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Abstract 
 

Introduction 
Optical Character Recognition (OCR) is a solved problem for controlled text typed recognition.  

Handwriting is still used in the medical field for prescriptions or in the lab for identifying contents in 

sample containers.  The digitization of handwritten records, whether on paper or on containers is a 

difficult problem that current OCR technology cannot solve.   Unlike optical-character recognition (OCR), 

Handwritten Text Recognition (HTR) involves more challenging scenarios such as variant writing styles and 

complex data collection process. Recently introduced AI based deep-learning architectures appear to 

provide superior performance to HTR when compared to that of the classical machine-learning-based 

methods. The current state-of-the-art HTR methods [10, 1, 12, 11, 8] are mostly inherited from Recurrent 

Neural Networks (RNNs) architectures [3]. However, these methods [1, 12, 11, 8] require features in one-

dimensional (1D) representation and generally fail to recognize characters in 2D images due to losing the 

spatial information.  Transformers [13] have recently showed superior performance for the problem of 

text understanding and we exploit that architecture for solving HTR. 

Methodology 
We use a Transformer-based architecture [13] for handwritten text recognition since it better preserves 

the spatial information within 2D images than the prior approaches. More specifically, Transformers are 

deep-learning-based methods that scan through each character of a written word by using a self-attention 

module and update it by aggregating information from the whole word. We propose some modifications 

to the original Transformer architecture to embed spatial information of 2D image features generated by 

Convolutional Neural Networks (CNN). Therefore, the proposed model is capable to tackle the various 

handwriting styles. Due to the lack of training data, we first train the proposed model on the synthetic 

text recognition datasets in [4, 2] and then fine-tune it on 79 classes of the IAM handwritten recognition 

training dataset [9] to generate our final model, where the 79 classes include alphanumerical and special 

characters. 

Experimental Results 
To the best of our knowledge, there is no publicly available dataset for medical prescription handwritten 

recognition; Hence, for evaluation, we use the images of the IAM HTR testing dataset [9] that is close to 

our primary objective of medical prescription HTR. The IAM HTR dataset also includes several challenges 

such as different writers, special characters and low-resolution images. Experimental results on IAM HTR 

testing dataset show that the proposed scheme achieves a word recognition accuracy of 91.85% and it 

outperforms by a large margin of 6% on average the state-of-the-art HTR methods [7, 6, 5]. Moreover, as 

shown in Figure 1, the qualitative results demonstrate its effectiveness in recognizing handwritten text 

under the mentioned challenges. 

 



 

Figure 1: Qualitative results of using the proposed model on IAM HTR dataset [9], which in (a) and (b) 

show the inputs and the recognized text, respectively. 

 

Future Objectives 
In order to evaluate the generalization capability of our proposed model, we aim to evaluate it on different 

handwritten benchmark datasets as well as compare its performance to the current state-of-the-art 

methods. 
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