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Abstract—With the global roll-out of the fifth generation
(5G) networks, it is necessary to look beyond 5G and en-
vision the 6G networks. The 6G networks are expected to
have space-air-ground integrated networks, advanced network
virtualization, and ubiquitous intelligence. This article presents
an artificial intelligence (AI)-native network slicing architecture
for 6G networks to enable the synergy of AI and network
slicing, thereby facilitating intelligent network management and
supporting emerging AI services. AI-based solutions are first
discussed across network slicing lifecycle to intelligently manage
network slices, i.e., AI for slicing. Then, network slicing solutions
are studied to support emerging AI services by constructing AI
instances and performing efficient resource management, i.e.,
slicing for AI. Finally, a case study is presented, followed by a
discussion of open research issues that are essential for AI-native
network slicing in 6G networks.

Index Terms—6G, AI-native, network slicing, AI for slicing,
slicing for AI, ubiquitous intelligence.

I. INTRODUCTION

Compared with existing wireless networking including the

fifth generation (5G), 6G is more than an improvement of key

performance indicators (KPI) requirements, such as increased

data rates, enhanced network capacity, and low latency. The 6G

networks are envisioned to have the following unique features.

First, space networks, e.g., low earth orbit (LEO) satellites, air

networks, e.g., unmanned aerial vehicles (UAVs), and ground

networks, e.g., cellular base stations (BSs), are integrated into

a space-air-ground integrated network (SAGIN) to provide

global coverage and on-demand services [1]. Second, re-

source virtualization using network slicing techniques and end

user virtualization using digital twin techniques can facilitate

advanced network virtualization to provide flexible network

management [2], [3].1 Third, intelligence penetrates every

corner of networks, ranging from end users, the network edge,

to the remote cloud, which results in ubiquitous intelligence. A

number of network nodes are endowed with built-in artificial

intelligence (AI) functionalities, thereby not only facilitating
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1End user virtualization is to virtualize end users in network operation
and management by characterizing users’ behaviours and status (e.g., service
demands and QoS satisfaction), which can be achieved using digital twin
concepts.

intelligent network management but also fostering AI services,

e.g., deep neural network based applications. Hence, 6G

networks are expected to create a new wireless networking

ecosystem that brings societal and economic benefits.

The 6G networks will support a diverse set of services

with different quality of service (QoS) requirements, such as

multisensory extended reality and hologram video streaming.

To support diversified services as established in 5G networks,

network slicing is a potential approach to construct multiple

logically-isolated virtual networks (i.e., slices) for different

services on top of the common physical network [4]. The

QoS requirements of different services can be guaranteed

via cost-effective slice management strategies ranging from

preparation, planning, and operation phases in the network

slicing lifecycle.

Developing network slicing schemes faces many challenges

in 6G networks due to their unique features. First, managing

slices over space, air, and ground network segments in the

SAGIN requires judicious coordination of heterogeneous net-

work segments. Moreover, the 6G networks need to support

a variety of new services while satisfying their different and

stringent QoS requirements, which further complicates slice

management. Hence, it is paramount to develop intelligent

slice management solutions in 6G networks. Second, fuelled

by powerful computing capability and advanced AI techniques,

ubiquitous intelligence is fostering abundant AI services with

new QoS requirements, such as data quality, inference accu-

racy, and training latency. Hence, it is necessary to construct

customized network slices to support the emerging AI services

in 6G networks.

In this article, we propose an AI-native network slicing

architecture for 6G networks to facilitate intelligent network

management while supporting emerging AI services. AI-native

means that, as a built-in component in the network slicing

architecture, AI exists not only in the software-defined net-

working (SDN) controller for managing network slices, but

also in network slices as services for end users. Hence, the

synergy of AI and network slicing in the proposed architecture

is two-fold: On one hand, AI techniques can be applied to

manage network slices, namely AI for slicing. The network

slicing lifecycle including preparation, planning, and operation

phases is introduced, along with specifying AI-based solutions

for each phase. In addition, the detailed procedure of informa-

tion exchange among end users, access points, and the SDN

controller is presented; On the other hand, network slicing can

be applied to construct customized network slices for various

AI services, namely slicing for AI. Potential approaches such

as AI instance construction and efficient resource management

for AI services are introduced.
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The remainder of this article is organized as follows. In

Section II, expected features of 6G networks are discussed, and

then the AI-native network slicing architecture is proposed.

The basic ideas of AI for slicing and slicing for AI are pre-

sented in Section III and Section IV, respectively. A case study

is presented in Section V. In Section VI, the research directions

are identified, followed by the conclusion in Section VII.

II. AI-NATIVE NETWORK SLICING FOR 6G NETWORKS

A. Network Slicing

Network slicing is an emerging technology to support

diversified applications in a cost-effective manner [4], [5].

The concept of network slicing can be traced back to the

late 1980s [6]. Nowadays, network slicing is a key technology

in 5G networks, supported by network function virtualization

(NFV) and SDN techniques. Specifically, NFV enables virtu-

alized resources and network functions for flexible resource

management, while SDN facilitates centralized network man-

agement for network optimization. In 5G networks, network

slicing has been defined in the 3rd generation partnership

project (3GPP) Release 15 [7]. Moreover, in coming 6G

networks, network slicing will continue evolving and play an

increasingly important role.

The basic idea of network slicing is to create multiple

logically-isolated network slices on top of the common phys-

ical infrastructure, which can achieve flexible and adaptive

network management. Its benefits are three-fold: 1) Multi-

tenancy - Multiple virtual networks can share the common

physical infrastructure, thus reducing capital expenditures in

the network deployment; 2) Service isolation - Multiple slices

are constructed for different services via judicious resource

management, such that service level agreements of different

slices can be effectively guaranteed; 3) Flexibility - Network

slicing can support flexible network management, as slices can

be created, modified, or deleted on-demand.

B. Features of 6G Networks

From 5G to 6G, it is in general expected KPI requirements

to be increased by at least an order of magnitude. According

to a recent white paper [8], the KPI requirements of the

6G networks include 1 Tbps peak data rate, 20-100 Gbps

user experienced data rate, 0.1 ms end-to-end latency, 10

million devices/km2, and near 100% coverage. Such KPI re-

quirements demand several candidate technologies, such as

THz communications and AI [6]. The 3GPP working group

will discuss 6G candidate techniques by the end of 2026, and

the first 6G standard is expected to debut by 2030.

Distinguished from 5G networks, 6G networks have several

features:

• SAGIN - While current ground networks provide good

coverage in highly populated areas, 6G needs to provide

universal coverage, including in rural areas, remote lands,

and sparsely populated areas. To achieve this goal, 6G

will exploit the altitude dimension. Space, air, and ground

network segments are integrated into the SAGIN [1], [9],

which can provide global coverage, facilitate on-demand

services, and support high-rate low-delay services;

• Diversified services - Many services have stringent QoS

requirements in different dimensions. Mobile virtual re-

ality (VR) and hologram video streaming applications

require a high data rate, e.g., the uplink data rate of

mobile VR is up to 5 Gbps. Other applications may

require ultra-high reliability, such as autonomous driving,

industrial control systems, and robot/UAV swarm, e.g.,

the required reliability of autonomous driving is up to

99.999% [10];

• Ubiquitous intelligence - With caching capability, a large

amount of data can be stored in the network. In addition,

with the development of AI techniques, edge computing,

and device computing, intelligence is pushed from the

remote cloud to the network edge and end users. As such,

AI will be integrated into 6G networks for intelligent

network management by directly learning from extensive

data in the network. Moreover, ubiquitous intelligence

will foster a number of AI services in which AI is

provided as services.

C. AI-Native Network Slicing Architecture

These features impose new challenges on developing net-

work slicing schemes for 6G networks. Firstly, the SAGIN

not only increases the number of integrated network segments

but also introduces extra dynamics on network resource avail-

ability due to satellite mobility and UAV manoeuvrability.

Network slicing schemes should accommodate for the large-

scale SAGIN while taking dynamic resource availability into

account. Moreover, supporting diversified services with strin-

gent QoS requirements further complicates network slicing

scheme design. Secondly, ubiquitous intelligence facilitates

many emerging AI services which will be prevalent in 6G

networks. Different from conventional services, facilitating AI

services requires multiple steps, including collecting high-

quality data samples, training satisfactory AI models, and

performing low-latency model inference, which should meet

diverse QoS requirements. How to satisfy such diverse QoS

requirements for AI services remains a challenging issue.

To address the above challenges, an AI-native network

slicing architecture for 6G networks is presented. As shown

in Fig. 1, the architecture aims at integrating SAGIN and

ubiquitous intelligence and supporting diverse services with

stringent QoS requirements. Compared with network slicing

for 5G networks, the proposed architecture has two new

characteristics. Firstly, AI is integrated into SDN controllers

to realize intelligent network slicing, such that a number

of network slices with stringent QoS requirements can be

managed efficiently and cost-effectively via AI techniques,

which is referred to as AI for slicing. Secondly, emerging

AI services are supported by network slicing. In addition to

network slices for conventional services, new network slices

are constructed for AI services on top of the common physical

infrastructure, which is referred to as slicing for AI.
Two types of SDN controllers are deployed in the proposed

architecture. One is the centralized SDN controller located at

the cloud, which is to manage network slices. The other is

the local SDN controller located at access points, which is
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Fig. 1. An illustration of the AI-native network slicing architecture for 6G networks.

to schedule resources to end users within each network slice.

The SDN controller in the following refers to the centralized

SDN controller unless otherwise stated. In the following, we

will illustrate the basic ideas of AI for slicing and slicing for

AI in Section III and Section IV, respectively.

III. AI FOR SLICING

In this section, we introduce the network slicing lifecycle

with three phases and then investigate potential AI solutions

for each phase. Next, the corresponding procedure of infor-

mation exchange in AI for slicing is discussed.

A. Network Slicing Lifecycle

The network slicing lifecycle consists of three phases:

preparation, planning, and operation, as shown in Fig. 2. The

centralized SDN controller is in charge of the preparation and

planning phases, while the operation phase is coordinated by

local SDN controllers.

1) Preparation Phase: This phase is to construct and

configure network slices based on service requirements, data

traffic, user information, and virtual network resource avail-

ability. To achieve the goal, the SDN controller conducts the

following tasks:

• Service requirement extraction - This task is to classify

services by extracting their QoS requirements, such as

service delay, service priority, throughput, and reliability.

The 3GPP has standardized specific service/slice type

values for classified services, such as enhanced mobile

broadband, ultra-reliable low-latency communications,

and massive machine-type communications services [7];

• Network resource and function virtualization - Net-

work resources, such as communication, computing, and

caching resources, are pooled into virtualized resource

blocks via advanced resource virtualization techniques.

Similarly, network functions, such as firewall, network

name translation, and domain name system, are sepa-

rated from dedicated hardware network functions into

virtualized network functions (VNFs). Through virtual-

ization, the SDN controller can flexibly manage network

resources and functions.

Once these tasks are completed, the SDN controller can

construct network slices for each admitted slice request.

2) Planning Phase: This phase aims at reserving network

resources to slices for service provisioning. The planning

phase operates in a large timescale. Time is partitioned into

multiple planning periods (windows) for each slice. The dura-

tion of each planning window depends on service demand and

network dynamics, whose value ranges from several minutes

to several hours. To achieve the goal, the following two steps

are conducted in the planning phase:
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Fig. 2. An illustrative example for the network slicing lifecycle which includes preparation, planning, and operation phases.

• Service and network information collection - Benefiting

from the global control functionality of the SDN con-

troller, extensive network information can be collected

from underlying physical networks, such as service de-

mands, stochastic channel conditions, and user mobility

patterns. The collected information is utilized for the

following resource reservation decision making;

• Resource reservation - At the beginning of each plan-

ning window, the SDN controller adjusts the amount of

reserved network resources for each slice based on the

monitored slice performance. The reserved virtualized

network resources of each slice are mapped to the phys-

ical network. At the end of each planning window, some

system information is fed back to the SDN controller,

such as resource utilization, system performance, and

service level agreement satisfaction. Based on the feed-

back information, the SDN controller can adjust resource

reservation decisions to accommodate dynamic network

environments while guaranteeing QoS requirements.

3) Operation Phase: This phase is to schedule the service

of a slice using the reserved resources for subscribed end

users. The operation phase works in a much smaller timescale

(e.g., 100 ms) than that in the planning phase. Specifically,

under the coordination of the centralized SDN controller,

local SDN controllers allocate network resources to end users

in each slice according to their real-time data traffic. The

operation decisions include selecting radio access technology

(RAT), determining user association with specific radio access

points, deciding proper protocol and associated parameters,

and orchestrating resources among end users.

B. Roles of AI in Network Slicing

Although network slicing can facilitate service provisioning,

managing a number of network slices incurs significant net-

work management cost, especially in 6G networks. As shown

in Fig. 3, AI-based network slicing is a potential solution in

which AI plays different roles in different network slicing

phases.

AI for preparation: In the preparation phase, AI needs to

perform two tasks. 1) Service demand prediction - Based

on historical data, service demand can be predicted via AI

techniques, such as recurrent neural networks. Prior studies

show that the service demand and resource usage of a slice

can be accurately predicted [11]. The prediction results can be

utilized for decision making in the planning phase. 2) Slice

admission - The SDN controller admits slices to maximize

network resource utilization considering resource availability

and service demands. As the slice admission decision is binary,

this problem is deemed as an integer optimization problem.

In large-scale networks with complex resource availability

distribution, conventional optimization solutions become com-

plicated and intractable, while AI-based solutions are potential.

AI for planning: In the planning phase, AI can perform two

tasks. 1) VNF placement - The SDN controller deploys VNFs
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Fig. 3. The considered AI-based network slicing solution in which AI plays
different roles in preparation, planning, and operation phases.

to support services in the network. The resources allocated for

VNFs should be dynamically adjusted for time-varying service

demands to guarantee service delay requirements. Deep learn-

ing methods can be applied to enhance resource utilization

in dynamic network environments. 2) Resource reservation

- The SDN controller reserves resources for different slices

based on their service demands. Since data traffic loads are

time-varying, the resource reservation should be adaptive to

dynamic real-time demands, which can be addressed via rein-

forcement learning (RL) methods, such as deep deterministic

policy gradient (DDPG).

AI for operation: Two exemplary operation tasks are as

follows: 1) Resource orchestration - The reserved resources

of a slice are allocated to end users. The decisions are

determined based on real-time user mobility, service demands,

etc. To efficiently utilize resources, RL methods can be applied

for dynamic resource orchestration; 2) RAT selection - To

maximize system utility, an optimal RAT is selected among

multiple candidate RATs for each end user. Due to user

mobility, user-perceived service performance of an RAT is

stochastic. Such problem can be addressed by multi-armed

bandit methods, e.g., contextual bandit.

C. Procedure of Information Exchange

The AI for slicing procedure involves the information

exchange among end users, access points, and the SDN

controller. The procedure is illustrated in Fig. 4 with steps

as follows:

1) Access points collect user-level stochastic information,

such as end users’ service demand patterns, mobility

patterns, and stochastic channel conditions;

2) Access points translate the user-level information into

desired service-level information. For example, user

density information can be obtained from processing

user location information, and AI techniques can be used

for such data abstraction, fusion, and analysis;

3) The processed service-level information is delivered to

the SDN controller;

4) The SDN controller runs AI-based planning algorithms

to make decisions based on the collected service-level

information;

5) The determined planning decisions are sent back to all

access points;

6) Access points enforce the received planning decisions,

e.g., reserving network resources for corresponding

slices;

7) End users in service report their real-time information to

their associated access points, such as real-time service

demands, channel conditions, and task data sizes;

8) Access points run the AI-based operation algorithm to

allocate resources for end users based on real-time user-

level information;

9) Service requests from end users are supported with the

allocated network resources. For example, computation

tasks can be offloaded to access points using commu-

nication resource and then processed using computing

resources. For each operation slot within a planning

window, Steps 7-9 are repeated;

10) Access points monitor slice performance in the network

given the enforced planning decisions by measuring end

users’ satisfaction rates across all operation slots within

a planning window;

11) Access points report network performance to the SDN

controller;

12) The SDN controller makes the planning decision for next

planning window and adjusts the planning policy based

on the feedback information.

Note that in the preceding procedure, Steps 1-6 and Steps 10-

12 are in the network planning phase, and Steps 7-9 are in the

operation phase.

IV. SLICING FOR AI

The slicing for AI is to utilize network slicing to support AI

services while satisfying QoS requirements. Potential solutions

include constructing and selecting AI instances and efficient

resource management in the AI service lifecycle.

A. AI Instance

There are diversified implementation options for supporting

AI services. An AI service can be implemented via different

kinds of algorithms, training manners, and network resource

allocation. For example, objective detection services can be

implemented via ResNet32, Inception-v3, AlexNet, or VGG16

algorithms. Hence, the primary issue of supporting an AI

service is to determine an appropriate implementation option

in the network.

We introduce the concept of AI instance to address the issue,

as shown in Fig. 5. An AI instance of an AI service represents

an implementation option for an AI service. The basic idea

is to construct multiple candidate implementation options and

then select an appropriate one based on network environments.

The procedure of the conceptual AI instance management

framework consists of two steps. 1) AI instance construction

- The network operator constructs multiple candidate AI

instances for each AI service based on available network

resources and service requirements. An AI instance may in-

clude (i) the AI algorithm which specifies the implementation
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algorithm and the corresponding neural network architecture,

(ii) the training manner of the AI algorithm, e.g., centralized

or distributed training, and (iii) the amount of the required

network resources. 2) AI instance selection - In this step, the

AI service provider selects an appropriate AI instance among

candidate AI instances based on user service preference (e.g.,

privacy preservation preference). If an AI instance is selected,

the AI service will be executed using the AI algorithm and

the corresponding required amount of network resources by

the AI instance. In summary, the idea of AI instance provides

flexibility for AI service management.

B. Resource Management in AI Service Lifecycle
Running AI services includes three stages: data collection,

model training, and model inference, i.e., AI service lifecy-

cle [12], [13]. Specifically, data collection is to collect data

via communication links, and the collected data can be stored

in network edge servers. Based on the collected data, an

AI model can be trained in the model training stage. The

model training can be implemented in either a centralized or

a distributed manner. For example, multiple devices can work

collaboratively to train a global model via federated learning.

Next, well-trained AI models are deployed to execute specific

computation tasks, which is referred to as model inference. The

model inference can be performed in multiple manners. For

example, device-edge collaborative inference approaches can

allocate and process computation tasks at different network

nodes to achieve a low inference latency.

The performance of an AI service depends on all the

three stages in the AI service lifecycle. For example, model

inference accuracy depends on multiple factors, such as the

quality of the collected data, the number of training iterations,

and the approach of model inference. Meanwhile, all these

three stages consume multi-dimensional network resources. As

a result, to optimize the performance of AI services, network

resources should be jointly allocated for these three stages.

The reserved network resources in AI slices should be further

allocated to these three stages to satisfy their corresponding

QoS requirements.

V. CASE STUDY

In this section, a case study is provided on AI-assisted

resource reservation, aiming at reducing long-term overall

system cost.

A. Considered Scenario

We consider an air-ground integrated network for providing

autonomous driving services to vehicles traversing a highway

segment. For the considered highway segment with a length
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of 2 km, two BSs are uniformly deployed along the highway

with a separation distance of 1 km, and one UAV is deployed

in the centre hovering at a height of 100 meters. When an

autonomous vehicle is driving on the highway, extensive

computation-intensive tasks are required to be processed. For

prompt task processing, all access points are equipped with

edge computing servers, and vehicles can associate to the

nearest access point and upload their computation tasks. We

consider a delay-sensitive autonomous driving service, e.g.,

object detection, whose delay requirement is 100 ms for road

safety [14]. The data size and computation intensity of a task

are set to 0.6 Mbit and 6×108 cycles, respectively. The service

delay is characterized by the queuing theory since task arrivals

are assumed to follow a Poisson process with rate λ = 1
packet/sec. To guarantee the service delay requirement, a

network slice is constructed, in which spectrum and computing

resources are reserved.

Resource reservation decisions are made to minimize

the overall system cost considering vehicle traffic dy-

namics. The overall system cost is defined as C =∑T
t=1 (ωrC

t
r + ωsC

t
s + ωdC

t
d), which is a weighted summa-

tion of three cost components across all T planning windows.

1) Resource reservation cost Ct
r accounts for the amount of the

reserved spectrum and computing resources at BSs at planning

window t. The spectrum resource is allocated in a unit of

subcarrier of 5 MHz, and the computing resource is allocated

in a unit of virtual machine (VM) instance with a processing

rate of 10 × 109 cycles/sec; 2) Slice reconfiguration cost Ct
s

accounts for the difference between two consecutive resource

reservation decisions [15]; 3) Delay requirement violation

penalty Ct
d refers to the penalty once service delay exceeds the

delay requirement. These weight parameters are set to ωr = 1,

ωs = 20, and ωd = 200, respectively. The planning window

size is set to one hour.

We propose a DDPG-based solution to minimize the overall

system cost [15]. In this solution, both actor and critic net-

works are fully-connected neural networks with four layers,

the numbers of neurons in two hidden layers are 128 and 64,

respectively, and their learning rates are set to 2 × 10−4 and

2×10−3, respectively. For performance comparison, we adopt

an optimization-based solution, named myopic resource reser-
vation, in which network resources are reserved to minimize

the resource reservation cost at each planning window while

satisfying the delay requirement.

B. Simulation Results

We evaluate the performance of the proposed DDPG-based

solution based on real-world highway vehicle traffic flow trace

collected by Alberta Transportation.2 As shown in Fig. 6(a),

we first present the convergence performance of the proposed

DDPG-based solution. A five-point moving average is applied

to process raw simulation points to highlight the convergence

trend (i.e., red curve). It can be seen that the DDPG-based re-

source reservation solution has converged after 4,000 training

episodes.

Next, as shown in Fig. 6(b), the cumulative system cost

within one day is presented. It can be observed that the DDPG-

based solution can reduce the cumulative overall system cost

within one day by around 15% as compared to the myopic

solution. The reason is that the proposed DDPG-based solution

is able to minimize the long-term overall system cost, while the

myopic solution minimizes the short-term system cost, which

incurs prohibitive slice reconfiguration cost due to frequent

adjustment of network resource reservation in highly dynamic

vehicular networks. The simulation results show that the

proposed AI-based resource reservation solution can achieve

a low system cost.

2Alberta Transportation: http://www.transportation.alberta.ca/mapping/.
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reservation solution.

VI. OPEN RESEARCH ISSUES

In the following, we discuss some open research issues

pertaining to AI-native network slicing.

A. Joint Design of Network Planning and Operation

Planning and operation are performed and coupled in two

different timescales. Specifically, the planning phase is per-

formed at a large timescale (e.g., minute level) to reserve

resources for different slices based on service demands, while

the operation phase is performed at a small timescale (e.g.,

sub-second level) to allocate the reserved resources to on-

demand users within each slice. Achieving the optimal net-

work slicing performance requires a joint optimization design

of planning and operation.

B. Data Management Framework

The cornerstone of AI-native network slicing is abundant

data that can be used for AI model training. In 6G networks,

data is widely distributed in the network. Due to limited

communication resources, the cost of collecting a large amount

of data cannot be neglected. In addition, the collected data

is required to be processed to mine valuable information

for network management. For example, abundant historical

behaviour data from individual users can be analyzed to

predict spatio-temporal service demand distributions. Hence,

establishing a data management framework to collect and

analyze data is necessary.

C. Prediction-Empowered Network Slicing

With the development of advanced AI technologies, the data

traffic in the network can be predicted. How to effectively

leverage the power of prediction for network slicing is an in-

teresting topic. Since the prediction is imperfect, the prediction

error may degrade the performance of network slicing. How to

evaluate the impact of prediction errors on system performance

and to develop corresponding solutions are important research

issues.

VII. CONCLUSION

In this article, we have proposed the AI-native network

slicing architecture to facilitate intelligent network manage-

ment and support AI services in 6G networks. The architecture

aims at enabling the synergy of AI and network slicing. The

AI for slicing is to help reduce network management com-

plexity, while adapting to dynamic network environments by

exploiting the capability of AI in network slicing. The slicing

for AI is to construct customized network slices to better

accommodate various emerging AI services. To accelerate the

pace of AI-native network slicing architecture development,

extensive research efforts are required, such as in the identified

research directions.
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