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A quick review
Throughout this workshop, we will use 2 data sets: caliRain.csv
and drinks.csv as motivating examples.

1. Did you receive 2 CSV files a few days ago? Please save both
files in the same folder for the purpose of this workshop.

2. Do you remember where you saved the file? Please set the
working directory to the folder those files were saved.

setwd("Your_Working_Directory")

3. Please import both data set into the current R environment.
drinks_df <- read.csv("drinks.csv")
rain_df <- read.csv("caliRain.csv")



A look at the caliRain.csv data
head(rain_df)

STATION PRECIP ALTITUDE LATITUDE DISTANCE SHADOW
1 Eureka 39.57 43 40.8 1 1
2 RedBluff 23.27 341 40.2 97 2
3 Thermal 18.20 4152 33.8 70 2
4 FortBragg 37.48 74 39.4 1 1
5 SodaSprings 49.26 6752 39.3 150 1
6 SanFrancisco 21.82 52 37.8 5 1



1. Types of variables
It is common to see different variables in a data set. There are many
types of variables, but we can generally classify the variables as:

I Discrete
I Continuous



1.1 Continuous variables
A continuous variable is a variable that can take any value over a
continuous range. For example,

I age in years,
I number of work hours,
I midterm scores, etc.

In the caliRain.csv data set, the variable PRECIP, ALTITUDE,
LATITUDE and DISTANCE are considered continuous variable.



1.2 Discrete variables
Discrete variables are sometimes known as categorical variables or
qualitative variables. A categorical variable is a variable that can
only take values over a finite set of values (or levels). Examples
include:

I A university student’s major.
I A person’s blood type.
I The entrees on a menu.
I A person’s eye colour.
I A person’s level of agreement about a statement.

Binary variable: categorical variables with only 2 levels.

In the caliRain.csv data set, the variable SHADOW can only take
two values: 1 and 2. We call SHADOW a binary variable.



1.2.2 Nominal variables
A categorical variable with no specific ordering is also called a
nominal variable. Examples include:

I A university student’s major.
I A person’s blood type.
I The entrees on a menu.
I A person’s eye color.



1.2.3 Ordinal variables
A categorical variable with natural ordering is also called an ordinal
variable. Examples include

I A person’s eye color.
I A person’s level of agreement about a statement.

Notice that the example of “a person’s eye color” shows up as
nominal and ordinal variable. Why?



Is the variable type fixed?
We cannot determine the variable type by its name. To accurately
describe a variable, we need to consider how it is recorded.

A common example is age. In some studies, age is recorded as an
exact value, e.g. 25, 35.5, 80, etc. This age variable is considered a
continuous variable. Other studies may require respondents to select
the category in which their age falls in, e.g. <20, 21-25, 80+ etc.
This age variable is a categorical variable.

There are variables that are neither continuous nor discrete. An
example is text responses.



Practice 1.1
There are 6 variables in drinks.csv, namely

I drink
I hasMilk
I temp
I fat
I carb
I calories

What type of variables are they?



2. Descriptive Statistics
Descriptive statistics are numerical summaries and plots used to
describe and illustrate a data set. We will take a look at a few
measures and tables commonly encountered in scientific journals.



2.1 Continuous variable
Some common measures to describe a continuous variable include:

I Mean,
I Median (or Q2),
I Variance/Standard deviation,
I Minimum,
I Maximum,
I Range = Maximum - Minimum, and
I Interquartile range (IQR) = Q3 - Q1.

In the presence of extreme values, median and IQR are preferable.



Practice 2.1
I Can you find the mean, median and variance of PRECIP in the

rain_df?
I Have you heard about the function summary() and

fivenum()?
summary(rain_df$PRECIP)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.660 9.565 15.345 19.807 21.198 74.870
fivenum(rain_df$PRECIP)

## [1] 1.660 9.440 15.345 21.820 74.870



2.2 Categorical variable
I The numerical summary of the continuous variable can be

applied to categorical variable such as count.
I In many cases, the mode of a categorical and its distribution

are more useful.
I The numerical summary of a categorical variable are usually

summarized in a table.
milk_table<- table(drinks_df$hasMilk)
milk_table

Milk Nonmilk
30 6



The function table() can be used in a similar way to create
contingency table.
table_of_milk_by_temp<- table(drinks_df$hasMilk,

drinks_df$temp)
table_of_milk_by_temp

Cold Hot
Milk 20 10
Nonmilk 6 0

This table is known as a 2x2 contingency table.



Sometimes it is more useful to report the proportions within the
tables. There are two ways to do so.
prop.table(milk_table)

Milk Nonmilk
0.8333333 0.1666667
proportions(milk_table)

Milk Nonmilk
0.8333333 0.1666667



To convert the proportions within the table into percentages, and
round the percentages to 2 decimal places.
round(100*prop.table(milk_table),2)

Milk Nonmilk
83.33 16.67

Note that, scientific journals that follow the APA formatting require
the percentages to be reported as whole numbers, i.e. no decimal
place.



Practice 2.2
Recall the 2x2 contingency table table_of_milk_by_temp, try
using the prop.table() or proportions() function on the
contingency table. What are these proportions about?



Practice 2.3
I Both prop.table() or proportions() functions have an

argument called margin that takes the value 1 or 2.
I When the margin is specified, the outputs are conditional

proportions.
I Notice that when margin = 1, the row sums to 1, whereas

when margin = 2, the columns sum to 1.

Find the proportion of cold drinks that contain milk.



3. Outliers and extreme values
I The boxplot is often used to visualize the distribution of a

numeric variable, and potential outliers.
I The oultiers are presented as dots or points beyond the box

and its whiskers.
I The rule used to identify the outliers is called the 1.5 × IQR

rule, where IQR = Q3 − Q1.



boxplot(rain_df$PRECIP, main="Precipitation",
ylab= "Inches")

0
20

40
60

Precipitation

In
ch

es



Why 1.5?
I Tukey who introduced the 1.5 × IQR rule claimed that, “2 was

too big, and 1 was too small.”
I This rule suggests whether a value is potentially an outlier.
I However, experts opinion is crucial when deciding whether an

observation is an outlier, or an extreme value.
I An extreme value may contain interesting information and

must not be dismissed without careful thoughts.



Side-by-side boxplots
In the side-by-side boxplots, notice that there is no potential outlier.
What happened to the circles in the first boxplot?
boxplot(rain_df$PRECIP~rain_df$SHADOW, main="Precipitation",

ylab= "Inches")
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3. Exploratory data analysis
Exploring the data through descriptive summaries and graphical
tools is an essential step. We can better understand

I the structure of the data,
I the variables and their distributions, and
I existing extreme values and outliers.

Although this step is tedious, it prepares the data and the analyst
for more sophisticated analysis. Some may refer to this as
exploratory data analysis.



4. Introduction to Hypothesis Test
Oftentimes, we are interested to investigate the relationships
between multiple variables. For example,

I Does the distance from Pacific Ocean affect precipitation?
I Is the midterm average this term higher than the average last

term?
I Is my average grocery purchase every week around $50?

The questions lead us to hypothesis testing.



Hypothesis testing: A crash course
I It begins with a question of interest that is similar to that of “a

person charged with a crime”.
I Statistical test acts as the “jury” for investigating the question

of interest.
I The sample (i.e. data collected) is the “evidence”.
I The statistical test is used to answer the question of interest

based on the data collected.



Steps for hypothesis testing
1. Formulate the null and alternate hypothesis.

2. Choose and evaluate the appropriate test statistic (with R).

3. Assess the strength of the evidence against the null hypothesis.

4. Interpret the results.

Note that Step (2) is a tedious (and sometimes iterative) process. It
cannot be checked off using “a few clicks”.



Step 1: Null and alternate hypotheses
In hypotheses testing, we begin by translating a question of interest
into the appropriate null and alternate hypotheses:

I Null hypothesis: Status quo statement that is commonly
denoted as H0. (An assertion that you want to prove wrong.)

I Alternate hypothesis: The answer the researcher is looking for,
commonly denoted as H1, HA or Ha

Example 4.1: Is my average grocery purchase every week around
$50?

I H0: My average grocery purchase is $50.
I HA: My average grocery purchase is not $50.



Examples
Example 4.2: Is the midterm average this term higher than the
average last term?

I H0: The midterm average this term is the same as the average
last term.

I HA: The midterm average this term is higher than the average
last term.

Example 4.3: Does the distance from Pacific Ocean affect
precipitation?

I H0: Precipitation is not affected by the distance from Pacific
Ocean.

I HA: Precipitation is affected by the distance from Pacific
Ocean.

Example 4.1 and 4.3 are called “two-sided test”. Example 4.2 is
called a “one-sided test”.



Step 2: Statistical tests
Step 2 involves choosing the appropriate test statistics. In this
workshop, we will briefly discuss several common statistical tests:

I t-Test
I Analysis of Variance (ANOVA)
I Pearson Correlation Test
I Linear Regression



Step 3: Strength of evidence
I In most statistical tests, a p-value will be produced.
I The p-value is the probability of finding results equal or more

extreme than the observed results (data), given that the null
hypothesis (H0) is true.

I The smaller the p-value, the more evidence we have against the
null hypothesis.

I The default significance levels are 0.01, 0.05 and 0.10.
I When the p-value is less than the significance level (of your

choice), we say that we have evidence against the null
hypothesis in favor of the alternate hypothesis.

I When the p-value is greater than the default value, we say that
we do not have sufficient evidence against the null hypothesis.
Sometimes, we say “we do not reject the null hypothesis”.

I However, we almost always avoid saying “we accept the null
hypothesis”.



Drawing conclusion
The final step in hypothesis testing is to draw conclusion in the
words of the problem.

Example 4.1: Is my average grocery purchase every week around
$50?

I H0: My average grocery purchase is $50.
I HA: My average grocery purchase is not $50.

If the p-value is less than 0.05, we say that there is evidence against
H0, in favour of HA, i.e. the data suggests that my true average
grocery purchase is not $50.

If the p-value is greater than 0.05, we say that there is not enough
evidence against H0, i.e. the data suggests that my true average
grocery purchase is $50.



Example 4.2
Is the midterm average this term higher than the average last term?

I H0: The midterm average this term is the same as the average
last term.

I HA: The midterm average this term is higher than the average
last term.

If the p-value is less than 0.05, we say that there is evidence against
H0, in favour of HA, i.e. the data suggests that the midterm average
this term is higher than the average last term.

If the p-value is greater than 0.05, we say that there is not enough
evidence against H0, i.e. the data suggests the midterm average this
term is the same as (or similar to) the average last term.



4.1 Statistical significance vs practical significance
I Statistical inference techniques test for statistical significance.
I Statistical significance means that the effect observed in a

sample is very unlikely to occur if the null hypothesis is true.
I Whether this observed effect has practical importance is an

entirely different question. The experts in the field of interest
determine whether these results have any practical importance.



4.2 Danger of over reliance on p-values
The ASA’s Statement on p-values:

I P-values can indicate how incompatible the data are with a
specified statistical model.

I P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

I Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.

I Proper inference requires full reporting and transparency
I A p-value, or statistical significance, does not measure the size

of an effect or the importance of a result.
I By itself, a p-value does not provide a good measure of

evidence regarding a model or hypothesis.

https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


5. T-Tests
I One of the most commonly used statistical test is the t-test.
I The one-sample t-test is used to compare the mean of a

variable to a hypothetical value. In most cases, the
hypothetical value comes from theory.

I The two-samples t-test is used to compare the means of two
variables. It is often used to determine whether a treatment
has an effect on the population of interest, or whether two
groups are different from one another.

I The paired t-test is commonly used to investigate the
difference of a variable pre- and post-treatment. Oftentimes,
every subject of the study produces a pair of observations, or
two similar subjects will be paired up.



5.1 One-sample t-test
Have you ever asked:

I Is my coffee purchase around $50 per week?
I Is my grade higher than the class average?
I Is the average annual precipitation in California around 25

inches?

The value for comparison (i.e. $50, class average, 25 inches) are
known as hypothetical values. It is a value that is obtained through
literature that acts as a point of comparison.



Assumptions
It is important to check the assumptions of the tests before
conducting a statistical test. The results from a hypothesis test may
not be valid if any of the assumption was violated.

For a one-sample t-test, the assumptions are:

1. The population of the variable from which the sample is drawn
from is independently identically distributed (IID) from
Normal distribution.

2. If the sample size is large enough, the assumption in (1) is not
necessary because Central Limit Theorem applies.



Example 5.1
H0 : The average annual precipitation in California is 25 inches. HA :
The average annual precipitation in California is not 25 inches.

We can perform this two-sided one-sample t-test in R:
t.test(rain_df$PRECIP, mu=25)

One Sample t-test

data: rain_df$PRECIP
t = -1.7112, df = 29, p-value = 0.09773
alternative hypothesis: true mean is not equal to 25
95 percent confidence interval:
13.60088 26.01379

sample estimates:
mean of x
19.80733



The p-value is greater than 0.05 and hence, we claim no evidence
against H0, i.e. the average annual precipitation in California is 25
inches.

The average annual precipitation is 19.81 inches. How is this 25
inches?



5.2 Two-samples t-test
The more common questions we often need to answer require us to
compare two groups (samples). For example,

I Are two marketing campaigns equally effective?
I Do males and females have a different mean body mass index?
I Do precipitation differs due to shadow?

Another way to think about this is that we are interested to
investigate the relationship between a continuous and a categorical
variable.



Assumptions
As in the one-sample t-test, there are assumptions for using the
two-samples t-test:

1. The population in which each sample was drawn from is
independently normally distributed.

2. The population variances are similar.
I This is not as important when using R because the default in R

is to assume unequal population variances. The results of tests
for equal and unequal population variances will be the same if
the population variances are the same.

3. When sample size is large enough, (1) is not important since
Central Limit Theorem applies.



Example 5.2
Is the average annual precipitation affected by SHADOW?

I H0: The precipitation is not affected by SHADOW.
I HA: The precipitation is affected by SHADOW.

In another words,

I H0: The precipitation on the Leeward side is the same as the
precipitation on the Westward side.

I HA: The precipitation on the Leeward side is not the same as
the precipitation on the Westward side.



Example 5.2: R codes and output
t.test(rain_df$PRECIP~rain_df$SHADOW)

Welch Two Sample t-test

data: rain_df$PRECIP by rain_df$SHADOW
t = 3.5309, df = 14.01, p-value = 0.003321
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:

7.743558 31.702957
sample estimates:
mean in group 1 mean in group 2

30.98385 11.26059



Example 5.3
Is there higher precipitation on the Westward side?

I H0: The precipitation on the Leeward side is the same as the
precipitation on the Westward side.

I HA: The precipitation on the Leeward side is less than the
precipitation on the Westward side.

or

I HA: The precipitation on the Westward side is more than the
precipitation on the Leeward side.



I In R, the default test is the two-sided test.
I Example 5.3 calls for a one-sided test.
I To perform a one-sided test, we need to make changes to the

alternative in the code.
I If the alternate hypothesis is µGroup1 < µGroup2, then we have

alternative ="less". Otherwise, set alternative
="greater".

I By default, Group1 is the category in which the category’s
name comes first in alphabetical order.



R codes and output
t.test(rain_df$PRECIP~rain_df$SHADOW, alternative = "less")

Welch Two Sample t-test

data: rain_df$PRECIP by rain_df$SHADOW
t = 3.5309, df = 14.01, p-value = 0.9983
alternative hypothesis: true difference in means between group 1 and group 2 is less than 0
95 percent confidence interval:

-Inf 29.56122
sample estimates:
mean in group 1 mean in group 2

30.98385 11.26059



Practie 5.1
Suppose the experts want to find out whether LATITUDE is affected
by SHADOW. Choose an appropriate test to help the experts.



6. Explanatory and response variables
The most common goal in research is to understand relationship
between variables. These variables are typically categorized as:

I Response variable (or dependent variable): An outcome of the
study or of interest.

I Explanatory variable (or independent variable): A measure in
the study used to explain, predict or influence the response
variable.

In this workshop, we will only consider response variables that are
continuous.



7. Analysis of variance (ANOVA)
I The name analysis of variance can be misleading. It is actually

a test on means.
I In one-way ANOVA, the pooled variance two sample t-test is

extended to more than two samples.

Example 8.1: Consider the oats data set from the MASS library
library(MASS)
head(oats)

B V N Y
1 I Victory 0.0cwt 111
2 I Victory 0.2cwt 130
3 I Victory 0.4cwt 157
4 I Victory 0.6cwt 174
5 I Golden.rain 0.0cwt 117
6 I Golden.rain 0.2cwt 114



Example 7.1
Briefly, the variables in this data set are:

I B: Blocks
I V: Varieties
I N: Nitrogen treatment
I Y: Yield of the crop

Suppose we are interested to find out whether the average yield
(response variable) of each variety (within the independent variable,
V) are the same.

There are 3 varieties of oats:
levels(oats$V)

[1] "Golden.rain" "Marvellous" "Victory"



Example 7.1
It is tempting to compare the average yield of the varieties in pairs
using t-test:

I Golden.rain vs Marvellous
I Golden.rain vs Victory
I Marvellous vs Victory

However, such paired comparisons have limitations:

I the process can be tedious when there are many pairs
I the risk of a type I error increases when making multiple

statistical tests. Type I error means rejecting the null
hypothesis when it’s actually true.



7.1 One-way ANOVA
In one-way ANOVA, we test the null hypothesis that k populations
all have the same mean

H0 : µ1 = µ2 = . . . = µk

against the alternative hypothesis that the population means are not
all equal.

The assumptions of one-way ANOVA are the same as those of the
pooled-variance two-samples t-test:

1. The samples are independent simple random samples from the
populations.

2. The populations are normally distributed.
3. The population variances are equal. ANOVA works poorly if

the variances are extremely different.



Example 7.1: Analysis
oats_aov <- aov(Y~V,data=oats)
summary(oats_aov)

Df Sum Sq Mean Sq F value Pr(>F)
V 2 1786 893.2 1.228 0.299
Residuals 69 50200 727.5

I Before making any interpretation, we must check the QQ-plot
of the residuals to ensure that the model meets its assumptions.
We will cover model diagnostics briefly later.

I Assuming the model fit is good, the corresponding p-value is
0.299, indicating no sufficient evidence that the three varieties
of oats have different yields.



7.2 Two-way ANOVA
I In reality, we often want to understand the impact of two

independent variables and their combination on the response
variable.

Example 7.2: Recall the drinks_df data set. Suppose we are
interest to find out whether milk content (hasMilk) and
temperature (temp) can affect the amount of calories.

I Instead of performing two individual t-tests, we would perform
a two-way ANOVA.

I In general, when the response variables of the one-way ANOVA
are the same, we try to use one model.

I As mentioned earlier, performing multiple statistical tests is not
only tedious, but also increases the risk of a Type I error.



Example 7.2: Analysis
drinks_aov <- aov(calories~factor(hasMilk) + temp,

data=drinks_df)
summary(drinks_aov)

Df Sum Sq Mean Sq F value Pr(>F)
factor(hasMilk) 1 191753 191753 24.893 1.9e-05 ***
temp 1 807 807 0.105 0.748
Residuals 33 254197 7703
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I The variable hasMilk has corresponding p-value smaller than
0.05. This indicates strong evidence that the groups within
that variable have different averages of calories.

I The variable temp has corresponding p-value larger than 0.05.
This indicates that holding everything else constant, there is no
evidence the Hot and Cold drinks have different calories on
average.



I A common practice is to remove the insignificant variable from
the model. However, we advice relying on significance entirely.

I Every variable contributes differently to a model.
I Some variable contribute by explaining the variability of the

response variable. These variables will appear with small
p-values.

I Some variable contirbute by holding the structure of a model.
They may not be significant, but they help the model meets its
assumptions.

I It is important to check the model fit when variable(s) is/are
added or removed from the model.



7.3 Post-hoc Tests
If there is strong evidence that not all the population means are
equal for one variable, the next question is which categories are
different. The ANOVA does not tell us which population means are
different.

To explore where the difference lies, we perform the post-hoc tests.
The post-hoc tests control for family-wise error rate. Here are a few
common post-hoc tests:

I Fisher’s Least Significant Difference (LSD), LSD.test(),
I Bonferroni correction, pairwise.t.test(x, g,

p.adjust.method=”bonferroni”),
I Tukey’s Honest Significant Different, TukeyHSD(), and
I Scheffe’s, ScheffeTest().



8.1 Correlation
I Pearson correlation, r ,is used to measure the linear

relationship between two continuous variables.
I It is also unitless.
I Correlation is between −1 and 1.

I If r ≈ 0, the linear relationship between two variables is weak.
I If r ≈ 1, there is a strong positive linear relationship between

two variables.
I If r ≈ −1, there is a strong negative linear relationship between

two variables.



Example 8.1
Suppose we are interested to evaluate the correlation between
ALTITUDE and PRECIP in R:
cor(rain_df$PRECIP, rain_df$ALTITUDE)

[1] 0.3020067

I It does not matter which variable is first because the
correlation between X and Y is the same as the correlation
between Y and X.



8.2 Pearson’s correlation test
The goal of this hypothesis test is to test the null hypothesis that
the true correlation is equal to zero.

H0 : r = 0

If p-value < 0.05, we say that there is evidence against the null
hypothesis in favour of the alternate hypothesis. In another word,
we have evidence that the true correlation cannot be zero and hence
there exists linear relationship between the two variables.



Example 8.2
cor.test(rain_df$PRECIP, rain_df$ALTITUDE)

Pearson's product-moment correlation

data: rain_df$PRECIP and rain_df$ALTITUDE
t = 1.6763, df = 28, p-value = 0.1048
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.0653756 0.5972887

sample estimates:
cor

0.3020067

The output showed that the p-value is around 0.10, which is greater
than 0.05. This implies that we do not have sufficient evidence
against the null hypothesis. In another word, precipitation and
altitude are not correlated.



9. Linear Regression
The linear regression is also known as linear model. It is widely used
in data analysis because:

I the model assumptions are often found satisfactory among
many data sets; and

I the interpretation of each parameter in the model is easy and
clear.

When the assumptions of the linear regression model are satisfied,
the model is powerful in terms of inference and interpretation.



Model assumptions
A simple linear regression model assumes that:

I given the predictors, the expectation of the response is a linear
function.

I the errors are normally distributed.
I the errors are independent of one another.
I the errors have mean zero and equal variance.



9.1 Simple Linear Model
I A simple linear model investigates possible linear relationship

between two random variables.
I The response variable is a continuous variable.
I The explanatory variable can be of any type.

Example 10.1: Suppose we want to know whether the altitude of
the station affect annual precipitation?

I The dependent variable here is annual precipitation, whereas
the independent variable is the independent variable.

I To fit this linear regression model in R,
model <- lm(PRECIP~ALTITUDE, data=rain_df)



Example 9.1: Codes and ouput
summary(model)

Call:
lm(formula = PRECIP ~ ALTITUDE, data = rain_df)

Residuals:
Min 1Q Median 3Q Max

-20.620 -8.479 -2.729 4.555 58.271

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.514799 3.539141 4.666 6.9e-05 ***
ALTITUDE 0.002394 0.001428 1.676 0.105
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.13 on 28 degrees of freedom
Multiple R-squared: 0.09121, Adjusted R-squared: 0.05875
F-statistic: 2.81 on 1 and 28 DF, p-value: 0.1048



This result is the same as that of a correlation test:
cor.test(rain_df$PRECIP,rain_df$ALTITUDE)

Pearson's product-moment correlation

data: rain_df$PRECIP and rain_df$ALTITUDE
t = 1.6763, df = 28, p-value = 0.1048
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.0653756 0.5972887

sample estimates:
cor

0.3020067



9.1.1 Model diagnostics
When the assumptions of the linear regression model are satisfied,
the model is powerful in terms of inference and interpretation. How
do we know whether the assumptions are satisfied?

I Model diagnostics.

There are a variety of model diagnostics test for different model
assumptions. Due to time constraint, we will only cover two simple
tools:

I quantile-quantile plot (QQ-plot). When the assumptions of
residuals normality is met, we expect the points to lie on a
straight line.

I residuals against the explanatory variables. When the
assumption of independent error is met, we expect the points
to scatter randomly around the the horizontal line y = 0.



QQ-plot for Example 9.1
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Residual against explanatory variable for Example 9.1
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9.2 Multiple Linear Regression
I In reality, we want to consider the effect of a combination of

independent variables.
I The multiple linear regression model is an extension of the

simple linear regression model.
I In a multiple linear regression model, the independent variables

can have “combined” effects, which can be modeled as
“interactions” among variables.

I This is different from multi-variate models. A multi-variate
model uses explanatory variable(s) to model multiple response
variable simultaneously.



Example 9.2
Suppose we want to know whether ALTITUDE and SHADOW of the
station affect annual precipitation?

I The response variable is annual precipitation, PRECIP.
I The independent variables are ALTITUDE and SHADOW.

To provide more context, SHADOW has values 1 and 2 to represent
whether the station is located westward or leeward. It is important
to set SHADOW as a categorical variable before performing the
analysis. Otherwise R will treat all numerical values as numeric.
rain_df$SHADOW <- factor(rain_df$SHADOW,
levels=c("1", "2"),
labels=c("Westward", "Leeward"))



Example 9.2: Analysis
model_multiple <- lm(PRECIP~ALTITUDE+SHADOW, data=rain_df)

Are you tempted to use the summary() function to check the
results? Before looking at the output, it is more important to check
the fit of the model.



Example 9.2: QQ-plot
qqnorm(model_multiple$residuals)
qqline(model_multiple$residuals)
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Residual against ALTITUDE for Example 9.1
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Residual against SHADOW for Example 9.1
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Example 9.2: What did we learn from the plots?
Notice that there is only one point that is far away from the line in
the QQ-plot. This is an improvement from the previous linear model.
Similar comment can be made about the plot of residual against
SHADOW. However, ALTITUDE does not quite fit with the model.

We can improve the model fit better by considering:

I Adding more independent variables, 2-factor interaction, or
higher order terms.

I Removing variables.
I Investigating the point to understand whether it is an outlier or

extreme observation.

Due to time constraints, we will leave this model as is and try to
interpret the output.



Example 9.2: Output and interpretation
summary(model_multiple)

Call:
lm(formula = PRECIP ~ ALTITUDE + SHADOW, data = rain_df)

Residuals:
Min 1Q Median 3Q Max

-17.857 -8.206 -0.128 6.583 47.039

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.755652 3.991116 6.954 1.79e-07 ***
ALTITUDE 0.002161 0.001151 1.876 0.071436 .
SHADOWLeeward -19.270370 4.790149 -4.023 0.000417 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.98 on 27 degrees of freedom
Multiple R-squared: 0.4318, Adjusted R-squared: 0.3897
F-statistic: 10.26 on 2 and 27 DF, p-value: 0.0004851



Example 9.2: Interpretation
I There is no sufficient evidence that ALTITUDE affects

precipitation, β = 0.00, t(27) = 1.88, p = .07.
I There is strong evidence that SHADOW has negative association

with precipitation, β = −19.27, t(27) = −4.02, p < .001. Since
SHADOW is a binary variable, this implies that the Leeward
precipitation is estimated to be 19.27 less than the baseline,
i.e. Westward.



9.3 Model fitting procedure

Figure 1: Recommended steps to data analysis



10. Our advice
I Visualize your data with suitable graphs.
I Check the model assumptions.
I If the normality assumption is not reasonable, there are other

options available.
I Avoid extrapolating.
I Correlation does not imply causation.
I Every model has its strengths and limitations. When in doubt,

get help. The SCSR offers free 1-1 consultation to all
UWaterloo researchers.

"All models are wrong, but some are useful." — George Box



11. Next steps
Now that you have reviewed how to perform some common
statistics with R, you can learn more about the different models, or
explore other models such as

I exploratory data analysis,
I linear regression with R,
I generalized linear models,
I count data analysis, etc.

The SCCR organize similar workshops to this on a regular basis to
improve quality of research and data literacy among the UWaterloo
community. We also provide 1-1 free consultation to all researchers
on campus. More information are available on our website.

https://uwaterloo.ca/statistical-consulting-and-collaborative-research-unit


Thank you!

The Statistical Consulting and Collaborative Research Unit (SCCR) is the
unit through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.


