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1. Planning and conducting a study

Figure 1: Consider PPDAC when planning and conducting a study



After collecting the data

Figure 2: Recommended process



2.1 The R libraries
In this workshop, we will be using the following packages:

# load the required packages
library(wooldridge)
library(corrplot)
library(lmtest)
library(MASS)

Please install the libraries if you have not done so. For example, to
install wooldridge,

install.packages("wooldridge")



2.2 The data

Throughout this workshop, we will be looking at the data set
econmath from the R package wooldridge.

The data set was sent out to you a few days ago. Please set your
working directory to where you saved the data set and load the
data set into your R environment.

data("econmath") # load the data econmath

This data set contains information about students taking an
economics class in college.



2.2 The data (Continued)

A data set is usually represented by a table of rows and columns.

▶ The rows represent individual observations;
▶ The column represents “features” or “factors” of the

individual observations.
▶ Use the function head() to preview the first six rows of the

data set.
▶ Use the function View() to see the whole data set.
▶ Use the function summary() for a brief summary of the data,

including the minimum value, maximum value, the mean and
median of each variable in the data set.



2.2 The data (Continued)

head(econmath) # preview of the data set

## age work study econhs colgpa hsgpa acteng actmth act mathscr male calculus
## 1 23 15 10.0 0 3.4909 3.355 24 26 27 10 1 1
## 2 23 0 22.5 1 2.1000 3.219 23 20 24 9 1 0
## 3 21 25 12.0 0 3.0851 3.306 21 24 21 8 1 1
## 4 22 30 40.0 0 2.6805 3.977 31 28 31 10 0 1
## 5 22 25 15.0 1 3.7454 3.890 28 31 32 8 1 1
## 6 22 0 30.0 0 3.0555 3.500 25 30 28 10 1 1
## attexc attgood fathcoll mothcoll score
## 1 0 0 1 1 84.43
## 2 0 0 0 1 57.38
## 3 1 0 0 1 66.39
## 4 0 1 1 1 81.15
## 5 0 1 0 1 95.90
## 6 1 0 0 1 83.61



2.2 The data (Continued)

▶ The data set contains some missing data.
▶ Discard the data points with missing fields and gather them in

a new data set

econ <- econmath[complete.cases(econmath), ]



Research goals

Question of Interest:
What factors are significantly associated with a student’s
score in a college economics course?

▶ Find how the variable score, i.e., the final score in an
economics course measured as a percentage, can be
“explained” by other variables.



3. Types of variables

In an regression problem, variables can be broadly categorized into
two groups:

▶ Dependent/Response/Outcome/Explained/Predicted
Variable: the variable that we want to study, usually denoted
as y in linear regression models.
▶ In our case, the dependent variable is score.
▶ Linear regression is typically used to model continuous

outcomes.
▶ Independent/Control/Explanatory/Covariate/Predictor

Variables: variables which may influence the dependent
variable, denoted as X in linear models.
▶ These variables can be of different data types, continuous or

categorical.
▶ What are continuous or categorical variables?



3.1 Continuous variables

▶ A continuous variable is a variable that can take any value
over a continuous range.

▶ Usually, the variable will have a measurement unit, e.g., in our
dataset:
▶ age (years),
▶ work (hours worked per week),
▶ study (hours studying per week)

▶ In R, continuous data is usually defined as num or int.
▶ In our dataset, other continuous variables include:

▶ colgpa (college GPA at the beginning of the semester), hsgpa
(high school GPA), acteng (ACT English score), actmth
(ACT math score), and act (ACT composite score).



3.2 Categorical variables

▶ Also known as discrete or qualitative variables.
▶ A categorical variable is a variable that can only take values

over a finite set of values (or levels).
▶ A university student’s major.
▶ A person’s blood type.
▶ The type of drinks at Starbucks.
▶ A person’s eye colour.
▶ A person’s level of agreement about a statement.

▶ We introduce three major types of categorical variables:
binary, nominal and ordinal variable.



3.2.1 Binary variables

▶ Binary variable: a special categorical variables with only 2
levels. E.g., in our dataset,
▶ male (=1 if male)
▶ econhs (=1 if taken economics),
▶ calculus (=1 if taken calculus),
▶ fathcoll (=1 if father has BA),
▶ mothcoll (=1 if mother has BA).



3.2.2 Nominal variables

▶ Nominal variable: a categorical variable with no specific
order. Examples include:
▶ A university student’s major.
▶ A person’s blood type.
▶ The type of drinks at Starbucks.
▶ A person’s eye color.



3.2.3 Ordinal variables

▶ Ordinal variables: a categorical variable with natural
ordering. Examples include:
▶ A person’s eye color.
▶ A person’s level of agreement about a statement.

▶ Notice that the example “a person’s eye color” shows up as
nominal and ordinal variable. Why?

▶ In our dataset, mathscr (math quiz score, only takes in 11
values from 0 to 1) is an ordinal variable.
▶ How to distinguish ordinal variable with continuous variable?
▶ A student with math quiz score 8 does not mean his/she is

twice as “good” as a student with score 4.
▶ But 80 pounds of apples is twice as heavy as 40 pounds of

bananas.



Question: Is the variable type fixed?

▶ We cannot determine the variable type by its name. To
accurately categorize a variable, we need to consider how it is
recorded.

▶ A common example is age.
▶ When considered as continuous/numeric variable: age is

recorded an exact value, e.g. 25, 35.5, 80, etc.
▶ When considered as categorical variable: age is recorded in

categories, e.g. <20, 21-25, 80+, etc.



4. Data manipulation

▶ Before analyzing the data, we should spend some time to
check that the structure of the data to ensure all the variables
are entered properly.

▶ We should manually tell R to properly restore each variable in
the same way as it should be.



This is what the dataset originally looks like:
str(econ)

## ’data.frame’: 814 obs. of 17 variables:
## $ age : int 23 23 21 22 22 22 22 22 22 21 ...
## $ work : num 15 0 25 30 25 0 20 20 28 22.5 ...
## $ study : num 10 22.5 12 40 15 30 25 15 7 25 ...
## $ econhs : int 0 1 0 0 1 0 1 0 0 0 ...
## $ colgpa : num 3.49 2.1 3.09 2.68 3.75 ...
## $ hsgpa : num 3.35 3.22 3.31 3.98 3.89 ...
## $ acteng : int 24 23 21 31 28 25 15 28 28 18 ...
## $ actmth : int 26 20 24 28 31 30 19 30 28 19 ...
## $ act : int 27 24 21 31 32 28 18 32 30 17 ...
## $ mathscr : int 10 9 8 10 8 10 9 9 6 9 ...
## $ male : int 1 1 1 0 1 1 0 1 0 0 ...
## $ calculus: int 1 0 1 1 1 1 1 1 0 1 ...
## $ attexc : int 0 0 1 0 0 1 0 1 1 0 ...
## $ attgood : int 0 0 0 1 1 0 1 0 0 1 ...
## $ fathcoll: int 1 0 0 1 0 0 0 1 0 0 ...
## $ mothcoll: int 1 1 1 1 1 1 0 1 1 0 ...
## $ score : num 84.4 57.4 66.4 81.2 95.9 ...



4.1 Dealing with Categorical Variables
▶ So far, all the variables are restores as either num or int, i.e.,

R thinks they are all continuous/numeric variables.
▶ To tell R that some variables are categorical, we use the

function factor().
▶ For binary variables,

econ$male <- factor(econ$male)
econ$econhs <- factor(econ$econhs)
econ$calculus <- factor(econ$calculus)
econ$fathcoll <- factor(econ$fathcoll)
econ$mothcoll <- factor(econ$mothcoll)

▶ For ordinal variable,

econ$mathscr <- factor(econ$mathscr, ordered = TRUE)



This is what the dataset looks like right now:
str(econ)

## ’data.frame’: 814 obs. of 17 variables:
## $ age : int 23 23 21 22 22 22 22 22 22 21 ...
## $ work : num 15 0 25 30 25 0 20 20 28 22.5 ...
## $ study : num 10 22.5 12 40 15 30 25 15 7 25 ...
## $ econhs : Factor w/ 2 levels "0","1": 1 2 1 1 2 1 2 1 1 1 ...
## $ colgpa : num 3.49 2.1 3.09 2.68 3.75 ...
## $ hsgpa : num 3.35 3.22 3.31 3.98 3.89 ...
## $ acteng : int 24 23 21 31 28 25 15 28 28 18 ...
## $ actmth : int 26 20 24 28 31 30 19 30 28 19 ...
## $ act : int 27 24 21 31 32 28 18 32 30 17 ...
## $ mathscr : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 10 9 8 10 8 10 9 9 6 9 ...
## $ male : Factor w/ 2 levels "0","1": 2 2 2 1 2 2 1 2 1 1 ...
## $ calculus: Factor w/ 2 levels "0","1": 2 1 2 2 2 2 2 2 1 2 ...
## $ attexc : int 0 0 1 0 0 1 0 1 1 0 ...
## $ attgood : int 0 0 0 1 1 0 1 0 0 1 ...
## $ fathcoll: Factor w/ 2 levels "0","1": 2 1 1 2 1 1 1 2 1 1 ...
## $ mothcoll: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 1 2 2 1 ...
## $ score : num 84.4 57.4 66.4 81.2 95.9 ...



5. The linear model

▶ To find out the factors that affects the students’ score, we
consider to fit a linear model:

score = β0 + β1 × X1 + · · · + βp × Xp + ϵ

▶ This is a linear model, because the left-hand-side has a linear
relation with the right-hand-side.

▶ The response/dependent variable score: the variable that
we want to predict

▶ The explanatory/independent variables X1, · · · , Xp: the
variables that we think can explain the variation of the
response/dependent variable.

▶ Each X1, · · · , Xp in this model corresponds to either a
continuous variable or categorical variable in the dataset.

▶ The error ϵ: accounts for the variation of score that the
X1, · · · , Xp‘ cannot explain.

▶ Because, no model is perfect.



5.1 Assumptions
Linear Regression has the LINE assumptions:

▶ Linearity (L): the response variable and the explanatory
variables have a linear relation.
▶ Otherwise, there is no point to use Linear Regression!

▶ Independence (I): the errors ϵ are independently distributed.
▶ i.e., incorrectly predicting the score of student A will not affect

my prediction for student B.
▶ Normality (N): the errors ϵ follow Normal distribution, with

zero mean and some variance.
▶ Equal Variance (E): the variance of the errors ϵ is constant.

I-N-E assumptions can be summarized with:

ϵ
iid∼ N(0, σ2)

i.e., the errors ϵ are independently and identically distributed (iid)
and follow Normal distribution.



5.1.1 Fitting a linear model in R
We can fit a linear regression model using the function lm()
▶ Regress score against no variable but an intercept:

Model_0 = lm(score ~ 1, data = econ) # "1" is intercept

▶ Regress score against one variable, colgpa (a student’s
college GPA):

Model_1 = lm(score ~ colgpa, data = econ)

▶ Regress score against two variables, colgpa and hsgpa (a
student’s high school GPA):

Model_2 = lm(score ~ colgpa + hsgpa, data = econ)

▶ Regress score against all variables in the dataset:

Model_full = lm(score ~ ., data = econ)
# "." is the shortcut to include all variables.



5.1.2 “Summarize” a fitted linear model using summary()

summary(Model_1)

##
## Call:
## lm(formula = score ~ colgpa, data = econ)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41.784 -6.399 0.564 7.553 32.183
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.3463 2.0181 16.03 <2e-16 ***
## colgpa 14.3232 0.7051 20.31 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 10.84 on 812 degrees of freedom
## Multiple R-squared: 0.337, Adjusted R-squared: 0.3361
## F-statistic: 412.6 on 1 and 812 DF, p-value: < 2.2e-16

▶ Practice: summarize the full model, i.e.,
summary(Model_full).



5.1.3 Get the Model Coefficients using coef()

coef(Model_2)

## (Intercept) colgpa hsgpa
## 19.126435 12.666816 5.343784

▶ Discussion: What can we say about these numbers? Or, do
they have a meaning?

▶ We will talk about interpretation later.



5.2 Interaction terms
▶ An interaction happens when the effect of an independent

variable is affected by the value of another independent
variable.
▶ E.g., A smart student gets good grades. A hardworking

student also gets good grades. A smart and hardworking
students gets even better grades. Then, there is interaction
effect between “being smart” and “being hardworking” on the
outcome: grades.

▶ There are two-factor interactions (2FIs), three-factor
interactions (3FIs), etc.

▶ The higher order interactions are less likely to be significant.
They are also harder to interpret.

▶ We recommend to not go beyond 2FIs unless the literature
suggests that certain higher order interaction terms are
meaningful.

▶ Experts’ opinion can be helpful to identify meaningful
higher-order terms.



5.2.1 Modelling interaction terms using “*” and “:”
▶ Consider a model with two independent variables: colgpa

(continuous, student’s college GPA) and calculus (binary,
=1 if student took calculus)

Model_3 = lm(score ~ colgpa + calculus, data = econ)

▶ To incorporate the interaction term between colgpa and
calculus, we have two ways:

Model_3_1 = lm(score ~ colgpa + calculus + colgpa:calculus,
data = econ) # using ":"

Model_3_2 = lm(score ~ colgpa * calculus,
data = econ) # using "*"

▶ In R, A * B is equivalent to A + B + A:B.
▶ Practice: summarize Model_3_1 and Model_3_2 and see if

they are the same.



5.3 Model selection
▶ The data set econ has 15 independent variables, hence our

linear regression models can contain any combination of these
variables and/or their interactions.

▶ So which model we should choose?
▶ When fitting linear models, it is important to perform model

selection procedures and assess the model fit before
interpreting the results.

▶ In general, a “good” model should:
▶ fit the observed data well, i.e., explain the response variable

well.
▶ not overfit the data, i.e., can make good out-of-sample

predictions.
▶ There are 2 major approaches:

▶ Manual selection: Likelihood Ratio Test (LRT), AIC, BIC,
adjusted R2, etc.

▶ Automatic selection: forward selection, backward selection,
stepwise selection, etc.



5.3.1 Likelihood ratio test
▶ One of the most common ways to compare models against

each other is through the likelihood ratio test (LRT).
▶ It is used to compare a full model vs a nested model.
▶ E.g., a full model:

Model_full = lm(score ~ ., data = econ)

▶ A nested model contains a subset of variables that appear in
the full model, e.g.,

Model_2 = lm(score ~ colgpa + hsgpa, data = econ)

▶ Use lrtest() to perform a LRT between two models:

lrtest(Model_2, Model_full)

▶ Discussion: what does the test output say?

https://en.wikipedia.org/wiki/Likelihood-ratio_test


5.3.1 Likelihood ratio test (continued)

▶ The LRT tests if the nested model is as good as the full
model.
▶ Because the full model contains the nested mode, the former

should perform no worse than the later.
▶ But, is it necessary to make the mode as complicated as the

full model?
▶ From the test results, the p-value < 0.05. So, at 5%

significance level, we say that the nested model is not
sufficient to explain the data and the full model is
preferred.
▶ Note that we are not saying the full model is the “best”, it is

only preferred over the nested model.
▶ If the p-value ≥ 0.05, then we can say that the nested model

is as good as the full model, and the simpler is preferred.



5.3.2 Information criteria
▶ For nested or non-nested models, we can also perform model

selection by
▶ Akaike information criterion (AIC)
▶ Bayesian information criterion (BIC)

▶ Models with smaller AIC or BIC represents better fit.
▶ Although both AIC and BIC are similar, research has shown

that each are appropriate for different tasks.
▶ Use AIC() and BIC()

AIC(Model_full)
AIC(Model_2)
BIC(Model_full)
BIC(Model_2)

▶ Discussion: what does the output say?

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion#Comparison_with_BIC


5.3.3 Stepwise model selection procedure
▶ When there are many covariates, the built-in stepwise model

selection procedure, step() may be a better option.
▶ The step() function can evaluate the model on the AIC, or

the BIC, where a smaller value represents a better fit.
▶ We can also specify which direction we want the function to

search through: forward, backward or both.
▶ Exercise: try the following. Which linear model is selected?

## minimal model: intercept only
M0 <- lm(score ~ 1, data = econ)
## maximal model: all main effects and interaction effects
Mfull <- lm(score ~ (.)ˆ2, data = econ)
# stepwise selection
Mstart <- lm(score ~ . - acteng - actmth, data = econ)
Mstep <- step(object = Mstart,

scope = list(lower = M0, upper = Mfull),
direction = "both", trace = FALSE)

# summary(Mstep) # model chosen by stepwise selection

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion


6. Model diagnostics

▶ After having fitted the model, it is important that we check
that the assumptions of our model are satisfied in order to
verify that our model is valid.

▶ Basically, we check the LINE assumptions using diagnostic
plots.

▶ Practice: In the following slides, try to regenerate the
diagnostic plots. And, what can we say about each plot?



6.1 Check Linearity (L): Scatter plot
▶ Scatter plot is always the first step which helps us check the

linear relationships among our variables.

pairs(~ age + work + study + colgpa + hsgpa + acteng +
actmth + act + score, data = econ)
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6.1 Check Linearity (in terms of Correlation): Heatmap
tmp <- data.matrix(econ[, c(1:3, 5:9, 16)])
corrplot(cor(tmp), method = "circle")
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6.2 Check Independence (I): Residual plot
▶ It is not always possible to assess the independence

assumption in practice.
▶ If data are serially correlated (e.g., time-series, or

measurement repeatedly observed from the same object), we
may be able to identify any violation of the independence
assumption by plotting residuals against their natural ordering.

▶ If there is no-serial correlation, we should expect the residual
plot alike a horizontal band around 0 with no specific pattern.

plot(resid(Mstep))
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6.3 Check Equal-Variance (E)
▶ Plot a scatter plot of residuals and fitted values to check (E).
▶ If (E) is satisfied, you should see a horizontal band of residuals

evenly distributed along with the fitted values.
▶ In R, function plot(Model) can plot all diagnostic plots for a

fitted model Model. By setting which=1, we get the residuals
vs fitted values plot.

plot(Mstep, which = 1, ask = FALSE)
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6.4 Check Normality (N)
▶ Plot a quantile-quantile (QQ) plot to check (N).
▶ If (N) is satisfied, you should see the dots closed to the

straight dashed line.
▶ In R, set which = 2 for QQ plot.

plot(Mstep, which = 2, ask = FALSE)
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6.4.1 If Normality (N) fails. . .

▶ If Normality is violated, we can consider the power
transformation.

▶ Power transformation means, when we find the original data
Y does not follow Normal distribution, we can raise Y to the
power of λ, i.e.,

Y 7→ Y λ

▶ If λ is properly chosen, Y λ will follow Normal distribution.

https://en.wikipedia.org/wiki/Power_transform
https://en.wikipedia.org/wiki/Power_transform


6.4.1 If Normality (N) fails. . . (continued)
▶ In R, we can use boxcox() applied to a fitted model.

bc = boxcox(Model_1)
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▶ The best power transformation is to take the power of:

bc$x[which.max(bc$y)]

## [1] 2



6.5 Check Multicolinearity

▶ If two explanatory variables are highly correlated, the
regression has trouble figuring out whether the change in the
response variable is due to one explanatory variable or the
other, or both.

▶ As a result, the estimates for the model coefficients can
change a lot from one random sample to another.

▶ This is known as variance inflation.
▶ We can detect collinearity by checking the variance inflation

factor.

X <- model.matrix(Mstep)
VIF <- diag(solve(cor(X[, -1])))
sqrt(VIF)



6.6 Checking Outliers and Influential Points

▶ Outliers are observations which have unusually large residuals
compared to the others.

▶ Influential points are observations which have unusually large
leverage compared to the others.

▶ We can use the Cook’s distance (left) and Residual vs
Leverage (right) plots to detect outliers and influential plots
respectively.

▶ In R, set which = 4 in the function plot() for Cook’s
distance plot and set which=5 for Residual vs Leverage
plot.

https://en.wikipedia.org/wiki/Leverage_(statistics)
https://en.wikipedia.org/wiki/Cook%27s_distance#Definition


6.6 Checking Outliers and Influential Points (Continued)
par(mfrow = c(1, 2))
plot(Mstep, which = c(4, 5), ask = FALSE)
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▶ Discussion: Outliers and Influential Points are not the same,
why?



7. Interpretation of the results

▶ Multiple regression analysis provides a ceteris paribus (“all
things being equal”) interpretation even though the data have
not been collected in a ceteris paribus fashion.

▶ Consider a fitted model below:

score = β̂0 + β̂1 × colgpa + β̂2 × hsgpa

▶ β̂ are the estimates of the model coefficients.
▶ β̂1 quantifies the association of colgpa with score, holding

hsgpa fixed.
▶ Practice: Refit the model and summarize the model output.



7. Interpretation of the results (continued)
▶ In the model summary, you should find this table:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.126435 3.6904376 5.182701 2.762615e-07
## colgpa 12.666816 0.7987907 15.857490 1.572946e-49
## hsgpa 5.343784 1.2544458 4.259876 2.285231e-05

▶ Practice: What is β̂1 and β̂2?
▶ Interpretation:

Keeping ‘hsgpa‘ fixed, one unit increase in ‘colgpa‘ is asso-
ciated with **an average** increase of 12.6668 in ‘score.‘

▶ Discussion:
▶ How to interpret the association between hsgpa and score?
▶ Why on average?
▶ Is the association between colgpa and score “reliable”?
▶ What is “reliable”?



7. Interpretation of the results (continued)

▶ Interpretation of the association between hsgpa and score:
Keeping ‘colgpa‘ fixed, one unit increase in ‘hsgpa‘ is as-
sociated with **an average** increase of 5.3438 in ‘score.‘

▶ Linear Regression only tells us an on average (or group)
effect, the individual differences and variations cannot be
explained by Linear Regression Models.

▶ Statistical significance: to tell whether our estimations of
the associations between the response and explanatory
variables are “reliable”.

▶ We introduce 2 ways to check statistical significance of a
model estimate: confidence interval (CI) & p-value.



7.1 Confidence Interval (CI) & p-value
▶ Estimation has errors, which is quantified by the Standard

Errors (Std. Error) in the model summary.

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.126435 3.6904376 5.182701 2.762615e-07
## colgpa 12.666816 0.7987907 15.857490 1.572946e-49
## hsgpa 5.343784 1.2544458 4.259876 2.285231e-05

▶ The (1 − α)% Confidence Interval (CI) of β̂ is the range
that the true value of β lies in with (1 − α)% of chance.
▶ α is the significance level, usually set as 0.05.
▶ Use function confint and specify level = 1-α to compute

the (1 − α)% CI:

confint(Model_2, level=0.95)

## 2.5 % 97.5 %
## (Intercept) 11.88250 26.370370
## colgpa 11.09888 14.234757
## hsgpa 2.88144 7.806127



7.1 Confidence Interval (CI) & p-value (continued)

▶ If the estimation of β, i.e., β̂, lies within the (1 − α)% CI, we
say that β is statistically significant at (1 − α)%
confidence level.

▶ The other way to check statistical significance is the p-value,
which is given in the last column of

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.126435 3.6904376 5.182701 2.762615e-07
## colgpa 12.666816 0.7987907 15.857490 1.572946e-49
## hsgpa 5.343784 1.2544458 4.259876 2.285231e-05

▶ Compare the p-value with the significance level α = 0.05.
▶ If p-value < 0.05, then it is statistically significant.
▶ Practice: Are β̂1 and β̂2 statistically significant? Why?



7.2 Prediction Intervals (PI)

▶ Unlike Confidence Interval, a prediction interval (PI) is an
estimate of an interval in which a future observation will fall,
with a certain probability, given what has already been
observed.
▶ So, it is a range that we can reasonably expect our model

prediction to fall in.
▶ In R, we can compute the PI using function predict() and

setting interval = "prediction":

predict(Model, newdata, interval='prediction')



8. Statistical vs practical significance

The p-values are commonly used as an indicator of
significance/importance. However, we want to remind readers that:

▶ Statistical inference techniques test for statistical significance.
▶ Statistical significance means that the effect observed in a

sample is very unlikely to occur if the null hypothesis is true.
▶ Whether this observed effect has practical importance is an

entirely different question. The experts in the field of interest
determine whether these results have any practical
importance.



Some notes about p-values

The ASA’s Statement on p-values:

▶ P-values can indicate how incompatible the data are with a
specified statistical model.

▶ P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

▶ Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.

▶ Proper inference requires full reporting and transparency
▶ A p-value, or statistical significance, does not measure the size

of an effect or the importance of a result.
▶ By itself, a p-value does not provide a good measure of

evidence regarding a model or hypothesis.

https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


9. Next steps
Linear models are widely used in many literature. However, there
are limitations. We encourage you to explore other models such as

▶ generalized linear models,
▶ linear mixed effect models, and
▶ non-parametric statistics model,

to find a good fit for your application.



Figure 3: Recommended steps to data analysis



Beyond this workshop
For those who are interested to learn more, the SCSRU hosts
statistics seminars and workshops focusing on topics commonly
encountered by researchers on campus. Please check our website
for future events.

Thank you!

The Statistical Consulting and Survey Research Unit (SCSRU) is the unit
through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.

https://uwaterloo.ca/scsru

