
Unleash the Power in Your Data
SCSRU Workshop

Statistical Consulting and Survey Research Unit
University of Waterloo

2024-01-22

1. Planning and conducting a study

Figure 1: Consider PPDAC when planning and conducting a study

After collecting the data

Figure 2: Recommended process

2. Exploratory data analysis
▶ Exploratory data analysis (EDA) was developed by John

Tukey in the 1970s. Nowadays, the EDA techniques are used
to analyze and investigate data and summarize their main
characteristics numerically and graphically.

▶ The main purpose of EDA is to:
▶ uncover the data structure,
▶ discover patterns,
▶ spot anomalies,
▶ check assumptions, and
▶ find interesting relationships among the variables of interest.

More sophisticated data analysis is usually performed after EDA is
completed.

3.1 The data set
▶ Throughout this workshop, we will be looking at the Pokemon

data set. This data set was obtained from Kaggle. A little
background about Pokemon:

The original Pokemon is a role-playing game based around building
a team of monsters to battle other monsters to become the best
team. Pokemon are divided into types with different strengths.

▶ The data set can be downloaded from our website. Please set
your working directory to where you saved the data set and
load the data set into your R environment.

pokemon <- read.csv("pokemon.csv")

https://www.kaggle.com/datasets/rounakbanik/pokemon

3.2.1 The R libraries, ggplot2
In this workshop, we will be graphing with the package ggplot2.
We find that this library to be

▶ consistent with the underlying grammar of graphics
(Wilkinson, 2005),

▶ visually appealing,
▶ very flexible, and
▶ able to handle multiple outputs better.

Every ggplot requires that you specify:

▶ (1) the dataset
▶ (2) the variables and
▶ (3) the layers to describe how the variables are plotted.

Please install the ggplot2 package and load it into your current
work environment.

install.packages("ggplot2")
library(ggplot2)

3.2.2 The R libraries, dplyr

▶ As we explore the data, we may need to manipulate the
entries and summarize some variables.

▶ The dplyr package contains functions designed to enable
data frame manipulation in an intuitive and user-friendly
manner.

▶ The functions covered in this workshop can be found in the
cheatsheet, including:
▶ group_by()
▶ filter()
▶ summarize()
▶ mutate()

Please install the dplyr package and load it into your current work
environment.

install.packages("dplyr")
library(dplyr)

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

3.2.3 The R libraries, agrmt and likert

▶ Lastly, we will be using two packages for the likert scale data:
▶ Please install both the agrmt and likert packages and load

them into your current work environment.

install.packages("agrmt")
library(agrmt)

install.packages("likert")
library(likert)

4. Types of variables
Most data sets contain a variety of variables. In general, we can
group the variables into discrete and continuous.

It is important to understand what each variable is and its types.
We also need to ensure that the types are correctly recognized by
the software before further analysis.

4.1 Numeric variables
▶ A continuous variable is a variable that can take any value

over a continuous range. Usually, the variable will have a
measurement unit. Examples include:
▶ Age in years.
▶ Number of works hours.
▶ Midterm scores.

▶ In the pokemon data set, examples of continuous variables
include:
▶ height_m: The height of the Pokemon in metres.
▶ weight_kg: The weight of the Pokemon in kilograms.

4.2 Discrete variables
▶ Discrete variables are sometimes known as categorical or

qualitative variables. A categorical variable is a variable that
can only take values over a finite set of values (or levels).
Examples include:
▶ A university student’s major.
▶ A person’s blood type.
▶ The type of drinks at Starbucks.
▶ A person’s eye colour.
▶ A person’s level of agreement about a statement.

▶ Some categorical variables can only take 2 levels. Categorical
variables with only 2 levels are called binary variable.
▶ In the pokemon data set, the variable is_legendary which

denotes whether the Pokemon is legendary, only take 2 values:
0 and 1. We call is_legendary a binary variable.

4.2.1 Nominal variables
A categorical variable with no specific order is also called a
nominal variable. Examples include:

▶ A university student’s major.
▶ A person’s blood type.
▶ The type of drinks at Starbucks.
▶ A person’s eye colour.

4.2.2 Ordinal variables
A categorical variable with natural ordering is also called an ordinal
variable. Examples include

▶ A person’s eye colour.
▶ A person’s level of agreement about a statement.

Notice that the example “a person’s eye colour” shows up as
nominal and ordinal variable. Why?

Discussion: Is the variable type fixed?
▶ We cannot determine the variable type by its name. To

accurately categorize a variable, we need to consider how it is
recorded.

▶ A common example is age.
▶ In some studies, age is recorded an exact value, e.g. 25, 35.5,

80, etc. This age variable is considered a numeric variable.
▶ Other studies may require respondents to select the category in

which their age falls in, e.g. <20, 21-25, 80+, etc. This age
variable is considered a categorical variable.

5. Data manipulation
▶ Before performing any kind of analysis, it is important to take

a look at the data set in the environment of the software.
▶ We can use the View() function to take see the data set in

spreadsheet format.

View(pokemon)

5.1 The function str()
To understand how the software R understands the data, we will
need to use the str() function.

str(pokemon)

▶ What does the output tell you?

5.2 The function factor()

▶ Recall that the variable is_legendary is a binary variable.
However, it is recorded as an integer.

▶ We will need to correct this, using the factor() function.

pokemon$is_legendary_f <- factor(pokemon$is_legendary,
levels = c(0,1),
labels = c("No", "Yes"))

▶ Notice that we created a new variable is_legendary_f for
the categorical variable is_legendary. This allows us to
review and recover the original values easily as needed.

Practice 5.1
▶ The variable generation denotes the numbered generation

which the Pokemon was first introduced. It is currently
recorded as an integer. Do you think it is appropriate?

pokemon$generation_f <- factor(pokemon$generation)

▶ What about the variable type1 which records the primary
type of the Pokemon? Create the a new variable called
type1_f to denote the categorized variable.

5.3 The function, levels()

▶ Another useful function is levels() which allows us to
investigate the categories within a variable.

▶ This is particularly useful when there are many categories.
▶ For example, the variable type1 (which we stored as

type1_f) has 18 levels:

levels(pokemon$type1_f)

[1] "bug" "dark" "dragon" "electric" "fairy"
[6] "fighting" "fire" "flying" "ghost" "grass"
[11] "ground" "ice" "normal" "poison" "psychic"
[16] "rock" "steel" "water"

6. Exploring categorical variables
▶ A common first step to understanding categorical variable is

to summarize the variable using a table.

table(pokemon$type1_f)

##
bug dark dragon electric fairy fighting
72 29 27 39 18 28
fire flying ghost grass ground ice
52 3 27 78 32 23
normal poison psychic rock steel water
105 32 53 45 24 114

When there are many categories, it is more appealing to look at
the table produced using dplyr library, e.g., the count() function.

pokemon %>% count(type1_f)

type1_f n
1 bug 72
2 dark 29
3 dragon 27
4 electric 39
5 fairy 18
6 fighting 28
7 fire 52
8 flying 3
9 ghost 27
10 grass 78
11 ground 32
12 ice 23
13 normal 105
14 poison 32
15 psychic 53
16 rock 45
17 steel 24
18 water 114

6.1 Contingency tables
▶ The contingency table, sometimes known as a two-way

frequency table is a table with at least 2 rows and 2 columns
to present the categorical data in terms of frequency counts.
We can achieve this in R using table().

▶ Example, we tabularize the pokemon’s type (variable
type1_f) against their generations (variable generation_f)
by:

table(pokemon$type1_f, pokemon$generation_f)

6.1 Contingency tables (Continued)
##
1 2 3 4 5 6 7
bug 12 10 12 8 18 3 9
dark 0 5 4 3 13 3 1
dragon 3 0 7 3 7 4 3
electric 9 6 4 7 7 3 3
fairy 2 5 0 1 0 9 1
fighting 7 2 4 2 7 3 3
fire 12 8 6 5 8 8 5
flying 0 0 0 0 1 2 0
ghost 3 1 4 6 5 4 4
grass 12 9 12 13 15 5 12
ground 8 3 6 4 9 0 2
ice 2 4 6 3 6 2 0
normal 22 15 18 17 17 4 12
poison 14 1 3 6 2 2 4
psychic 8 7 8 7 14 3 6
rock 9 4 8 6 6 8 4
steel 0 2 9 3 4 4 2
water 28 18 24 13 17 5 9

6.1 Contingency tables (Continued)
▶ Using dplyr, we can obtain a similar contingency table:

pokemon %>%
group_by(generation_f) %>%
count(type1_f)

A tibble: 114 x 3
Groups: generation_f [7]
generation_f type1_f n
<fct> <fct> <int>
1 1 bug 12
2 1 dragon 3
3 1 electric 9
4 1 fairy 2
5 1 fighting 7
6 1 fire 12
7 1 ghost 3
8 1 grass 12
9 1 ground 8
10 1 ice 2
i 104 more rows

Practice 6.1
Let’s create a contingency table of the generation and
is_legendary to find out whether the number of legendary
pokemon differs by generation.
Do you see?

##
1 2 3 4 5 6 7
No 146 94 125 94 143 66 63
Yes 5 6 10 13 13 6 17

Practice 6.1
If you use dplyr, do you see?

A tibble: 14 x 3
Groups: is_legendary_f [2]
is_legendary_f generation_f n
<fct> <fct> <int>
1 No 1 146
2 No 2 94
3 No 3 125
4 No 4 94
5 No 5 143
6 No 6 66
7 No 7 63
8 Yes 1 5
9 Yes 2 6
10 Yes 3 10
11 Yes 4 13
12 Yes 5 13
13 Yes 6 6
14 Yes 7 17

6.2 Bar charts
▶ Notice that the tables are not appealing when there are many

categories. This is where graphical tools shine.
▶ A common way to visualize a categorical variable is the bar

chart.

ggplot(pokemon, aes(x=type1_f)) +
geom_bar()+ # Type of chart
xlab("Primary type") + ylab("Count")+ # Label the xy-axes
coord_flip() # Flip the xy-axes

bug

dark

dragon

electric

fairy

fighting

fire

flying

ghost

grass

ground

ice

normal

poison

psychic

rock

steel

water

0 30 60 90
Count

P
rim

ar
y

ty
pe

6.2.1 Stacked bar charts
▶ To better visualize the contingency table and relationship

between two categorical variables, we can use a stacked bar
chart.

ggplot(pokemon, aes(x=type1_f, fill=generation_f)) +
geom_bar()+ # Type of chart
xlab("Primary type") + ylab("Count")+ # Label the xy-axes
coord_flip() # Flip the xy-axes

bug

dark

dragon

electric

fairy

fighting

fire

flying

ghost

grass

ground

ice

normal

poison

psychic

rock

steel

water

0 30 60 90
Count

P
rim

ar
y

ty
pe

generation_f

1

2

3

4

5

6

7

Practice 6.2
▶ Recall the contingency table of the generation and

is_legendary created in Practice 6.1.
▶ Create a bar graph to visualize the relationship between the

two variables.
▶ Do you have a similar graph?

0

50

100

150

1 2 3 4 5 6 7
Generation

C
ou

nt

is_legendary_f

No

Yes

Practice 6.2
▶ What do you see from the bar chart?
▶ Did you notice the trend when looking at the tables earlier?

6.2.2 Side-by-side bar charts
▶ There can often be a few options to present the same data.
▶ The side-by-side bar charts are also useful for representing a

contingency table graphically.
▶ The trend in the stacked bar chart in Practice 6.2 are shown

in the side-by-side bar chart as well.

ggplot(pokemon, aes(x=generation_f, fill=is_legendary_f)) +
geom_bar(position="dodge")+ # Type of chart
xlab("Generation") + ylab("Count") # Label the xy-axes

0

50

100

150

1 2 3 4 5 6 7
Generation

C
ou

nt

is_legendary_f

No

Yes

When side-by-side bar chart does not work

bug

dark

dragon

electric

fairy

fighting

fire

flying

ghost

grass

ground

ice

normal

poison

psychic

rock

steel

water

0 10 20
Count

P
rim

ar
y

ty
pe

generation_f

1

2

3

4

5

6

7

6.2.3 Faceting
▶ When side-by-side bar chart does not convey the message very

well, we can consider the option of using the facet grids.
▶ The facet grids form a matrix of panels defined by row and

column faceting variables.
▶ It is most useful when you have two discrete variables.

ggplot(pokemon, aes(x=type1_f)) +
geom_bar(position="dodge") +
facet_wrap(~generation_f) + # Facet
xlab("Primary type") + # Label the x-axes
ylab("Count")+ # Label the y-axes
coord_flip() # Flip the xy-axes

7

4 5 6

1 2 3

0 10 20

0 10 20 0 10 20

bug
dark

dragon
electric

fairy
fighting

fire
flying
ghost
grass

ground
ice

normal
poison

psychic
rock
steel

water

bug
dark

dragon
electric

fairy
fighting

fire
flying
ghost
grass

ground
ice

normal
poison

psychic
rock
steel

water

bug
dark

dragon
electric

fairy
fighting

fire
flying
ghost
grass

ground
ice

normal
poison

psychic
rock
steel

water

Count

P
rim

ar
y

ty
pe

Discussion: Stacked vs side-by-side vs facet
▶ Each type of bar charts have their advantages and

disadvantages. How do we decide which to use?
▶ Recall that the saying that a picture is worth a thousand

words. If a graph needs to be accompanied by long caption,
then it defeats the purpose of a graph.

Practice 6.3
▶ Pokemons have different level of happiness. Create a

categorical variable called happiness_level with three
categories:
▶ low: base_happiness < 70
▶ normal: base_happiness = 70
▶ high: base_happiness > 70

▶ Create a stacked bar chart, side-by-side bar chart and a
faceted bar chart to investigate the relationship between
generation and happiness_level.

▶ Which chart do you recommend?

6.3 Proportion
▶ The tables we have seen so far summarized the count of each

category within a variable.
▶ However, the proportions can suggest more information when

investigating relationships with other variables.
▶ This is particularly important when we are interested in the

difference between the treatment and control groups.
▶ The functions proportions() or prop.table() will produce

table with proportions about the variable.

Example 6.1

tab_type1 <- table(pokemon$type1_f)
round(prop.table(tab_type1),2)

##
bug dark dragon electric fairy fighting
0.09 0.04 0.03 0.05 0.02 0.03
fire flying ghost grass ground ice
0.06 0.00 0.03 0.10 0.04 0.03
normal poison psychic rock steel water
0.13 0.04 0.07 0.06 0.03 0.14

▶ Notice that the proportions sum up to 1.

6.3.1 Conditional proportions
▶ If we are curious about systematic associations between

variables, we will consider the conditional proportions, which
can be obtained by specifying the second argument in
prop.table().
▶ Adding 1 as the second argument will specify to condition on

the rows. The proportions in every row will sum to 1.
▶ Adding 2 as the second argument will specify to condition on

the columns. The proportions in every column will sum to 1.

Example 6.2
tab_type1_gen <- table(pokemon$type1_f, pokemon$generation_f)
round(prop.table(tab_type1_gen,1),2)

##
1 2 3 4 5 6 7
bug 0.17 0.14 0.17 0.11 0.25 0.04 0.12
dark 0.00 0.17 0.14 0.10 0.45 0.10 0.03
dragon 0.11 0.00 0.26 0.11 0.26 0.15 0.11
electric 0.23 0.15 0.10 0.18 0.18 0.08 0.08
fairy 0.11 0.28 0.00 0.06 0.00 0.50 0.06
fighting 0.25 0.07 0.14 0.07 0.25 0.11 0.11
fire 0.23 0.15 0.12 0.10 0.15 0.15 0.10
flying 0.00 0.00 0.00 0.00 0.33 0.67 0.00
ghost 0.11 0.04 0.15 0.22 0.19 0.15 0.15
grass 0.15 0.12 0.15 0.17 0.19 0.06 0.15
ground 0.25 0.09 0.19 0.12 0.28 0.00 0.06
ice 0.09 0.17 0.26 0.13 0.26 0.09 0.00
normal 0.21 0.14 0.17 0.16 0.16 0.04 0.11
poison 0.44 0.03 0.09 0.19 0.06 0.06 0.12
psychic 0.15 0.13 0.15 0.13 0.26 0.06 0.11
rock 0.20 0.09 0.18 0.13 0.13 0.18 0.09
steel 0.00 0.08 0.38 0.12 0.17 0.17 0.08
water 0.25 0.16 0.21 0.11 0.15 0.04 0.08

The table shows us that among the Pokemons that are of bug
type, 17% are from Generation 1, 14% are from Generation 2, etc.
Visually,

ggplot(pokemon, aes(x = type1_f, fill=generation_f))+
geom_bar(position="fill") +
ylab("Proportion") +
coord_flip()

bug
dark

dragon
electric

fairy
fighting

fire
flying
ghost
grass

ground
ice

normal
poison

psychic
rock
steel

water

0.00 0.25 0.50 0.75 1.00
Proportion

ty
pe

1_
f

generation_f

1

2

3

4

5

6

7

Example 6.3
tab_type1_gen <- table(pokemon$type1_f, pokemon$generation_f)
round(prop.table(tab_type1_gen,2),2)

##
1 2 3 4 5 6 7
bug 0.08 0.10 0.09 0.07 0.12 0.04 0.11
dark 0.00 0.05 0.03 0.03 0.08 0.04 0.01
dragon 0.02 0.00 0.05 0.03 0.04 0.06 0.04
electric 0.06 0.06 0.03 0.07 0.04 0.04 0.04
fairy 0.01 0.05 0.00 0.01 0.00 0.12 0.01
fighting 0.05 0.02 0.03 0.02 0.04 0.04 0.04
fire 0.08 0.08 0.04 0.05 0.05 0.11 0.06
flying 0.00 0.00 0.00 0.00 0.01 0.03 0.00
ghost 0.02 0.01 0.03 0.06 0.03 0.06 0.05
grass 0.08 0.09 0.09 0.12 0.10 0.07 0.15
ground 0.05 0.03 0.04 0.04 0.06 0.00 0.03
ice 0.01 0.04 0.04 0.03 0.04 0.03 0.00
normal 0.15 0.15 0.13 0.16 0.11 0.06 0.15
poison 0.09 0.01 0.02 0.06 0.01 0.03 0.05
psychic 0.05 0.07 0.06 0.07 0.09 0.04 0.07
rock 0.06 0.04 0.06 0.06 0.04 0.11 0.05
steel 0.00 0.02 0.07 0.03 0.03 0.06 0.03
water 0.19 0.18 0.18 0.12 0.11 0.07 0.11

The table shows us that among the Generation 1 pokemons. 17%
are bug type, 0% are dark type, 11% are dragon type, etc.

ggplot(pokemon, aes(x = generation_f, fill=type1_f))+
geom_bar(position="fill") +
ylab("Proportion") +
coord_flip()

1

2

3

4

5

6

7

0.00 0.25 0.50 0.75 1.00
Proportion

ge
ne

ra
tio

n_
f

type1_f

bug

dark

dragon

electric

fairy

fighting

fire

flying

ghost

grass

ground

ice

normal

poison

psychic

rock

steel

water

Practice 6.4
Consider the happiness_level created earlier. What is the
proportion of Pokemons from Generation 1 that have

▶ low happiness level?
▶ normal happiness level?
▶ high happiness level?

Create a suitable graph to represent the above information.

6.4 Pie chart
▶ The pie chart is a common way to display categorical data

where the size of the slice corresponds to the proportion of
cases that are in that category.

▶ However, it is difficult to compare relative size of the slices.
▶ For that reason, it is generally a good idea to stick to bar

charts.

6.5 Ordinal
▶ Ordinal variable is a type of categorical variable with natural

ordering.
▶ We can turn numeric variables into ordinal variable too. For

example, age recorded in groupings of 10-19, 20 - 29, 80+,
etc.

▶ Recall the variable happiness_level that contains three
levels: low, normal and high.

head(pokemon$happiness_level)

[1] normal normal normal normal normal normal
Levels: low normal high

▶ As we can see, there is no “<” in the R output of Levels.
The variable is still a nominal variable.

6.5.1 Measures of central tendency

▶ To indicate that this variable has a natural ordering, we use
the factor() function:

pokemon$happiness_level <-
factor(pokemon$happiness_level, ordered = TRUE,

levels = c("low", "normal", "high"))
head(pokemon$happiness_level)

[1] normal normal normal normal normal normal
Levels: low < normal < high

▶ We can summarize ordinal variable numerically the same way
as any categorical variable.

▶ However, since ordinal variables are often skewed, we
recommend using the median or the mode.

6.5.2 Measure of spread: consensus
▶ A measure of spread for ordinal data is called consensus

(Tastle & Wierman, 2007).
▶ The consensus ranges from 0 to 1.
▶ A 0 indicates a lack of consensus, whereas a consensus of one

would indicate all the respondents are in agreement.
▶ To calculate consensus, we can use the consensus() function

from the library agrmt.

Example 6.4

library(agrmt)
tab_happiness<- table(pokemon$happiness_level)
consensus(tab_happiness)

[1] 0.786256

▶ The consensus is around 0.79.
▶ This means that the Pokemons are pretty agreeable on their

levels of happiness.
▶ This will not be surprising after we take a look at the

distribution of happiness_level visually.

6.5.3 Visualizing likert scale data
▶ There are two popular ways to visualize likert scale data:

1. Bar charts
2. Diverging stacked bar charts

▶ There are much debate about which is more superior.
▶ However, both are equally great options as long as the graph

sends the intended message to the readers.

6.5.3 Visualizing likert scale data: Bar charts

ggplot(pokemon,
aes(x= happiness_level, fill=happiness_level))+

geom_bar() +
ylab("Count")

0

200

400

600

low normal high
happiness_level

C
ou

nt

happiness_level

low

normal

high

6.5.3 Visualizing likert scale data: Diverging stacked bar
charts

plot(likert(pokemon["happiness_level"]))

13% 4%83%happiness_level

100 50 0 50 100
Percentage

Response low normal high

- The diverging stacked bar charts are centered at zero with a
reference line at zero. - It is important that the reference line lie
behind the bars; otherwise, the neither agree nor disagree group is
split and appears to be two groups - The construction of diverging
stacked bar charts in R requires a lot of programming knowledge.

7. Numerical data
▶ Compared to categorical variables, numerical variables have

more numerical summaries.
▶ We want to look at how the numeric values are distributed

and typically summarized them with:
▶ measures of centre
▶ measures of spread

7.1 Measures of centre
▶ The measures of centre is a measure used to summarize a set

of values with a single value that represents the middle or
centre of its distribution.

▶ Common measures include:
▶ mean: the average of all the values.
▶ median: the value that falls in the middle when the data are

ordered from smallest to largest.
▶ mode: the value that occurs most often.

7.2 Measures of spread
▶ The measures of spread describe the variability of the set of

values.
▶ Variability is often an extremely important consideration.

Common measures include:
▶ range: Maximum - Minimum.
▶ interquartile range: the spread of the middle half when the

data are ordered from smallest to largest.
▶ variance: squared distance from the mean.
▶ standard deviation: the square root of variance.

Example 7.1
The variable height_m records the height of the Pokemons in
metres. Some of the Pokemons’ height were unavailable and were
left blank. We will attempt to summarize the mean, median and
variance of the height.

pokemon %>%
filter(height_m!="") %>%
summarise(mean_height = mean(height_m),

median_height = median(height_m),
var_height = var(height_m))

mean_height median_height var_height
1 1.163892 1 1.167105

Practice 7.1
The variable weight_m records the weight of the Pokemons in
kilograms. Without the help of a graph, summarize the mean,
median, variance and interquartile range of this variable.

▶ Comment on the spread of this variable?
▶ What are your recommended measures of centre and spread?

7.3 Visualization of numerical data
▶ From the previous examples, without the help of a graph, it

was challenging to determine a suitable numerical measures to
describe the data set.

▶ There are many ways to visualize a set of numeric values. In
this workshop, we will cover:
▶ dot plots
▶ histograms
▶ density plots
▶ boxplots

7.3.1 Dot plots
▶ A dot plot is also known as a strip plot or a dot chart.
▶ It is a simple form of data visualization that consists of data

points plotted as dots on a graph.
▶ The plot groups the data as little as possible so that the

individual observations are not lost.

Example 7.1 revisit
▶ Suppose we are interested to look at the distribution of

Pokemons’ height but focusing on those that are taller than
1m.

pokemon %>%
filter(height_m > 1) %>%
ggplot(aes(x=height_m)) +
geom_dotplot(binwidth = 0.1, dotsize = 1.5) +
xlab("Height (m)")+ylab("") #Label xy-axes

Notes:
▶ The numbers on y axis are not meaningful, due to technical

limitations of ggplot2. You can hide the y axis, as in one of
the examples, or manually scale it to match the number of
dots.

▶ There is a reason we did not use the entire data set to
demonstrate the dot plot. What is it?

Dot plot showing the distribution of Pokemon’s height

0.00

0.25

0.50

0.75

1.00

5 10 15
Height (m)

7.4 Histograms
▶ The dot plots become difficult to understand when the

number of values become very large.
▶ The histogram, which is another common visualization tool,

solves this problem by aggregating the dots into bins on the
x-axis and mapping the height of the bar to the number of
cases that fall into that bin.

▶ The downside is that it becomes impossible to reconstruct the
data perfectly.

Example 7.1 revisit
Let’s replace the dotplot earlier with a histogram with a binwidth
of 0.1.

pokemon %>%
filter(height_m > 1) %>%
ggplot(aes(x=height_m)) +
geom_histogram(binwidth = 0.1) +
xlab("Height (m)") #Label x-axes

Example 7.1 revisit
▶ Let’s replace the previous dot plot with a histogram with a bin

width of 0.1.

0

10

20

30

40

50

5 10 15
Height (m)

co
un

t

Practice 7.2
▶ The shape of the distribution is affected by the width of the

bin.
▶ Try adjusting the binwidth to find a recommended

binwidth.

pokemon %>%
filter(height_m > 1) %>%
ggplot(aes(x=height_m)) +
geom_histogram(binwidth = 0.1) +
xlab("Height (m)") #Label x-axes

7.5 Density plots
▶ The step-like histograms may not be appealing to some

readers.
▶ The density plot will resolve the issue.

pokemon %>%
filter(height_m > 1) %>%
ggplot(aes(x=height_m)) +
geom_density() +
xlab("Height (m)") #Label x-axes

Density plot showing the distribution of Pokemon’s height

0.00

0.25

0.50

0.75

1.00

5 10 15
Height (m)

de
ns

ity

7.6 Boxplots
The boxplot is a visual representation of the five-number summary:

▶ Minimum
▶ First quartile, Q1
▶ Second quartile, Median
▶ Third quartile, Q3
▶ Maximum

Potential outliers are shown as dots outside the boxplots.

Boxplot showing the distribution of Pokemon’s height

pokemon %>%
filter(height_m > 1) %>%
ggplot(aes(x=1, y=height_m)) +
geom_boxplot() +
ylab("Height (m)") + #Label xy-axes
coord_flip()

0.6

0.8

1.0

1.2

1.4

5 10 15
Height (m)

x

7.6.1 Side-by-side boxplots
▶ The side-by-side boxplots are used to display the distribution

of several numerical variables, or a single numerical variable
along with a categorical variable.

▶ Since the boxplots show the five-number summary, we can
quickly visualize the similarities and differences between the
distributions.

Side-by-side boxplots comparing Pokemons’ height by
generation

pokemon %>%
filter(height_m > 1) %>%
ggplot(aes(x=generation, y=height_m)) +
geom_boxplot() +
xlab("Generation") + ylab("Height (m)") #Label xy-axes

Warning: Continuous x aesthetic
i did you forget ‘aes(group = ...)‘?

5

10

15

2 3 4 5 6
Generation

H
ei

gh
t (

m
)

7.7 Outliers
▶ An important aspect of EDA is to look for outliers.
▶ Outliers are values that are extremely far away from the bulk

of distribution.
▶ They are often interesting cases that the experts want to

investigate.
▶ Instead of removing the outliers, a better idea is to create a

column to indicate whether the observation is an outlier.
When performing analysis, we can filter out the outliers as
needed.

Practice 7.3
▶ Create side-by-side boxplots to compare the distribution of

Pokemon’s height by whether the Pokemons’ are legendary,
is_legendary.

0

5

10

15

No Yes
Height (m)

he
ig

ht
_m

Practice 7.4
▶ Based on the boxplots, recommend cut-off values and create a

column is_outlier to indicate whether the a Pokemon’s
height is potentially an outlier.

8. Visualization in higher dimensions
So far, the discussion is centered around 2 variables such as:

▶ How does X affect Y?
▶ Are A and B correlated?

Can we expand on that and explore the relationship of multiple
variables at the same time?

The answer is yes. For the remaining time, we will take a look at
summarizing three variables at the same time.

8.1 Multi-dimensional plots
▶ When considering three variables, many will think about the

3D-plots.
▶ Higher dimensional plots are theoretically correct, but

explaining and presenting high dimensional plots can be
challenging.

▶ Instead of high dimensional plots, we can consider options
such as shapes, sizes, colours, and patterns.

▶ Keep in mind that “simple is more”.

Example 8.1
▶ Suppose we want to inspect the relationship between the

Pokemon’s weight (weight_kg), height (height_m) and
whether they are legendary (is_legendary‘).

▶ All three variables are continuous.
▶ It is natural to consider a 3D scatterplot but we will take a

different route by changing the shape and sizes of a 2D
scatterplot.

ggplot(pokemon, aes(x=weight_kg, y=height_m)) +
geom_point(aes(col = is_legendary_f))

0

5

10

15

0 250 500 750 1000
weight_kg

he
ig

ht
_m

is_legendary_f

No

Yes

▶ We can make this a little better (or not) by changing the
shape of the points.

ggplot(pokemon, aes(x=weight_kg, y=height_m)) +
geom_point(aes(col = is_legendary_f,

shape = is_legendary_f))

▶ Keep in mind: Simple is more.

0

5

10

15

0 250 500 750 1000
weight_kg

he
ig

ht
_m

is_legendary_f

No

Yes

8.2 Faceting
▶ Faceting is also a great option when dealing with multiple

models.
▶ Suppose we are interested to know about the relationship

between the Pokemon’s speed (speed), their happiness level
(happiness_level) and whether they are legendary
(is_legendary). Since speed is a numerical value, we can
use the density plot.

ggplot(pokemon, aes(x=speed)) +
geom_density() +
facet_grid(is_legendary~happiness_level,

labeller = label_both)

happiness_level: low happiness_level: normal happiness_level: high

is_legendary: 0
is_legendary: 1

0 50 100 150 0 50 100 150 0 50 100 150

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

speed

de
ns

ity

Practice 8.2
▶ Recall that the histogram is also suitable for numeric variable.

How do we visualize the relationship of the three variables:
speed, happiness_level and is_legendary?

9. Next steps
▶ Exploratory data analysis requires skills such as data

visualization and data manipulation.
▶ We recommend exploring R libraries such as ggplot2 and

dplyr.
▶ At the beginning of the workshop, we mentioned that EDA is

usually followed by more sophisticated analysis such as linear
models, generalized linear models, machine learning, etc. We
encourage you to explore the variety of statistical models later
on.

Beyond this workshop
For those who are interested to learn more, the SCSRU hosts
statistics seminars and workshops focusing on topics commonly
encountered by researchers on campus. Please check our website
for future events.

Thank you!

The Statistical Consulting and Survey Research Unit (SCSRU) is the unit
through which the Department of Statistics and Actuarial Science
provides statistical advice to those working on research problems.

https://uwaterloo.ca/scsru

