R for Beginners: Your Data Adventure Begins
SCSRU Workshop

Statistical Consulting and Survey Research Unit
University of Waterloo

2024-09-18

RStudio

Fee B8t Ves Prog Wekwsce Pom o Hep

©) @amemtengs x| 0 ismaethn | sumantsx | e sy =0
B Ciswaontme G £+ Ahon 3% Latewe o] CPuste [Swes ieperuisats o Gamta
3 lbrary(ggplass RIS
| =2 dlasoeds 53540 obs. of 10 vartables |
3 Vien(dtamonds ey
4 sumary damands —
aesize 07978

& sumary(diamonds sspefce:
wvess i

3- Workspace and
History

N Yo Pon Packages Mew -
- W ““.’; & P lom Himpeas O f Gearaa
ot =0 Diamond F'ricing
wim. :‘_ 0000 min. >': 0.000 min. ': ﬂ.M 3 _‘-,"'
I3t Gut 4730 I3t Gui 4720 15t Gu.t 2000

vedan : 41200 medtan : 31710 _vedtan : 3830
5. 53¢

{5. R Console s 4. Plots and flles-

e o ()
e5ize <. round(sean(diamondsscarat), 4)
!wu:‘lmnﬂ;knuw)

3 format plectptec-p, siteatss
& Camt |

Figure 1: The RStudio Interface

» The four panels can be positioned in different locations based
on your preferences, but for this session, we will use the
default layout as shown above.

1. R as a calculator

» In its simplest form, R can be used as a calculator.
» In the console area, type:

1+2

you will see the following being “returned” in the console area

(1] 3

» Subtraction can be done in a similar way

5-10

(1] -5

» Other basic operations such as multiplication, division and
powers include:

9%26

[1] 234

100/7.5

[1] 13.33333
2°3
(1] 8

> V25

sqrt(25)

[1]1 &

Some basic operations involves built-in functions in R. For example,
> logyo(10)

log(10, base=10)

[1] 1
» In(10)

log(10)

[1] 2.302585
> exp(10)

exp (10)

[1] 22026.47

2. Variables

» The number 7 is recognized in R as “pi”. We call “pi” a
variable in R. The Euler's Number, e, is formulated as
“exp(1)". Another default variable is the imaginary number,
i.e v/—1, which is recorded as ‘i’ in R.

» Variables are useful for when they need to be used repeatedly
or to be recalled in the future.

» Suppose we are interested to evaluate

6179'2315468

1 _ el-9.2315468°

we can store the repeated value 9.2315468 as a variable
before performing the calculation.

To store the value as the variable x,

x <- 9.2315468

What do you notice?

» In the Console panel, nothing is returned.

P In the Workspace and History panel, x appears together with
the value it represents. This shows that your current
workspace recognizes x as 9.2315468.

> Try typing x in the console.

Back to our problem

We wanted to evaluate

6179.2315468

1 _ el-9.2315468°

Since x = 9.2315468 is stored in our work environment, we can
now type

exp(1-x)/(1-exp(1-x))

[1] 0.0002661952

Practice 2.1

Can you simplify the code further?

exp(1-x)/(1-exp(1-x))

3. Getting help

» All users will need help to a certain degree at different stages
of their work.

» Before getting help from other users, it is generally a good
idea to try to solve the problem by yourself.

3.1 R documentation

» R has an extensive documentation and resources for help.
» For example, to find out how to use the function round (),

type

?round

» The bottom right panel will show a description of the function
and examples of how to use it.

» This help feature is particularly useful for when you vaguely
remember how to use the function.

Practice 3.1

Evaluate the following formula
10

where tryMe = 0.456789. Use the function round () to round your
output to 2 decimal places.

Note that R is case sensitive.

3.2 Online resources

| 2

>

There are a lot of basic functions or default variables that
have not been mentioned so far.

When working with R, we often encounter situations in which
we need to use an unknown or unfamiliar functions. We often
rely on online search engines to find those functions. Some
reliable sources are Stack Overflow and R-bloggers.
Throughout this workshop, we encourage you to explore the
online resources. Doing so will make you more confident to
work independently in the future.

We will encounter situations where different set of codes can
produce the exact same output. There are many criteria that
can determine the superiority of a set of code. However, we
recommend selecting a set of codes that you can understand
best.

https://stackoverflow.com/
https://www.r-bloggers.com/

4. \ectors

In the real world, we often encounter a sequence of numbers. For
example,

» the height of 10 students,

» the grades of the ECON 101 students in the Fall term,
> the age of the attendees,

» and many more.

In R, the sequence of numbers can be recorded as vectors.

4.1 Creating vectors

Suppose the age of the attendees in this workshop are:
18,21,19, 20,21
We can create a vector for our record

age <- c(18, 21, 19, 20, 21)

What do you see?

» In the environment panel?
> After typing age in the console panel?

4.2 The use of vectors

» Vectors may not appear to be be useful for many since most
of the required functions are ready for use.

» For those intending to create your own R functions, it is

important to understand how to create and manipulate
vectors.

Practice 4.1

» Suppose we want to create a vector of numbers from 1 to 5,
i.e. (1, 2, 3, 4, 5). There are three ways to do so

1

c(1, 2, 3, 4, 5)
2

1:5

3

seq(1,5,1)

» What are the advantages or disadvantages of using the three
different options above?

5. Code editor

» Do you still remember all the codes created? Do you want to
save the codes for future references?

» The code editor allows us to write and save all the written
codes.

» The lines of codes in the code editor are not processed by R,
until they are inputted into the console.

5.1 Running codes in the code editor
There are many ways to do so:

1. Highlight all the codes you want R to process, click Run on
the top right corner of the Console Editor.

2. For Windows users, you can run the highlighted codes by
pressing Ctrl + Enter. For Mac users, you can do the same
with Command + Enter.

3. If you only want to run one line of code, you can perform (2)
without highlighting the entire line of codes. Placing the
cursor at the line of interest is sufficient.

Practice 5.1

Consider inputting some of the codes we have used so far in the
code editor and practice running the lines of codes using the short
cuts.

From hereon, we recommend to type the codes in the code editor
and then run the codes. This way, you have a copy of what you did
in the workshop today for your future reference.

5.2 Saving the Environment

When quitting R or RStudio, we can choose to save either the
Environment or the History that we were working with in the files
called .RData and .RHistory respectively. When we open the R
code file next time, the two files will be automatically loaded.

» We do not recommend saving the Environment. Start in a
clean environment.

» If you want to save the Environment, we recommend to do so
using the function save.image () rather than using the
default files .RData.

> If we only want to save certain values, we can use the function
save () and then load the saved Environment later using the
load () function.

Practice 5.2

A student obtained 8, 9 and 10 for the three quizzes of a course.
The full mark for each quiz is 10. The same student also received
88% and 92% for Midterm 1 and 2, respectively.

1.

&

Create a vector called quiz_scores to store the grades of the
quizzes.

Create a vector called midterm_scores to store the grades of
the midterms.

Create a vector called scores to store all the grades.

Use the save () function to save the three vectors.

Quit R and use the load() function to load the three vectors
into the Environment.

6. Good coding practices

» Comment your code. R does not process anything behind #.

I am trying to like R!!!!

> Use comments to mark off sections of code. Type the
following in the code editor:

What do you notice next to the line number?

Commenting shortcuts

To comment multiple lines of codes, try

» Ctrl + Shift + C for Windows users
» Cmd + Shift + C for Mac users

RStudio can also auto-format the codes for better readability:

» Ctrl + Shift + A for Windows users
» Cmd + Shift + A for Mac users

7. Importing and exporting data

» In the real world, data are recorded in different ways. The
common formats are CSV, TXT and XLS.

» R can import the data into its environment with functions
such as: read.csv() and read.table().

7.1 Setting working directory

To start, it is important to inform R the directory that the data file
is stored. For Mac/Windows users of RStudio, choose Session >
Set Working Directory > Choose Directory.

An alternative is to set the working directory from the Plots and
Files panel (bottom right panel).

65K8 May 17
27 Mar 20

4028 May2,
13348 Feo 1.l

Figure 2: Setting working directory

Using command lines to set working directory

The function setwd () can also be used to set the working
directory if the directory string is available. For example,

setwd("D:/")

will set the working directory to “D:/".

A common question that you may have about working directory is,
“Where am 17"

The address is shown at the top of Console.

Practice 7.1

» Did you receive 2 CSV files a few days ago?
» Do you remember where you saved the file?

If you have not downloaded nor saved them, please do so now. We
recommend storing both files in the same folder for the purpose of
this workshop.

When you are done,

P set the working directory to the folder those files were saved.

7.2 Importing data set

» In reality, data are recorded in different formats such as Excel
spreadsheet and Comma Separated Values (CSV).

» Each row of a data files is an observation while each column is
a variable.

» Data are imported into the R environment and stored as a
data frame object.

» In this workshop, we will focus on two data sets:
caliRain.csv and drinks.csv.

Practice 7.2

Import both data sets caliRain.csv and drinks.csv into the R
environment and save them as data frames called rain_df and
drinks_df respectively.

drinks_df <- read.csv("drinks.csv")
rain_df <- read.csv("caliRain.csv")

7.3 A first look at the data set

» |t is important to take a look at the data set imported into
the environment before performing the analysis.

head(rain_df)

STATION PRECIP ALTITUDE LATITUDE DISTANCE SHADOW

1 Eureka 39.57 43 40.8 1 1
2 RedBluff 23.27 341 40.2 97 2
3 Thermal 18.20 4152 33.8 70 2
4 FortBragg 37.48 74 39.4 1 1
5 SodaSprings 49.26 6752 39.3 150 1
6 SanFrancisco 21.82 52 37.8 5 1

About the caliRain.csv data

The file contains daily rainfall recorded at numerous meteorological
stations monitored by the state of California. The variables
recorded are:

» STATION: Name of the station

PRECIP: precipitation (inches)

ALTITUDE: altitude (feet)

LATITUDE: latitude (degree)

DISTANCE: distance to the Pacific Ocean (miles)
SHADOW: slope face (1: Westward, 2: Leeward)

vVvyyvyYVvyyYy

The variables STATION and SHADOW are categorical variables,
whereas the remaining are continuous variables.

7.4 Accessing data frame

To get an overview of the data, we usually take a look at the
dimension data frame to get an overview.

» dim(rain_df): shows the number of rows and columns
» nrow(rain_df): shows the number of rows
» ncol(rain_df): shows the number of columns

To view the spreadsheet in R, try

View(rain_df)

Individual column/row

Oftentimes, we are interested to access an individual column (or
variable) within the data frame. For example, the precipitation
variable. There are two ways to do so:

rain_df $PRECIP

[1] 39.57 23.27 18.20 37.48 49.26 21.82 18.07 14.17 42.63 13.85 9.44 19.33
[13] 15.67 6.00 5.73 47.82 17.95 18.20 10.03 4.63 14.74 15.02 12.36 8.26
[25] 4.05 9.94 4.25 1.66 74.87 15.95

o

rain_df[,2]

[1] 39.57 23.27 18.20 37.48 49.26 21.82 18.07 14.17 42.63 13.85 9.44 19.33
[13] 15.67 6.00 .73 47.82 17.95 18.20 10.03 4.63 14.74 15.02 12.36 8.26
[256] 4.05 9.94 .26 1.66 74.87 15.95

o

Similarly, there are times we want to investigate a particular row (or
observation). Suppose we are interested in the 10th observation,

rain_df[10,]

STATION PRECIP ALTITUDE LATITUDE DISTANCE SHADOW
10 Salinas 13.85 74 36.7 12 2

Suppose we are interested in the precipitation of the 5th
observation,

rain_df$PRECIP[5]

[1] 49.26

rain_df [5,2]

[1] 49.26

Accessing a random variable, an observation or a specific value

coming from an observation are all useful for data manipulation
and transformation purpose.

7.5 Data manipulation
Sometimes, we want to make changes to the data frame such as

> Make changes to existing records
> Add new observations or variables
» Remove outliers from the data set

This process is sometimes known as data manipulation. Data
manipulation is essential to ensure that the data is cleaned and
ready for further processing and analysis. This process may be
tedious and boring, but reliable results depend on the data.

Modifying existing records

In order to change the existing records, we need to identify what
records we are interested to change.

P A variable, i.e. a column
> A specific observation

Modifying a variable

Suppose we are interested to analyze DISTANCE in metres
(1feet = 0.3048m).

1. ldentify how to access variable in the data frame.

2. Decide on the conversion.

3. Decide on how you would like to store the new variable. We
recommend storing the conversion as a new variable (say
DISTANCE_M) in the data frame to avoid confusion.

rain df$DISTANCE_M <- rain_df$DISTANCE#*0.3048

Modifying a specific observation

Suppose the distance for Eureka station is supposed to be 1.5 feet.

1. Identify how to access variable in the data frame.

2. Decide on the conversion.

3. Decide on how you would like to store the new variable. In
this scenario, it is a replacement.

rain_df$DISTANCE[1] <- 1.5

Practice 7.3

Is the distance for the Eureka station correctly recorded in metres,
i.e. DISTANCE_M? How do you fix it?

Removing records

A common way to remove an entire column from a data frame is

rain_df <- rain_df[,-COLUMN NUMBER]

A common way to remove an observation from a data frame is

rain df <- rain_df [-ROW NUMBER,]

Notice each time we re-store rain_df with the data frame after its
row/column has been removed.

How does R understand the data?

str(rain_df)

’data.frame’:
STATION
PRECIP
ALTITUDE
LATITUDE
DISTANCE
SHADOW
DISTANCE_M:

P BL PGB PH BB

Notice that the variable SHADOW is recorded as a numeric value.
This is not an accurate depiction of the data set.

30

: chr
: num
¢ int
: num
: num
¢ int

num

obs.

43 341 4152 74 6752 52 25 95 6360 74 ...
40.8 40.2 33.8 39.4 39.3 37.8 38.5 37.4 36.6 36.7 ...

.5
2
.3

of 7 variables:
"Eureka
39.6 23.3 18.2 37.5 49.3 ...

" "RedBluff

97 70 1 150 5 80 28 145 12 ...
112212 ...

2
05

1
29

566 21.336 0.305 45.72 ...

" "Thermal

"o

Data transformation: factor

To ensure analysis can be done properly, we need to convert the
values in SHADOW into categorical values in the data set.

rain_df$SHADOW <- factor(rain_df$SHADOW,
levels=c("1", "2"),
labels=c("Westward", "Leeward"))

Here we are making references to the numerical values 1 and 2, by
setting them as “Westward” and “Leeward”, respectively.

str(rain_df)

’data.frame’:

P BL PGB B B

STATION
PRECIP
ALTITUDE
LATITUDE
DISTANCE
SHADOW
DISTANCE_M:

30 obs. of 7 variables:

: chr "Eureka " "RedBluff " "Thermal
: num 39.6 23.3 18.2 37.5 49.3 ...

int 43 341 4152 74 6752 52 25 95 6360 74 ...

: num 40.8 40.2 33.8 39.4 39.3 37.8 38.5 37.4 36.6 36.7 ...
:num 1.5 97 70 1 150 5 80 28 145 12 ...
: Factor w/ 2 levels "Westward","Leeward": 1221112212 ...

num 0.305 29.566 21.336 0.305 45.72 ...

"o

Practice 7.4
Based on the data set drinks.csv,

1. How many observations are there? How many variables are
recorded?

2. What are the names of the variables in the data set?

3. What is the recorded fat for the third observation?

Practice 7.5

We are interested to group the drinks into categories of HIGH and
LOW calories. Drinks with less than or equal to 150 calories are
considered LOW calories, whereas drinks with more than 150
calories are considered HIGH calories.

1. Create a new variable in drinks_df called is_high_calorie
to record whether a drink contains high or low calorie.

2. Subset the drinks_df data frame into two data frames:
hc_drinks_df for drinks with HIGH calories and
lc_drinks_df for drinks with LOW calories.

There are many ways to complete this exercise.

8. Descriptive statistics

Descriptive statistics are numerical and graphical summaries used
to illustrate and describe a data set. We will go over some
common ones:

» Mean

» Median

» Variance and standard deviation
» Minimum and maximum

» Quantile

» Mean or average of a sequence of numbers can be obtained
using the function mean().

mean(rain_df$PRECIP)

[1] 19.80733

> Median of a sequence of numbers can be obtained using the
function median().

median(rain_df$PRECIP)

[1] 15.345

» The variance of a sequence of numbers can be obtained using
the function var().

var(rain_df$PRECIP)
[1] 276.2639

» The standard deviation can be obtained using the function
sd () or by taking the positive square root of the variance.

sd(rain_df$PRECIP)

[1] 16.62119

sqrt (var(rain_df$PRECIP))

[1] 16.62119

» The minimum and maximum of a set of numbers can be
obtained through min() and max().

min(rain_df$PRECIP)

[1] 1.66

max(rain_df$PRECIP)

[1] 74.87

» Try the function range().

» Quantiles are points in a distribution that relate to the
ranking of the values in the distribution. A famous set of
quantiles is called the quartiles. Among the quartiles, the
most common is median, which is denoted as (>

Practice 8.1

The five numbers: minimum, first quartile (Qy), median, third
quartile (Q3), and maximum are called the 5-number summary.
Please find the 5-number summary of the precipitation.

Hint: Try the function summary().

Practice 8.2

Find the average precipitation of the station with Leeward Shadow.

Hint: You may need the function which().

9. Data visualization using the base package

The numerical summaries discussed so far can be visualized with
some simple graphs:

P> Histograms
> Boxplots
» Barplots
» Scatterplots

9.1 Histogram

Histograms are commonly used to visualize the distribution of
continuous variables. When looking at a histogram, pay attention
to its:

» Shape: symmetric vs asymmetric
> Center
» Spread

Histograms

hist(rain_df$PRECIP,main="Distribution of precipitation",
xlab="Precipitation", ylab= "Frequencies")

Distribution of precipitation

12

10
|

Frequencies
6
|

[T T T 1
0 20 40 60 80

Precipitation

Notice that there is no space in between the bars/bins.

Practice 9.1

When presented with a histogram, the shape of distribution is
dependent on the width of the bins or the number of the bins.
Wider bins will result in lesser number of bins, whereas narrower
bins will have more bins.

We can change the number of bins in the histogram by specifying
the number through breaks.

hist(rain_df$PRECIP,main="Distribution of precipitation",
breaks = 5, # Specify the number of bins
xlab="Precipitation", ylab= "Inches")

Try a few values (e.g. 5, 10, 20, 50) to see how the effect of the
width of the bins and the shape of the distribution.

9.2 Boxplots

The boxplot is a visual representation of the five-number summary:

» Minimum
» First quartile, (1

» Second quartile, Median
» Third quartile, Q3

» Maximum

Potential outliers are shown as dots outside the boxplots.

boxplot(rain_df$PRECIP, main="Precipitation",
ylab= "Inches")

Precipitation

o

Inches

Do you see potential outlier?

Side-by-side boxplots
boxplot(rain_df$PRECIP~rain_df$SHADOW,

main="Precipitation",
xlab = "Shadow", ylab= "Inches")

Precipitation

60
|

Inches
40

o -
T T

Westward Leeward

Shadow

Side-by-side boxplots are commonly used to visualize relationship
between a continuous variable and a categorical variable.

Practice 9.2

The variable ALTITUDE is a continuous variable.

1. Visualize this variable using the histogram.
2. Visualize this variable using the boxplot that lies horizontally.
3. Comment on the similarities between the two graphs.

9.3 Bar graphs

» Bar graphs are commonly used to visualize categorical
variables.
» In order to make a bar in R, we begin by preparing a table.

Suppose we are interested to know the proportion of drinks in
drinks_df that do and do not contain milk.

milk_table<- table(drinks_df$hasMilk)
milk table

Milk Nonmilk
30 6

barplot(milk_table, main="Distribution of Drinks",
ylab="Frequency")

Distribution of Drinks

25 30

Frequency
15 20
| |

10
|

Milk Nonmilk

9.4 Scatterplots

Scatterplots are used to visualize relationship between two
continuous variables.

plot(rain_df$DISTANCE, rain_df$PRECIP,

main="Relationship: precipitation vs distance",
xlab="Distance (ft)", ylab="Precipitation (inches)")

Relationship: precipitation vs distance

0

7z

S

£ o ©

§ 99 ¢ °

g

a

5 9o o o

g « 8 g0 50 ° o o ° o

o -3 ° ° o
o o o %

T T T T T
0 50 100 150 200

Distance (ft)

Practie 9.3

Let's take a look at the drinks_df data frame. Suppose we are
interested to find out the relationship between the amount of carb
(carb) and the amount of calories (calories). Choose a suitable
graph to demonstrate this.

10. Library installation

» The R user community creates functions and data sets to
share. We call them packages or libraries.

» All packages are free and can be installed as long as there is
access to the internet.

> Some commonly used packages are: ggplot2 for data
visualization, dplyr for data management, MASS, car, etc.

» To install a library, say ggplot2, you can either use the
RStudio interface, or you can do it from the command line as
follows

install.packages("ggplot2", dependencies=TRUE)

» Every time you want to use the package in a new R session,
the following code needs to be executed:

library(ggplot2)

> We also recommend updating the installed libraries regularly.
To do so, go to Tools > Check for Package Updates and
follow the instructions to complete the updates.

Demonstration of ggplot2

library(ggplot2)

ggplot(rain_df, aes(x=PRECIP)) +
geom_histogram(binwidth=3) +
xlab("Precipitation") + ylab("Frequency")

Frequency

0 20 4
Precipitation

80

Demonstration of dplyr

library(dplyr)
rain_df %>%
group_by (SHADOW) %>%
summarize(avg_precip = mean(PRECIP),
sd_PRECIP=sd (PRECIP))

A tibble: 2 x 3

SHADOW avg_precip sd_PRECIP
<fct> <dbl> <dbl>
1 Westward 31.0 19.4
2 Leeward 11.3 6.39

11. Next steps

Now that you have learnt the fundamentals of R, you can explore
more about R such as

» data visualization with ggplot2,

P> data management and manipulation with dplyr,
P exploratory data analysis,

P linear regression with R, etc.

The SCSRU organizes similar workshops to this on a regular basis
to improve quality of research and data literacy among the
UWaterloo community. We also provide 1-1 free consultation to all
researchers on campus. More information are available on our
website.

https://uwaterloo.ca/scsru

12. Our recommendations of good code practice

Start each program with a description of what it does.

Load all required packages at the beginning.

Consider your choice of working directory.

Use comments to mark off sections of code.

Put function definitions at the top of your file, or in a separate
file if there are many.

Name and style code consistently.

Break code into small, discrete pieces.

Factor out common operations rather than repeating them.
Keep all of the source files for a project in one directory and
use relative paths to access them.

Have someone else review your code.

» Use version control.

vVvyvyvVvyy

vvyyvyy

v

Thank you!

The Statistical Consulting and Survey Research Unit (SCSRU) is the unit
through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.

