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C O M P U T I N G  P R A C T I C E S

O
ver the past two and a half decades, the
computer industry has grown accus-
tomed to the spectacular rate of
increase in microprocessor perfor-
mance. The industry accomplished this

without fundamentally rewriting programs in a par-
allel form, without changing algorithms or languages,
and often without even recompiling programs. For
the time being at least, instruction-level parallel pro-
cessing has established itself as the only viable
approach for achieving higher performance without
major changes to software.

However, computers have thus far achieved this goal
at the expense of tremendous hardware complexity—
a complexity that has grown so large as to challenge
the industry’s ability to deliver ever-higher perfor-
mance. This is why we developed the Explicitly Parallel
Instruction Computing (EPIC) style of architecture: to
enable higher levels of instruction-level parallelism
without unacceptable hardware complexity.

INCREASING LEVELS OF PARALLELISM
Higher levels of performance benefit from improve-

ments in semiconductor technology, which increase
both circuit speed and circuit density. Further speedups
must come, primarily, from some form of parallelism.
Instruction-level parallelism (ILP) results from a set of
processor and compiler techniques that speed up exe-
cution by causing individual RISC-style operations to
execute in parallel. ILP-based systems take a conven-
tional high-level language program written for sequen-
tial processors and use compiler technology and
hardware to automatically exploit program parallelism.

The fact that these techniques are largely transpar-
ent to application programmers—as are circuit speed
improvements—is important. This situation stands in
sharp contrast to traditional multiprocessor paral-
lelism, which requires programmers to rewrite appli-
cations. In the long run, it is clear that the multi-
processor style of parallel processing will be an impor-
tant technology for the mainstream computer indus-
try. For the present, however, instruction-level parallel
processing remains the only viable approach for con-
tinuously increasing performance without fundamen-
tally rewriting applications. These two styles of parallel
processing are not mutually exclusive; the most effec-
tive multiprocessor systems will probably be built
using ILP processors.

ILP ARCHITECTURES
A computer architecture is a contract between the

class of programs that are written for the architecture
and the set of processor implementations of that archi-
tecture. Usually this contract describes the format and
the interpretation of individual instructions, but in the
case of ILP architectures, it can extend to information
about the available parallelism between instructions
or operations. The two most important types of ILP
processors, to date, differ in this respect.

Superscalar processors are ILP processor imple-
mentations for sequential architectures—architectures
for which the program is not expected to convey and,
in fact, cannot convey any explicit information regard-
ing parallelism. Since the program contains no explicit
information about available ILP, if this ILP is to be
exploited, it must be discovered by the hardware,

EPIC defines a new style of
architecture that could rival RISC in
terms of impact. This philosophy seeks
to simplify hardware while extracting
even more instruction-level parallelism
from programs than either VLIW or
superscalar strategies.
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which must then also construct a plan of action for
exploiting the parallelism.

Very long instruction word (VLIW) processors are
examples of architectures for which the program pro-
vides explicit information regarding parallelism. The
compiler identifies parallelism in the program and
communicates it to the hardware by specifying which
operations are independent of one another. This infor-
mation is of direct value to the hardware, since it
knows, with no further checking, which operations it
can start executing in the same cycle.

The Explicitly Parallel Instruction Computing
(EPIC) style of architecture is an evolution of VLIW
that has also absorbed many superscalar concepts,
albeit in a form adapted to EPIC. EPIC provides a phi-
losophy of how to build ILP processors, along with a
set of architectural features that support this philoso-
phy. In this sense, EPIC is like RISC: The term denotes
a class of architectures that subscribe to a common
philosophy. Just as there is more than one distinct
RISC instruction set architecture (ISA), there can also
be more than one EPIC ISA. Depending on which
EPIC features it uses, an EPIC ISA can be optimized
for distinct domains such as general-purpose or
embedded computing.

The first instance of a commercially available EPIC
ISA will be Intel’s IA-64.1 However, IA-64 is not the
topic of our discussion. Rather, we focus on the
broader concept of EPIC as embodied by HPL-PD
(formerly known as the Hewlett-Packard Laboratories
PlayDoh) architecture,2,3 which encompasses a large
space of possible EPIC ISAs. We defined HPL-PD at
Hewlett-Packard Laboratories to facilitate EPIC archi-

tecture and compiler research. In this discussion, we
focus on HPL-PD because it abstracts away from the
idiosyncratic features of a specific ISA and instead con-
centrates on the essence of the EPIC philosophy. (For
a basic summary of the features of an EPIC ISA, see
the “What Is an EPIC ISA?” sidebar.)

MOTIVATION BEHIND EPIC
We started HP Labs’ EPIC research early in 1989,

although the name EPIC was coined in 1997 by the
HP-Intel alliance. At that time, superscalar processors
were just gaining favor as the means to achieve ILP.
However, since our research would take several years
to influence product design, we felt it important to
look five to 10 years into the future to understand the
technological obstacles and opportunities that would
exist in that time frame.

At the time, we came to two conclusions; one obvi-
ous, the other quite controversial. First, it was quite
evident from Moore’s law that it would soon be pos-
sible to fit an entire, highly parallel, ILP processor on
a chip. Second, we believed that the ever-increasing
complexity of superscalar processors would have a
negative impact upon their clock rate, eventually lead-
ing to a leveling off of the rate of increase in micro-
processor performance.

Although architects contest the latter claim even
today, it was, nevertheless, what we believed back in
1989 and, for that matter, what we continue to
believe. This conviction motivated us to look for an
alternate style of architecture that would permit high
levels of ILP with reduced hardware complexity.

In particular, we wished to avoid out-of-order exe-
cution, an elegant but expensive ILP technique that
was first used in the IBM System/360 Model 91 and
is employed by many high-end superscalar micro-
processors today. The VLIW style of architecture, as
represented by Multiflow’s5 and Cydrome’s6,7 prod-
ucts, addressed the issue of achieving high levels of
ILP with reduced hardware complexity. However,
these machines were specialized for numerical com-
puting and had shortcomings when executing branch-
intensive and pointer-based scalar applications.
Contemporary RISC processors, on the other hand,
had relatively poor performance on numerical appli-
cations. It was clear that this new style of architecture
would need to be truly general purpose: capable of
achieving high levels of ILP on both numerical and
scalar applications. In addition, existing VLIWs did
not provide adequate object code compatibility across
an evolving family of processors as is required for gen-
eral-purpose processors.

The code for a superscalar processor consists of an
instruction sequence that yields a correct result if exe-
cuted in the stated order. The code specifies a sequen-
tial algorithm and, except for the fact that it uses a

What Is an EPIC ISA?
A limitless number of specific ISAs fall within the EPIC style. In addi-

tion to choosing whether to include or omit each of the architectural fea-
tures that we discuss, processor designers must make the traditional
decisions regarding issues such as the opcode repertoire, which data types
to support, and how many registers to use. Nevertheless, a certain philo-
sophical thread unites all of these ISAs. What makes any given architec-
ture an EPIC architecture is that it subscribes to the EPIC philosophy, which
has three main principles: 

• the compiler should play the key role in designing the plan of execu-
tion, and the architecture should provide the requisite support for it
to do so successfully; 

• the architecture should provide features that assist the compiler in
exploiting statistical ILP; and 

• the architecture should provide mechanisms to communicate the com-
piler’s plan of execution to the hardware. 

Our detailed technical report4 gives a more thorough exposition of EPIC
and its features, including EPIC’s strategies for object code compatibility.
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particular instruction repertoire, has no explicit under-
standing of the nature of the hardware upon which it
will execute or the precise temporal order in which
instructions will execute.

In contrast, VLIW code provides an explicit plan
for how the processor will execute the program, a plan
the compiler creates statically at compile time. The
code explicitly specifies when each operation will be
executed, which functional units will do the work, and
which registers will hold the operands. The VLIW
compiler designs this plan of execution (POE) with
full knowledge of the VLIW processor, so as to achieve
a desired record of execution (ROE)—the sequence
of events that actually transpire during execution. 

The compiler communicates the POE—via an
instruction set architecture that represents parallelism
explicitly—to hardware that executes the specified
plan. This plan permits a VLIW to use relatively sim-
ple hardware that can achieve high levels of ILP. In
contrast, superscalar hardware takes sequential code
and dynamically engineers a POE. While this adds
hardware complexity, it also permits the superscalar
processor to engineer a POE that takes advantage of
factors that can only be determined at runtime.

THE EPIC PHILOSOPHY
One of our goals for EPIC was to retain VLIW’s

philosophy of statically constructing the POE, but to
augment it with features—akin to those in a super-
scalar processor—that would permit it to better cope
with dynamic factors, which traditionally limited
VLIW-style parallelism. To accomplish these goals,
the EPIC philosophy has the following key aspects.

Designing the desired POE at compile time
EPIC places the burden of designing the POE on the

compiler. Whereas, in general, a processor’s architec-
ture and implementation can obstruct the compiler in
performing this task, EPIC processors provide features
that assist the compiler in designing the POE. An EPIC
processor’s runtime behavior must be predictable and
controllable from the compiler’s viewpoint. Dynamic
out-of-order execution can obfuscate the compiler’s
understanding of how its decisions will affect the
actual ROE constructed by the processor; the com-
piler has to second-guess the processor, which com-
plicates its task. An “obedient” processor, which does
exactly what the program instructs it to do, is prefer-
able.

The essence of engineering a POE at compile time
is to reorder the original sequential code to best take
advantage of the application’s parallelism and make
best use of the hardware resources to minimize the
execution time. Without suitable architectural sup-
port, this reordering can violate program correctness.
Thus, because EPIC places the burden of designing

the POE on the compiler, it must also provide
architectural features that support extensive
code reordering at compile time.

Permitting the compiler to play the statistics
An EPIC compiler faces a major problem in

constructing the POE: Certain types of infor-
mation that necessarily affect the ROE can only
be known at runtime. For example, a compiler
cannot know for sure which way each condi-
tional branch will go, and, when scheduling
code across basic blocks in a control flow
graph, the compiler cannot know for sure
which control-flow path is taken. In addition,
it is typically impossible to construct a static
schedule that jointly optimizes all paths within the
program. Ambiguity also results when a compiler is
unable to resolve whether memory references are to
the same location. If they are, they need to be sequen-
tialized. If not, they can be scheduled in any order.

With such ambiguities, there often exists a strong
probability of a particular outcome. An important
part of the EPIC philosophy is to allow the compiler
to play the odds under such circumstances—the com-
piler constructs and optimizes a POE for the likely
case. However, EPIC provides architectural support—
such as control and data speculation, which we dis-
cuss later—to ensure program correctness even when
the guess is incorrect.

When the gamble does not pay off, program exe-
cution can incur a performance penalty. The penalty
is sometimes visible within the program schedule, for
instance when a branch exits a highly optimized pro-
gram region and then executes code within a less opti-
mized region. Or, the penalty may be incurred in stall
cycles that are not visible in the program schedule; cer-
tain operations execute at full performance for the
likely, optimized case but stall the processor to ensure
correctness for the less likely, nonoptimized case.

Communicating the POE to the hardware
Having designed a POE, the compiler must com-

municate it to the hardware. To do so, the ISA must
be rich enough to express the compiler’s decisions as
to when to issue each operation and which resources
to use. In particular, it should be possible to specify
which operations are to issue simultaneously. The
alternative would be for the compiler to create a
sequential program that the processor reorganizes
dynamically to yield the desired ROE. But this defeats
EPIC’s goal of relieving the hardware of the burden
of dynamic scheduling.

When communicating the POE to the hardware, it
is important to provide critical information at the
appropriate time. A case in point is a branch opera-
tion, which—if it is going to be taken—requires that

An important part of
the EPIC philosophy

is to allow the 
compiler to play 
the odds when 

scheduling 
ambiguities exist.
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instructions start being fetched from the branch target
well in advance of the branch being issued. Rather
than providing hardware to deduce when to do so and
what the target address is, the EPIC philosophy pro-
vides this information to the hardware, explicitly and
at the correct time, via the code.

There are other decisions the microarchitecture
makes that are not directly concerned with code exe-
cution, but which do affect execution time. One
example is cache hierarchy management and the asso-
ciated decisions as to what data to promote up the
hierarchy and what data to replace. Such policies are
typically built into the cache hardware. EPIC extends
its philosophy of having the compiler orchestrate the
ROE to having it also manage these microarchitec-
tural mechanisms. To this end, EPIC provides archi-
tectural features that permit programmatic control
of mechanisms that the microarchitecture normally
controls.

ARCHITECTURAL FEATURES SUPPORTING EPIC
EPIC uses a compiler to craft statically scheduled

code that allows a processor to exploit more paral-
lelism, in the form of wide issue-width and deep
pipeline-latency, with less complex hardware. EPIC
simplifies two key runtime responsibilities. First, the
EPIC philosophy permits the elimination of runtime
dependence checks among operations that the com-

piler has already demonstrated as independent.
Second, EPIC permits the elimination of complex logic
for issuing operations out of order by relying upon
the issue order specified by the compiler. EPIC
enhances the compiler’s ability to statically generate
good schedules by supporting various forms of aggres-
sive, compile-time code motion that would be illegal
in a conventional architecture.

Static scheduling
A MultiOp instruction specifies multiple operations

that should issue simultaneously. (Each operation in
the MultiOp is equivalent to a conventional RISC or
CISC instruction.) The compiler identifies operations
scheduled to issue simultaneously and packages them
into a MultiOp. When issuing a MultiOp, the hard-
ware does not need to perform dependence checking
between its constituent operations. Furthermore, a
notion of virtual time is associated with EPIC code;
by definition, exactly one MultiOp instruction is
issued per cycle of virtual time. This virtual time pro-
vides a temporal framework used to specify a plan of
execution. Virtual time differs from actual time when
runtime stalls that the compiler did not anticipate are
inserted by the hardware at runtime.

Traditional sequential architectures define execution
as a sequence of atomic operations; conceptually, each
operation completes before a subsequent operation

The History of EPIC
Although a team at Hewlett-Packard Laboratories developed

EPIC, it builds upon VLIW and pre-VLIW work performed over
the past 25 years. In particular, EPIC builds upon the architec-
tural ideas pioneered at Cydrome and Multiflow. Multiflow con-
tributed concepts such as hardware support for the control
speculation of loads, the ability to simultaneously issue multiple,
prioritized branch operations, and the VariOp instruction for-
mat. EPIC inherited the following concepts from Cydrome: 

• predicated execution (which Philips’ TriMedia, Texas
Instruments’ VelociTI and ARM’s RISC processors have
since adopted); 

• support for software pipelining in the form of rotating reg-
ister files and special loop-closing branches; 

• latency stalling and the memory latency register;
• the ability to execute multiple, independent branches in a

concurrent, overlapped fashion; 
• hardware support for control speculation, including the con-

cepts of speculative opcodes, a speculative error tag bit in each
register, and deferred exception handling (ideas which were
also independently developed contemporaneously by Kemal
Ebcioglu and his colleagues at IBM Research and subsequently
by the Impact project at the University of Illinois); and 

• a rudimentary MultiTemplate instruction format.

An earlier, highly influential project was the Stretch project at
IBM, reported on by Herb Schorr, which introduced many super-
scalar notions, including the prepare-to-branch opcode, branch
target buffers, and branch prediction along with speculative
instruction prefetch.

The FAST and SWS projects
Early in 1989, we started HP Labs’ FAST (Fine-Grained

Architecture and Software Technologies) research project with
the goal of evolving the VLIW architecture—which was then pri-
marily numerically oriented—into the general-purpose style of
architecture that the HP-Intel Alliance has since dubbed EPIC.
Staggered by a year was HP Labs’ SWS (Super Workstation) pro-
gram, an advanced development activity to define a successor to
HP’s PA-RISC architecture. Bill Worley was chief architect of this
new PA-RISC successor, which those of us at HPL referred to as
PA-WW (Precision Architecture-Wide Word).

The objectives of these two efforts were complementary and
compatible. Both teams were soon working jointly toward
developing the EPIC style of architecture as well as defining PA-
WW. Each project also included other activities. For example,
the FAST project was also involved in developing EPIC com-
piler technology. SWS also addressed issues crucial to PA-WW
such as the floating-point architecture, packaging, and OS sup-
port. 



begins. Such architectures do not entertain the possi-
bility of one operation’s register reads and writes being
interleaved in time with those of other operations.

With MultiOp, operations no longer are atomic.
When executing operations within a single MultiOp,
multiple operations may read their inputs before any
operation writes its output. Thus, the nonatomicity
and the latencies of operations are both architecturally
exposed.

The primary motivation for the notion of NUAL
(nonunit assumed latency) is hardware simplicity in
the face of operations that, in reality, take more than
one cycle to complete. If the hardware can be certain
that an operation will not attempt to use a result
before the producing operation has generated it, the
hardware doesn’t need interlocks or a stall capability.

If, in addition, the compiler can be certain that an
operation will not write its result before its assumed
latency has elapsed, the compiler can craft tighter
schedules; the compiler can schedule the successor
operation in an anti- or output-dependence relation-
ship earlier by an amount equal to the operation’s
assumed latency. VLIW processors traditionally have
taken advantage of these benefits. NUAL serves as the
contractual guarantee between the compiler and the
hardware that both sides will honor these assump-
tions. If for any reason the processor’s actual or true
latencies differ from the assumed latencies, the hard-

ware must ensure correct program semantics, using
the mechanisms described in our technical report.4 We
call an operation with an architecturally assumed
latency of one cycle a unit-assumed-latency (UAL)
operation. A UAL operation is still nonatomic.

MultiOp and NUAL are the two most important
features for communicating the compiler’s POE to the
hardware. They allow EPIC processors that are either
noninterlocked or are interlocked but in-order to effi-
ciently execute programs with substantial ILP.

Addressing the branch problem
Many applications are branch-intensive. Branch

latency as measured in processor cycles grows as clock
speeds increase; this represents a critical performance
bottleneck. Branch operations have a hardware
latency that extends from when the branch begins exe-
cution to when the instruction at the branch target
begins execution. During this latency, several actions
occur: The hardware computes a branch condition,
forms a target address, fetches instructions from either
the fall-through or taken path, and then decodes and
issues the next instruction. Although conventional
ISAs specify a branch as a single operation, its actions
are actually performed at different times, which span
the branch’s latency.

The inability to overlap a sufficient number of oper-
ations with branches yields disappointing perfor-
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Each project also fundamentally influenced the other. SWS ben-
efited from architectural insights and innovations from FAST. In
turn, the critical issues faced by SWS guided FAST’s research
agenda, and discussions with the SWS team enriched FAST’s
work. Out of this symbiotic activity came most of the remaining
features of EPIC, as it currently stands.

EPIC innovations
The EPIC team enhanced the predicate architecture of

Cydrome’s Cydra 5 with the inclusion of wired-OR and wired-
AND predicate-setting compares and the availability of two-tar-
get compares. We also extended EPIC’s branch support for
software pipelining and rotating registers to handle WHILE-loops,
and extended and polished the architectural support for control
speculation, which was developed for Cydrome’s future product,
the Cydra 10, which was never shipped. We also developed the
concept of data speculation and the architectural support for it.
Once again, we later learned that this idea, too, was indepen-
dently and contemporaneously developed by the Impact project
and by Ebcioglu and his colleagues at IBM Research.

We extended the ability to bypass the data cache when access-
ing data with low temporal locality, as introduced by Convex
in the C2 and Intel in the i860, to deal with multilevel cache
hierarchies. Additional architectural innovations to deal with
the data cache hierarchy included the source cache (or latency)

specifier and the target cache specifier. We extended the pre-
pare-to-branch concept into a three-part, unbundled branch
architecture motivated by the notion of predicates. And, finally,
we developed techniques for providing object code compati-
bility.

In early 1994, to stimulate and facilitate compiler research for
EPIC processors, the FAST research project published the HPL-
PD architecture specification, which defined a generic space of
EPIC architectures. For its part, SWS had, by the end of 1993,
created the PA-WW architecture specification. This document
defined a specific EPIC ISA, which SWS proposed to HP’s com-
puter product group as the successor to PA-RISC. This ISA con-
tained additional innovations that are beyond the scope of this
article.

In 1993, HP launched a program to productize, design, and
manufacture PA-WW microprocessors. A short time later, HP and
Intel began discussing a partnership to jointly define an architec-
ture that would serve as the successor to both Intel’s IA-32 archi-
tecture and HP’s PA-RISC. After launching this partnership in
June 1994, HP discontinued work on PA-WW. Instead, the two
companies began jointly defining the ISA for the IA-64, using PA-
WW as the starting point. IA-64, for its part, addresses issues that
are specific to its role as the successor to the IA-32 and contains
further innovations described in the IA-64 Application Developer’s
Architecture Guide.
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mance results. This is especially bad for wide-issue
processors that can waste multiple issue slots for each
cycle of branch latency. EPIC allows static schedules
to achieve better overlap between branch processing
and other computation by providing architectural fea-
tures that facilitate three capabilities: 

• separate branch component operations, which
specify when each of the branch actions is to take
place;

• support for eliminating branches; and 
• improved support for static motion of operations

across multiple branches.

Unbundled branches. EPIC branches unbundle into
three components: 

• a prepare-to-branch, which computes a branch’s
target address; 

• a compare, which computes the branch condi-
tion; and 

• an actual branch, which specifies when control
is transferred. 

The compiler can schedule prepare-to-branch and
compare operations well in advance of the actual
branch to provide timely information to the branch
hardware. On executing the prepare-to-branch, the
hardware can speculatively prefetch instructions at
the branch target. After executing the compare, the
hardware can determine whether the branch will be
taken, dismiss unnecessary speculative prefetches, and
also launch nonspeculative prefetches. These mecha-
nisms permit overlapped processing of branch com-
ponents while relying only on the static motion of
branch components.

Predicated execution. EPIC reduces the branch
penalty by eliminating branches using predicated exe-

cution via the compiler technique known as if-con-
version. Predicated execution conditionally executes
operations based on a Boolean-valued input—a pred-
icate—associated with the basic block containing the
operation. Compare operations compute the predi-
cates such that they are true if the program would
have reached the corresponding basic blocks in the
control flow graph; predicates are false otherwise.
The semantics of an operation guarded by predicate
p are that the operation executes normally if p is true,
but if p is false, the processor nullifies the operation.

A simple example of if-conversion is shown in
Figure 1. Figure 1a shows the control flow graph for
an if-then-else construct while Figure 1b shows the
resulting if-converted code. A single EPIC compare
computes complementary predicates, each of which
guards operations in one of the conditional clauses.
If-converted code contains no branches and is easily
scheduled in parallel with other code, often substan-
tially enhancing the available instruction-level paral-
lelism. If-conversion is especially effective when
branches are not highly biased in either direction and
the conditional clauses contain few operations.

Control speculation. Branches present barriers to the
static reordering of operations needed for efficient
schedules. In addition to predicated execution, EPIC
provides another feature that increases operation
mobility across branches: control speculation.
Consider the program fragment shown in Figure 2a,
which consists of two basic blocks. Control specula-
tion is shown in Figure 2b; OP1 has moved from the
second basic block into the first to reduce dependence
“height” in the program graph. The operation car-
ries the label OP1* to indicate that it needs a specu-
lative operation code.

While static speculation enhances ILP, it also
requires hardware assistance to handle exceptions. If
an operation reports a speculative exception immedi-
ately, the exception may be spurious. This would occur
if OP1* reports an exception, and the subsequent
branch is taken. The exception is spurious because it
is reported even though OP1 would not have been exe-
cuted in the original program of Figure 2a.

EPIC avoids spurious exceptions using speculative
opcodes and tagged operands. When a speculative
operation (such as OP1* in Figure 2b) causes an
exception, the operation does not report an exception
immediately. Instead, it generates an operand that is
tagged as erroneous. It reports the exception later
when a nonspeculative operation uses the erroneous
operand. If the branch falls through, OP2 correctly
reports the exception generated by OP1*. If the
branch is taken, the erroneous operand is ignored and
the exception is not reported.

Predicated code motion. An EPIC processor does not
execute operations like branches and stores to mem-

CMP

BR

OP2OP1

CMP

OP2OP1

BR

(a) (b)

Figure 1. Use of predicated execution to perform if-conversion. (a) In this if-then-else
construct, each gold block represents a basic block. Black arrows represent the flow of
control, and orange arrows represent data dependences. (b) If-conversion eliminates
the branch and produces just one basic block containing operations guarded by the
appropriate predicates.
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ory speculatively because this causes side effects that
are not easily undone. Instead, EPIC uses predicated
execution to allow operations to move across
branches nonspeculatively. Figure 2c again shows the
motion of OP1 across a branch. However, in this
instance, OP1 remains nonspeculative because it is
guarded using a predicate corresponding to the com-
plement of the branch exit condition (pf = –p–b). As in
the original program, OP1 executes only if the branch
is not taken.

EPIC allows nonspeculative code motion across
multiple branches. The compiler can cascade compare
operations that compute predicates across multiple
branches, as shown in Figure 2d. Each compare eval-
uates an exit condition (not shown) and computes
predicates for a branch (pbi) and for the basic block
reached when the branch falls through (pfi). A branch
predicate (pbi) is true when its basic block predicate
is true (pfi−1) and its exit condition is true. A subse-
quent basic block predicate (pfi) is true when the pre-
vious basic block’s predicate is true (pf i−1) and the
branch exit condition is false. We call such a predi-
cate, which is computed over a multiblock region, a
fully resolved predicate (FRP). 

When predicates for dependent branches in a linear
sequence are computed as FRPs, they are mutually
exclusive—at most one branch predicate can be true,
and at most one branch is taken. Branches and other
nonspeculative operations are now easily reordered;
they move freely into the delay slots of and across pre-

ceding branches. If branches end up being scheduled
to execute simultaneously, mutual exclusion guaran-
tees well-defined behavior. When the compiler predi-
cates nonspeculative operations using FRPs, it replaces
branch dependences by corresponding predicate
operand dependences. The scheduler moves opera-
tions both speculatively and nonspeculatively through-
out the region to optimize the schedule.

Using FRPs exchanges dependences through a
sequence of branches for dependences through a
sequence of compares; each compare operation con-
joins an additional Boolean-valued expression. The
dependence height of FRP expressions can be reduced
using other EPIC features (wired-AND and wired-OR
compare operations4) so as to accelerate the evalua-
tion of the multiple-term conjunctions or disjunctions,
which appear in FRP expressions.

Addressing the memory problem
Memory accesses also present performance bottle-

necks. Since the processor’s clock period is decreasing
faster than the memory access time, the memory access
time (measured in processor cycles) is increasing. This
increases the length of critical paths through program
schedules. Data caches can help reduce performance
degradation due to increasing main memory latency.
However, hardware-managed caches sometimes
degrade performance even below that of a system
without a cache.

EPIC provides architectural mechanisms that allow

CMP

OP2 OP2
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(a) (b) (c) (d)
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Figure 2. Example of code motion above one or more branches. (a) The original code consists of two sequential basic blocks,
colored gold. OP1 moves above the branch using either (b) control speculation or (c) predication. (d) The use of fully resolved
predicates yields code without control dependences among branches as well as between branches and other operations. The
absence of these control dependences yields a multibranch code region that has the greatest scheduling freedom.
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compilers to explicitly control the motion of
data through the cache hierarchy. These mech-
anisms can selectively override the default
hardware policies. For discussion, we assume
the following architecturally visible data cache
structure. At the first level, closest to the proces-
sor, there is a conventional first-level cache and
a data prefetch (or streaming) cache. At the
next level, there is a conventional second-level
cache. 

Cache specifiers. Unlike other operations, a
load can take on a number of different laten-
cies, depending on the cache level at which the

referenced datum is found. For NUAL loads, the com-
piler must communicate to the hardware the specific
latency that it assumed for each load. For this pur-
pose, EPIC provides load operations with a source
cache specifier that the compiler uses to inform the
hardware of where within the cache hierarchy it can
expect to find the referenced datum and, implicitly,
the assumed latency. In order to generate a high qual-
ity schedule, the compiler must do a good job of pre-
dicting what the latency of each load will be (and then
communicate this to the hardware using the source
cache specifier). This it can do by using various ana-
lytical or cache miss profiling techniques (similar to
branch profiling techniques) to predict, for each load
operation, the cache level at which the referenced
datum is likely to be found.

EPIC load and store operations also provide a tar-
get cache specifier that the compiler uses to indicate
the cache level to which the load or store should pro-
mote or demote the referenced data for use by subse-
quent memory operations. The target cache specifier
reduces misses in the first- and second-level caches by
controlling their contents. The compiler can exclude
data with insufficient temporal locality from the first-
or second-level cache, and can remove data from a
cache level on last use. 

The data prefetch cache allows the prefetching of
data with poor temporal locality into a low-latency
cache without displacing the first-level cache’s con-
tents. Programs can prefetch data using a nonbinding
load that specifies the prefetch cache as the target
cache. A nonbinding load does not write data to any
register; its purpose is to move data within the cache
hierarchy. Promoting data to the prefetch cache rather
than to the first-level cache lets a program prefetch
large data streams and load them quickly without dis-
placing first-level cache contents. Nonbinding load
operations may also use first- or second-level caches as
their target cache, allowing prefetch into other caches. 

Data speculation. Another impediment to creating a
good POE results from low-probability dependences
among memory references. Often, a compiler cannot
statically prove that memory references are to distinct

locations and must conservatively assume that they
alias, even if in reality this is generally not so. Data
speculation allows the compiler to generate program
schedules that assume that a store and a subsequent
load do not alias even though there is some small
chance that they do.

Data speculation separates a conventional load into
two component operations: a data-speculative load
and a data-verifying load. The compiler moves a data-
speculative load above potentially aliasing stores to
allow the load to begin in a timely manner within the
schedule. It schedules the subsequent data-verifying
load after potentially aliasing stores and uses hard-
ware to detect whether an unlikely alias has occurred.
When no alias has occurred, the data-speculative load
has already loaded the correct value, the data-verify-
ing load does nothing, and execution proceeds at full
efficiency. When an alias occurs, the data-verifying
load re-executes the load operation and stalls the
processor to ensure that the correct data returns in
time for subsequent uses in the program schedule.
EPIC also provides support for more aggressive data-
speculative code motion, wherein the compiler can
move not just the data-speculative load but, in addi-
tion, the operations that use its result above poten-
tially aliasing stores.4

This brief discussion cannot fully illustrate all of
EPIC’s features and the manner in which they are
exploited. The interested reader can find a more com-
plete exposition in our technical report.4 Among other
topics, this also discusses strategies for providing
object code compatibility across a family of EPIC
processors. The two primary issues are that the oper-
ation latencies assumed by the compiler, when gen-
erating code for one processor, may be incorrect for
another one and, likewise, that the assumed and
actual parallelism (in terms of the number of func-
tional units) may not match. All of the techniques
used by superscalar processors may be employed;
however, EPIC also affords the possibility of relatively
inexpensive hardware solutions to this problem by
giving the compiler a larger role in ensuring compat-
ibility.

During the past decade, the relative merits of
VLIW versus superscalar designs have dom-
inated the debate in the ILP research com-

munity. Proponents for each side have framed this
debate as a choice between the simplicity and limita-
tions of VLIW versus the complexity and dynamic
capabilities of superscalar. This is a false choice. It is
clear that both approaches have their strong points
and that both extremes have little merit. It is now well
understood that the compile-time design of the plan
of execution is essential at high levels of ILP, even for
a superscalar processor. It is equally clear that there

Both VLIW and
superscalar

approaches have
their strong points,
and both extremes
have little merit.



are ambiguities at compile time that can only be
resolved at runtime, and to deal with these ambigui-
ties a processor requires dynamic mechanisms. EPIC
subscribes to both of these positions. The difference
is that EPIC exposes these mechanisms at the archi-
tectural level so that the compiler can control these
dynamic mechanisms, using them selectively where
appropriate. This range of control gives the compiler
the ability to employ policies of greater optimality in
managing these mechanisms than could a hardwired
policy.

The EPIC philosophy—in conjunction with the
architectural features that support it—provides the
means to define ILP architectures and processors that
can achieve higher levels of ILP at a reduced level of
complexity across diverse application domains. IA-64
is an example of how the EPIC philosophy can apply
to general-purpose computing, a domain in which
object code compatibility is crucial. However, it is our
belief that EPIC stands to play at least as important a
role in high-performance embedded computing. In this
domain, the more challenging cost-performance
requirements along with a reduced emphasis on object
code compatibility motivate the use of highly cus-
tomized architectures. 

Guided by this belief, HP Labs embarked on the
PICO (Program In, Chip Out) research project four
years ago. This project has developed a research pro-
totype which, among other capabilities, is able to take
an embedded application expressed in standard C and
automatically design the architecture and microar-
chitecture of a finely tuned, custom, application-spe-
cific, EPIC processor for that C application.8

The commercial availability of such EPIC technol-
ogy for embedded computing is still in the future. In
the meantime, EPIC provides a new lease on life to
the luxury that we have all learned to take for
granted—a sustained rate of increase of the perfor-
mance of general-purpose microprocessors on our
applications without our having to fundamentally
rewrite them. ❖
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