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R and R packages
Throughout our discussion, we will be using R to perform the
analysis. We will use the following packages in R:

▶ catdata,
▶ MASS,
▶ performance, and
▶ AER.

If you are conducting analysis using other software, please consult
the respective handbook for detailed codes.



1. After collecting the data

Figure 1: From raw data to results



A motivating example
▶ One of the data sets that we will use is the heart data set

from the catdata package in R.
▶ This data set contains a retrospective sample of 462 males

between ages 15 and 64 in South Africa where the risk of
heart disease is considered high.

# install.packages("catdata") #Install the library if needed
library("catdata")
data("heart", package = "catdata") # load the data set

# convert to data frame
heart <- data.frame(heart)

# View(heart) #Spreadsheet view



This data set contains the variables:

▶ y: whether or not the subject has coronary heart disease,
▶ sbp: measurements of systolic blood pressure,
▶ tobacco: cumulative tobacco use,
▶ ldl: low density lipoprotein cholesterol,
▶ adiposity: adiposity,
▶ famhist: whether or not the subject has a family history of

heart disease,
▶ typea: measures of type-A behavior,
▶ obesity: a measure of obesity,
▶ alcohol: current alcohol consumption, and
▶ age: the subject’s age.



1.1. Explanatory and response variables
The most common goal in research is to understand the
relationship between variables. These variables are typically
categorized as:

▶ Response variable (or dependent variable): An outcome of
the study or of interest.

▶ Explanatory variable (or independent variable): A measure
in the study used to explain, predict or influence the response
variable. Sometimes we also refer them as predictors or
covariates.

Throughout this workshop, we want to investigate the factors that
have an impact on coronary heart disease. Hence, y is the response
variable, and the other variables are the explanatory variables.



2. Linear regression
We often encounter the linear regression (linear model) in data
analysis because:

▶ the model assumptions are often found satisfactory among
many data sets; and

▶ the interpretation of each parameter in the model is easy and
clear.

When the assumptions of the linear regression model are satisfied,
the model is powerful in terms of inference and interpretation.

Although linear models have the potential to answer many research
questions, we may be interested in finding the association between
an outcome and a set of covariates where the outcome is not
necessarily continuous or normally distributed.



3. Generalized Linear Models
When the response variable is not continuous or normally
distributed, we are most likely to use a family of model called the
generalized linear models.

The generalized linear model is comprised of three components:

1. The Random Component: The distribution of the
independently and identically distributed (i.i.d.) response
variables are assumed to come from a parametric distribution
that is a member of the exponential family.

2. The Systematic Component: The linear combination of
explanatory variables and regression parameters.

3. The Link Function: The function that relates the mean of the
distribution of the response to the linear predictor.

https://en.wikipedia.org/wiki/Exponential_family


3.1 Link Functions
Recall that we are modelling the mean of the outcome through a
link function as in

g(µi) = β0 + β1xi1 + β2xi2 + ... + βpxip.

▶ The link function will essentially transform a non-linear
outcome such that it can be linked to the covariates through
a linear combination allowing us to fit a generalized linear
model.

▶ For each distribution in the exponential family, there is a
canonical link which is recommended to use as simplifies the
process of finding maximum likelihood estimates in our model
by ensuring that the mean of our outcome is mapped to
(−∞, ∞) so we do not need to worry about constraints when
optimizing.

▶ It also ensures xT y is a sufficient statistic for β.

https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function
https://en.wikipedia.org/wiki/Sufficient_statistic


Figure 2: Commonly used distributions and their canonical links



3.2 Assumptions
1. The outcome Yi is independent between subjects and comes

from a distribution that belongs to the exponential family,
2. There is a linear relationship between a transformation of the

mean and the predictors through the link function, and
3. The errors are uncorrelated with constant variance, but not

necessarily normally distributed.

We also assume that there is no multicollinearity among
explanatory variables

Notes:

1. The methodology is particularly sensitive to these assumptions
when sample sizes are small.

2. When collecting data, we also want to ensure that the sample
is representative of the population of interest to answer the
research question(s).

https://en.wikipedia.org/wiki/Multicollinearity


3.3 Model selection
When fitting GLMs, it is important to perform model selection
procedures and assess the model fit before interpreting the results.
We aim to find the simplest model that explains the relationship
between the outcome and covariate(s) of interest.



3.3.1 Likelihood ratio test
▶ One of the most common ways to compare models against

each other is through the likelihood ratio test (LRT).
▶ We can compare a full model to a nested model that contains

a subset of variables that appear in the full model.
▶ LRTs tend to be the preferred method for building logistic

regression models.

https://en.wikipedia.org/wiki/Likelihood-ratio_test


3.3.2 Information criteria
For nested or non-nested models, we can also perform model
selection by

▶ Akaike information criterion (AIC)
▶ Bayesian information criterion (BIC)

For both criteria, a smaller value represents a better fit. Although
both AIC and BIC are similar, research has shown that each are
appropriate for different tasks.

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion#Comparison_with_BIC


4. Logistic Regression
The logistic regression relates a binary outcome Y i to a set of
covariates x i through the mean, as

g(µi) = xT
i β

where Yi is the binary outcome for individual i , x i is a p × 1 vector
of covariates for individual i , and g(·) is a link function.

▶ Our primary interest is in estimating the coefficients β in our
model.

▶ These coefficients can be interpreted as log odds ratio of the
outcome for a one unit change in the corresponding covariate.



Interpretation of the coefficients β

g(µi) = xT
i β

Suppose x1 is a binary covariate such as disease presence,

▶ β1 is the estimated log odds ratio of the outcome Y for those
with the disease versus without, controlling for other
covariates in the model.

Suppose x1 is a continuous covariate such as age,

▶ β1 is the estimated log odds ratio associated with a one year
increase in age, controlling for other covariates.



4.1 The heart data set
The researchers who collected the‘ data set are interested to see
whether tobacco use has an effect on CHD diagnosis.

▶ The dependent variable is CHD diagnosis.
▶ Since the dependent variable is a binary variable, we cannot

apply the linear model.
▶ The logistic regression model is a reasonable model for this

scenario because we also wish to control for other
variables/factors.



4.1.1 Data pre-processing
▶ Before building any kind of models in R, we need to

pre-process or “clean” the data.
▶ The first thing we can do is ensure the covariates in our data

set are the correct type.

str(heart)

## ’data.frame’: 462 obs. of 10 variables:
## $ y : num 1 1 0 1 1 0 0 1 0 1 ...
## $ sbp : num 160 144 118 170 134 132 142 114 114 132 ...
## $ tobacco : num 12 0.01 0.08 7.5 13.6 6.2 4.05 4.08 0 0 ...
## $ ldl : num 5.73 4.41 3.48 6.41 3.5 6.47 3.38 4.59 3.83 5.8 ...
## $ adiposity: num 23.1 28.6 32.3 38 27.8 ...
## $ famhist : num 1 0 1 1 1 1 0 1 1 1 ...
## $ typea : num 49 55 52 51 60 62 59 62 49 69 ...
## $ obesity : num 25.3 28.9 29.1 32 26 ...
## $ alcohol : num 97.2 2.06 3.81 24.26 57.34 ...
## $ age : num 52 63 46 58 49 45 38 58 29 53 ...



▶ The variables sbp, tobacco, adiposity, obesity, and
alcohol, are continuous covariates. The output shows that
these variables are recorded as num, i.e. numeric value. No
further action is required.

▶ The variable famhist is a binary variable, but recorded as a
numeric value. We need to convert it into a categorical
variable.

# specify categorical variables as factors
heart$famhist_f <- as.factor(heart$famhist)



Data manipulation
Some data requires us to re-categorize, transform or manipulate
some of the variables.

Suppose we want to convert age into a categorical variable to have
a multi-level categorical variable in our analysis in the following
manner:

▶ Group 1: 15 to 24
▶ Group 2: 25 to 34
▶ Group 3: 35 to 44
▶ Group 4: 45 to 54
▶ Group 5: 55 to 64



Data manipulation in R

#make a copy of age
heart$age_f <- heart$age

# overwrite it, making groups by age
heart$age_f[heart$age %in% 15:24] <- 1
heart$age_f[heart$age %in% 25:34] <- 2
heart$age_f[heart$age %in% 35:44] <- 3
heart$age_f[heart$age %in% 45:54] <- 4
heart$age_f[heart$age %in% 55:64] <- 5
#specify variable as factor
heart$age_f <- as.factor(heart$age_f)

We emphasize that this decision is just to demonstrate data
manipulation tricks and later on, how to work with categorical
factors in the model.



4.2 Fitting logisttic regression in R
To fit a logistic regression model in R, we fit a generalized linear
model using the glm() function and specify a logistic link function
by using the family=binomial(link = "logit")" argument.
We begin by building the main-effects only logistic regression
model considering all covariates previously described by:

#build the logistic model
heart_modelmaineffects <- glm(y ~ sbp + tobacco + ldl +

adiposity + famhist_f +
typea + obesity + alcohol +
age_f,

family=binomial(link = "logit"),
data=heart)



#show the output
summary(heart_modelmaineffects)

##
## Call:
## glm(formula = y ~ sbp + tobacco + ldl + adiposity + famhist_f +
## typea + obesity + alcohol + age_f, family = binomial(link = "logit"),
## data = heart)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.166777 1.389558 -4.438 9.08e-06 ***
## sbp 0.007399 0.005745 1.288 0.197755
## tobacco 0.083147 0.026648 3.120 0.001807 **
## ldl 0.168207 0.059890 2.809 0.004976 **
## adiposity 0.027937 0.029331 0.952 0.340868
## famhist_f1 0.949461 0.229867 4.130 3.62e-05 ***
## typea 0.039052 0.012308 3.173 0.001510 **
## obesity -0.076045 0.045265 -1.680 0.092959 .
## alcohol -0.001241 0.004499 -0.276 0.782638
## age_f2 1.867250 0.792464 2.356 0.018460 *
## age_f3 1.899604 0.796106 2.386 0.017027 *
## age_f4 2.179759 0.809370 2.693 0.007078 **
## age_f5 2.710949 0.809071 3.351 0.000806 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 468.28 on 449 degrees of freedom
## AIC: 494.28
##
## Number of Fisher Scoring iterations: 6



4.2.1 Model selection with LRT
▶ The three covariates have small estimated coefficients, and

p-values larger than 0.05.
▶ This is an indication that these variables may not be necessary

in the model.
▶ We can see if these covariates are necessary in the model by

testing the full model against one that does not contain the
three covariates using the likelihood ratio test (LRT).



4.2.1 Model selection with LRT

heart_model2 <- glm(y ~ tobacco + ldl + famhist_f + typea +
obesity + age_f,

family=binomial(link = "logit"),
data=heart)

# perform the LRT
anova(heart_model2, heart_modelmaineffects, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: y ~ tobacco + ldl + famhist_f + typea + obesity + age_f
## Model 2: y ~ sbp + tobacco + ldl + adiposity + famhist_f + typea + obesity +
## alcohol + age_f
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 452 471.07
## 2 449 468.28 3 2.7856 0.4259



Interpreting results from a LRT
▶ The p-value is larger than 0.05, indicating that we do NOT

reject the null hypothesis.
▶ This means that the two models are not significantly different,

statistically speaking.
▶ The test suggests that we can move forward with the simpler

model.



##
## Call:
## glm(formula = y ~ tobacco + ldl + famhist_f + typea + obesity +
## age_f, family = binomial(link = "logit"), data = heart)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.56962 1.16980 -4.761 1.92e-06 ***
## tobacco 0.08307 0.02597 3.199 0.00138 **
## ldl 0.18393 0.05839 3.150 0.00163 **
## famhist_f1 0.93218 0.22816 4.086 4.40e-05 ***
## typea 0.03717 0.01218 3.052 0.00228 **
## obesity -0.03857 0.02976 -1.296 0.19491
## age_f2 1.88884 0.78761 2.398 0.01648 *
## age_f3 2.05322 0.78102 2.629 0.00857 **
## age_f4 2.42502 0.78318 3.096 0.00196 **
## age_f5 3.03253 0.77335 3.921 8.81e-05 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 471.07 on 452 degrees of freedom
## AIC: 491.07
##
## Number of Fisher Scoring iterations: 6



We continue to remove obesity. Why?

# fit the nested model without obesity
heart_model3 <- glm(y ~ tobacco + ldl + famhist_f + typea +

age_f,
family=binomial(link = "logit"),
data=heart)

# perform the LRT
anova(heart_model3, heart_model2, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: y ~ tobacco + ldl + famhist_f + typea + age_f
## Model 2: y ~ tobacco + ldl + famhist_f + typea + obesity + age_f
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 453 472.79
## 2 452 471.07 1 1.716 0.1902



Interactions
▶ All of the remaining covariates in our model are statistically

significant.
▶ We could stop the model selection procedure here.
▶ We could also consider interactions and higher-order terms in

our model selection.



What are interaction terms?
▶ An interaction happens when the effect of an independent

variable is affected by the value of another independent
variable.

▶ There are two-factor interactions (2FIs), three-factor
interactions (3FIs), etc.

▶ The higher order interactions are less likely to be significant.
They are also harder to interpret.

▶ We recommend to not go beyond 2FIs unless the literature
suggests that certain higher order interaction terms are
meaningful.

▶ Experts’ opinion can be helpful to identify meaningful
higher-order terms.



Back to the heart data set
▶ Suppose the experts believe that those with a family history of

heart disease may have different cholesterol levels than those
who do not.

▶ Let’s include the 2FI (ldl*famhist_f) into the model and
check whether its presence is necessary.

# fit the nested model with an interaction term
heart_model4 <- glm(y ~ tobacco + ldl + famhist_f + typea +

age_f +ldl*famhist_f,
family=binomial(link = "logit"),
data=heart)



# perform the LRT
anova(heart_model3, heart_model4, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: y ~ tobacco + ldl + famhist_f + typea + age_f
## Model 2: y ~ tobacco + ldl + famhist_f + typea + age_f + ldl * famhist_f
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 453 472.79
## 2 452 463.46 1 9.3244 0.002261 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

▶ The p-value is less than 0.05, indicating that we reject the
null hypothesis that the simpler model fits as well as the
larger model.

▶ That is, we should include the interaction term in our model.



summary(heart_model4)

##
## Call:
## glm(formula = y ~ tobacco + ldl + famhist_f + typea + age_f +
## ldl * famhist_f, family = binomial(link = "logit"), data = heart)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.61061 1.04614 -5.363 8.18e-08 ***
## tobacco 0.08901 0.02644 3.366 0.000762 ***
## ldl 0.01087 0.07413 0.147 0.883425
## famhist_f1 -0.81122 0.62828 -1.291 0.196643
## typea 0.03625 0.01243 2.917 0.003535 **
## age_f2 1.79383 0.78263 2.292 0.021902 *
## age_f3 1.95366 0.77616 2.517 0.011834 *
## age_f4 2.24868 0.77355 2.907 0.003650 **
## age_f5 2.96258 0.76746 3.860 0.000113 ***
## ldl:famhist_f1 0.34624 0.11725 2.953 0.003146 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 463.46 on 452 degrees of freedom
## AIC: 483.46
##
## Number of Fisher Scoring iterations: 6



Notes on model selection
▶ The main effects of ldl and famhist_f are now insignificant.
▶ The common practice is to keep both main effects in the

model when the interaction term is in the model. This is to
ease interpretation later on.

▶ For categorical variables, we do not test if individual levels of
the covariate should be included.



4.2.2 Stepwise model selection procedure
▶ When there are many covariates, the built-in stepwise model

selection procedure, step() may be a better option.
▶ The step() function can evaluate the model on the Akaike

information criterion (AIC), or the Bayesian information
criterion (BIC), where a smaller value represents a better fit.

▶ We can also specify which direction we want the function to
search through: forward, backward or both.

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion


The backward selection procedure

#fit a null model, including the intercept
heart_empty <- glm(y ~ 1,

family=binomial(link = "logit"),
data=heart)

#fit a full model, including the interaction
heart_full <- glm(y ~ sbp + tobacco + ldl + adiposity +

famhist_f + typea + obesity +
alcohol + age_f + ldl*famhist_f,

family=binomial(link = "logit"),
data=heart)

heart_step <- step(heart_full, scope = list(upper=heart_empty),
direction = c("backward"),
k=2, trace=0)



summary(heart_step)

##
## Call:
## glm(formula = y ~ tobacco + ldl + famhist_f + typea + age_f +
## ldl:famhist_f, family = binomial(link = "logit"), data = heart)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.61061 1.04614 -5.363 8.18e-08 ***
## tobacco 0.08901 0.02644 3.366 0.000762 ***
## ldl 0.01087 0.07413 0.147 0.883425
## famhist_f1 -0.81122 0.62828 -1.291 0.196643
## typea 0.03625 0.01243 2.917 0.003535 **
## age_f2 1.79383 0.78263 2.292 0.021902 *
## age_f3 1.95366 0.77616 2.517 0.011834 *
## age_f4 2.24868 0.77355 2.907 0.003650 **
## age_f5 2.96258 0.76746 3.860 0.000113 ***
## ldl:famhist_f1 0.34624 0.11725 2.953 0.003146 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 596.11 on 461 degrees of freedom
## Residual deviance: 463.46 on 452 degrees of freedom
## AIC: 483.46
##
## Number of Fisher Scoring iterations: 6



▶ The model chosen by the step() function in this case is
exactly the same as the one we obtained by the LRT.

▶ However, depending on the order we perform the LRTs, or the
direction of the stepwise algorithm, we can obtain different
model results.

▶ LRTs tend to be preferred for building logistic regression
models where we want to draw claims and perform hypothesis
tests.

▶ AIC based algorithms tend to be preferred for forecasting
problems.



4.3 Model diagnostics
▶ The goal of the researcher is to see if there is a relationship

between CHD diagnosis and tobacco use.
▶ Recall that the LRT is preferable for logistic regression.
▶ As such, we will continue our analysis with the model chosen

by our LRTs.
▶ Before interpreting the chosen model, we must assess the

model fit.



4.3.1 Residual analysis
We begin by plotting the Pearson residuals to give an idea of the
model fit.

# Plot the residuals
plot(residuals(heart_model4, type = "pearson"),

ylab = "Pearson Residuals")
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From the residual plot
▶ There are two points that deviate far away from the rest.
▶ To identify the two subjects with high residual values, we can

use:

# sort residuals largest to smallest and select the first two
sort(residuals(heart_model4, type = "pearson"),

decreasing = T)[1:2]

## 261 21
## 6.714401 3.987004



▶ To see if these are influential observations, we can refit the
logistic regression model without these observations.

▶ If the estimates of our model change greatly, then we should
remove these two observations as they may affect inference
and predictions made with the logistic regression model.

https://en.wikipedia.org/wiki/Influential_observation#:~:text=In%20statistics%2C%20an%20influential%20observation,effect%20on%20the%20parameter%20estimates.


Let’s make a second data set without the 261st observation and
see if the results of the model change.

heart2 <- heart[-261,] # removing the 261st observation

#fit the model using heart2
heart_model4_2 <- glm(y ~ tobacco + ldl + famhist_f + typea +

age_f + ldl*famhist_f,
family=binomial(link = "logit"),
data=heart2)

Do you see that the estimated coefficients and standard errors
change after removing the observation?



▶ The estimated regression coefficients and standard errors of
the age_f variable changed greatly.

▶ This shows that observation 261 is an influential observation,
and should be removed.



Another observation
The Pearson residual of observation 21 is large too.

heart3 <- heart[-c(21, 261),]

#fit the model using heart3
heart_model4_3 <- glm(y ~ tobacco + ldl + famhist_f + typea +

age_f + ldl*famhist_f,
family=binomial(link = "logit"),
data=heart3)



Before moving forward with this new model, we need to check the
residual plot again.
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Most residual values fall between (−2, 2) (with no values beyond
±3), which indicates a proper model fit.



What do you notice?
summary(heart_model4_3)

##
## Call:
## glm(formula = y ~ tobacco + ldl + famhist_f + typea + age_f +
## ldl * famhist_f, family = binomial(link = "logit"), data = heart3)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -20.65184 793.20342 -0.026 0.979229
## tobacco 0.08771 0.02635 3.328 0.000874 ***
## ldl 0.03073 0.07479 0.411 0.681168
## famhist_f1 -0.65602 0.63603 -1.031 0.302337
## typea 0.03471 0.01254 2.768 0.005642 **
## age_f2 16.82365 793.20311 0.021 0.983078
## age_f3 16.97712 793.20310 0.021 0.982924
## age_f4 17.26763 793.20310 0.022 0.982632
## age_f5 17.97553 793.20309 0.023 0.981920
## ldl:famhist_f1 0.32012 0.11794 2.714 0.006643 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 591.85 on 459 degrees of freedom
## Residual deviance: 446.13 on 450 degrees of freedom
## AIC: 466.13
##
## Number of Fisher Scoring iterations: 17



The model summary shows that some covariates have large
estimated standard errors and are no longer significant, indicating
that after removing the influential observations we should re-do
our model fitting.

#fit a null model
heart_empty2 <- glm(y ~ 1,

family=binomial(link = "logit"),
data=heart3)

#fit a full model, including the interaction
heart_full2 <- glm(y ~ sbp + tobacco + ldl + adiposity +

famhist_f + typea + obesity +
alcohol + age_f + ldl*famhist_f,

family=binomial(link = "logit"),
data=heart3)

heart_step2 <- step(heart_full2, scope = list(upper=heart_empty2),
direction = c("both"),
k=2,
trace = 0) #don't print every step



▶ The estimates of age_f and the corresponding standard error
are large in comparison to other covariates.

▶ The stepwise procedure (and an LRT) will not suggest us to
remove age_f.

▶ The variable age_f is not adding any value to our model.
▶ Let’s try to refit this model without age_f:

# fit a new model
heart_model7 <- glm(y ~ tobacco + ldl + famhist_f +

typea + ldl*famhist_f ,
family=binomial(link = "logit"),
data=heart3)



How does this look?
summary(heart_model7)

##
## Call:
## glm(formula = y ~ tobacco + ldl + famhist_f + typea + ldl * famhist_f,
## family = binomial(link = "logit"), data = heart3)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.47029 0.74548 -4.655 3.24e-06 ***
## tobacco 0.13821 0.02539 5.444 5.22e-08 ***
## ldl 0.09899 0.07189 1.377 0.16850
## famhist_f1 -0.39576 0.61446 -0.644 0.51953
## typea 0.02383 0.01182 2.016 0.04385 *
## ldl:famhist_f1 0.30096 0.11609 2.592 0.00953 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 591.85 on 459 degrees of freedom
## Residual deviance: 486.83 on 454 degrees of freedom
## AIC: 498.83
##
## Number of Fisher Scoring iterations: 4
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The residuals are behaving as expected with no extreme values.



4.3.2 Multicollinearity
▶ We should also check for multicollinearity in our model.
▶ To do so, we can use the vif() function from the car

package.
▶ We typically are concerned about multicollinearity when VIF

values are above 10.



# there are multiple vif functions so car:: specifies
# we are using the vif function from the car package
car::vif(heart_model7)

## there are higher-order terms (interactions) in this model
## consider setting type = ’predictor’; see ?vif

## tobacco ldl famhist_f typea ldl:famhist_f
## 1.034016 1.649904 7.596317 1.013287 8.480374

We see that we only have low-moderate variance inflation factors
(VIFs), indicating that multicollinearity is not an issue in this
model.



4.4 Interpretation
Now, we are ready to discuss how to interpret the results. There
are three ways to discuss the results:

▶ odd ratios,
▶ confidence intervals, and
▶ probabilities.



4.4.1 Odds
The odds of an event is the probability of success (π) divided by its
probability of failure (1 − π):

Odds = π

1 − π
.

If we have a fair coin, what is the odds of getting a head? The
probability of getting a head is 0.5 and the probability of not
getting a head is 0.5. The odds of getting a head is

Odds = 0.5
1 − 0.5 = 1



Odd ratios
The odd ratio is a comparison of two odds,

OR = Odds1
Odds2

,

where Odds1 is the odds of Event 1 and Odds2 is the odds of
Event 2.

The main interest is to determine whether an odd ratio (OR)

▶ is equal to 1,
▶ larger than 1, or
▶ smaller than 1.



▶ When OR = 1, this implies that the probabilities of the two
events happening are the same.

▶ When OR > 1, this implies that Event 1 is more likely to
happen than Event 2.

▶ When OR < 1, then we say that Event 1 is less likely to
happen than Event 2.



Revisiting the model
In mathematical notation, the model we chose from the selection
procedure is written as

log
[

πi
1 − πi

]
= β0+β1x1 + β2x2 + β3x3 + β4x4 + β5x2 ∗ x3.

▶ πi is the probability of having CHD,
▶ x1 is the measurement of cumulative tobacco use,
▶ x2 is the ldl cholesterol measurement,
▶ x3 is an indicator for family history, and
▶ x4 is the measure of type-A behavior.
▶ We interpret each coefficients (β) as the log odds ratio of the

outcome for a one unit change in the corresponding covariate,
controlling for the other covariates in the model.



▶ The summary() output provided the estimates and standard
errors of the log odds ratios.

▶ To obtain estimates of the odds ratio, we take the exponential
of the coefficient.

▶ The estimates of the standard error for the coefficients
(log-odds) will be useful for hypothesis testing and
constructing confidence intervals.



Example 4.1
▶ The tobacco covariate’s estimated coefficient (β̂1) is 0.138.
▶ We estimate that a one unit increase in tobacco is associated

with a log odds ratio of chronic heart disease equal to 0.138,
controlling for the other factors in the model.

▶ Alternatively, we can say that a one unit increase in tobacco
is associated with an odds ratio of chronic heart disease
equal to exp( 0.138 ) = 1.148, controlling for other factors.

▶ A one unit increase in tobacco is estimated to be 114.8%
more likely to be diagnosed with CHD.



4.4.2 Confidence interval
▶ Confidence intervals (CIs) are useful in communicating the

uncertainty in our estimates and are typically presented along
with our estimate.

▶ The CIs take the form of

β̂ ± t × ŝe(β̂),

▶ The value of t depends on the level of confidence of the CI.
▶ There are 3 common level of confidence: 90%, 95% and 99%.
▶ Higher level of confidence corresponds to larger value of t.
▶ The 99% CI of an estimate is the widest among them, and

the 90% CI is the most narrow.
▶ Although we would like to create 100% CIs, 100% CIs are

meaningless because they are (∞, ∞).

https://en.wikipedia.org/wiki/Confidence_interval


The 95% confidence intervals
▶ We will continue our discussion with the most common CI –

the 95% CI.
▶ A 95% CI for a log odds ratio is:

β̂ ± 1.96 × ŝe(β̂),

where ŝe(β̂) is the estimated standard error of the regression
coefficient.



Example
The 95% confidence interval for the log odds ratio of tobacco is

0.138 ± 1.960 × 0.025 = (0.089, 0.187).

▶ The lower bound of this confidence interval is 0.089.
▶ The upper bound of the confidence interval is 0.187.



To find the 95% CI for the odds ratio, we exponentiate both sides
of the CI as:

(exp(0.089), exp(0.187)) = (1.093, 1.206)

▶ The odds ratio is estimated to be 1.148 (95% CI: (1.093,
1.206)) controlling for the other factors in the model.

▶ This 95% CI does not contain the value of OR = 1 in it.
▶ We say that we are 95% confident that higher tobacco use is

associated with an increased odds of developing CHD.



We can obtain the 95% confidence interval of all the individual
covariates in the model using the function confint.default():

logORs <- cbind(coef(heart_model7),
confint.default(heart_model7))

colnames(logORs) <- c("logOR", "Lower", "Upper")
round(logORs,4) #round to 4 decimal places

## logOR Lower Upper
## (Intercept) -3.4703 -4.9314 -2.0092
## tobacco 0.1382 0.0884 0.1880
## ldl 0.0990 -0.0419 0.2399
## famhist_f1 -0.3958 -1.6001 0.8086
## typea 0.0238 0.0007 0.0470
## ldl:famhist_f1 0.3010 0.0734 0.5285



Similarly, we exponentiate logORs to obtain the 95% CIs of the
ORs:

ORs <- exp(logORs)
colnames(ORs) <- c("Odds Ratio", "Lower", "Upper")
round(ORs,4) #round to 4 decimal places

## Odds Ratio Lower Upper
## (Intercept) 0.0311 0.0072 0.1341
## tobacco 1.1482 1.0925 1.2068
## ldl 1.1041 0.9590 1.2711
## famhist_f1 0.6732 0.2019 2.2447
## typea 1.0241 1.0007 1.0481
## ldl:famhist_f1 1.3512 1.0762 1.6964



▶ So far, we have discussed obtaining individual estimates and
the corresponding CIs.

▶ For more complex estimates where we may be interested in
combinations of covariates, it can be useful to create a table
to determine what regression coefficients we want to use.



Example
Let’s look at estimating the odds ratio of CHD for a one unit
increase in ldl among those with a family history of CHD,
controlling for the other factors.

Recall the mathematical model from our selection procedure

log
[

πi
1 − πi

]
= β0+β1x1 + β2x2 + β3x3 + β4x4 + β5x2x3.

▶ x2 represents ldl, and
▶ x3 represents famhist_f.



▶ We wish to estimate the odds ratio of CHD for a one unit
increase in ldl, which is the same as looking at x2 = 1 versus
x2 = 0.

▶ We also are interested in only those with a family history of
CHD, represented by x3 = 1.

▶ All of the other covariates are held constant.
▶ Combining the above, we are comparing

β0+β1x1 + β2(1) + β3(1) + β4x4 + β5(1)(1)

to
β0+β1x1 + β2(0) + β3(1) + β4x4 + β5(0)(1)



If we look at the difference of these equations, we have

β0 + β1x1 + β2(1) + β3(1) + β4x4 + β5(1)(1)
− (β0 + β1x1 + β2(0) + β3(1) + β4x4 + β5(0)(1))

β2 + β5

▶ We need to estimate and interpret β2 + β5.
▶ The estimate of the log odds ratio is

β̂2 + β̂5 = 0.099 + 0.301 = 0.400.
▶ The estimated odds ratio is exp(0.400) = 1.492.
▶ So, we estimate that a one unit increase in low density

lipoprotein cholesterol is associated with an odds ratio of
CHD equal to 1.492, controlling for other factors.



To estimate the confidence interval, we must

1. find the estimated standard error of β̂2 + β̂5 manually,
2. construct a confidence interval for this quantity (the logOR),

and then
3. exponentiate each bound of the confidence interval.

#get the variance covariance matrix
varcov <- vcov(heart_model7)
#represents \beta_2 + \beta_5 (first place is beta_0)
L <- c(0, 0, 1, 0, 0, 1)

var_est <- L%*%varcov %*% L
#vector of coefficients from model
beta_est <- L%*%coef(heart_model7)

CI <- c(beta_est - 1.96*sqrt(var_est),
beta_est + 1.96*sqrt(var_est))

exp(CI) #exponentiate to get CI for OR

## [1] 1.247937 1.783199



4.4.3 Probabilities
▶ In some scenarios, we are more interested in estimating or

predicting the probability of the outcome instead of the odds
ratio for given covariates.

▶ We can obtain a prediction using the predict() function.

Example: Suppose we are interested in the probability that a 25
year old with spb = 150, tobacco = 0, ldl = 6, adiposity =
24, no family history of CHD, typea = 60, obesity = 30, and
alcohol = 10.



# make a vector of the new information as it would appear in the original
# dataframe (excluding y). Use colnames(heart) to see the order of variables
newsubject <- data.frame(sbp = 150,

tobacco = 0,
ldl = 6,
adiposity = 24,
famhist = 0,
typea = 60,
obesity = 30,
alcohol = 10,
age = 25,
age_f = 2,
famhist_f = 1)

newsubject$age_f <- as.factor(newsubject$age_f)
newsubject$famhist_f <- as.factor(newsubject$famhist_f)

predict(heart_model7, newdata = newsubject)

## 1
## -0.03674586



The output is the estimate of log π
1−π = −0.037.

To estimate the probability, we take the expit() of this estimate, or
obtain

exp(−0.037)
1 + exp(−0.037) = 0.491

We estimate this hypothetical individual to have a 49.1%
probability of having CHD given their covariates.



5. Review of applying GLMs
1. Choose the appropriate link function based on the response

variable.
2. Fit the model using the glm() function.
3. Choose the set of covariates and interaction terms using LRTs

or the automatic stepwise selection procedure.
4. Check the model assumptions such as residuals and

multicollinearity.
5. Repeat Step 3 and 4 as needed.
6. Interpret the results in the context of the study.



6. Final thoughts
▶ The logistic regression models belong to the family of

generalized linear model.
▶ There are other generalized linear models such as the Poisson

and Gamma regression model.
▶ The procedure to fit these models is similar to our

demonstration in this workshop.
▶ We encourage you to consider the various generalized linear

models when performing data analysis.



Figure 3: Recommended steps to data analysis



6.1. Statistical vs practical significance
The p-values are commonly used as an indicator of
significance/importance. However, we want to remind readers that:

▶ Statistical inference techniques test for statistical significance.
▶ Statistical significance means that the effect observed in a

sample is very unlikely to occur if the null hypothesis is true.
▶ Whether this observed effect has practical importance is an

entirely different question. The experts in the field of interest
determine whether these results have any practical
importance.



Some notes about p-values
The ASA’s Statement on p-values:

▶ P-values can indicate how incompatible the data are with a
specified statistical model.

▶ P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

▶ Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.

▶ Proper inference requires full reporting and transparency
▶ A p-value, or statistical significance, does not measure the size

of an effect or the importance of a result.
▶ By itself, a p-value does not provide a good measure of

evidence regarding a model or hypothesis.

https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


Beyond this workshop
For those who are interested to learn more, the SCSRU hosts
statistics seminars and workshops focusing on topics commonly
encountered by researchers on campus. Please check our website
for future events.

Thank you!

The Statistical Consulting and Survey Research Unit (SCSRU) is the unit
through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.

https://uwaterloo.ca/statistical-consulting-survey-research-unit

