
Slicing-Based AI Service Provisioning on
Network Edge

Mushu Li, Member, IEEE, Jie Gao, Senior Member, IEEE, Conghao Zhou, Student Member, IEEE,
Xuemin (Sherman) Shen, Fellow, IEEE, and Weihua Zhuang, Fellow, IEEE

Abstract—Edge intelligence leverages computing resources on
network edge to provide artificial intelligence (AI) services close
to network users. As it enables fast inference and distributed
learning, edge intelligence is envisioned to be an important
component of 6G networks. In this article, we investigate AI
service provisioning for supporting edge intelligence. First, we
present the features and requirements of AI services. Then, we
introduce AI service data management and customize network
slicing for AI services. Specifically, we propose a novel resource
pooling method to regularize service data exchange within the
network edge while allocating network resources for AI services.
Using this method, network resources can be properly allocated
to network slices to fulfill AI service requirements. A trace-
driven case study demonstrates that the proposed method can
allow network slicing to satisfy diverse AI service performance
requirements via flexibly choosing resource pooling policies. In
this study, we illustrate the necessity, challenge, and potential of
AI service provisioning on network edge, and provide insights
into resource management for AI services.

I. INTRODUCTION

The sixth-generation (6G) networks are envisioned to sup-
port many emerging use cases, such as extended reality, remote
healthcare, and autonomous systems [1], [2]. Compared with
services supported by the fifth-generation (5G) networks,
services in the 6G era will be even more diverse, potentially
blurring the boundaries among enhanced mobile broadband
(eMBB), massive machine-type communications (mMTC),
and ultra-reliable and low-latency communications (URLLC).
Such services will demand highly intelligent and flexible
networks, driving a confluence of advanced networking and
artificial intelligence (AI) technologies.

AI can play an essential role in network management,
e.g., resource management [3], [4] and protocol design [5].
Meanwhile, with recent advancement in machine learning
algorithms, more network services integrate AI techniques in
applications, such as object detection in autonomous vehicles
and learning-based language processing. Such services are
referred to as AI services. Since AI services need to gather or
generate a vast amount of data, edge intelligence has attracted
extensive interest as it moves AI closer to user devices (UDs)
and alleviates data traffic load in the core network. Empowered
by distributed learning techniques, edge intelligence leverages

Mushu Li, Conghao Zhou, Xuemin (Sherman) Shen, and Weihua Zhuang
are with the Department of Electrical and Computer Engineering, University
of Waterloo, Waterloo, ON, Canada, N2L 3G1 (email: {m475li, c89zhou,
sshen, wzhuang}@uwaterloo.ca).

Jie Gao is with the Department of Electrical and Computer En-
gineering, Marquette University, Milwaukee, WI, USA, 53233 (e-mail:
j.gao@marquette.edu).

the communication, computing, and storage resources at each
edge node, i.e., a base station (BS) or other access points
(APs), to execute data processing tasks.

Typically, an AI service involves two phases, i.e., inference
and model training. Different from conventional services, AI
services largely depend on the data generated by UDs, and
such dependence exists in both phases. For example, image
recognition services depend on images and corresponding
labels uploaded from UDs. As a result, the availability and
quantity of data from UDs determine the effectiveness of an
AI service, including inference accuracy and learning rate.
For example, inference accuracy may increase when more
data is available at an edge node. Specifically, at an edge
node, there are two types of data available for AI services:
data collected from UDs by this edge node and data shared
by other edge nodes. While data sharing among all edge
nodes increases the amount of available data for an edge
node and potentially improves the performance of AI services,
it can consume significant network resources. In particular,
each edge node needs excessive computing resource for data
processing and communication resource for exchanging data
with other edge nodes. Considering that the amount of data
collected by each edge node can be very different, a viable
alternative to sharing all data is to migrate a portion of data
from edge nodes that have collected sufficient data to those
that need more. Achieving this requires scalable and on-
demand network resource management, especially considering
that AI services need to co-exist and share resources with
conventional services. While a few existing works, such as [6]
and [7], have studied the relation between the performance of
AI services and network resource allocation, the topic needs
further investigation.

As a major innovation in 5G technology, network slicing can
support a multitude of network services with diverse service
requirements by creating and maintaining logically isolated
virtual networks, i.e., slices, for different services [1]. Network
slicing has the potential to support AI services in future net-
works. However, due to the unique features and requirements
of AI services, a slicing-based network should not treat an AI
service in the same way as conventional services. The reason is
two-fold. First, AI services have unique performance metrics,
such as accuracy, that require coordination of data available to
the edge nodes, while network slicing considers conventional
performance metrics, such as throughput and delay. Second,
the location of physical resources can impact the performance
of AI services, which complicates resource management and
network operation in network slicing.



2

Fig. 1: Service management for AI services on network edge.

In the following, we investigate AI service provisioning
on network edge and extend network slicing to support AI
services. Specifically, we propose a resource pooling method,
which customizes resource virtualization for each AI service
by considering the location of physical resources and enabling
effectual data migration among edge nodes. The proposed
resource pooling method addresses the aforementioned chal-
lenges in the existing network slicing framework. Furthermore,
we provide a case study to demonstrate the effectiveness of
the resource pooling method for AI services.

II. AI SERVICES AND REQUIREMENTS

A. AI Services on Network Edge

Similar to conventional services, an AI service is enabled
by a chain of service functions. The difference is that, in an
AI service, one or more functions are based on AI models,
such as deep neural networks (DNNs) and k-nearest neighbors
algorithms. We refer to such functions as AI functions. In
existing networks, AI functions are mostly deployed in a cloud
server, while edge nodes simply forward the data of UDs to

the cloud server. The disadvantage of such cloud-centric AI
service provisioning is heavy data traffic load on the core
network. To address this issue, some AI functions can be
deployed at the network edge to be close to UDs. In such case,
edge nodes can play an active role to support AI services in
the following scenarios:

• Edge-assisted cloud-hosted AI scenario: A small portion
of AI functions, such as data preprocessing and aggrega-
tion, are deployed at the network edge, while the rest of
AI functions are executed at the cloud server;

• Cloud-assisted edge-hosted AI scenario: All AI functions
are placed at the network edge for inference, and the
cloud server assists the network edge in training the AI
models used by AI functions. The cloud server coordi-
nates data exchange among edge nodes. An example is
shown as AI service 1 in Fig. 1;

• Fully edge-hosted AI scenario: All AI functions are de-
ployed at the network edge, and the edge nodes exchange
information with each other for training AI models. An
example is shown as AI service 2 in Fig. 1.

A comparison of the above three scenarios is summarized in



3

TABLE I: Three scenarios of AI services in edge intelligence

Edge-assisted cloud-hosted AI scenario Cloud-assisted edge-hosted AI scenario Fully edge-hosted AI scenario
Use cases Image and voice recognition Automated driving, mobile VR Business informatics, smart city
Key resource in
demand Communication Computing Computing

Role of edge Data preprocessing and aggregation Inference Inference and model training
Requirements and
features of service

Large data size that requires database in
the cloud server

Stringent service requirement that requires
real-time training and fast inference

Demand for fast inference and privacy-
preserving measures

Learning methods Centralized learning Federated learning, splitting learning, etc. Transfer learning, gossip learning, etc.

Table I.

B. Key Performance Indicators

Since AI services can be viewed as a special type of
compute-intensive services, conventional performance indica-
tors such as latency and energy efficiency apply to AI services.
In addition, the following new performance indicators are
necessary for evaluating the performance of AI services:

• Accuracy [6], [7], which measures the difference between
inference results derived by an AI service and the real
values;

• Learning speed [7], [8], which measures how fast an AI
model can be fully trained. For example, for DNNs, the
learning speed is the convergence rate of the loss function
during the training process.

Moreover, other performance indicators, such as running
time [9] and memory shrinks [10], can also be applied for
evaluating the performance of an AI service.

C. Features of AI Services

In general, an AI service consists of two phases, i.e.,
inference and model training. In inference, edge nodes process
data collected from UDs and deliver computing results to
UDs, which is similar to conventional computing services. For
model training, the data available to an edge node includes
the data collected from UDs and the data migrated from other
edge nodes. Each edge node utilizes its available data to train
the AI models used by AI functions and exchange training
parameters with other nodes to improve the effectiveness of
training. For example, in federated learning, edge nodes train
their local AI models, upload the parameters of local models
to a centralized node, and obtain the parameters of a global
model from the centralized node periodically.

For both inference an training, data flows from UDs to
edge nodes as well as among edge nodes are necessary. In
the inference phase, the way that data flows among edge
nodes affects the performance, e.g., inference delay, of AI
functions. In the training phase, the way that data flows among
edge nodes affects the performance of AI functions from the
following three aspects. First, the migration of data among
edge nodes determines how model training is performed.
We define a term, learning structure, to specify which edge
nodes train the AI model of an AI function and how they
migrate data with each other in the network. If data from
UDs is migrated to fewer edge nodes for training, the learning
structure is more centralized, and the benefit is a higher
learning speed and inference accuracy. Second, the migration

of data among edge nodes balances the available data at the
edge nodes and alleviates data bias. This can further improve
inference accuracy [11], [12] and speed up loss function value
convergence for distributed learning [8]. Third, in addition
to migrating data collected from UDs, the training parameter
exchange among edge nodes affects the learning speeds of AI
models. For example, frequent model aggregation in federated
learning leads to fast convergence at the cost of high data
traffic volume among edge nodes.

D. Service Data Management

Given the potential impacts of data flow on the performance
of AI services, service data management is required for AI
services, which includes AI function placement, AI model
parameter selection, and AI service operation.

AI function placement: The functions of an AI service
can be executed at edge nodes. An AI function placement
policy determines which edge nodes are selected to host AI
functions. An example of AI function placement is illustrated
in Fig. 1. In the inference phase, APs 1 to 3 and the Macro
BS (MBS) provide inference for the UDs for AI service AS 2.
In the model training phase, the APs upload and download AI
models to/from Small BS (SBS) 2 to train the AI model in
function F4. By placing AI functions at edge nodes, data flow
among edge nodes can be initialized, and the learning structure
for AI services can be defined.

AI model parameter selection: Parameters in an AI model
can be learning rate for DNNs and model aggregation fre-
quency in federated learning. Based on AI function placement,
edge nodes train the AI models adopted by AI functions
based on the parameters of the AI models, and, thus, the
parameters affect the AI service performance, e.g., accuracy
and learning speed. Moreover, they specify the parameter
exchange frequency and the amount of data for parameter
exchange among edge nodes over time.

AI service operation: AI service operation is responsible
for scheduling data flow in real time according to network
conditions, such as channel conditions and instantaneous com-
puting latency of edge nodes, given AI function placement
and AI model parameters. For inference, the AI service
operation policy generates a real-time routing strategy for fast
UD data uploading and processing among edge nodes. For
model training, the AI service operation policy determines
whether, where, and how to migrate data among edge nodes
for achieving data load balancing and improving AI service
performance.



4

Fig. 2: Resource pooling and reservation in network slicing.

III. NETWORK SLICING FOR AI SERVICES

A. Connection with Resource Management

Network resources should be properly allocated to support
service data management for both inference and model train-
ing. Service data management consumes communication and
computing resources for exchanging data among edge nodes
and processing data on edge nodes. High communication
latency in data transmission or high computation latency in
processing degrades AI service performance. Therefore, proper
service data management should balance communication and
computing consumption at each edge node to avoid bottlenecks
in data delivery, processing, and training. It is necessary
to jointly manage data and resources to support AI service
provisioning.

B. Overview

In network slicing, a software-defined networking (SDN)
controller is deployed in the network to create and manage
slices for different services and allocates virtual network
resources accordingly. Specifically, network resources are first
reserved for slices, referred to as resource reservation, based on
service requirements, and subsequently allocated to individual
UDs in real time, referred to as resource scheduling [13].

Although network slicing can support general computing ser-
vices, further innovations are necessary to support AI services
due to their unique features and requirements, as discussed
in Section II. In this section, we first discuss the challenges
that network slicing faces in supporting AI services. Then,
to cope with the challenges, we propose a novel resource
pooling method, which is customized for AI services, to
refine resource virtualization. Finally, we present a service
provisioning approach for AI services by integrating service
data management into network slicing.

C. Challenges in AI Service Provisioning

As mentioned in subsection III-A, data availability at edge
nodes impacts the performance of an AI service, and im-
proving data availability via data migration consumes network
resources. Existing network slicing solutions allocate resources
without taking service data management into account. Without
the coordination of data flow, network slicing cannot satisfy
service requirements unique to AI services.

The location of physical resources affects the performance
of AI services at network edge. If computing units in an
edge node far away from a UD are selected for inference
or training, a long inference latency or a slow learning speed
may occur due to the multi-hop communications. Additionally,



5

Fig. 3: Service provisioning for AI services that integrates network slicing and AI service management.

because of the uneven UD spatial distribution, edge nodes
at different locations may receive different amounts of data
and learn at different speeds. Exchanging service data and
learning models among edge nodes can improve AI service
performance, and the location of edge nodes can impact the
efficiency of data exchange and model training. In network
slicing, taking physical resource location into consideration
complicates resource allocation and network operation, espe-
cially for network function placement and routing.

To address these two challenges, we propose a resource
pooling method here to refine the conventional resource vir-
tualization method in network slicing. The objective is to
customize resource virtualization for each AI service accord-
ing to the location of physical resources and to allocate
network resources, while considering data migration among
edge nodes.

D. Resource Pooling for AI Services

Physical resources in a network can be abstracted to a
virtual resource pool via resource pooling, as shown in Fig. 2.
In the virtual resource pool, virtual APs (VAPs) represent
the logical servers with computing and storage capabilities
and are connected by logical links. Edge nodes, equipped
with computing units and storage, are projected to VAPs in
the pool. Virtual network functions (VNFs), as the software
implementation of service functions including both AI and
conventional functions, are placed at the VAPs. A VAP can
accommodate multiple VNFs, supported with proper virtual
resources for communication, computing, and information

storage. The resource pool is referred to as a primary resource
pool.

Based on the primary resource pool and the physical lo-
cation of edge nodes, we further abstract physical network
resources into customized virtual resource pools, referred to
as secondary resource pools for individual AI services. VAPs
which support one VNF can form a sub-pool to facilitate re-
source and data sharing for that VNF. Correspondingly, VAPs
are aggregated as an aggregated VAP (AVAP) for that VNF
in the secondary resource pool. An example of a secondary
resource pool is illustrated in Fig. 2, where sub-pools are
formed by VAPs 1 to 3 for a VNF of AI service 1. Within
a sub-pool, data collected by VAPs can be migrated among
VAPs for inference or model training.

An AVAP consists of all resources of the VAPs in the
corresponding sub-pool. During resource reservation, the re-
sources in both the AVAP and VAPs are reserved. Specifically,
the resources of an AVAP are first reserved for a VNF to
satisfy service requirements. The reservation should account
necessary resources for inference, model training, and data
migration among VAPs within a sub-pool. Then, VAPs in the
sub-pool of the AVAP can flexibly share resources allocated
at the AVAP. In the example shown in Fig. 2, VAPs 1 to 3 are
aggregated as AVAP 1 in AI service 1. These VAPs reserve
resources for AI service 1 as long as their reserved resources
do not exceed the overall resources reserved for AI service 1
allocated at AVAP 1. While secondary resource pools are used
for AI services, conventional services can reserve resources
from the primary virtual resource pool. In the above example,



6

Fig. 4: Service-oriented resource pool division.

resources at VAP 3 are reserved for all services, including both
conventional and AI services. During resource scheduling,
when reserved resources at a VAP are not sufficient to support
inference or training, data from UDs can be migrated to other
VAPs within the same sub-pool for inference or training.

The main idea of the proposed resource pooling method is
to aggregate resources of VAPs to adjust the learning structure
of edge intelligence and balance the amount of data available
to VAPs. The goal is to enable service data management in
network slicing for satisfying AI service requirements. The
resource pooling policy depends on AI function placement,
the geographical distribution of UDs in the network, and the
location of the physical resources. First, AI function placement
determines which VAPs have the same VNF and thus can be
aggregated. Then, the geographical distribution of UDs and
the location of the physical resources determine the amount
of data that can be collected by each VAP. Accordingly, the
data available to the VAPs can be balanced by migrating
data among edge nodes in a sub-pool. Last, the geographical
distribution of UDs and the location of the physical resources
further affect the amount of network resources consumed
in VAP aggregation. Specifically, VAP aggregation requires
additional communication resources to enable data migration
among VAPs in a sub-pool and computing resources for
training the data within the sub-pool [14].

E. Service Provisioning for AI Services

Our AI service provisioning approach combines service data
management in subsection II-D and resource pooling method
in subsection III-D. We illustrate the approach in Fig. 3.

An SDN controller is deployed in the network to manage
network resources for all network services, including AI ser-
vices. Firstly, AI functions and corresponding VNFs are placed

on edge nodes and corresponding VAPs, respectively. AI
function placement policies are adjusted on a large time scale,
e.g., days or hours. Furthermore, according to the physical
location of network resources, the geographical distribution of
UDs, and AI function placement, secondary virtual resource
pools are determined for AI services. AI model parameters
are selected according to AI function placement and potential
data migration within sub-pools, and resources in the VAP
and AVAPs are reserved for different VNFs to meet service
requirements. Note that resources for both inference and model
training are reserved for the VNFs of AI services. The resource
pooling policy for AI services, AI model parameter selections,
and resource reservation are adjusted on a medium time scale,
e.g., hours or minutes, to accommodate the spatial-temporal
variations of the geographical distribution of UDs. Last, in
real-time network operations, the reserved resources are al-
located to individual UDs and network edges according to
UD and network dynamics, such as UD mobility and channel
conditions. Data from UDs may migrate among VAPs within
a sub-pool according to the real-time AI service operation
policy, with support from network resource scheduling, to
maximize resource utilization and satisfy service requirements.
The policies of both resource scheduling and AI service
operation are adjusted on a small time scale, e.g., seconds
or milliseconds.

In the example shown in Fig. 3, AI functions are deployed at
AP 1 to AP 3, where federated learning is adopted for training
AI models in the functions. The VAPs, corresponding to AP
1 and AP 2, are in a sub-pool for sharing data collected from
UDs. Parameters, e.g., the frequency for model aggregation,
are determined by the SDN controller, and network resources
on the VAPs are reserved and scheduled correspondingly. Note
that AP 1 and AP 2 may train their local models together
with data migration for eliminating data bias and improving



7

(a) Accuracy and the convergence rate of loss of the AI function. (b) Resource utilization for model training in the AI service.

Fig. 5: Service performance and resource utilization versus the number of sub-pools when λmax = 1, where accuracy in (a) is
defined as the fraction of correct inferences over all inferences.

AI service performance.

IV. CASE STUDY: SERVICE-ORIENTED RESOURCE
POOLING

In this section, we first present a learning-based method
for determining a resource pooling policy. Then, we provide
an experiment to demonstrate the effectiveness of resource
pooling policies.

A. Learning-based Resource Pooling

As mentioned in Section III-D, network resources are re-
served and scheduled for AI services from secondary resource
pools. With different resource pooling policies, the structure
of secondary resource pools and the resulting AI service
performance are different. Therefore, as illustrated in Fig. 4,
we utilize a learning module, supported by machine learning
techniques, e.g., DNNs, to learn the AI service performance
and resource consumption corresponding to resource pooling
policies, given resource allocation and service data manage-
ment strategies. The inputs of the learning module include
AI function placement policy, resource pooling policy for
all AI services, and the geographical distribution of UDs
during a time interval between two successive resource pooling
policy updates. The outputs are the performance and the
average resource consumption of AI services during the time
interval. The learning module is trained at the SDN controller.
Specifically, the SDN controller deploys different resource
pooling policies, monitors corresponding AI service perfor-
mance and resource consumption, and uses the monitored
information to further train the learning module. When the
learning module is fully trained, the SDN controller selects
resource pooling policy candidates that yield satisfactory AI
service requirements with minimum resource consumption.
Then, an AI service provider chooses a resource pooling policy

from the candidates based on the service-specific criteria, and
the SDN controller deploys the selected policy in the network.

B. Numerical Results

1) Experiment Setup: We conduct trace-driven simulations
to evaluate the proposed resource pooling method and de-
termine the corresponding learning-based resource pooling
policy. In the considered network, there are 32 APs on
network edge. Each AP has deployed the same AI function
for inference. AI models in the function are trained using
federated learning algorithm. Specifically, APs gather data
from UDs and train their local models once every second. An
MBS gathers the parameters of local models from APs once
every ten seconds, generates a global model using the FedAvg
algorithm [8], and distributes the parameters of the global
model to all APs. The content of the AI function used in the
simulation is handwritten-digit recognition with dataset from
the MNIST database [15]. The AI model in a function includes
3 fully connected layers with 784, 200, and 10 neurons,
respectively. The learning rate for training the local model is
0.01, and the optimizer is stochastic gradient descent. In our
simulation, the data collected by different APs is non-i.i.d. We
use a regression technique to implement the learning module
as mentioned in Section IV-A. Specifically, we use a two-term
Gaussian model with 95% confidence bounds and six different
coefficients to regress the relation between the number of
sub-pools and AI service performance, i.e., convergence rate
and accuracy. The loss function for determining the Gaussian
model is root mean square error.

We use different aggregated arrival rates of data for UDs
at different APs. The data arrival rate at an AP is randomly
selected from (0,λmax], where λmax denotes the maximum
data arrival rate. Each AP corresponds to a VAP in the
primary resource pool. We change the number of sub-pools
in the secondary resource pool to adjust the pooling policy.



8

Fig. 6: Service performance and average resource consumption
versus user data arrival rates.

The VAPs are grouped to form sub-pools according to the
physical locations of the APs and the data arrival rates at
the APs by the k-means method. Resource requirements are
summarized as follows: one resource unit (RU) is consumed
for transmitting one unit of data between any two APs; 0.5
RU is consumed for processing one unit data for training; 0.1
RU is consumed for offloading and distributing DNN models
in federated learning. Moreover, 10 RUs are consumed for
training a DNN model. The SDN controller reserves resources
accordingly based on an average data arrival rate and schedules
the resources. During resource scheduling, additional cost is
applied if reserved resources become insufficient.

C. Performance Evaluation
The impact of resource pooling policy on AI service per-

formance is shown in Fig. 5(a). By aggregating data into
fewer APs, model training is conducted in a more centralized
learning structure, and data bias can be eliminated by balanc-
ing the collected data among APs. As shown in Fig. 5(a),
compared to centralized learning with one sub-pool in the
virtual resource pool, the accuracy and the convergence rate of
loss function are reduced by 5% and 0.2, respectively, when
fully distributed learning with 32 sub-pools is adopted. A
higher training speed and a higher accuracy can be achieved
under a pooling policy with a lower number of sub-pools.
Moreover, we utilize a learning module to model the relation
between resource pooling policy and AI service performance,
as presented in Section IV-A. As shown in Figs. 5(a), the AI
function performance approximated by the learning module is
accurate. The resource resource consumption for training with
different resource pooling policies is shown in Fig. 5(b). As
the number of sub-pools decreases, model training requires
more communication resources but less computing resources
for training. This is because more APs migrate their collected
data, which generates additional cost on communication, while
fewer APs train their local models, which reduces the overall
computing resource consumption.

The AI service performance and average resource consump-
tion with different user data arrival rates, λmax, and resource
pooling policies are shown in Fig. 6. As λmax increases, the
resource consumption increases due to the need for processing
more data in training. Meanwhile, with a lower arrival rate,
the accuracy of the AI service degrades. This is because the
available data for training at each AP decreases, and overfitting
happens when a small amount data is trained with a high
learning rate.

V. CONCLUSION

In this article, we investigate AI service provisioning on
network edge for 6G. Since AI services depend on data
for training and inference, AI service provisioning requires
joint management of data and conventional network resources.
Accordingly, within the framework of network slicing, we pro-
pose a resource pooling method to connect data and network
resources in AI service provisioning. The proposed method
supports data management in network slicing while balancing
between AI service performance and resource consumption of
data management. In addition, the proposed method considers
the location of physical resources in resource virtualization
for network slicing. With our approach, network and service
providers can jointly determine where and how to train AI
models based on data availability, network resource con-
straints, and service performance requirements.

REFERENCES

[1] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao,
“AI-assisted network-slicing based next-generation wireless networks,”
IEEE Open J. Veh. Technol., vol. 1, pp. 45–66, 2020.

[2] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, 2020.

[3] W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, and X. Li,
“Dynamic RAN slicing for service-oriented vehicular networks via
constrained learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2076–2089, 2021.

[4] M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement learning
for collaborative edge computing in vehicular networks,” IEEE Trans.
Cogn. Commun. Netw., vol. 6, no. 4, pp. 1122–1135, 2020.

[5] J. Gao, M. Li, W. Zhuang, X. Shen, and X. Li, “MAC for machine type
communications in industrial IoT – part II: Scheduling and numerical
results,” IEEE Internet Things J., vol. 8, no. 12, pp. 9958–9969, 2021.

[6] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Trans. Commun., vol.
68, no. 1, pp. 317–333, 2020.

[7] J. Ren, G. Yu, and G. Ding, “Accelerating DNN training in wireless
federated edge learning systems,” IEEE J. Sel. Areas Commun., vol. 39,
no. 1, pp. 219–232, 2021.

[8] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” arXiv preprint arXiv:1907.02189, 2019.

[9] Q. Cao, N. Balasubramanian, and A. Balasubramanian, “MobiRNN:
Efficient recurrent neural network execution on mobile GPU,” in Proc.
1st Int. Workshop Deep Learn. Mobile Syst. Appl., 2017.

[10] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Proc. 24th Annu. Conf. Neural Inf. Process. Syst.,
2011.

[11] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 1698–1707.

[12] E. Ntoutsi et al., “Bias in data-driven artificial intelligence systems—an
introductory survey,” Wiley Interdisciplinary Rev.: Data Mining Knowl.
Discovery, vol. 10, no. 3, pp. e1356, 2020.

[13] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-
empowered future IoV with enhanced communication, computing, and
caching,” Proc. IEEE, vol. 108, no. 2, pp. 274–291, Feb. 2020.



9

[14] J. Liu, J. Liu, W. Du, and D. Li, “Performance analysis and charac-
terization of training deep learning models on mobile device,” in Proc.
IEEE 25th Int. Conf. Parallel Distrib. Syst., 2019, pp. 506–515.

[15] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010,
Available on: http://yann.lecun.com/exdb/mnist/.

Mushu Li (m475li@uwaterloo.ca) received the
Ph.D. degree in electrical engineering at University
of Waterloo, Canada, in 2021, and the M.A.Sc.
degree from Ryerson University, Canada, in 2017.
She is currently a Postdoctoral Fellow with the
Department of Electrical and Computer Engineer-
ing, University of Waterloo, Waterloo, ON, Canada.
Her research interests include machine learning in
wireless networks and network slicing.

Jie Gao (j.gao@marquette.edu) received his Ph.D.
degree from the University of Alberta, Canada. He
worked as a postdoc at Ryerson University and a
research associate at the University of Waterloo. In
August 2020, he joined the Department of Electrical
and Computer Engineering, Marquette University,
Milwaukee, USA, as an Assistant Professor. His
research interests include next-generation wireless
networks and the Internet of Things. He is a Senior
Member of the IEEE.

Conghao Zhou (c89zhou@uwaterloo.ca) is cur-
rently working toward the Ph.D. degree in the
Department of Electrical and Computer Engineer-
ing, University of Waterloo, Waterloo, ON, Canada.
His research interests include space-air-ground in-
tegrated networks and machine learning in wireless
networks.

Xuemin (Sherman) Shen (sshen@uwaterloo.ca)
is a University Professor with the Department of
Electrical and Computer Engineering, University of
Waterloo, Canada. His research focuses on network
resource management, Internet of Things, 5G and
beyond, and vehicular ad hoc and sensor networks.
Dr. Shen is an Engineering Institute of Canada
Fellow, a Canadian Academy of Engineering Fellow,
a Royal Society of Canada Fellow, and a Chinese
Academy of Engineering Foreign Member. He is a
Fellow of the IEEE.

Weihua Zhuang (wzhuang@uwaterloo.ca) is a Uni-
versity Professor and Tier I Canada Research Chair
of wireless communication networks in the De-
partment of Electrical and Computer Engineering,
University of Waterloo, Ontario, Canada. She is a
Fellow of the Royal Society of Canada, the Canadian
Academy of Engineering, and the Engineering Insti-
tute of Canada. Her research interests include dis-
tributed resource allocation, mobility management,
and quality-of-service provisioning. She is a Fellow
of the IEEE.


