Data Organization Made Easy with dplyr
SCSRU Workshop

Statistical Consulting and Survey Research Unit
University of Waterloo

2026-01-20



After data collection

12

Review the
hypotheses

Review the
research
questions

Consider sub-
questions

Process the
raw data
Select a suitable
statistics
software
Convert the data
into an

acceptable
format

Figure 1:

-

Explore the Analyze the

data data
Descriptive Inferential
summaries analysis

Datavisualization  Prediction

Recommended process

=1
Report the

results

Interpret the
results in the
context of the
study



1. The dplyr package

The dplyr is part of the tidyverse packages which is commonly
use for data manipulation. It has a lot of functions that are useful
for exploring, transforming, and aggregating data.

We will learn more about this library in this workshop. If you have
not installed this library, please do so now.

# install.packages("dplyr")
library(dplyr)

We will also load the library into the environment.



The pipeline

Commonly in R, we use operators —=> or = to assign values to
variables. When we load any tidyverse packages, a powerful
operator, pipe %>%, is also loaded. It takes what's on its left and
pipes it to what's on its right. When we have complex code, which
means there are multiple functions and we have to nest the
parentheses together, the pipe operator will make the code easier
to read and understand. For example, suppose we have a vector

x <= ¢(0.239, 0.060, 0.984, 0.788, 0.595)

We want to compute the logarithm of x, return suitably lagged
and iterated differences, compute the exponential function and
round the result. Usually we will write

round (exp(diff (log(x))), 1)

## [1]1 0.3 16.4 0.8 0.8



The pipeline - cont.
With pipe operator %>%, we can rewrite the code as follows:
X %>h
log() %>%
diff () %>%

exp() %>%
round (1)

## [1] 0.3 16.4 0.8 0.8

Does this seem more clear than the previous code?



The pipeline - cont.

» When functions require only one argument, x %>% f is
equivalent to f(x).

» When multiple arguments are required, the default behavior of
%>% is to place x as the first argument, i.e., x %>% £(y) is
equivalent to f(x,y). For example,

x <- 10.36849
x %>% round(2)

## [1] 10.37

» If you want to put x at another position than the first, you
can use dot (.) as placeholder, e.g., x %>% £(y, .) is
equivalent to £(y, x).



1.1 The data set

Throughout this workshop, we will be looking at the data set
Marvel Wikia Data, which includes the information of Marvel
comic characters such as name, eye color, hair color, gender,
number of appearances in comic books, etc.

The data set was sent out to you a few days ago. Please set your
working directory to where you saved the data set and load the
data set into your R environment.

# Import data here
df <- read.csv("marvel-wikia-data.csv")

Or you can also use the read_csv() function from Tidyverse
package:

# install.packages("tidyverse")
library(tidyverse)
df <- read_csv("marvel-wikia-data.csv")



Data Background

The Marvel Wikia Data comes from Marvel Wikia website, which
include the following variables:

Variable Definition

page_id The unique identifier for that characters page within the
wikia

name The name of the character

urlslug The unique url within the wikia that takes you to the
character

D The identity status of the character (Secret Identity, Public
identity)

ALIGN If the character is Good, Bad or Neutral

EYE Eye color of the character

HAIR Hair color of the character

SEX Sex of the character (e.g. Male, Female, etc.)

GSM If the character is a gender or sexual minority
(e.g. Homosexual characters, bisexual characters)

ALIVE If the character is alive or deceased

APPEARANCES The number of appearances of the character in comic books

FIRST APPEARANCE The month and year of the character’s first appearance in a
comic book, if available

YEAR The year of the character’s first appearance in a comic book,

if available



http://marvel.wikia.com/Main_Page

1.2 The verbs

In this workshop, we will focus on the following common and
useful functions:

>

>
>
>
| 2
>
>

select()
filter()
arrange ()
mutate ()
summarize ()
group_by()
count ()

We will also cover a few advanced topics for those interested:

>
>

>

Various types of joins to merge related datasets
Window functions, which are similar to summarize() but
serve different purposes

Pivoting data between long and wide formats



A glimpse of the data

Before manipulating the data set, it is common to take a look at
the data set to get an overall understanding of what we are dealing
with. With the dplyr library, there is the glimpse () function.
The function allows us to view the first few values from each
variable, along with the data type.

glimpse (df)

## Rows: 16,376
## Columns: 13

## $ page_id <dbl> 1678, 7139, 64786, 1868, 2460, ~
## $ name <chr> "Spider-Man (Peter Parker)", "C~
## $ urlslug <chr> "\\/Spider-Man_(Peter_Parker)",~
## $ ID <chr> "Secret Identity", "Public Iden~
## $ ALIGN <chr> "Good Characters", "Good Charac~
## $ EYE <chr> "Hazel Eyes", "Blue Eyes", "Blu~
## $ HAIR <chr> "Brown Hair", "White Hair", "Bl~
## $ SEX <chr> "Male Characters", "Male Charac~
## $ GSM <chr> NA, NA, NA, NA, NA, NA, NA, NA,~
## $ ALIVE <chr> "Living Characters", "Living Ch~
## $ APPEARANCES <dbl> 4043, 3360, 3061, 2961, 2258, 2~
## $ ‘FIRST APPEARANCE‘ <chr> "Aug-62", "Mar-41", "Oct-74", "~
## $ Year <dbl> 1962, 1941, 1974, 1963, 1950, 1~



2. The select() verb

» In many applications, the data sets contain more variables
than we need.

» Since we do not need all of the variables, it is recommended
to extract the required variable.

» To do so, we can use the select () verb.



Example 2.1

Suppose we only need to the name of all the characters

df %>’ select(name)

## # A tibble: 16,376 x 1

#i# name

## <chr>

## 1 "Spider-Man (Peter Parker)"

## 2 "Captain America (Steven Rogers)"

## 3 "Wolverine (James \\\"Logan\\\" Howlett)"
## 4 "Iron Man (Anthony \\\"Tony\\\" Stark)"
## 5 "Thor (Thor Odinson)"

## 6 "Benjamin Grimm (Earth-616)"

## 7 "Reed Richards (Earth-616)"

## 8 "Hulk (Robert Bruce Banner)"

## 9 "Scott Summers (Earth-616)"

## 10 "Jonathan Storm (Earth-616)"
## # i 16,366 more rows



Helpful operators

When you need to select multiple variables, the following operators
will help you.

> : for selecting a range of consecutive variables.

> | for taking the complement of a set of variables.

» & and | for selecting the intersection or the union of two sets
of variables.

» c() for combining selections.



Example 2.2

Suppose we want to select three variables: EYE, HAIR, and SEX.
Since they are consecutive in the dataset, we can use “:”

df %>’ select(EYE:SEX)

## # A tibble: 16,376 x 3

## EYE HAIR SEX

#H# <chr> <chr> <chr>

## 1 Hazel Eyes Brown Hair Male Characters
## 2 Blue Eyes White Hair Male Characters
## 3 Blue Eyes Black Hair Male Characters
## 4 Blue Eyes Black Hair Male Characters
## b5 Blue Eyes Blond Hair Male Characters
## 6 Blue Eyes No Hair Male Characters
## 7 Brown Eyes Brown Hair Male Characters
## 8 Brown Eyes Brown Hair Male Characters
## 9 Brown Eyes Brown Hair Male Characters
## 10 Blue Eyes Blond Hair Male Characters

## # i 16,366 more rows



Example 2.3

We can also use select () verb to remove variables from the data
frame. Since page_id is the unique identifier for the characters
page within the wikia, we do not need this variable for now. Let's
remove it from our data frame.

df _trim <- df %>, select(!page_id)
glimpse (df _trim)

## Rows: 16,376
## Columns: 12

## $ name <chr> "Spider-Man (Peter Parker)", "C~
## $ urlslug <chr> "\\/Spider-Man_(Peter_Parker)",~
## $ ID <chr> "Secret Identity", "Public Iden~
## $§ ALIGN <chr> "Good Characters", "Good Charac~
## $ EYE <chr> "Hazel Eyes", "Blue Eyes", "Blu~
## $ HAIR <chr> "Brown Hair", "White Hair", "Bl~
## $ SEX <chr> "Male Characters", "Male Charac~
## $ GSM <chr> NA, NA, NA, NA, NA, NA, NA, NA,~
## $ ALIVE <chr> "Living Characters", "Living Ch~
## $ APPEARANCES <dbl> 4043, 3360, 3061, 2961, 2258, 2~
## $ ‘FIRST APPEARANCE‘ <chr> "Aug-62", "Mar-41", "Oct-74", "~
$

## $ Year <dbl> 1962, 1941, 1974, 1963, 1950, 1~



Practice 2.1

Now we have a new trimmed data frame df _trim, but there are
still some variables we do not need. Please use select() verb to
build a new data frame df _new from df _trim with variables name,
ID, ALIGN, EYE, HAIR, SEX, GSM, ALIVE, APPEARANCES and Year.
You can either remove the rest variables or keep the selected
variables.



3. The filter() verb

> After we selected the variables we are interested in, we do not
always keep all the rows. For example, we may want to
remove the rows with missing values.

» Similar to the select () verb, it is recommended to extract
the required rows.

» To do so, we can use the filter() verb.



Example 3.1

Let’s find which character has a gold hair.

df _new %>’ filter (HAIR == "Gold Hair")

## # A tibble: 8 x 10

##
##
##
##
##
##
##
##
##
##
##

name
<chr>

Adam Warlock (E~
Blitziana (Eart~
Gilpetperdon (E~
Mordecai Midas ~
Aeroika (Earth-~
Blaze (Dog) (Ea~
Jaard (Earth-61~
Will Power (Now~

ID

<chr>
No D~
Secr~
Secr~
Secr~
<NA>
<NA>
<NA>
Secr~

ALIGN
<chr>
Good~
Good~
Bad ~
Bad -~
<NA>
Good~
Neut~
Good~

EYE
<chr>
Whit~
Whit~
Gold~
Gold~
<NA>
Brow~
Gold~
Gold~

HAIR

<chr>
Gold~
Gold~
Gold~
Gold~
Gold~
Gold~
Gold~
Gold~

SEX

<chr>
Male~
Fema~
Male~
Male~
Male~
Male~
Male~
Male~

GSM
<chr>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>

i 2 more variables: APPEARANCES <dbl>, Year <dbl>

ALIVE
<chr>
Livi~
Livi~
Livi~
Livi~
Livi~
Livi~
Dece~
Livi~



Practice 3.1

Can you find who has “Compound Eyes" in this data frame?



Practice 3.2

| want to know the information about the characters with yellow
eyeballs. Could you show the information of the characters with
“Yellow Eyeballs” but remove ID and GSM? Also, we can save this
data frame as df _yelloweye.



4. The arrange () verb

» Sometimes we want to order the rows of a data frame by the
values of a particular variable, especially when we have some
numerical variables.

» \We can use the arrange () verb to order the rows in either
ascending order or descending order.



Example 4.1

For our df _yelloweye data frame, let's order it by the year of the
character's first appearance in ascending order.

df_yelloweye 7>/, arrange(by = Year)

## # A tibble: 6 x 8

## name ALIGN EYE HAIR SEX ALIVE APPEARANCES Year
## <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Lupo (Ear~ Bad ~ Yell~ No H~ Male~ Livi~ 22 1969
## 2 Razor Cut~ <NA> Yell~ Blac~ Male~ Livi~ 4 1987
## 3 Gator (Ea~ Good~ Yell~ No H~ Male~ Dece~ 18 1997
## 4 Lupa (Sav~ Bad ~ Yell~ Blac~ Fema~ Livi~ 5 2001
## 5 Nurotox (~ Good~ Yell~ No H~ Male~ Livi~ 1 2007
## 6 Rana Phil~ Bad ~ Yell~ Gree~ Fema~ Dece~ 4 2009



Example 4.2

Now let's order it by the number of appearances of the character in
descending order. To make it descending, we need to use desc
function.

df __yelloweye 7>}, arrange(by = desc(APPEARANCES))

## # A tibble: 6 x 8

## name ALIGN EYE HAIR SEX ALIVE APPEARANCES Year
## <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Lupo (Ear~ Bad ~ Yell~ No H~ Male~ Livi~ 22 1969
## 2 Gator (Ea~ Good~ Yell~ No H~ Male~ Dece~ 18 1997
## 3 Lupa (Sav~ Bad ~ Yell~ Blac~ Fema~ Livi~ 5 2001
## 4 Razor Cut~ <NA> Yell~ Blac~ Male~ Livi~ 4 1987
## 5 Rana Phil~ Bad ~ Yell~ Gree~ Fema~ Dece~ 4 2009
## 6 Nurotox (~ Good~ Yell~ No H~ Male~ Livi~ 1 2007



Example 4.3

We can also focus on the living characters by combining the
filter() verb.

df _yelloweye %>%
filter (ALIVE == "Living Characters") %>/
arrange (by = desc(APPEARANCES))

## # A tibble: 4 x 8

##  name ALIGN EYE HAIR SEX ALIVE APPEARANCES Year
## <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Lupo (Ear~ Bad ~ Yell~ No H~ Male~ Livi~ 22 1969
## 2 Lupa (Sav~ Bad ~ Yell~ Blac~ Fema~ Livi~ 5 2001
## 3 Razor Cut~ <NA> Yell~ Blac~ Male~ Livi~ 4 1987
## 4 Nurotox (~ Good~ Yell~ No H~ Male~ Livi~ 1 2007



Practice 4.1

Try to show the name, EYE, SEX, ALIVE of the characters in
df_yelloweye who have “No Hair" and order them by Year in
ascending order.



5. The mutate() verb

» Sometimes we want to modify existing variables or create new
variables, such as changing the type of variables or creating a
new variable to save the total of two variables.

> We can use the mutate () verb to modify or create variables.



Example 5.1

In df _yelloweye, | want to use number O for Female
Characters and 1 for Male Characters for the SEX variable to
make it simpler.

df_yelloweye %>%
mutate(SEX = ifelse(SEX=="Female Characters", 0, 1))

## # A tibble: 6 x 8

## name ALIGN EYE HAIR SEX ALIVE APPEARANCES Year
## <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 Lupo (Ear~ Bad ~ Yell~ No H~ 1 Livi~ 22 1969
## 2 Gator (Ea~ Good~ Yell~ No H~ 1 Dece~ 18 1997
## 3 Lupa (Sav~ Bad ~ Yell~ Blac~ 0 Livi~ 5 2001
## 4 Razor Cut~ <NA> Yell~ Blac~ 1 Livi~ 4 1987
## 5 Rana Phil~ Bad ~ Yell~ Gree~ 0 Dece~ 4 2009
## 6 Nurotox (~ Good~ Yell~ No H~ 1 Livi~ 1 2007



Example 5.2

| want to see the ratio APPEARANCES / Year and save it in a new
variable named Ratio.

df _yelloweye 7.>%
mutate(Ratio = round (APPEARANCES / Year, 3))

##
##
##
##
##
##
##
##
##

#

DO W N

A tibble: 6 x 9

name

<chr>

Lupo (Earth-616)

Gator (Earth-616)

Lupa (Savage Land Mutate) (Earth-616)
Razor Cut (Earth-616)

Rana Philips (Earth-616)

Nurotox (Earth-616)

ALIGN

<chr>

Bad Charact~
Good Charac~
Bad Charact~
<NA>

Bad Charact~
Good Charac~

EYE

<chr>
Yell~
Yell~
Yell~
Yell~
Yell~
Yell~

HAIR
<chr>
No H~
No H~
Blac~
Blac~
Gree~
No H~

SEX

<chr>
Male~
Male~
Fema~
Male~
Fema~
Male~

ALIVE APPEARANCES

<chr>
Livi~
Dece~
Livi~
Livi~
Dece~
Livi~

<dbl>
22
18

5
4
4
1

Year
<dbl>
1969
1997
2001
1987
2009
2007

Ratio
<dbl>
.011
.009
.002
.002

0
0
0
0
0.002
]



Practice 5.1

Can you change Living Characters to 1 and Deceased
Characters to 0 for the ALIVE variable in df _yelloweye?



6. The summarize() verb

» We usually need to calculate some summary statistics of the
data when we conduct a data analysis. For example, we may
want mean or median of a variable.

> We can use the summarize () verb in these cases.



The difference between mutate() and summarize ()

» Remember mutate()? Seems like we can do the same thing
with mutate (), right?

» However, mutate() returns the same number of rows in a
data frame, while summarize () returns just one row or one
row for each group (if you summarize with groups which we
will mention later).



Example 6.1
Let's find the minimum and maximum Year in df _yelloweye.
df _yelloweye %>’

summarize (min_year = min(Year),
max (Year))

max_year

## # A tibble: 1 x 2

## min_year max_year
## <dbl> <dbl>
## 1 1969 2009



Practice 6.1

What is the mean of APPEARANCES?



Revisiting mutate ()

Recall Example 5.1, we used mutate () to change SEX variable
from character to numeric.

df _yelloweye %>%
mutate(SEX = ifelse(SEX=="Female Characters", 0, 1))

## # A tibble: 6 x 8

##  name ALIGN EYE  HAIR SEX ALIVE APPEARANCES Year
## <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 Lupo (Ear~ Bad ~ Yell~ No H~ 1 Livi~ 22 1969
## 2 Gator (Ea~ Good~ Yell~ No H~ 1 Dece~ 18 1997
## 3 Lupa (Sav~ Bad ~ Yell~ Blac~ 0 Livi~ 5 2001
## 4 Razor Cut~ <NA> Yell~ Blac~ 1 Livi~ 4 1987
## 5 Rana Phil~ Bad ~ Yell~ Gree~ 0 Dece~ 4 2009
## 6 Nurotox (~ Good~ Yell~ No H~ 1 Livi~ 1 2007

But this overwrites the original SEX variable, and we can no longer
access its original values of Female Characters and Male
Characters.



Revisiting mutate ()

It is good practice to keep the original SEX variable and create a
new numeric variable SEX_num. In the example below, we create a
new variable SEX_num and use it to compute the proportion of
male characters by ALIVE status in df _yelloweye:

df_yelloweye %>%
mutate (SEX_num = ifelse(SEX=="Female Characters", 0, 1)) %>%
select (SEX_num, ALIVE) %>%
group_by (ALIVE) %>7
summarize (prop_male = mean(SEX_num))

## # A tibble: 2 x 2

##  ALIVE prop_male
## <chr> <dbl>
## 1 Deceased Characters 0.5

## 2 Living Characters 0.75



Revisiting mutate ()

A more general form of this is using case_when() function inside
mutate (). For example, we can recode SEX variable as follows:

df _yelloweye 7.>%

mutate(
SEX_num = case_when(
SEX == "Female Characters" ~ O,
SEX == "Male Characters" ~ 1,

TRUE ~ O # Default value is O
)
) %>
select(name, ALIGN, EYE, HAIR, SEX, SEX_num)

## # A tibble: 6 x 6

##  name ALIGN EYE HAIR SEX  SEX_num
##  <chr> <chr> <chr> <chr> <chr> <dbl>
## 1 Lupo (Earth-616) Bad ~ Yell~ No H~ Male~ 1
## 2 Gator (Earth-616) Good~ Yell~ No H~ Male~ 1
## 3 Lupa (Savage Land Mutate)~ Bad ~ Yell~ Blac~ Fema~ 0
## 4 Razor Cut (Earth-616) <NA> Yell~ Blac~ Male~ 1
## 5 Rana Philips (Earth-616) Bad ~ Yell~ Gree~ Fema~ 0
## 6 Nurotox (Earth-616) Good~ Yell~ No H~ Male~ 1

It is much easier to use case_when() to handle multiple
conditions than using nested ifelse() statements.



7. The group_by () verb

» A common paring with summarize () is the group_by ()
verb. It splits the data frame into a number of smaller groups.

> We use group_by () to tell summarize() which subgroups to
apply the calculations on.



Example 7.1

Let's find the minimum and maximum Year for each category of
HAIR.

df _yelloweye %>%
group_by (HAIR) %>%
summarize (min_year

min(Year),
max(Year))

max_year

## # A tibble: 3 x 3

##  HAIR min_year max_year
##  <chr> <dbl> <dbl>
## 1 Black Hair 1987 2001
## 2 Green Hair 2009 2009

## 3 No Hair 1969 2007



Practice 7.2

Can you find the mean APPEARANCES for each gender?



Example 7.2

Furthermore, group_by () accepts multiple grouping variables. Say
we want to find the total APPEARANCES across SEX and HAIR.

df_yelloweye_summarized <- df_yelloweye 7%>%
group_by (SEX, HAIR) %>%
summarize (appearance_per_group = sum(APPEARANCES))
df_yelloweye_summarized

## # A tibble: 4 x 3
## # Groups: SEX [2]

##  SEX HAIR appearance_per_group

## <chr> <chr> <dbl>

## 1 Female Characters Black Hair 5

## 2 Female Characters Green Hair 4

## 3 Male Characters Black Hair 4
4

## Male Characters No Hair 41



Example 7.3

Now in df _yelloweye.summarized, | want a new column to
show the total APPEARANCES by Sex.

df_yelloweye_summarized %>%
group_by (SEX) %>%
mutate (appearance_per_sex = sum(appearance_per_group))

## # A tibble: 4 x 4
## # Groups: SEX [2]

##  SEX HAIR appearance_per_group appearance_per_sex
## <chr> <chr> <dbl> <dbl>
## 1 Female Characters Black Hair 5 9
## 2 Female Characters Green Hair 4 9
## 3 Male Characters Black Hair 4 45
## 4 Male Characters No Hair 41 45



8. The count () verb

» When we want to count the unique values of one or more
variables, we can use the count () verb.

» It is roughly equivalent to a combination of group_by() and
summarize (n=n()).



Example 8.1

We want to know the number of characters for each gender with
different hair colors:

df _yelloweye %>%
count (SEX, HAIR)

## # A tibble: 4 x 3

# SEX HAIR n
## <chr> <chr> <int>
## 1 Female Characters Black Hair 1
## 2 Female Characters Green Hair 1
## 3 Male Characters Black Hair 1
## 4 Male Characters No Hair 3



Example 8.2

If you want to use group_by() and summarize (), you can get the
same results by

df _yelloweye %>%
group_by (SEX, HAIR) %>%
summarize(n = n())

## # A tibble: 4 x 3

## # Groups: SEX [2]

## SEX HAIR n
## <chr> <chr> <int>
## 1 Female Characters Black Hair 1
## 2 Female Characters Green Hair 1
## 3 Male Characters Black Hair 1
## 4 Male Characters No Hair 3



9.1 Joins

» Joins combine two tables based on one or more common key
columns.

» They allow you to bring together related pieces of information
stored in separate tables.

» Common use cases:

» Adding extra attributes to a dataset

» Merging tables to create a single, unified view for
comprehensive analysis

» Identifying unmatched or missing records



9.2 Types of Joins

» inner_join(x, y, by = "key_column"): Returns all rows
from x where there are matching values in y, and all columns
from both x and y. Non-matching rows are dropped.
"key_column" specifies the common column(s) to join on.

» Useful when you only need matching records between two
tables.

> left_join(x, y, by = "key_column"): Returns all rows
from x and all columns from both x and y. If there's a match
in y on "key_column", the corresponding data is included;
otherwise, NA values are added for the unmatched rows from
y.

» Ideal when you have a primary dataset and want to enrich it
with extra information.

» full join(x, y, by = "key_column"): Returns all rows
and all columns from both x and y. If a row doesn't have a
match in the other data frame, NA values are added for the
missing columns.



Example 9.1

Suppose we have another dataset ratings that contains the
average ratings of the Marvel contents for each year between 2001
and 2010.

ratings = data.frame(Year = 2001:2010,
avg_rating = c(7.8, 8.0, 8.2, 8.5, 8.7, 8.9, 9.0, 9.2, 9.3, 9.5))

We can inner join df _yelloweye and ratings based on the Year
column, to get the average ratings of Marvel contents for each
character's first appearance year between 2001 and 2010.

df_yelloweye %>%
inner_join(ratings, by = c("Year"))

## # A tibble: 3 x 9

## name ALIGN EYE HAIR SEX ALIVE APPEARANCES Year avg_rating
##  <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 Lupa (Savage Land Mutate) (E~ Bad ~ Yell~ Blac~ Fema~ Livi~ 5 2001 7.8
## 2 Rana Philips (Earth-616) Bad ~ Yell~ Gree~ Fema~ Dece~ 4 2009 9.3

## 3 Nurotox (Earth-616) Good~ Yell~ No H~ Male~ Livi~ 1 2007 9



Practice 9.1

Suppose that the average rating of Marvel contents outside of
2001-2010 is 8.0. Use left_join() to assign a rating to every
character in df _yelloweye.



10.1 Window Functions

» Window functions perform calculations within groups
without collapsing the data.

» Unlike summarize (), they preserve the original number of
rows.

» This makes them ideal for comparing individual records to
their peers.



10.2 Types of Window Functions

» row_number (): Assigns a unique sequential integer to rows
within a group, ordered by specified columns.

» min_rank(): Assigns ranks to rows within a group, with ties
receiving the same rank and gaps in ranking for subsequent
values.

» lead() and lag(): Accesses values from subsequent or
previous rows within a group, useful for calculating differences
over time.

» cumsum(): Computes the cumulative sum of a numeric
column within a group. We also have cummean(), cummin (),
and cummax () for cumulative mean, minimum, and maximum
respectively.



Example 10.1

Let's rank characters in df _yelloweye by their APPEARANCES
within each HAIR color category.

df_yelloweye %>%
group_by (HAIR) %>%
mutate (appearance_rank = row_number(desc (APPEARANCES))) %>%
arrange (HAIR, appearance_rank) %>/
select(name, HAIR, APPEARANCES, appearance_rank)

## # A tibble: 6 x 4
## # Groups: HAIR [3]

##  name HAIR APPEARANCES appearance_rank
## <chr> <chr> <dbl> <int>
## 1 Lupa (Savage Land Mutate) (Earth-616) Black Hair 5 1
## 2 Razor Cut (Earth-616) Black Hair 4 2
## 3 Rana Philips (Earth-616) Green Hair 4 1
## 4 Lupo (Earth-616) No Hair 22 1
## 5 Gator (Earth-616) No Hair 18 2
## 6 Nurotox (Earth-616) No Hair 1 3



Practice 10.1

Suppose we want to compute the cumulative appearances of
characters over the years within each SEX category in
df_yelloweye. Can you do this using cumsum()?



11.1 Pivoting

» Pivoting functions help reshape data between wide and long
formats.

» Long format data: Each row is a single observation for a
specific variable, with values repeated for the same
individual/entity.

> Wide format data: Each row is a single observation, with
variables in separate columns.

Long Format Wide Format
Name Subject Score Name Math Science
Alice Math 90 Alice 90 85
Alice  Science 85 Bob 78 82
Bob Math 78 Carol 85 89

Bob Science 82
Carol Math 85
Carol  Science 89




11.2 When to Use Each Format

» Long format
» Good for database storage, processing (dplyr) and
visualization (ggplot?2)
> Analysis functions with repeated measures (1lmer)

» Wide format

» Easy for human interpretation and reporting data summaries
» Analysis functions that assume one feature per column (1m,
cor)



11.3 Pivot Functions

» pivot_longer(df, cols, names_to, values_to): Given
a wide-format df, this function reshapes specified cols into a
longer format. The names of the original columns are stored
as values in a new column named names_to, and their
corresponding values are stored in another new column named
values_to.

» pivot_wider(df, names_from, values_from): Given a
long-format df, this function reshapes it into a wider format.
The unique values from the names_from column become new
column names, and their corresponding values from the
values_from column populate these new columns.



Example 11.1
Let's pivot long-format data to wide-format.

options(width = 90)
long_df = df_trim %>%
select (ALIGN, SEX) 7%>%
filter ((SEX == "Female Characters" | SEX == "Male Characters") & !is.na(ALIGN)) %>%
group_by (ALIGN, SEX) %>%
summarize(Count = n())
long_df

## # A tibble: 6 x 3
## # Groups: ALIGN [3]

## ALIGN SEX Count
## <chr> <chr> <int>
## 1 Bad Characters Female Characters 976
## 2 Bad Characters Male Characters 5338
## 3 Good Characters Female Characters 1537
## 4 Good Characters Male Characters 2966
## 5 Neutral Characters Female Characters 640
## 6 Neutral Characters Male Characters 1440

long_df %>%
pivot_uider(names,from = SEX, values_from = Count)

## # A tibble: 3 x 3
## # Groups: ALIGN [3]

##  ALIGN ‘Female Characters‘ ‘Male Characters®
## <chr> <int> <int>
## 1 Bad Characters 976 5338
## 2 Good Characters 1537 2966
## 3 Neutral Characters 640 1440



12. Final Practice

Now, it's time to review everything we learnt from this workshop!
Here are some final tasks:

> Let's see if we can find some famous characters! Build a
dataset from the original dataset df with the characters who
has more than 1000 appearances in the comic books and
whose first appearance is before the year of 1976.

» Of course, we only need important variables in our dataset,
including name, ALIGN, EYE, HAIR, SEX, ALIVE, APPEARANCES
and Year, and order them by Year in ascending order.

» Build a new variable Age, which shows how many years the
character has been created. Hint: You can use this year
(2024) and the value of Year to calculate it.

» Show the average Age for each gender.

» Find the number of characters in each EYE category.



Beyond this workshop

There are many more functions in the dplyr package that we did
not cover in this workshop. You can check the official
documentation for more information. There are many dplyr cheat
sheets available online. A good example can be found here.

For those who are interested to learn more, the SCSRU hosts
statistics seminars and workshops focusing on topics commonly
encountered by researchers on campus. Please check our website
for future events.

Thank you!

The Statistical Consulting and Survey Research Unit (SCSRU) is the unit
through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.


https://dplyr.tidyverse.org/
https://dplyr.tidyverse.org/
https://nyu-cdsc.github.io/learningr/assets/data-transformation.pdf
https://uwaterloo.ca/scsru

