Q∗. Hence, we can get the 
final learned policy as follows: 

. π∗ (s) =

⎡

⎢
⎢
⎢
⎣

arg max
a1∈A 1

Q1∗ (
s1, a1

)

...

arg max
aZ∈A Z

QZ∗ (
sZ, aZ

)

⎤

⎥
⎥
⎥
⎦

. (4.27) 

(2) Cooperative Learning 
If the action is chosen independently according to the local information, 

each communication link has no information of actions selected by other com-
munication links when the actions are updated simultaneously. Consequently, 
the states observed by each communication link may fail to fully characterize 
the environment. Hence, cooperation and decision sharing among agents in the 
proposed distributed learning approach can improve the network performance, 
where a small number of communication links will share their actions with 
their neighbors. In the cooperative manner, the massive number of agents can 
be classified into G groups, where the g-th group consists of . Lg agents and the 
agents in the same group are also their neighboring agents. The group division 
principle can adopt the studies in [13]. 

In general, it is possible to approximate the sum utility of the g-th group 
.Qg(sg, ag) by the sum of each agent’s utility .Qg,i(sg,i , ag,i) in the same group, 
where . sg and . ag denote the entire state and action of the g-th group, respectively; 
.sg,i and .ag,i are the individual state and action of the i-th agent in the g-th group, 
respectively. Hence, the total utility in a small group g can be calculated by 

. Qg

(
sg, ag

) =
Lg∑

i=1

(
Qg,i

(
sg,i , ag,i

))
. (4.28) 

Then, the joint optimal policy learned in the g-th group can be expressed by 

. πg

(
sg

) = arg max
ag∈Ag

(
Qg

(
sg, ag

))

, (4.29) 

where .Ag denotes the entire action space of the g-th group. 
In fact, the cooperation can be defined by allowing communication links (agents) 

to share their selected actions with their neighboring links and take turns to make 
decisions, which can enhance the overall feedback reward by choosing the actions 
jointly instead of independently. For example, in the fully distributed learning 
manner, each spectrum access may run into collisions when other links make their 
decisions independently and happen to assign the same subchannel, leading to the 
increased co-channel interference and reduce the performance. By contrast, in the
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Algorithm 4 Distributed Cooperative Implementation of Multi-agent RL for Mas-
sive Access 
1: Input: DQN structure, environment simulator and QoS requirements of all ships. 
2: start: Load DQN models. 
3: loop 
4: Each agent (communication link) observes its state s; 

Transfer learning 
5: if the agent is new, or needs new service or has poor performance, then; 
6: The agent exchanges information with its neighbors; 
7: Search the expert with the highest similarity by (4.24); 
8: Use the learned model from the expert; 
9: Update the overall Q-table by (4.25); 
10: Update the transfer rate μ, and select an action by (4.31); 
11: Perform learning from step 13 to step 16; 
12: else 

Cooperative learning 
13: In each group g, each agent shares its observations and actions; 
14: Each group calculate its cooperative Q-table by (4.28); 
15: Update the joint policy πg(sg) with the largest cooperative Q-value Qg(sg, ag), and select 
the joint action ag ; 
16: Execute action ag , then obtain a reward r ′

g using (4.11), and observe a new state s′g ; 
17: end if 
18: Both transfer learning and cooperative learning are jointly updated to optimize the learned 
policy; 
19: end loop 
20: output: Subchannel assignment and power control. 

cooperative learning scenario, to avoid such situation, each communication link 
has information of the neighbors’ actions in its observation and tries to avoid the 
assignment of the same subchannel in order to achieve more rewards. 

The distributed cooperative implementation of multi-agent RL for massive access 
is shown in Algorithm 4. Generally, at each time step, after observing the states 
(subchannel occupation status, channel quality, traffic load, QoS satisfaction level, 
etc.) from the environment, the actions (massive subchannel assignment and power 
control) in communication links are selected with the maximum Q-value given by 
loading the trained DQN models shown in Algorithm 3. As mentioned above, a 
small number of neighboring ships are encouraged to cooperate with each other in 
the same group to maximize the sum Q-value shown in (4.28), where their decisions 
are shared in the same group and the joint action strategy . ag is selected with the 
maximum cooperative Q-value. In addition, it is worth noting that if a new ship 
joins the network or applies a new service, or one communication link achieves poor 
performance (e.g., low transmission success probability or low convergence speed), 
then it can directly search the expert agent from the neighbors in the same group 
and utilizes the transfer learning model and policy from the expert agent. Finally, 
all communication links begin transmission with the subchannel assignment and 
transmission power strategies determined by their learned policies.
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Independent DQN is one of the multi-agent reinforcement learning techniques, 
where each agent independently learns its own policy and considers other agents 
as part of the environment. Moreover, the combination of experience replay with 
independent DQN appears to be problematic: the non-stationarity introduced by 
independent DQN. Hence, we have presented a distributed cooperative multi-agent 
DQN scheme, and ships are encouraged to communicate and share their learned 
experiences and actions within a small number of neighbors and finally learn with 
each other. In this case, the scheme is capable of avoiding the non-stationarity of 
independent Q-learning by having each agent learn a policy that conditions on an 
information sharing of the other agents’ policies (behaviors) in the same group. 

4.5.3 Computational Complexity Analysis 

For the training phase, in trained DQN models, let L, . B0, and . Bl denote the training 
layers which are proportional to the number of states, the size of the input layer, 
and the number of neurons used in DQN, respectively. The complexity in each time 

step for each agent is calculated by .O
(
B0B1 + ∑L−1

l=1 BlBl+1

)
at each training 

step. In the training phase, each mini-batch has episodes .Nepi with each episode 
being T time steps, and each trained model is completed over I iterations until 
convergence and the network has Z agents with the Z trained DQN models. Hence, 

the total computational complexity is .O
(
ZINepiT (B0B1 + ∑L−1

l=1 BlBl+1)
)

. The  

high computational complexity of the DQN training phase can be performed offline 
for a finite number of episodes at a powerful unit (such as the BS) [20], [21]. 

For the distributed cooperative phase (also called testing phase), our proposed 
approach applies the transfer learning mechanism and allows the expert agent to 
share the learned knowledge or actions with other agents. Let .S ′ and .A ′ denote the 
stored state space and action space, respectively. The computational complexities of 
the classical DQN approach (the fully distributed DQN approach) and the proposed 
approach are .O(|S|2 ×|A |) and .O(|S ′|2 ×|A ′| + |S |2 ×|A |) [19], respectively, 
indicating that the complexity of the proposed approach is higher than the classical 
DQN learning approach. Nevertheless, the stored state space and action space in the 
memory is not large at each ship, and hence the complexity of the proposed learning 
approach is slightly higher than the classical DQN approach. For cooperative 
learning, a small number of agents in each same group will select their actions 
jointly instead of independently by sharing their own selected action. Let .aco

g,i denote 
the shared action set of each i-th agent in the g-th group in the current time slot, and 
then the computational complexity of the g-th group in terms of action sharing is 

.O

(
Lg∑

i=1
|aco

g,i |
)

. As the network has G groups, the total computational complexity 

of the cooperative learning is .O

(
G∑

g=1

Lg∑

i=1
|aco

g,i |
)

.
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4.6 Simulation Results and Analysis 

Here, simulation results are provided to evaluate the proposed distributed coopera-
tive multi-agent RL-based massive access approach in a maritime communication 
network. We consider a single cell with a cell radius of 500 m, and the total number 
of ships is 150. In addition, we set one fifth of the total number of ships to be 
normal services and the minimum data rate requirement is set as 3.5 bps/Hz. The 
maximum D2D communication distance is 75 m. The carrier frequency is 2 GHz, 
and the total bandwidth is 10 MHz which is equally divided into 20 subchannels with 
each subchannel having 0.5 MHz. For the URLLC services, the SINR threshold is 
5 dB, the processing/computing delay . Tpc= 0.3 ms, the reliability requirement varies 
between 99.9% and 99.99999%, and the maximum latency threshold varies between 
1 and 10 ms for different simulation settings. The maximum transmit power of 
each ship and circuit power consumption are 500 mW and 50 mW, respectively. The 
background noise power is .−114 dBm. Each packet size in URLLC links is 1024 
bytes. The DQN model consists of three connected hidden layers, containing 250, 
250, and 100 neurons, respectively. The learning rate is .α = 0.02 and the discount 
factor is set to be .γ = 0.95. The simulation parameters are shown in Table 4.2. 

We compare the proposed distributed cooperative multi-agent RL-based massive 
access approach (denoted as proposed DC-DRL MA, which adopts both transfer 
learning and cooperative learning mechanisms) with the following approaches: 

(1) The group-based massive access approach, where ships are grouped by the 
similarities with each group having one group leader to communicate with 
the centralized controller. Then, the subchannel assignment and transmission 
power control are adjusted iteratively to the communication links in each group, 

Table 4.2 Simulation parameters 

Parameters Value 

Cell radius 500 m 

Carrier frequency 2 GHz 

Bandwidth 100 MHz 

Maximum D2D communication distance 75 m 

Total number of devices 150 

Number of subchannels 20 

Reliability requirement in URLLC links 99.9%, 99.99%,. . . , 99.99999% 

Latency threshold 1, 2, 4, 6, 8, 10 ms 

Minimum capacity of each normal link 3.5 bps/Hz 

SINR threshold in URLLC links 5 dB  

Maximum transmit power of each device 500 mW 

The circuit power consumption of each device 50 mW 

Background noise power .−114 dBm 

Each packet size in URLLC links 1024 bytes
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similar to the group-based preamble reservation access approach (denoted as 
centralized G-MA). 

(2) The fully distributed multi-agent RL-based massive access approach (denoted 
as fully D-DRL MA), similar to the approach, where each communication link 
selects its subchannel assignment and transmission power strategy based on its 
own local information without cooperating with other communication links. 

(3) Random massive access approach (denoted as random MA), where each 
communication link chooses its subchannel assignment and transmission power 
strategy in a random manner. 

4.6.1 Convergence Comparisons 

Here, we show in Fig. 4.5 the EE with increasing training episodes to investigate the 
convergence behavior of the proposed multi-agent DQN approach and compared 
approaches. Clearly, the proposed learning approach significantly achieves the 
higher EE performance than that of the fully distributed DRL approach [37] and 
random MA approach. Especially, the proposed approach has faster convergence 
speed and less fluctuations by adopting transfer learning and cooperative learning 
mechanisms to improve the learning efficiency and convergence speed. The fully 
distributed DRL approach [37] is simple without any cooperation among ships, but 
it achieves poor global performance, leading to the poor EE value. Even though 
the random MA approach has the simplest structure, the worst performance fails 
to optimize the network energy efficiency with increasing training episodes. Our 
proposed approach applies both the transfer learning and cooperative learning 
mechanisms to enhance the convergence speed and learning efficiency, and the 
optimized strategy can be learned after a number of training episodes. From Fig. 4.5, 

Fig. 4.5 Convergence 
comparisons of compared 
learning approaches
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the energy efficiency per episode improves as training continues, demonstrating 
the effectiveness of the proposed training approach. When the training episode 
approximately reaches 1900, the performance gradually converges despite some 
fluctuations due to mobility-induced channel fading in mobile environments. Since 
we investigate the resource management in massive access scenario, the environ-
ment is complex, and the action and state spaces are large for all mobile ships, so our 
presented learning approach requires about 2000 training episodes to appropriately 
converge. 

4.6.2 Performance Comparisons Under Different Thresholds 
of Reliability and Latency 

Figures 4.6 and 4.7 compare the performances of all approaches under different 
values of the reliability and latency thresholds, respectively, when the packet arrival 
rate is 0.03 packets/slot/per link and the total number of ships is 2000. From both 
Figs. 4.6 and 4.7, for all approaches, we can find that both the EE performance 
and the transmission success probability drop as the required reliability value 
increases and the maximum latency threshold decreases. The reason is that the 
more stringent the reliability and latency constraints are, the worse network EE 
and transmission success probability the network can archive. In this case, both 
the transmission power and subchannel assignment strategy need to be carefully 
designed to guarantee the stringent reliability and latency constraints, such that the 
transmission success probability can be guaranteed at a high level. 

We also observe from Figs. 4.6b and 4.7b that within a reasonable region of the 
reliability and latency threshold change, the three approaches (except the random 
search approach) can till achieve the high transmission success probability, which, 
however, have more unsatisfied transmission link events happen if the constraints 
are extremely stick (e.g., the reliability threshold grows beyond 99.999% or the 
maximum latency threshold is less than 4 ms). Compared with other approaches, 
our proposed approach achieves the higher EE performance and transmission 
success probability under different reliability and latency requirements, especially 
the performance gap between the proposed approach and other approaches becomes 
more significant when the constraints become more stringent. The reason is that 
our proposed approach employs both the transfer learning and cooperative learning 
mechanisms to optimize the global subchannel assignment and transmission power 
strategy, thereby improving the network performance. From Figs. 4.6a and 4.7a, an 
interesting observation is that compared with the centralized G-MA approach and 
random MA approach, the EE value curve declines more quickly in our proposed 
approach when the constraints become stricter. The reason is that the proposed 
approach designs the specific QoS-aware reward function shown in (4.15) to try  
to guarantee QoS requirements (meeting the high transmission success probability),
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Fig. 4.6 Performance 
comparisons vs. different 
reliability thresholds 

and hence the network may sacrifice the part of EE performance to support more 
successful transmission communication links. 

4.7 Intelligent Transmission Scheduling in Maritime 
Communications 

In this chapter, we also consider an actor-critic deep reinforcement learning 
approach, called AC-DRL in [39] for the intelligent transmission scheduling in 
maritime communication networks. In the maritime communication networks as 
shown in Fig. 4.8, all smart devices as learning agents interact with the network as 
the learning environment.
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Fig. 4.7 Performance 
comparisons vs. different 
latency thresholds 

Each device cognitively observes its current network state, e.g., channel status 
(busy or idle), channel quality, devices priority, and traffic load, and chooses an 
action based on the learned policy strategy independently. Upon performing the 
communication action, the device observes the new network state and receives 
an immediate reward from the environment including the previous communication 
performance sent by the receiver from the feedback in each time slot. 

The parameters of both the actor and the critic network in the deep reinforcement 
learning-based communication scheme as illustrated in Fig. 4.8 can be optimized 
after a number of learning steps, and the AC-DRL-based communication scheme 
converges to the optimum value function and policy corresponding to the optimal 
scheduling policy in the maritime wireless networks. Compared with existing wire-
less networks, the advantage of the AC-DRL-based approach enables each device 
to optimize its scheduling policy independently based on the local observation
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Fig. 4.8 AC-DRL learning framework for intelligent transmission scheduling 

information and saves the bandwidth and energy consumption from the continuous 
exchange of the local information among the neighboring wireless devices. 

The AC-DRL framework inputs the network state vector with the number of 
M network states and outputs the estimated functions of both the actor function 
vectors A and the critic function V . The hidden layers perform computations on the 
weighted inputs (i. e., the network states) and produce the net input, which is then 
applied with activation function to produce the actual output, which is the function 
of both the actor and the critic network. 

In maritime wireless networks, the optimal policy in the spectrum access, data 
rate control, spectrum allocation, and power control can be obtained via trial 
and error to support the quality of service requirements. Generally, the learning 
mechanism is driven by the reward, which can be chosen as a weighted sum 
of the performance such as the successful packet transmission rate, the energy 
consumption, and the outage probability in wireless networks [39]. The policy is 
randomly chosen from the action set at the beginning and then optimized over time 
slots. 

We evaluate the performance of the AC-DRL approach and compare it with 
the classical AC approach based on PG, denoted as AC-PG, DQN, and random 
search. In the simulations, the maritime communication devices are assumed to be 
randomly distributed in a circular cell area with a radius of 500 m, and each aims 
to send packets with the packet number following a Poisson process. The devices 
are divided into two groups with different priority levels, and the resource blocks 
(RBs) are first allocated to the devices with higher priority. The main simulation 
parameters are listed in Table 4.3 similar to [40]. 

Figure 4.9 shows the learning process of the four maritime communication 
scheduling approaches in terms of the reward performance for 600 maritime devices. 
Three RL approaches significantly outperform the random search, and the AC-
DRL approach achieves the best performance with the fastest convergence rate. The
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Table 4.3 Simulation parameters 

Parameters Values 

Number of devices 200,400,. . . ,1200 

Channel model Frequency selective fading 

Packet size 2000 bits 

Buffer size 10 packets 

Time slot duration 10 ms 

Packet arrival rate 0.01/(10 ms) 

Power consumption in “active” status 35 mW 

Power consumption in “sleep” status 1 mW  

Background noise power .−114 dBm 

Number of time slots 2000 

Number of RBs 16 

Number of hidden layers 3 

Learning rate of NN 0.02 

Training error accuracy . 1 × 10−4

Discount factor 0.002 

Fig. 4.9 Reward of the 
maritime communication 
scheduling approaches over 
time 

DQN approach searches the Q-function approximator and thus sometimes fails to 
optimize the communication policy under massive devices. In addition, the AC-PG 
approach has fast convergent rates, but sometimes converges to the local optimal 
point. 

In Figs. 4.10, 4.11, 4.12, and 4.13, the performance of the four approaches with 
the range of the number of devices in maritime communication networks. The 
network resource is limited and fixed, when a large number of device packets need 
to be transmitted as the increase of devices, which results in the frequent handover 
process, blocking, and retransmission. All these factors increase the average packet
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Fig. 4.10 Packet 
transmission latency of the 
four maritime communication 
scheduling schemes 

Fig. 4.11 Successful 
transmit rate 

latency and decrease the successful transmission probability; thus, lower reward 
is obtained in the large number of device regions. In addition, the high frequent 
handover and retransmission increase the extra power consumption. When the 
number of devices is 1200, the average transmission latency of AC-DRL approach 
is 61.6% lower than random search and power consumption of AC-DRL approach 
is 38.8% lower. With the increase of the number of devices from 200 to 1200, 
the successful transmit rate of the AC-DRL approach decreases by 10.4% and 
normalized reward of the AC-DRL approach decreases by 10.1%, which is 48.0% 
and 48.1% higher than the random search approach, respectively.
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Fig. 4.12 Performance 
comparison of the average 
power consumption per 
device 

Fig. 4.13 Performance 
comparison of the normalized 
reward 

4.8 Conclusion 

In this chapter, a distributed cooperative channel assignment and power control 
approach based on multi-agent RL has been presented to solve the spectrum access 
management problem in maritime wireless communications, where the proposed 
approach is capable of supporting different QoS requirements (e.g., URLLC and 
minimum data rate) of a huge number of ships. The proposed multi-agent RL-based 
approach consists of a centralized training procedure and a distributed cooperative 
implementation procedure. In order to improve the network performance and 
QoS satisfaction levels, the transfer learning and cooperative learning mechanisms 
have been employed to enable communication links to work cooperatively in a
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distributed cooperative way. Simulation results have confirmed the effectiveness of 
the proposed learning approach and also showed that the proposed approach out-
performs other existing approaches in maritime wireless communication scenarios. 
Furthermore, an exemplary case study and simulation analysis on the intelligent 
transmission scheduling are provided to demonstrate the advantage and significance 
of machine learning in intelligent maritime wireless communications. In a nutshell, 
machine learning-based physical layer design, decision-making, network manage-
ment, and resource optimization are exciting areas for future intelligent maritime 
communications. 
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Chapter 5 
Learning-Based Maritime Location 
Privacy Protection 

In maritime networks (MNs), ships and other maritime mobile devices release 
their geographical and semantic information of the visited places (e.g., harbors, 
passenger terminals, and oil terminals) to request location-based services (LBS). 
This sensitive information enables the inference attacker to exploit the ship users’ 
identity or business information and thus pose privacy threats to the ship users. 
Therefore, LBS in MNs must protect the privacy of ship users and address the 
threat of sensitive location exposure during LBS requests. This chapter presents 
an RL-based sensitive semantic location privacy protection scheme. This scheme 
uses the idea of differential privacy to randomize the released ship locations and 
adaptively selects the perturbation policy based on the sensitivity of the semantic 
location and the attack history. This scheme enables a ship to optimize the 
perturbation policy in terms of the privacy and QoS loss without being aware of 
the current inference attack model in a dynamic privacy protection process. To 
solve the location protection problem with high-dimensional and continuous-valued 
perturbation policy variables, we develop a deep deterministic policy gradient 
(DDPG)-based semantic location perturbation scheme. The actor part is used to 
generate a continuous privacy budget and a perturbation angle, and the critic part is 
used to estimate the performance of the policy. This scheme can increase the privacy 
of ships and other maritime mobile devices, which reduces QoS loss and increases 
the corresponding utility. 

5.1 Introduction 

In this part, we first briefly introduce maritime LBS and privacy issues. After that, 
we summarize the inference attack types and popular location privacy protection 
methods. 
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Fig. 5.1 Marine location privacy leakage in LBS 

5.1.1 Maritime Location-Based Services and Location Privacy 

In the 5/6G era, with the maturity of the Internet of Things, artificial intelligence, 
blockchain, and other technologies, marine economy, and marine informatization 
have developed rapidly [1–3]. In particular, the MNs will become essential to 
the next generation of maritime safety information systems [4]. It can provide 
all-weather, automatic for all kinds of marine equipment, multidimensional and 
preciseness maritime location service systems, and a sufficient guarantee of timely 
ocean rescue, environmental protection, ecological analysis, resource utilization, 
and other maritime works. 

LBSs are significant in MNs, such as maritime navigation, weather forecast, 
and point of interest recommendations based on mobile users’ real-time maritime 
locations. However, there are many privacy threats to real-time maritime locations. 
LBS in MNs must protect ship users’ privacy and address the threat of the exposure 
of sensitive locations during LBS requests. Ship users release geographical and 
semantic information about the visited places (e.g., harbors, passenger terminals, 
and oil terminals). This sensitive information enables attackers to infer the ship 
users’ identity and business information to achieve fraud, luring improper consump-
tion, and other purposes. As shown in Fig. 5.1, the ship uses terminal equipment 
to communicate with the server in the MN system to conduct real-time and fast 
location searches to obtain the corresponding location service. In requesting service, 
the ship user sends the location and other sensitive information to the LBS server 
and obtains the corresponding service mark. At the same time, attackers may infer 
the ship’s identity type and expected docking location based on this information 
and then send fraudulent information. Therefore, location privacy based on location 
service has become an issue in the marine information environment [5, 6].
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Table 5.1 Comparison of privacy protection and their corresponding maritime applications 

Types of privacy Potential maritime 

protection Techniques Applications applications 

Data privacy Randomization The financial 
industry 

National information 
security 

Data encryption Internet domain Maritime safety 

Differential privacy Intelligent medical 

Zero-knowledge 
proof 

Government field 

Identity privacy Pseudonymization Social life Ship type protection 

K-anonymity Personal information Crew information 
protection 

Mix-network Medical information 

Blind signature Career information 

Group signature 

Ring signature 

Location privacy Obfuscation Travel planning Dock information 

Differential location 
privacy 

The weather service The ship trajectory 

Privacy-preserving Service response 

Location matching 

To protect maritime mobile users’ location and information privacy and deal 
with the growing privacy leakage problem, scholars have studied the adaptability of 
various privacy protection technologies in different scenarios, such as data privacy 
protection, identity privacy protection, and location privacy protection. Table 5.1 
lists different scenarios’ privacy types and potential maritime communication 
applications. The relevant privacy protection technologies are listed for each privacy 
type scenario, and several relevant examples are given. 

5.1.2 Inference Attacks 

In the context of location privacy protection for maritime mobile terminal require-
ments, we analyze the advantages and disadvantages of various technologies and 
focus on application scenarios to find the adaptability of different scenarios. From 
the perspective of privacy, location information in LBS includes user identity, spatial 
information (location), and time information, as shown in Fig. 5.2. Each attribute has 
a different form. 

Identity Information An identity is a user’s name, E-mail address, or any 
characteristic that distinguishes one person from another. In LBS, identities can be 
consistent or inconsistent [7].
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Fig. 5.2 User attribute information 

Spatial Information (Location) Spatial information is the primary means of 
determining location. A location can be described either as a set of coordinates (e.g., 
longitude and latitude) or as some other forms of information that can be linked to a 
location, such as a port name. Different types of spatial information can be roughly 
divided into two categories: 

1. Individual locations are scattered and independent of other locations. 
2. A trajectory is a set of positions with strong correlation, for example, a ship’s 

trajectory. 

Time Information By associating the time stamp with the location, the real-time 
navigation of the ship is highly dynamic and uncertain. 

The attacker’s goal is to collect the location information to profit. Figure 5.3 
illustrates how the attacker obtains the information, launches the attack, and 
achieves its goals. The attacker can obtain maritime mobile users’ information in 
the following ways: 

1. Collect the location information and historical statistics of shared or published 
ships. 

2. Eavesdropping on maritime networks (communication channels) can expose data 
traffic transmitted between offshore base stations and maritime mobile terminals. 

3. The location information is reflected by the ship task offloading assignment 
strategy. 

The attacker can infer the user’s location information from environmental inter-
actions or information provided by the application service provider after processing 
(context information). Examples of contextual knowledge include: (1) The number 
of ships staying in a specific area within a particular time; (2) Relationship between
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Fig. 5.3 Attacker’s pattern flow in the user’s privacy leakage 

different types of ships; (3) Correlation between ship type and its reported location; 
(4) Restrictions on the passage of ships in different sea lanes. 

Attack Types (1) Identity attack: The presumed location information is used to 
confirm the user’s identity. For example, when docking at the passenger terminal, it 
is inferred that the ship type is a passenger ship, and when entering the oil terminal, 
it is judged to be an oil tanker. (2) Location attack: It mainly identifies sensitive 
areas, such as oil stations and wharves. The serious threat will also determine the 
specific arrival time of the ship or combine part of the inference event sequence to 
form a trajectory tracking attack. (3) Semantic attack: When a ship requests service, 
it may publish some semantic information at the same time, including the attributes 
of the current location, such as different port types and different sea areas, which 
can expose more sensitive information about the ship. 

Attack Methods (1) Combined inference of context and background. The context 
and background knowledge obtained by the attacker strongly correlate with the 
location information observed to infer the ship user’s actual location. In a specific 
environment, the guessing area can be reduced to the specified area, and then all 
irrelevant areas can be eliminated to infer the ship’s location. For example, suppose 
the attacker knows the departure point of a ship and finds the departure point in the 
registration information list of a dock. In that case, it can speculate that the ship 
has arrived at the dock in a certain period and thus obtained relevant information 
such as the ship’s type. (2) Probability-based attack. By observing the location, the 
attacker can get the posterior distribution of the corresponding location to realize 
Bayesian attack inference and optimal inference. (3) In the inference attacks using 
deep learning, the transition matrix is obtained from the training data and applied 
with the localization attack to infer the user’s actual location at a specific time from
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the disturbed trajectory [8]. (4) Attackers can use semantic information to improve 
the accuracy of inferring users’ sensitive information [9]. 

5.1.3 Location Privacy Protection 

Many studies have discussed mobile users’ location privacy protection, which 
generally has the following forms: 

(1) Encryption mechanism: The main problems of location protection mechanisms 
based on encryption are the computational complexity and the requirement of 
a cooperative server. Some location encryption techniques will completely hide 
the user’s location information and lose the utility of location service [10]. 

(2) Anonymization mechanism: k-anonymity achieves location privacy protection 
through the generalization and suppression algorithm and hides in the nearest 
.k−1 location to the user [11]. But k-anonymity is no longer robust to an attacker 
with background knowledge and relies on trusted third-party servers. Users 
keep location privacy by changing user names or pseudonyms within the hybrid 
area. For example, a dynamic hybrid region is studied in [12] to protect the 
location privacy in the maritime communication network, which is dynamically 
formed when the maritime device requests LBS. 

(3) Perturbation mechanism: The perturbation mechanism spoofs the attacker 
by adding noise to perturb the actual location to a fake location. Since 
the generation of fake locations is randomly selected by the user’s mobile 
terminal, this location privacy protection mechanism can achieve a good level 
of location privacy without any trusted server. Geo-indistinguishability [13] 
formally defines the notion of protecting a user’s location within a radius r , i.e., 
the privacy protection level, which is achieved by adding controlled random 
noise. Specific definitions are described as follows: For any given location x 
and y, the perturbation mechanism . M satisfies .ε-geo-indistinguishability if and 
only if the following inequality holds: 

.
Pr

(
M (x′|x)

)

Pr (M (x′|y))
≤ ed(x,y)ε . (5.1) 

This definition states that mechanism .M makes the probability distribution 
of the perturbed location . x′ based on the real location x and y similar. The 
degree of similarity is the difference between the probability distribution of 
the perturbed location generated by two real locations, which is determined 
by the privacy budget . ε and the Euclidean distance .d(x, y). Moreover, this 
definition states that all locations within a given circle are indistinguishable 
from the attacker’s point of view. Therefore, this mechanism can ensure that 
even if the attacker already knows that the user is in a given range, the accuracy
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of locating the user’s actual location cannot be increased by observing the 
perturbed location . x′. 

(4) Semantic location privacy protection: Semantic location refers to the geograph-
ical area with the same attributes, such as passenger port, cargo port, etc. 
Semantic location is considered to be another dimension of users’ location 
information. Therefore, the information can expose more sensitive users’ 
private information to an attacker. In addition, the attacker can infer the 
voyage of the ship model by observing the time correlation between different 
semantic locations. For example, at a specific time point, the ship goes to 
the container piled wharf after leaving the oil terminal. A semantic-aware 
location privacy protection mechanism is studied in [14], which protects the 
user’s location and the corresponding semantic location information. This 
mechanism needs to accurately classify different semantic locations and protect 
their specific semantic location information by publishing upper-level semantic 
label categories, because the semantic label category at the next level obsesses 
the current specific semantic information. The mechanism designed in [15] can 
reduce the loss of LBS service quality by adjusting the disturbance level of 
geographic location and semantic location. However, this mechanism does not 
consider the specific attack model. 

The above description shows that different basic notions of location privacy 
protection schemes have different protection effects and objectives. Encryption 
schemes can reduce the risk of an attacker gaining access to information; 
anonymization destroys the link between identity and place, rendering anonymous 
information worthless; the location perturbation mechanism can blur the location 
information and reduce the risk of location information exposure. In addition, 
each method needs to consider different types of attackers. The perturbation 
scheme focuses on spatial and temporal information, while anonymization 
emphasizes identity protection; cryptography protects all three attributes of location 
information. Semantic location protection is used to protect sensitive location 
information. 

Currently, most location protection mechanisms ignore the semantic information 
of the location. However, the attacker can analyze the location semantics of 
the query requests processed by the location privacy protection scheme through 
background knowledge. Most of the existing semantic privacy protection schemes 
consider locations with different social functions as locations with different seman-
tics and classify location semantics into medical treatment, education, dining, travel, 
and other categories. Simply generating false location sets with multiple semantic 
types is not enough to defend against the attacker with background knowledge, 
and it cannot dynamically protect locations according to the user requirements and 
the sensitivity of different locations. Therefore, this chapter proposes a sensitive 
semantic location privacy protection scheme based on reinforcement learning 
(RL). The proposed scheme uses the idea of differential privacy to randomize the 
published ship locations and adaptively selects the perturbation strategy according 
to the semantic location sensitivity and attack history.
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5.2 Related Work 

LBS in MNs, such as the real-time transportation information report, the dock status 
information of different terminals, and point of interest (POI) recommendations, 
significantly improve the efficiency of maritime applications [16–18]. However, the 
location data that indicates the ship user’s identity and business information can be 
leaked from the LBS server or eavesdropped by attackers during the information 
exchange process for monetary or malicious purposes. MNs must protect users’ 
location privacy against attackers who can infer the users’ location and private 
information from the obtained location data [5, 19–22]. 

The contextual information attached to the location data exposes more of the 
private information of users to the attacker. To represent the contextual information 
the location coordinates can reveal, we use semantic location to describe a region 
with the same attribute, e.g., passenger terminal, cargo terminal, oil terminal, and 
fisherman’s wharf [21]. Different semantic locations may have different sensitivity 
levels and demand different privacy protections. For example, the oil terminal may 
be more sensitive than the passenger terminal, which needs more effort to hide 
this information from the attacker. However, most location protection schemes have 
overlooked the semantic location as an additional dimension of the location data. 

For example, a user requests the service from an LBS server to obtain the 
nearest POI recommendation when he/she is in an oil terminal. However, the oil 
terminal is considered as a sensitive location by the user and does not want to be 
identified by the LBS server. The semantic locations have strong correlations that 
can provide extensive information for the attacker to infer more accurately. Then 
the attacker can use location semantics to strengthen attacks on users’ locations 
and privacy information. For instance, the attacker can infer that the above users’ 
business may be related to oil transactions. Then the advertisement attacker may 
send semantic-related spams or scams frequently to the user based on his/her 
current semantic information, degrading the LBS experience of the user [23]. When 
semantic locations are disclosed, the users’ privacy level drops considerably. As a 
consequence, despite the convenience LBS can bring, many users will be unwilling 
to utilize LBS services when their location privacy is at risk, which will also impede 
the success of the LBS. 

To protect the user’s location privacy in LBS, a location perturbation scheme 
generalizes the well-known concept of differential privacy (DP) [24] with geo-
indistinguishability to enhance LBS applications by using a planar Laplacian 
mechanism to generate an approximate location[13]. However, this scheme con-
siders the uniform privacy demands and ignores the semantic locations with 
different sensitivities and usually overestimates/underestimates the user’s privacy. 
For example, assuming a ship is docked at an oil terminal. Suppose the scheme 
discloses the ship’s location that is very near to the actual location of an oil terminal. 
In that case, the attacker can still infer that the user is in the same oil terminal with 
a high probability. Suppose a passenger terminal and a cargo terminal are located at 
the ship’s west and east, respectively, at the same distance. In that case, the cargo
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terminal is more sensitive to the user than the passenger terminal. A traditional 
location perturbation scheme might release a location in the cargo terminal to protect 
the current location privacy. Still, the presented perturbation mechanism with the 
awareness of the location semantic’s sensitivity tends to release a perturbed location 
with less sensitivity in the passenger terminal. 

Location protection against semantic attack based on k-anonymity and l-diversity 
is studied in [11]; however, this scheme usually needs a trusted third party and 
costs high computation resources to generate the cloak area. A dynamic differential 
location privacy with personalized demands of a user is studied in [25]. The two-
phase location perturbation that combines the geo-indistinguishability and expected 
inference error [26] is constructed to protect location privacy based on the user’s 
demands by adding more noise to susceptible locations. 

A minimax learning algorithm in [27] is studied to defend against advanced 
attackers and protect the sensor-equipped smartphones’ context privacy. An 
improved Q-learning algorithm is investigated in [28] to help the user make better 
decisions concerning location disclosure and make a trade-off between the users’ 
privacy and recommendation quality. Q-learning is applied in [29] to reduce the 
QoS loss while perturbing the location data to protect the semantic location privacy 
against the inference attacker, in which the ship just perturbs the location data to 
make sure that the attacker cannot infer the current semantic location. 

In this chapter, we study the semantic location privacy protection scheme by 
incorporating the semantic locations’ sensitivity into the location perturbation 
scheme to induce the attacker’s inference resulting in less sensitive semantic 
locations. Instead of just adding more extensive noise to protect susceptible semantic 
locations, which will degrade QoS a lot [25], the investigated scheme tends to 
release a less sensitive one instead of a susceptible one to improve both privacy and 
QoS. In this way, the current and the potential semantic location can be protected 
better with the released less sensitive semantic location. In the long-term view, this 
perturbation scheme can also protect the ship’s trajectory and avoid the semantic 
correlated inference of the attacker. 

Most recent location privacy protection research relies on a trusted third party, 
pays little attention to the semantic sensitivity, and depends on a specific attack 
model. However, attackers may dynamically change their attack policy based on 
the network and service state, aiming to infer the user’s semantic location in 
dynamic MNs. Besides, it is difficult to pre-determine the privacy requirement 
for dynamically changing semantic locations with different sensitivities and LBS 
requests of the ship user. Moreover, it is noted that the future system state of 
the ship only depends on the current state and location perturbation policy and 
does not depend on previous perturbation history. Thus, the location perturbation 
process of the ship can be modeled by an MDP. Besides, the user’s environment is 
dynamically changing, and the accurate inference attack model is hard to obtain. RL 
techniques are applied to explore the optimal policy by trial and error with sufficient 
interactions without knowing the environmental parameters. Consequently, we can 
apply RL techniques, such as Q-learning, to derive the optimal perturbation policy 
without being aware of the inference attack model.
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We first present a reinforcement learning-based semantic location perturbation 
scheme (RSLP) for MNs with a differential privacy technique against inference 
attackers. This scheme dynamically chooses the privacy budget to randomize the 
released locations to protect the sensitive semantic locations. Notice that releasing 
the perturbed locations reduces the QoS in location-based service. We use RL 
[30, 31] to choose the perturbation policy based on the current state consisting of 
the current semantic location, the location sensitivity, and the attack history [27] to  
dynamically balance the QoS loss and privacy. 

However, the RSLP-based scheme can only solve the location protection prob-
lems by discretizing the continuous perturbation policies into a finite set of 
discrete levels. This method introduces the quantization of the privacy budget and 
perturbation angle that destroys the completeness of the continuous space and 
removes some vital information. If the quantization of the perturbation policy is not 
suitable, the scheme may derive a policy that is not actually optimal. Besides, the 
RSLP faces the curse of dimensionality, which means that the sizeable action-state 
space will decrease the learning speed and degrade the semantic location privacy 
protection performance. The deep deterministic policy gradient (DDPG) algorithm 
developed in [32] is effective for problems with the continuous-valued location 
privacy protection policy, which can be used by the ship to explore the optimal 
perturbation policy in a continuous space. 

Thus, a DDPG-based semantic location perturbation scheme (DSLP) is devel-
oped to solve the location privacy protection problem with a continuous-valued 
perturbation policy. In this scheme, the actor part generates a continuous policy 
of privacy budget and perturbation angle, and the critic part estimates the location 
privacy protection performance of the perturbation policy. Based on the analysis 
of the paper [31], the IoT platforms such as Nvidia Tegra K1 and Qualcomm 
Snapdragon 800, which support deep learning, can run the presented DSLP-based 
scheme [33]. This indicates that the presented learning-based semantic location 
protection schemes can be implemented into the real MN environment. More 
specifically, the significant contribution of this chapter is summarized as follows: 

1. We formulate a location privacy-preserving framework that considers not only 
the geographical location but also the semantic dimension of the location against 
the honest-but-curious attackers in LBS. The ship can protect its highly sensitive 
semantic locations locally without a trusted third party and avoid the semantic 
correlated inference of the attacker. 

2. We present an RL-based semantic location perturbation scheme and use the idea 
of the geo-indistinguishability to adaptively select an appropriate privacy budget 
and perturbation angle to reduce the exposure of highly sensitive locations. 

3. A DDPG-based semantic location perturbation scheme that can automatically 
balance the trade-off between the privacy and QoS loss with high efficiency is 
investigated to select the perturbation policy from a continuous-valued perturba-
tion policy set without knowledge of the inference attack model. 

The remainder of this chapter is organized as follows. Section 5.3 presents the 
system model. Then, an RSLP- and a DSLP-based semantic location perturbation
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schemes are presented in Sect. 5.4. The evaluation results are provided in Sect. 5.5, 
and this work is concluded in Sect. 5.6. 

5.3 System Model 

We consider a ship equipped with a Global Positioning System (GPS) which has 
localization capabilities. As shown in Fig. 5.4, the ship moves in an offshore area 
and requests the LBS from the server via a coast base station [34, 35]. To get LBS 
such as real-time transportation information reports, the dock status information of 
different terminals in the coastal port, and POI recommendations, the ship sends 
its request to the LBS server together with the perturbed locations. The server 
is honest-but-curious and tries to infer the ship’s true geographical locations and 
the corresponding semantic types by observing the obtained location data. Then 
the server may send semantic information-related spam or scams to users to gain 
commercial profit. 

The GPS-equipped ship moves in a given offshore area . D at time slot k, which is 
divided into N nonoverlapping cells .d(k), representing the coordinates of different 
locations, i.e., geo-location. The semantic location visited by the ship is denoted 
by .c(k) ∈ [Ci]0≤i≤N , in which the tags represent the semantic of different regions, 
e.g., . C1 passenger terminal and . C2 represents cargo terminal, as shown in Fig. 5.4. 
Different semantic locations in this geographical area may own different sizes, and 

Fig. 5.4 Illustration of the sensitive semantic location privacy protection scheme
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the semantic location with a larger size consists of more cells. The sensitivity of the 
corresponding semantic location at time slot k is represented by .l(k) ∈ [Li]0≤i≤3. 
The sensitivity level of a semantic location represents the importance of the semantic 
location for the user privacy, i.e., the higher the sensitivity level a semantic location 
has, the stronger demand for hiding the true semantic location of the user is. 

5.3.1 Network Model 

The ship’s transition between various semantic locations is captured by a Markov 
model according to [36], which states that 

. Pr[c(k) = Ci |c(1), ..., c(k−1)] = Pr[c(k) = Ci |c(k−1)]. (5.2) 

Discrete time slots over a limited time .k ∈ {1, 2, ...} are considered. 
The ship sends its location to the LBS server to request services. Due to privacy 

concerns, the real location has to be perturbed before sending it out. The idea of 
the generalization version of DP, geo-indistinguishability, is adopted to perturb the 
ship’s location [13]. The perturbation policy .a(k) consists of the privacy budget . x(k)

and the perturbation angle .ϑ(k) considering the semantic constraint, i.e., . a(k) =
[x(k), ϑ(k)] ∈ A, in which . A is the possible perturbation policy set. The perturbation 
policy is selected to decrease the perturbation distance as much as possible with a 
less sensitive semantic location, to increase the privacy and reduce the QoS loss. 
On the one hand, as shown in Fig. 5.4, with the same perturbation distance . r(k), the  
ship tends to release a location in the passenger terminal with less sensitivity rather 
than the oil terminal. On the other hand, if there are several less sensitive locations 
surrounding the current actual location, the ship tends to release a less sensitive 
location nearer its actual location. In this way, the ship can improve its privacy by 
reducing the exposure of highly sensitive locations and reduce the QoS loss. The 

ship generates a perturbed location .d̃
(k)

based on the selected perturbation policy; 
meanwhile the perturbed semantic location .c̃(k) can be obtained according to the 
map. 

Similar to [14], at a given time slot, the ship’s perturbed location is independent 
of the other time slots. The ship has different privacy demands while visiting 
different semantic locations with different sensitivities, and the ship’s tolerance for 
the QoS loss is different when it asks for different kinds of LBSs. Thus, the ship has 
to adjust its perturbation policy adaptively as the sensitivity of the visited semantic 
location and its QoS loss tolerance change. The ship can estimate its privacy by the 
spam/scams it receives and evaluate the QoS loss based on its service experience.
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5.3.2 Attack Model 

The attacker is considered as an honest-but-curious LBS server or an external 
attacker (e.g., eavesdropper ship) who can observe the output of the location 
protection scheme. Its main purpose is to locate the ship at a given time or identify 
the semantic location type that the ship visits. We consider the attacker owns some 
prior knowledge about the ship and uses the observed locations to infer the ship’s 

location .d̂
(k)

[37]. Even if the ship perturbs its location independently in each time 
slot, the attacker assumes that there are correlations between the locations of a 
ship and therefore models the ship’s mobility to infer the ship user’s identity and 
ship’s business. The attacker is assumed to know the maritime map that indicates 
the semantic locations corresponding to their geo-locations and their cover areas, 

and it infers the semantic of the current location .ĉ(k) based on .d̂
(k)

. 
The actual location of the ship is known only by itself, while the attacker 

can infer the business or other private information of the user according to the 
information reflected by the users’ geographical locations and the corresponding 
semantic locations. Then the attacker sends scam or spams to the user based on the 
inference results of the ship’s private information. 

5.3.3 Privacy Protection Problem 

The ship can evaluate the privacy .p(k) by observing the received scams or spams 
similar to [14, 27] to estimate the difference between the sensitivity of the inferred 
location by the attacker .l̂(k) and that of the actual location . l(k). The QoS loss .q(k) is 

evaluated based on the Euclidean distance between its perturbed geo-location . ̃d
(k)

and actual geo-location .d(k) according to [37], which can reflect the quality of the 
user’s experience. The ship improves its location privacy by randomizing its released 
location to confuse the attacker. This also leads to the QoS loss because the ship uses 
the fake location to request the LBS. Thus, our work focuses on balancing the trade-
off between the privacy and QoS loss by adjusting the location perturbation policy. 
For ease of reference, our commonly used notions are summarized in Table 5.2. 

5.4 Semantic Location Privacy Protection 

The ship’s next state only depends on the current state and perturbation policy. It 
has nothing to do with the past location protection history. Thus, the ship’s location 
privacy protection process can be viewed as an MDP. In this section, we can apply 
RL techniques, such as Q-learning and DDPG, to derive the optimal perturbation 
policy without being aware of the inference attack model.
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Table 5.2 List of notations 

Symbol Description 

.x(k) ∈ [X̌, X̂] Privacy budget 

.ϑ(k) Perturbation angle 

.� Weighting parameter of privacy 

.ν/κ Parameters determining the tolerance of the QoS loss 

.d(k)/d̃
(k)

/d̂
(k)

Actual/perturbed/inferred geo-location 

.c(k)/c̃(k)/ĉ(k) Actual/perturbed/inferred semantic location 

.l(k)/l̃(k)/l̂(k) Actual/perturbed/inferred semantic sensitivity level 

.r(k) ∈ [R̂, Ř] Perturbed distance between .d(k) and . ̃d
(k)

.p(k) Privacy 

.q(k) QoS loss 

5.4.1 Learning-Based Semantic Location Perturbation 

In this section, we present an RL-based semantic location perturbation scheme 
(RSLP) that enables a ship to act as a learning agent to optimize its perturbation 
policy in the dynamic location privacy protection process against attackers without 
knowledge of the inference attack model. This scheme derives the optimal perturba-
tion policy via trial and error based on the current state .s(k) consisting of the location 
of the ship, the sensitivity level of the semantic location, and the estimated attack 
strength history. 

At time slot k, the ship observes its geo-location .d(k), the corresponding semantic 
location . c(k), and its sensitivity level . l(k). The ship estimates its previous semantic 
location leakage with .�(k−1) based on the degree of correlation between the 
received scams or spams and the previous semantic locations, similar to [27], which 
formulate the current state .s(k) = [d(k), c(k), l(k),� (k−1)]. 

Let parameter x denote the privacy budget, and . d1 and . d2 are any two locations 
in possible regions . D . We use the idea of the x-geo-indistinguishability [13] to  
determine the perturbed distance in the sensitive semantic location protection. More 
specifically, the perturbation mechanism transforms any two actual locations to fake 
locations with a similar probability distribution. The similarity of the probability 
distributions is determined by the privacy budget x and the selected circular with 
radius R (.R ≥ ||d1−d2||2, .∀d1, d2 ∈ D), with .‖·‖2 represents the Euclidean norm. 
This means that all the locations within the circle with radius R are indistinguishable 
from the eyes of the attacker. The smaller privacy budget x will make the two 
distributions that transform any two actual locations to the fake location closer, 
yielding a higher privacy level. 

In the RSLP scheme, the ship selects its action, i.e., perturbation policy . a(k) =
[x(k), ϑ(k)], which is made up of the privacy budget .x(k) ∈ {X̌,X1, ..., X̂}, where 
. X̌ is the minimum privacy budget and . X̂ is the largest privacy budget, and the 
perturbation angle .ϑ(k) ∈ {0, ..., 2π} under the constraint of semantic locations, 
as shown in Algorithm 5. More specifically, based on the selected . x(k), the ship
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firstly uses a gamma distribution to sample a . r(k), i.e., .r(k) ∼ Γ (2, 1/x(k)), which 

represents the distance between .d(k) and .d̃
(k)

. Then with .ϑ(k) determining the 

perturbation angle, the ship calculates the perturbed location .d̃
(k)

by 

.d̃
(k) = d(k) +

〈
r(k) cos ϑ(k), r(k) sin ϑ(k)

〉
. (5.3) 

The .ε-greedy policy is used to choose an action based on .s(k) as a trade-off between 
exploration and exploitation. 

In the perturbation policy, the privacy budget .x(k) is used to trade off between 
the privacy and the QoS loss, and the angle .ϑ(k) is used to optimize privacy by 
controlling the perturbed semantic location’s sensitivity to be as low as possible. 

With the map and .d̃
(k)

, the perturbed semantic location .c̃(k) can be easily obtained. 
After that, the ship sends a service request together with its perturbed location 

.(d̃
(k)

, c̃(k)) to the LBS server. Then the server sends the POI recommendations, 
maybe together with some scams or spam as feedback to the ship. 

The ship then evaluates its privacy .p(k) based on the received spams or scams 
similar to [14] and [27]. That is to say, if they have certain relation with the current 
semantic location, the location privacy is leaked. The degree of privacy leakage can 
be represented by the difference between the inferred semantic location’s sensitivity 
.l̂(k) and the actual semantic location’s sensitivity . l(k), i.e., .l(k) − l̂(k). Besides, the 
higher sensitive semantic location located by the ship, the more effort should be 
made to hide its semantic location to gain higher privacy. Thus, we have 

.p(k) =
(
l(k) − l̂(k)

) (
l(k) + τ

)
, (5.4) 

where the weighting parameter . τ is a constant and .τ 	= 0. 
The QoS loss is influenced by the perturbed distance and the type of LBS 

applications. According to [26], the QoS loss can be measured by the distance 

between the actual geo-location and the perturbed geo-location .‖ d(k) − d̃
(k) ‖2

2, 
which can reflect the quality of the user’s experience. We all know that if the 
perturbed distance is larger, the POI recommendations or feedback results will 
be less accurate. Besides, we consider the QoS loss of different kinds of LBS 
applications has different sensitivities to the perturbed distance. For instance, the 
application of weather forecasts is less sensitive to the perturbed distance. The result 
will be the same if the perturbed location is within a given marine area. However, the 
QoS loss of the LBS application of the real-time transportation information report 
is much more sensitive to the perturbed distance. This feature can be captured by 
parameters . κ and . ν. According to [39], if the perturbed distance becomes larger than 
the threshold .κ/ν, the QoS loss will drop faster. And the drop speed is determined 
by the parameter . ν. Thus, the QoS loss is given by
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.q(k) = arctan

(
ν

∥∥∥d(k) − d̃
(k)

∥∥∥
2

2
− κ

)
, (5.5) 

where . ν and . κ determine the sensitivity of the QoS loss to the perturbed distance for 
a given LBS application. 

The weighting parameter . � represents the importance of the privacy over the QoS 
loss. Thus, the utility of the ship at time slot k represented by .u(k) depends on both 
the privacy and QoS loss. According to (5.4) and (5.5), we have 

. u(k) =�
(
l(k) − l̂(k)

) (
l(k) + τ

)

− arctan

(
ν

∥∥∥d(k) − d̃
(k)

∥∥∥
2

2
− κ

)
. (5.6) 

When the actual location is far away from nonsensitive ones, based on current 
LBS applications and current semantic location, if the ship treats the privacy more 
important than the QoS (i.e., . � is large), then the ship tends to select a perturbed 
location located at a less sensitive area, even if it is far away. If the ship treats the 
QoS more important than the privacy (i.e., . � is small), then the ship tends to select 
a perturbed location which is not very far away from the actual one, with a less 
sensitive location as much as possible. 

The Q-function .Q(s, a) is the expected discount long-term reward of a ship that 
uses the perturbation policy .a(k) at state . s(k), which is updated according to the 
iterative Bellman equation as shown in Algorithm 5. We use the transfer learning 
method in [38] to initialize the Q-values as . Q̄ with location perturbation experiences 
in similar MN environments such as a number of typical attack strength of attacker 
and map type. 

5.4.2 Deep RL-Based Semantic Location Perturbation 

The RSLP-based semantic location perturbation scheme is inefficient for ships 
in a big map with a large amount of states, and the naive discretization of 
perturbation policy spaces may cause the ship’s failure to find the globally optimal 
perturbation policy to protect the ship’s sensitive semantic locations. To meet the 
demand of the ship’s privacy protection with a practical complicated MN system 
and high-dimensional continuous perturbation policy space, we develop a DDPG-
based semantic location perturbation scheme (DSLP) to explore the policy spaces 
efficiently and improve the sensitive semantic location protection performance. 

As shown in Fig. 5.5, the DSLP architecture consists of the critic network and 
actor network. They are parameterized by the functions .Q(s, a|θ) and .u(s|ω) with 
parameters . θ and . ω, respectively. The ship uses the actor network to select a 
perturbation policy from a continuous action space and uses the critic network to 
evaluate the performance and criticize the perturbation policy selected by the actor
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Algorithm 5 RL-based semantic location perturbation 

1: Initialize the maritime map, A, α, δ, ε and �(0) 

2: Set Q ← Q̄ based on the transfer learning method [38] 
3: for k = 1, 2, 3, ... do 
4: Observe d(k) and c(k) according to the maritime map 
5: Evaluate the sensitivity level of current location l(k) 

6: s(k) = [d(k) , c(k) , l(k) ,� (k−1)] 
7: Select a(k) = [x(k) , ϑ(k)] according to: 

Pr
(
a(k) = â

) =
{

1 − ε, â = arg maxa′Q
(
s(k) , a′)

ε 
|A|−1 , o.w 

8: Sample r(k) ∼ Γ
(
2, 1/x(k)

)

9: Calculate d̃ (k) 
via (5.3) 

10: Map the d̃ (k) 
to c̃(k) 

11: Send (d̃ (k) 
, c̃(k) ) to the LBS server 

12: Receive the response from the LBS server 
13: Evaluate the privacy p(k) 

14: Evaluate the QoS loss q(k) 

15: Calculate the utility u(k) via (5.6) 
16: Q(s(k) , a(k) ) ← (1 − α) Q

(
s(k) , a(k)

) + α
(
u(k) + δ max 

a(k)∈A 
Q

(
s(k+1) , a(k)

) )

17: end for 

Fig. 5.5 Illustration of the deep deterministic policy gradient-based semantic location perturbation 
scheme for the ship user 

part. The ship also maintains the target critic and actor networks to calculate the 
target values for the critic network updating, in which these two target networks 
output functions .Q′(s, a|θ ′) and .μ′(s|ω′) with parameters . θ ′ and . ω′.
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Algorithm 6 DDPG-based semantic location perturbation 

1: Initialize the map, A, �(0), ω, θ and N (0) 

2: for k = 1, 2, 3, ... do 
3: Observe d(k) and c(k) according to the map 
4: Evaluate the sensitivity level of current location l(k) 

5: Formulate the current state 
s(k) = [d(k) , c(k) , l(k) ,� (k−1)] 

6: Input the current state to the DNN of the actor network 
7: Select a(k) = [x(k) , ϑ(k)] according to: 

a(k) = μ(s(k)|ω) + N (k) 

8: Perform the location perturbation and evaluate the performance as Steps 8-15 in Algo-
rithm 5 

9: Store {s(k) , a(k) , u(k) , s(k+1)} in the replay buffer 
10: Sample minibatch 

{sh, ah, uh, sh+1}, h ∈ [1, H ] from the replay buffer 
11: Update the online networks ω and θ via (5.7) and (5.8) 
12: Soft update the target networks ω′ and θ ′ via (5.9) 
13: end for 

More specifically, Algorithm 6 illustrates the detail of DSLP. The ship first 
initializes the system parameters and then observes the current state .s(k) similar 
to Algorithm 5. Then the ship reshapes the state and inputs it into the deep neural 
network (DNN) of the actor network with three fully connected (FC) layers. The 
attack model features and location perturbation details are captured by the DNN. 

At time slot k, the ship chooses the perturbation policy . a(k) = [x(k), ϑ(k)]
in a continuous action space, in which .x(k) ∈ [X̌, X̂] is the privacy budget and 
.ϑ(k) ∈ [0, 2π) is the perturbation direction. The actor network selects .a(k) by 
mapping every state to a determined action with function .μ(s(k)|ω(k)). To improve 
the exploration efficiency, a noise .N (k) sampled from an Ornstein-Uhlenbeck (OU) 
process [40] is added to .μ(s(k)|ω(k)) to generate temporally correlated exploration 
in the learning process, i.e., .a(k) = μ(s(k)|ω(k)) + N (k). After that, the perturbed 

location .(d̃
(k)

, c̃(k)) is generated as in Algorithm 5. The ship then sends . (d̃
(k)

, c̃(k))

to the LBS server to protect its true location. 
After the perturbed location is released to the LBS, the ship evaluates its privacy 

.p(k) and QoS loss .q(k) to obtain its utility .u(k). The next state is formulated as 

.s(k+1) = [d(k+1), c(k+1), l(k+1),� (k)]. In order to learn in minibatch to make 
efficient perturbation policy optimizations, the experience consisting of the current 
state . s(k), the selected perturbation policy .a(k), the obtained utility .u(k), and the next 
state .s(k+1), i.e., .e(k) = {s(k), a(k), u(k), s(k+1)} are sampled from the dynamic MN 
environment based on the exploration policy and stored in a replay buffer. Thus, the 
ship can make full use of a set of uncorrelated transitions to explore the optimal 
perturbation policy. Since the storage space of the replay buffer is finite, the oldest 
experiences need to be discarded on a rolling basis. 

During the updating process of the critic and actor networks, the ship randomly 
chooses H experiences from the replay buffer and formulates the minibatch, with 
the h-th experience .eh = {sh, ah, uh, sh+1}, .h ∈ [1,H ]. We use Adam optimizer to
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update the critic network’s weights . θ with the aim of minimizing the following loss 
function: 

. θ = arg min
θ

1

H

H∑

h=1

(
uh + γQ′ (sh+1, μ

′ (sh+1|ω′) ∣
∣θ ′)

− Q(sh, ah

∣
∣θ)

)2

, (5.7) 

where .γ ∈ [0, 1] is the discount factor indicating the ship’s uncertainty of the future 
reward. 

The actor network’s weight . ω is also updated based on Adam optimizer with 
respect to the direction of the Q-value gradient as follows: 

.∇ωJ ≈ 1

H

H∑

h=1

∇aQ(s = sh, a = μ(sh) |θ)∇ωμ (s = sh|ω) , (5.8) 

where .∇aQ(s, a|θ) is the Q-function’s policy gradient with respect to action . a. 
Similarly, .∇ωμ(s|ω) is the actor function’s policy gradient with respect to . ω. 

Instead of directly copying the weights of the critic and actor networks, the 
ship uses the soft update to keep the output of the target critic and actor networks 
with parameters .Q′(s, a|θ ′) and .μ′(s|ω′) changing slowly while updating. Thus, the 
learning stability can be improved. More specifically, with a learning rate .ζ  1, 
the critic and actor networks’ learned weights are tracked slowly based on the soft 
update, updating by 

. θ ′ ← ζθ + (1 − ζ ) θ ′,

ω′ ← ζω + (1 − ζ ) ω′. (5.9) 

The ship can apply the same neural network to select the location perturbation 
policy even if the environment, such as the attack model and the map, changes. 
That’s because the presented learning-based location perturbation scheme is a 
model-free and reinforcement mechanism; thus, the ship can dynamically observe 
the current MN environment and ship’s state and input them into the DNN. The 
DNN can capture the feature of the variant environment and uses the stored location 
perturbation experiences to update the network parameters dynamically. In this way, 
the proposed learning-based location protection scheme can adapt to various attack 
models and the dynamic MN environments.
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5.5 Simulation Results 

This section evaluates the performance of the presented learning-based semantic 
location perturbation schemes for MNs. Simulations have been performed for a ship 
in a square map with equal width and length of 6 km, which is divided into a . 10×10
grid with different semantic locations such as passenger terminal, cargo terminal, 
oil terminal, and fisherman’s wharf. The semantic locations in the map belong to 
four different sensitivity levels from level 0 to level 3. These values are selected to 
show the difference in the sensitivity of semantic location in the simulation. They 
can represent different actual values in the real world. The transition of the ship in 
the grid map is modeled as a Markov chain. According to [41], the privacy budget 
.x ∈ (0, 1.4], the privacy weight over the QoS loss is set to be 5. 

In the simulations of the learning algorithm, the learning rate is set to 0.7, and 
the discount factor is set to 0.5. The .ε-greedy parameter is annealed from 1.0 to 0.1 
during the first 500 time slots in the process of learning, and after that . ε is fixed 
to 0.1 for stability. The reinforcement learning-based location obfuscation scheme 
(RSTO) in [29] neglecting semantic locations with different sensitivities is evaluated 
as the benchmark scheme. The change of the number of semantic locations, the 
value of sensitivity levels, or the user’s mobility profile can observe a similar trend 
as the current typical case. Even though the convergence time and convergence value 
might be different from the current case, they will not impact the advantage of the 
presented schemes compared with the benchmark. 

The performance of the presented RSLP- and DSLP-based schemes is reported 
in Fig. 5.6. The presented RSLP- and DSLP-based schemes both outperform the 
benchmark RSTO-based scheme. That is because the RSTO-based scheme just 
considers selecting a perturbed location outside of the actual semantic location, 
which neglects the protection of highly sensitive semantic locations. This will 
cause the overestimation or underestimation of the location privacy. The RSLP-
and DSLP-based schemes significantly improve the QoS of the LBS applications, 
increase the semantic location privacy, and increase the utility of the ship. Moreover, 
with the continuous perturbation policy space, the DSLP-based scheme can learn 
a better perturbation policy and further improve the performance of the scheme 
in comparison with the RSLP-based scheme. The DSLP-based scheme reduces 
the discretization error compared with the RSLP-based scheme and can avoid 
converging to the local optimal. For instance, at about the 1500th time slot, the 
RSLP-based scheme increases the privacy by about 43.43%, reduces the QoS loss 
by about 2.44%, and improves the utility by 51.16% compared to the RSTO-based 
scheme. The DSLP-based scheme further improves sensitive semantic location 
privacy protection performance. For instance, at the 1000th time slot, it improves 
the privacy by 30.77%, reduces the QoS loss by 15.69%, and increases the utility by 
33.33%, compared with that of the RSLP-based scheme. 

Figure 5.7 illustrates that the presented sensitive semantic location privacy 
protection schemes tend to protect the semantic locations with higher sensitivity 
by inducing the attacker’s inference results to less sensitive semantic locations.
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Fig. 5.6 Performance of the 
learning-based semantic 
location perturbation scheme 
for a ship in a map with 
.10 × 10 grids 
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Fig. 5.7 Comparison of the 
location sensitivity 
probability distribution of 
actual locations and inferred 
locations with different 
perturbation schemes 
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Numbers .0, 1, 2, 3 represent the sensitivity level of semantic locations, in which 
3 denotes the location with the highest sensitivity level, and 0 denotes the lowest 
sensitivity level. For instance, even though the actual semantic location with the 
lowest sensitivity level 0 is 40.00%, the inferred semantic location with the lowest 
sensitivity level 0 of the DSLP-based scheme is 59.05%. While the actual semantic 
location with the highest sensitivity 3 is 20.00%, the inferred semantic location with 
the highest sensitive 3 of the DSLP-based scheme is only 14.50%, which is 27.50% 
lower than the actual one. We can see that the inferred probability distribution of 
locations with different sensitivities of the RSTO-based scheme is close to that of 
the actual distribution, which means that the RSTO-based scheme fails to protect 
locations with high sensitivity. 

Figure 5.8 illustrates the relationship between the location privacy protection 
performance and the prior knowledge accuracy level of the attacker. The results 
show that the average privacy and utility decreases with the prior knowledge 
accuracy level of the attacker changes from .0.02 to .0.14. That’s because the larger 
prior knowledge of the attacker improves the accuracy of the inference. The prior 
knowledge accuracy level change has little influence on the QoS loss. For instance, 
if the prior knowledge accuracy level of the attacker is .0.14 instead of . 0.02, the  
privacy is reduced by 10.85%, and the utility decreases by about 11.86% of the 
DSLP-based scheme. Note that the DSLP-based scheme can achieve better privacy 
and utility performance even with a high prior knowledge accuracy level of the 
attacker. For example, when the prior knowledge accuracy level of the attacker is 
.0.14, the DSLP-based scheme has 85.51% higher privacy, and 1.02 times higher 
utility compared with that of the RSTO-based scheme. 

Figure 5.9 shows the relationship between the location privacy protection 
performance and the map size. The results show that the average QoS loss increases 
with the map size changes from 10*10 to 50*50, and the average privacy and utility 
of the ship slightly decrease with the map size. That’s because the larger map size 
consists of many more system states, which need more time to derive the optimal
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Fig. 5.8 Average 
performance of the 
learning-based semantic 
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with different prior 
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Fig. 5.9 Average 
performance of the 
learning-based semantic 
location perturbation scheme 
with different map sizes 
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perturbation policy for the ship. For instance, if the ship visits the map size of 50*50 
instead of 10*10, the privacy reduces by 6.45%, the QoS loss increases by 56.94%, 
and the utility decreases by about 12.86%. However, we can also see that the DSLP-
based scheme can achieve better privacy and QoS performance even with large map 
size. The DSLP-based scheme uses DNN as a nonlinear approximator of the Q-value 
for each perturbation policy to accelerate the learning speed. For example, when the 
map size is 50*50, the DSLP-based scheme has 9.61% higher privacy, 24.67% lower 
QoS loss, and 9.33% higher utility compared with that of RSTO-based scheme. 

5.6 Conclusion 

In this chapter, we have presented an RL-based semantic location perturbation 
scheme for ships, which protects the sensitive semantic location data while reducing 
the QoS loss. The ship uses differential privacy technique to perturb the semantic 
location, and it applies the RL-based scheme to derive the optimal location 
perturbation policy without knowledge of the interference attack model in the 
dynamic MNs. A DSLP-based scheme is also presented to select the privacy budget 
and perturbation angle from a continuous-valued perturbation policy set to further 
improve the performance of sensitive location privacy protection. Simulation results 
demonstrate that the presented schemes can increase the privacy, decrease the 
QoS loss, and thus improve the utility of the ship compared with the benchmark 
RSTO-based scheme, which does not consider the sensitivity of semantic locations. 
Although this scheme has been investigated to protect sensitive semantic locations 
of ships, we believe that the scheme can also be used to protect the semantic 
trajectory data in location data publishing [42]. 
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Chapter 6 
Conclusions and Future Work 

In this book, we have discussed maritime communications based on RL to enhance 
reliability and security performance, including IRS-aided communications, privacy-
aware IoT communications, intelligent resource management, and location privacy 
protection [1–4]. The RL-based IRS communication system chooses the IRS 
elements and optimizes the signal amplitude and/or phase to enhance the anti-
jamming performance with higher received signal strength or improve the secure 
data rates with cooperative friendly jamming. The maritime communication systems 
apply RL to optimize the power and spectrum resource allocation to guarantee the 
QoS in terms of both security and reliability. In addition, learning-based privacy-
aware offloading and location privacy protection satisfies the privacy-preserving 
requirements of maritime ships or sensors. 

In this chapter, we summarize the RL-based maritime communication techniques 
and list the future work in terms of reliability, security, resource management, and 
privacy protection. 

6.1 Conclusions 

In Chap. 2, we have investigated IRS-aided secure communication systems to 
maximize the system secrecy rate of multiple ships against multiple eavesdroppers 
in time-varying maritime wireless channels and guarantee the QoS requirements. 
A DRL-based secure beamforming approach jointly optimizes the beamforming 
matrix at the AP and the reflecting beamforming matrix (reflection phases) at the 
IRS in maritime wireless networks. Simulation results demonstrate the effectiveness 
in terms of the secrecy data rate and the QoS satisfaction probability. 

In Chap. 3, we have investigated the RL-based task offloading for ship mobile 
edge computing and the EH IoT devices such as solar energy to extend the battery 
life, improve the privacy level, and reduce the computation latency against jamming 
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and interference. The RL-based privacy-aware offloading compares the amount 
of the sensing data, and the offloading data under different channel power states 
optimizes the offloading policy via trial and error without being aware of the privacy 
leakage, energy consumption, and edge computation model. The transfer learning 
and the Dyna architecture can be applied to accelerate the learning process of an 
IoT device. 

In Chap. 4, a distributed cooperative channel assignment and power control 
approach has been presented to address the massive access management problem 
in maritime communication networks. The proposed approach supports different 
QoS requirements (e.g., URLLC and minimum data rate) of a huge number of 
ships. Furthermore, a multi-agent RL-based scheme was used to realize a centralized 
training procedure and a distributed cooperative implementation procedure. 

In Chap. 5 we have investigated the semantic location privacy protection scheme, 
where a semantic location’s sensitivity is incorporated into the location perturbation 
scheme to induce the adversary’s inference. The proposed scheme releases a less 
sensitive one instead of a highly sensitive one to improve both privacy and QoS, 
which can protect both the current semantic location and the potential semantic 
location in a better way. In addition, an RL-based sensitive semantic location privacy 
protection scheme is applied to enable a ship user to optimize the perturbation policy 
in terms of the privacy and the QoS loss. The RL-based scheme can increase both 
the ship’s privacy and the QoS and thus improve the utility of the ship. 

6.2 Future Work 

In the future, we will investigate how to guarantee stable, reliable, and secure com-
munication services in complex and dynamic maritime environments. In particular, 
most existing learning-based maritime communication methods suffer from long 
convergence time due to the random initial exploration, the error and latency to esti-
mate the current network state in each time slot, and the reward estimation difficulty 
in dynamic maritime systems. New RL algorithms can be investigated to effectively 
optimize the communication and security policy in highly dynamic communication 
environments and provide trade-off between exploration and exploitation in the 
learning process of the maritime IoT devices. For example, some RL algorithms 
such as policy gradient and double DQN are promising to improve maritime 
communications [5–7]. Several future research topics and potential solutions for 
AI-enabled maritime communications are listed as follows. 

Computation Efficiency and Accuracy Massive maritime data and complicated 
networks pose challenges for RL of maritime IoT devices with limited computing 
resources, e.g., the long learning time to process massive high-dimensional data 
sometimes exceeds the QoS requirement of the computing intensive maritime 
services, such as deep learning-based fish tracking. Hence, how to design efficient 
AI learning schemes to improve both the computation efficiency and accuracy
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is a significant research challenge. Recent techniques such as residual networks, 
graphics processing, feature matching, and offline training are promising to improve 
convergence speed, reduce complex computations, and increase the computing 
accuracy for maritime applications. 

Robustness, Scalability, and Flexibility of Learning Frameworks Maritime 
networks exhibit high dynamics in the BS associations, channel states, network 
topologies, and mobility dynamics [8], which bring challenge to the updates of 
the network in the RL algorithms. Great robustness, scalability, and flexibility 
of learning frameworks are crucial to support the ever-increasing number of 
maritime IoT devices and provide high-quality services with various QoS or QoE 
requirements. 

Hardware Development Smart maritime system implementation is challenging, 
e.g., the RL-based mmWave and THz systems have high-energy consumption and 
implementation costs, especially for the maritime devices with limited storage 
and computing energy. Hence, collaboration among hardware components and 
learning algorithm design is important to effectively handle matrix computations. 
For example, transfer learning-enabled multi-agent RL algorithm can be designed 
for smart maritime communications under hardware constraints [9]. 

Energy Management Smart maritime services in the hot-spot area usually depend 
on the flexible connection of massive devices with limited battery supply [10]. In the 
future, we will investigate energy-efficient RL algorithms for maritime IoT devices 
with harvesting energy (e.g., ambient energy converting and wireless power transfer) 
to extend the battery lifetime. 

In summary, maritime communications involve ship-to-ship communications, 
ship-to-shore communications, and ship-to-sensor communications [11]. The smart 
maritime services require reliable, secure, and efficient communications with the 
guarantee of various QoS requirements. 
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