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Dataset Overview
Throughout this workshop, we will use the pokemon dataset.



Dataset Overview
str(df)

## ’data.frame’: 801 obs. of 11 variables:
## $ name : chr "Bulbasaur" "Ivysaur" "Venusaur" "Charmander" ...
## $ weight_kg : num 6.9 13 100 8.5 19 90.5 9 22.5 85.5 2.9 ...
## $ height_m : num 0.7 1 2 0.6 1.1 1.7 0.5 1 1.6 0.3 ...
## $ hp : int 45 60 80 39 58 78 44 59 79 45 ...
## $ attack : int 49 62 100 52 64 104 48 63 103 30 ...
## $ defense : int 49 63 123 43 58 78 65 80 120 35 ...
## $ sp_attack : int 65 80 122 60 80 159 50 65 135 20 ...
## $ sp_defense : int 65 80 120 50 65 115 64 80 115 20 ...
## $ speed : int 45 60 80 65 80 100 43 58 78 45 ...
## $ type1 : chr "grass" "grass" "grass" "fire" ...
## $ is_legendary: int 0 0 0 0 0 0 0 0 0 0 ...



1. Types of variables
It is common to see different variables in a data set. There are
many types of variables, but we can generally classify the variables
as:

▶ Discrete/categorical: a variable that can only take values over
a finite set of values (or levels), e.g., is_legendary, name

▶ Continuous: a variable that can take any numerical value over
a continuous range, e.g., wright_kg, height_m

▶ Q: Are numerical variables always continuous? Can they be
categorical?



2. Descriptive Statistics
Descriptive statistics are numerical summaries and plots used to
describe and illustrate a data set. We will take a look at a few
measures and tables commonly encountered in scientific journals.



2.1 Continuous variable
Some common measures to describe a continuous variable include:
▶ Mean, e.g., mean weight of pokemons is

mean(df$weight_kg, na.rm=T)

## [1] 61.3781

▶ Median, e.g., median weight of pokemons is

median(df$weight_kg, na.rm=T)

## [1] 27.3

▶ Variance/Standard deviation, e.g., variance of pokemons’
weight is

var(df$weight_kg, na.rm=T)

## [1] 11958.46



2.1 Continuous variable (continued)
Some common measures to describe a continuous variable include:
- Minimum, e.g., maximum pokemon’s weight is

min(df$weight_kg, na.rm=T)

## [1] 0.1

▶ Maximum, e.g., maximum pokemon’s weight is

max(df$weight_kg, na.rm=T)

## [1] 999.9

▶ Range = Maximum - Minimum, and
▶ Interquartile range (IQR) = Q3 - Q1.

range(df$weight_kg, na.rm=T)

## [1] 0.1 999.9

In the presence of extreme values, median and IQR are preferable.



2.2 Categorical variable
▶ The numerical summary of the continuous variable can be

applied to categorical variable such as count.
▶ In many cases, the mode of a categorical and its distribution

are more useful.
▶ The numerical summary of a categorical variable are usually

summarized in a table.
table(df$type1)

bug dark dragon electric fairy fighting fire flying
72 29 27 39 18 28 52 3

ghost grass ground ice normal poison psychic rock
27 78 32 23 105 32 53 45

steel water
24 114



2.2 Categorical variable (Continued)
The function table() can be used in a similar way to create
contingency table.

table(df$type1, df$is_legendary)

0 1
bug 69 3
dark 26 3
dragon 20 7
electric 34 5
fairy 17 1
fighting 28 0
fire 47 5
flying 2 1
ghost 26 1
grass 74 4
ground 30 2
ice 21 2
normal 102 3
poison 32 0
psychic 36 17
rock 41 4
steel 18 6
water 108 6



2.2 Categorical variable (Continued)
Sometimes it is more useful to report the proportions within the
tables.
prop.table(table(df$type1))

bug dark dragon electric fairy fighting
0.089887640 0.036204744 0.033707865 0.048689139 0.022471910 0.034956305

fire flying ghost grass ground ice
0.064918851 0.003745318 0.033707865 0.097378277 0.039950062 0.028714107

normal poison psychic rock steel water
0.131086142 0.039950062 0.066167291 0.056179775 0.029962547 0.142322097



3. Hypothesis Test
Oftentimes, we are interested to investigate the relationships
between multiple variables. For example,

▶ Is the mean weight of pokemons 50kg?
▶ Are legendary pokemons on average higher than the

non-legendary pokemons?
▶ How does pokemons’ attack and defense change after they

grow?

These questions lead us to hypothesis testing.



3.1 Hypothesis testing: A crash course
▶ It begins with a question of interest that is similar to that of

“a person charged with a crime”.
▶ Statistical test acts as the “jury” for investigating the

question of interest.
▶ The sample (i.e. data collected) is the “evidence”.
▶ The statistical test is used to answer the question of interest

based on the data collected.



3.2 Steps for hypothesis testing
1. Formulate the null and alternate hypothesis.
2. Choose and evaluate the appropriate test statistic (with R).
3. Assess the strength of the evidence against the null

hypothesis.
4. Interpret the results.

Note that Step (2) is a tedious (and sometimes iterative) process.
It cannot be checked off using “a few clicks”.



3.2 Step 1: Null and alternate hypotheses
In hypotheses testing, we begin by translating a question of
interest into the appropriate null and alternate hypotheses:

▶ Null hypothesis: Status quo statement that is commonly
denoted as H0. (An assertion that you want to prove wrong.)

▶ Alternate hypothesis: The answer the researcher is looking
for, commonly denoted as H1, HA or Ha



3.2 Step 1: Null and alternate hypotheses
▶ Example: Is the average pokemon weight around 50kg?

▶ H0: Average pokemon weight is 50kg.
▶ HA: Average pokemon weight is not 50kg.

▶ Example: Is the average pokemon weight greater than 50kg?
▶ H0: Average pokemon weight is less than 50kg.
▶ HA: Average pokemon weight is greater than 50kg.

The first example is called a “two-sided test”, the second is called
a “one-sided test”.



3.2 Step 2: Statistical tests
Step 2 involves choosing the appropriate test statistics. In this
workshop, we will briefly discuss several common statistical tests:

▶ t-Test
▶ one-sample t-test
▶ two-sample t-test
▶ paired t-test
▶ Analysis of Variance (ANOVA)
▶ z/Wald-test



3.2 Step 3: Strength of evidence
▶ In most statistical tests, a p-value will be produced.
▶ The p-value is the probability of finding results equal or more

extreme than the observed results (data), given that the null
hypothesis (H0) is true.

▶ The smaller the p-value, the more evidence we have against
the null hypothesis.

▶ The default significance levels are 0.01, 0.05 and 0.10.
▶ When the p-value is less than the significance level (of your

choice), we say that we have evidence against the null
hypothesis in favor of the alternate hypothesis.

▶ When the p-value is greater than the default value, we say that
we do not have sufficient evidence against the null hypothesis.
Sometimes, we say “we do not reject the null hypothesis”.

▶ However, we almost always avoid saying “we accept the null
hypothesis”.



3.2 Drawing conclusion
▶ The final step in hypothesis testing is to draw conclusion in

the words of the problem.
▶ Example: Is the average pokemon weight around 50kg?

▶ H0: Average pokemon weight is 50kg.
▶ HA: Average pokemon weight is not 50kg.

▶ If the p-value is less than 0.05, we say that there is evidence
against H0, in favour of HA, i.e. the data suggests that the
average pokemons’ weight is not 50kg.

▶ If the p-value is greater than 0.05, we say that there is not
enough evidence against H0, i.e. the data suggests that the
average pokemons’ weight is around 50kg.



3.2 Drawing conclusion
▶ Example: Is the average pokemon weight greater than 50kg?

▶ H0: Average pokemon weight is less than 50kg.
▶ HA: Average pokemon weight is greater than 50kg.

▶ Q: What can we conclude if the p-value is less than 0.05?



4. T-Tests
▶ One of the most commonly used statistical test is the t-test.
▶ The one-sample t-test is used to compare the mean of a

variable to a hypothetical value. In most cases, the
hypothetical value comes from theory.

▶ The two-samples t-test is used to compare the means of two
variables. It is often used to determine whether a treatment
has an effect on the population of interest, or whether two
groups are different from one another.

▶ The paired t-test is commonly used to investigate the
difference of a variable pre- and post-treatment. Oftentimes,
every subject of the study produces a pair of observations, or
two similar subjects will be paired up.



4.1 One-sample t-test
▶ For a one-sample t-test, the assumptions are:

1. The population of the variable from which the sample is
drawn from is independently identically distributed (IID)
from Normal distribution.

2. If the sample size is large enough, the assumption in (1) is not
necessary because Central Limit Theorem applies.



4.1 Example: Is the average pokemon weight around 50kg?
▶ H0: Average pokemon weight is 50kg.
▶ HA: Average pokemon weight is not 50kg.

t.test(df$weight_kg, mu=50)

One Sample t-test

data: df$weight_kg
t = 2.9078, df = 780, p-value = 0.003744
alternative hypothesis: true mean is not equal to 50
95 percent confidence interval:
53.69681 69.05940

sample estimates:
mean of x

61.3781

▶ Q: What can you say from this?



4.1 Example: Is the average pokemon weight around 50kg?
▶ The p-value is less than 0.05 and hence, we have evidence

against H0, i.e. the average pokemons’ weight is not 50.
▶ Q: But is it higher or lower?

t.test(df$weight_kg, alternative="greater", mu=50)

One Sample t-test

data: df$weight_kg
t = 2.9078, df = 780, p-value = 0.001872
alternative hypothesis: true mean is greater than 50
95 percent confidence interval:
54.9341 Inf

sample estimates:
mean of x

61.3781



4.2 Two-samples t-test
▶ Pokemons can be categorized as legendary and non-legendary.

Suppose we want to compare the weight/height/hp/. . .
between these two groups.

▶ As in the one-sample t-test, there are assumptions for using
the two-samples t-test:

1. The population in which each sample was drawn from is
independently normally distributed.

2. The population variances are similar.
▶ This is not as important when using R because the default in

R is to assume unequal population variances. The results of
tests for equal and unequal population variances will be the
same if the population variances are the same.

3. When sample size is large enough, (1) is not important since
Central Limit Theorem applies.



4.2 Example: Is avg weight of legendary pokemons the
same as the non-legendary?

▶ H0: The avg weight of legendary and non-legendary pokemons
are the same.

▶ HA: The avg weight of legendary and non-legendary
pokemons are NOT the same.

t.test(df$weight_kg[df$is_legendary == 1],
df$weight_kg[df$is_legendary == 0])

Welch Two Sample t-test

data: df$weight_kg[df$is_legendary == 1] and df$weight_kg[df$is_legendary == 0]
t = 5.1176, df = 69.188, p-value = 2.65e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

92.34922 210.33790
sample estimates:
mean of x mean of y
199.35072 48.00716

▶ Q: What can you say from this?



4.2 Example: comparing weights of pokemons
▶ H0: The avg weight of legendary and non-legendary pokemons

are the same.
▶ HA: The avg weight of legendary and non-legendary

pokemons are NOT the same.

t.test(df$weight_kg[df$is_legendary == 1],
df$weight_kg[df$is_legendary == 0])

Welch Two Sample t-test

data: df$weight_kg[df$is_legendary == 1] and df$weight_kg[df$is_legendary == 0]
t = 5.1176, df = 69.188, p-value = 2.65e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

92.34922 210.33790
sample estimates:
mean of x mean of y
199.35072 48.00716

▶ Q: What can you say from this?



4.2 Example: comparing heights of pokemons
▶ H0: The avg height of legendary pokemons are greater than

that of non-legendary pokemons.
▶ HA: The avg height of legendary pokemons are lower than

that of non-legendary pokemons.

t.test(df$height_m[df$is_legendary == 1],
df$height_m[df$is_legendary == 0],
alternative = "less")

Welch Two Sample t-test

data: df$height_m[df$is_legendary == 1] and df$height_m[df$is_legendary == 0]
t = 5.6684, df = 71.593, p-value = 1
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf 1.58583
sample estimates:
mean of x mean of y
2.281159 1.055618

▶ Q: What can you say from this?



4.3 Paired t-test
▶ When the two samples are highly correlated, assumptions of

two-sample t-test are violated.
▶ E.g., pokemons’ attack and defense before and after they

evolve (supergrow) are highly correlated because different
pokemon can have difference attack and defense abilities.

▶ Q: Are pokemons’ attack on average unchanged after they
evolve?

▶ Q: Are pokemons’ defense on average higher after they evolve?



4.3 Example: comparing attacks of pokemons
▶ H0: Pokemons’ attacks are the same before and after they

evolve.

t.test(df$attack, df$sp_attack, paired = TRUE)

##
## Paired t-test
##
## data: df$attack and df$sp_attack
## t = 5.1137, df = 800, p-value = 3.956e-07
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 4.036861 9.066759
## sample estimates:
## mean difference
## 6.55181

▶ Q: What can you say from this?



4.3 Example: comparing defenses of pokemons

t.test(df$defense, df$sp_defense,
alternative = "less", paired = TRUE)

##
## Paired t-test
##
## data: df$defense and df$sp_defense
## t = 2.0698, df = 800, p-value = 0.9806
## alternative hypothesis: true mean difference is less than 0
## 95 percent confidence interval:
## -Inf 3.766043
## sample estimates:
## mean difference
## 2.097378

▶ Q: What is the null hypothesis of this test?
▶ Q: What can you say about this?



5. Linear Regression
The linear regression is also known as linear model. It is widely
used in data analysis because:

▶ the model assumptions are often found satisfactory among
many data sets; and

▶ the interpretation of each parameter in the model is easy and
clear.

When the assumptions of the linear regression model are satisfied,
the model is powerful in terms of inference and interpretation.



5.1 Explanatory and response variables
The most common goal in research is to understand relationship
between variables. These variables are typically categorized as:

▶ Response variable (or dependent variable): the hp of a
pokemon

▶ Explanatory variable (or independent variable): A measure in
the study used to explain, predict or influence the response
variable.

In this workshop, we will only consider response variables that are
continuous.

▶ For non-continuous response, you need to consider
Generalized Linear Regression models, e.g.,
▶ Logistic Regression for binary response
▶ Poisson Regression for count response



5.2 Model assumptions
A simple linear regression model assumes that:

▶ given the predictors, the expectation of the response is a
linear function.

▶ the errors are normally distributed.
▶ the errors are independent of one another.
▶ the errors have mean zero and equal variance.



5.3 Simple Linear Model
▶ A simple linear model investigates possible linear relationship

between two random variables.
▶ The response variable is a continuous variable.
▶ The explanatory variable can be of any type.
▶ Suppose we are interested in the association of pokemons’ hp

with their weight and height.

hp_lm = lm(hp ~ weight_kg + height_m, data = df)



5.4 z/Wald-test
▶ Use to test the statistical significance of association between

the response variable and an explanatory variable.
▶ We say an explanatory variable is statistically significant if it

has strong association with the response variable.
▶ H0: The explanatory variable is NOT statistically significant

for predicting the response variable.
▶ H1: The explanatory variable is statistically significant for

predicting the response variable.
▶ Q: Are the weight and height statistically significant?



5.4 z/Wald-test
▶ We use z/Wald test to examine the statistical significance of

an explanatory variable.

summary(hp_lm)

##
## Call:
## lm(formula = hp ~ weight_kg + height_m, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -106.941 -13.161 -2.085 9.317 183.731
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.06663 1.21586 46.113 < 2e-16 ***
## weight_kg 0.05131 0.00966 5.311 1.42e-07 ***
## height_m 8.53407 0.97787 8.727 < 2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 22.99 on 778 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.2558, Adjusted R-squared: 0.2539
## F-statistic: 133.7 on 2 and 778 DF, p-value: < 2.2e-16



6. Analysis of variance (ANOVA)
▶ The name analysis of variance can be misleading. It is actually

a test on means over more than 2 samples.
▶ Remember that we have t-test to test on means of 1 or 2

samples.
▶ Pokemons have different types:

## tp
## bug fire grass normal other water
## 72 52 78 105 380 114

▶ We can use One-way ANOVA to test whether different types
of pokemons have similar weight/height/hp/attack/defense
. . .



6.1 One-way ANOVA
In one-way ANOVA, we test the null hypothesis that k populations
all have the same mean

H0 : µ1 = µ2 = . . . = µk

against the alternative hypothesis that the population means are
not all equal.

The assumptions of one-way ANOVA are the same as those of the
pooled-variance two-samples t-test:

1. The samples are independent simple random samples from the
populations.

2. The populations are normally distributed.
3. The population variances are equal. ANOVA works poorly if

the variances are extremely different.



Example 6.1: Pokemons’ hp over different types
▶ H0: Different types of pokemons have the same level of hp.

aov_model = aov(hp~factor(type1), data=df)
summary(aov_model)

Df Sum Sq Mean Sq F value Pr(>F)
factor(type1) 17 28555 1679.7 2.452 0.000936 ***
Residuals 783 536473 685.2
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

▶ Q: What can you say from this?



6.2 Two-way ANOVA
▶ In reality, we often want to understand the impact of two

independent variables and their combination on the response
variable.

▶ We can compare the hp/weight/height of pokemons that are
of different types and are either legendary or non-legendary.

▶ Instead of performing two individual t-tests or one-way
ANOVA tests, we could perform a two-way ANOVA.

▶ In general, when the response variables of the one-way
ANOVA are the same, we try to use one model.

▶ As mentioned earlier, performing multiple statistical tests is
not only tedious, but also increases the risk of a Type I error.



7. Final Remarks
▶ So far we have introduced several tests and ways to examine

statistical significance.
▶ But we cannot cover everything that you need to be aware of

when you start to perform a formal statistical analysis.
▶ We would like to emphasize some key caveats that would help

you avoid drawing incorrect conclusions from your analysis
results.



7.1 Caveat 1: Statistical significance vs practical
significance

▶ Statistical inference techniques test for statistical significance.
▶ Statistical significance means that the effect observed in a

sample is very unlikely to occur if the null hypothesis is true.
▶ Whether this observed effect has practical importance is an

entirely different question. The experts in the field of interest
determine whether these results have any practical
importance.



7.2 Caveat 2: Danger of over reliance on p-values
The ASA’s Statement on p-values:

▶ P-values can indicate how incompatible the data are with a
specified statistical model.

▶ P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

▶ Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.

▶ Proper inference requires full reporting and transparency
▶ A p-value, or statistical significance, does not measure the size

of an effect or the importance of a result.
▶ By itself, a p-value does not provide a good measure of

evidence regarding a model or hypothesis.

https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


7.3 Caveat 3: Model diagnostics
▶ The statistical test results are only valid when the test

assumptions are satisfied by the data.
▶ We did not check model assumptions when we performed the

tests above, but this is a step that we cannot skip when doing
actual analysis.

▶ There are a variety of model diagnostics test for different
model assumptions.
▶ quantile-quantile plot (QQ-plot). When the assumptions of

residuals normality is met, we expect the points to lie on a
straight line.

▶ residuals against the explanatory variables. When the
assumption of independent error is met, we expect the points
to scatter randomly around the the horizontal line y = 0.



An example of the QQ-plot
qqnorm(resid(hp_lm))
qqline(resid(hp_lm))
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An example of a residual plot
plot(df$weight_kg[complete.cases(df$weight_kg)], resid(hp_lm))
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An example of a residual plot
plot(df$height_m[complete.cases(df$height_m)], resid(hp_lm))
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7.4 Caveat 4: Model fitting procedure

Figure 1: Recommended steps to data analysis



8. Practice Questions
▶ Here we prepare some practice questions for self examination

and for fun.
▶ Recall that there are multiple types of pokemons

table(df$type1)

##
## bug dark dragon electric fairy fighting fire flying
## 72 29 27 39 18 28 52 3
## ghost grass ground ice normal poison psychic rock
## 27 78 32 23 105 32 53 45
## steel water
## 24 114



8.1 Ex: Compare pokemons of different types
▶ Q1: What are the weights of fire pokemons compared to that

of grass pokemons?
▶ Q2: What are the attacks of poison pokemons compared to

that of dark pokemons?
▶ Q3: Are fighting pokemons on average taller than the psychic

pokemons?



8.2 Ex: Compare Pokemons before/after they “evolve”
▶ After evolving, a pokemon can perform a super-attack

(sp_attack) or a super-defense (sp_defense).
▶ Q1: Are pokemons’ attack increased more than their defense

after evolving?
▶ Q2: Is the increase of attack of legendary pokemons’ higher

than that of the non-legendary pokemons’ after they evolve?



8.3 Ex: What kind of pokemon is likely heavier?
▶ Say we are interested in the weight of pokemons, because we

can simply hold a cute Pickachu in arms as if it were a kitten,
but certainly not a fully evolved Charizard!



Our advice
▶ Visualize your data with suitable graphs.
▶ Check the model assumptions.
▶ If the normality assumption is not reasonable, there are other

options available.
▶ Avoid extrapolating.
▶ Correlation does not imply causation.
▶ Every model has its strengths and limitations. When in doubt,

get help. The SCSRU offers free 1-1 consultation to all
UWaterloo researchers.

"All models are wrong, but some are useful." — George Box



Next steps
Now that you have reviewed how to perform some common
statistics with R, you can learn more about the different models, or
explore other models such as

▶ model diagnositics
▶ exploratory data analysis,
▶ linear regression with R,
▶ generalized linear models,
▶ count data analysis, etc.

The SCSRU organize similar workshops to this on a regular basis to
improve quality of research and data literacy among the UWaterloo
community. We also provide 1-1 free consultation to all researchers
on campus. More information are available on our website.

https://uwaterloo.ca/statistical-consulting-and-collaborative-research-unit


Thank you!

The Statistical Consulting and Survey Research Unit (SCSRU) is the unit
through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.


