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Images are all around us! Inexpensive digital cameraspwdeneras, computer web-
cams, satellite imagery, and images off the Internet givecggess to spatial imagery
of all sorts. The vast majority of these images will be of seat human scales —
pictures of animals / houses / people / faces and so on —vellattomplex images
which are not well described statistically or mathemalycéllany algorithms have
been developed to process / denoise / compress / segmeninsaghs, described
in innumerable textbooks on image processing [36, 54, 148,210], and briefly
reviewed in AppendikTC.

Somewhat less common, but of great research interest, @geisnwhich do allow
some sort of mathematical characterization, and to whihdstrd image-processing
algorithms may not apply. In most cases we do not necesseilgimageshere, per
se, but rather spatial datasets, with one or more measutsrtaden over a two- or
higher-dimensional space.

There are many important problems falling into this latteoup of scientific im-
ages, and where this text seeks to make a contribution. Elearapound throughout
remote sensing (satellite data mapping, data assimilasiea-ice / climate-change
studies, land use), medical imaging (denoising, organ setgtion, anomaly detec-
tion), computer vision (textures, image classificatiogrsentation), and other 2D /
3D problems (groundwater, biological imaging, porous ragdtic.).

Although a great deal of research has been applied to ditemiages, in most
cases the resulting methods are not well documented in comextbooks, such
that many experienced researchers will be unfamiliar withuse of the FFT method
(Sectior8B) or of posterior sampling (Chagier 11), forrapte.

The goal, then, of this text is to address methods for solnmudfidimensional in-
verse problems. In particular, the text seeks to avoid thfalpdf being entirely
mathematical / theoretical at one extreme, or primarilyli@op/ algorithmic on the
other, by deliberately developing the basic theory (Parthg¢ mathematical mod-
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elling (Part 1), and the algorithmic / numerical methodaiR11) of solving a given
problem.

I nver se Problems

So, to begin, why would we want to solve an inverse problem?

There are a great many spatial phenomena that a person maghtevstudy ...

e The salinity of the ocean surface as a function of position;
e The temperature of the atmosphere as a function of position;
e The height of the grass growing in your back yard, as a funaifdocation;

e The proportions of oil and water in an oil reservoir.

In each of these situations, you aren't just handed a mapeo$platial process you
wish to study, rather you have tofer such a map from given measurements. These
measurements might be a simple function of the spatial ggo¢ich as measuring
the height of the grass using a ruler) or might be complicat@dinear functions
(such as microwave spectra for inferring temperature).

The process by which measurements are generated from thel gpacess is nor-
mally relatively straightforward, and is referred to afavard problem More diffi-
cult, then, is theénverse problemdiscussed in detail in Chap{@r 2, which represents
the mathematical inverting of tHferward problemallowing you to infer the process
of interest from the measurements. A simple illustratioshiewn in Figuré&T]1.

Large Multidimensional Problems

So why is it that we wish to study large multidimensional peshs?

The solution to linear inverse problems (see Chdpter 3)s#yeformulated analyt-
ically, and even a nonlinear inverse problem can be refoatedlas an optimization
problem and solved. The challenge, then, is not the solvfrigverse problemsn
principle, but rather actually solving theim practice

For example, the solution to a linear inverse problem inesla matrix inversion. As
the problem is made larger and larger, eventually the magbomes computation-
ally or numerically impossible to invert. However, this istrjust an abstract limit
— even a modest two-dimensional problem at a resolution06f x 1000 pixels
contains one million unknowns, which would require the nsi@n of a one-million
by one-million matrix: completely unfeasible.
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Process of Interest Measurements

Forward

Fig. 1.1. An inverse problem: You want a nice clear photo of a face, hawgour camera
yields blurry measurements. To solve this inverse probkeguires us to mathematically invert
the forward process of blurring.

Therefore even rather modestly sized two- and higher-dgioeral problems become
impossible to solve using straightforward techniques,thiese problems are very
common. Problems having one million or more unknowns aerét throughout the
fields of remote sensing, oceanography, medical imagingjsaismology, to name
a few.

To be clear, a problem is considered to be multidimensidnilis a function of
two or more independent variables. These variables coulsphéal (as in a two-
dimensional image or a three-dimensional volume), spatioporal (such as a video,
a sequence of two-dimensional images over time), or a fanaif other variables
under our control.

Multidimensional M ethods ver sus Image Processing

What is it that the great diversity of algorithms in the imggecessing literature
cannot solve?

The majority of images which are examined and processedagéprocessing are
“real” images, pictures and scenes at human scales, wherientiges are not well
described mathematically. Therefore the focus of imagegssing is on making
relatively few explicit, mathematical assumptions abdgt image, and instead fo-
cusing on the development of algorithms that perform imeajated tasks (such as
compression, segmentation, edge detection, etc.).
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Face Grass Clouds

Fig. 1.2. Which of these might be best characterized mathematicMig?y natural phenom-
ena, when viewed at an appropriate scale, have a behavidohhighsufficiently varied or
irregular that it can be modelled via relatively simple eiprss, as opposed to a human face,
which would need a rather complex model to be representadtatety.

In contrast, of great research interest are images takencabsoopic scales (cells
in a Petri dish, the crystal structure of stone or metal) anatroscopic scales (the
temperature distribution of the ocean or of the atmospleate|lite imagery of the

earth) which do, in general, allow some sort of mathematitaracterization, as
explored in FigurETl2. That s, the focus of this text is amalssumption or inference
of ratherexplicitmathematical models of the unknown process.

Next, in order to be able to say something about a problem,eeel measurements
of it. These measurements normally suffer from one of treseds, any one of which
would preclude the use of standard image-processing tqohsi

1. For measurements produced by a scientific instrumentiiicg a measurement

normally requires time and/or money, therefore the numleneasurements is
constrained. Frequently this implies that the multidimienal problem of interest
is only sparsely sampled, as illustrated in Figuré 1.3.

There exist many standard methods to interpolate gaps ieesee of data, how-
ever standard interpolation knows nothing about the ugdeylphenomenon be-
ing studied. That is, surely a grass-like texture shouldberpolated differently
from a map of ocean-surface temperature.

. Most measurements are not exact, but suffer from somesdegmoise. ldeally

we would like to remove this noise, to infer a more precisesizer of the under-
lying multidimensional phenomenon.

There exist many algorithms for noise reduction in imagesydver these are
necessarily heuristic, because they are designed to wgskotographic images,
which might contain images of faces / cars / trees and the Gkeen a scientific

dataset, surely we would wish to undertake denoising in seragstematic (ide-
ally optimal) manner, somehow dependent on the behaviotieofunderlying

phenomenon.
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Fig. 1.3. Multidimensional measurements: Three examples of twohi@e-dimensional mea-
surements which could not be processed by conventional snefaimage processing. The
altimetric measurements are sparse, following the orlpigdh of a satellite; the ship-based
measurements are irregular and highly sparse, based oatihe that a ship followed in tow-

ing an instrument array; the MRI measurements are densetlpdor resolution and with

substantial noise.

3. In many cases of scientific imaging, the raw measuremattymed by an in-
strument isnot a direct measurement of the multidimensional field, buteath
some function of it. For example, in Applicatifh 3 we wish tody atmospheric
temperature based on radiometric measurements of miceintansities: the air

temperature and microwave intensity are indeed relatedakivery different
guantities.

Standard methods in image processing normally assumehahéasurements
(possibly noisy, possibly blurred) form an image. Howehexing measurements
being some complicated function of the field of interest farerse problem) is
more subtle and requires a careful formulation.
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Statistics and Random Fields

What is it that makes a problem statistical, and why do we shdao focus on statis-
tical methods?

An interest inspatial statisticgjoes considerably beyond the modelling of phenom-
ena which are inherenthandom In particular, multidimensional random fields offer
the following advantages:

1. Even if an underlying process is not random, in most cassssarements of the
process are corrupted by noise, and therefore a statiséipagsentation may be
appropriate.

2. Many processes exhibit a degree of irregularity or coxiptethat would be
extremely difficult to model deterministically. Two exarmeplare shown in Fig-
ure[I:3; although there are physics which govern the bebawibboth of these
examples (e.g., the Navier—Stokes differential equatiomter flow) the models
are typically highly complex, containing a great number okoiown parameters,
and are computationally difficult to simulate.

A random-fields approach, on the other hand, would impjicipproximate these
complex models on the basis of observed statistics.

A random fiell X is nothing but a large collection of random variables aregthgn
some set of points (possibly a two- or three-dimensional, grerhaps on a sphere,
or perhaps irregularly distributed in a high-dimensionadce). The random field is
characterized by the statistical interrelationships leetwits random variables.

The main problem associated with a statistical formulasdhe computational com-
plexity of the resulting solution. However, as we shall gbere exists a compre-
hensive set of methods and algorithms for the manipulati@hedficient solving of
problems involving random fields. The development of theotty and of associated
algorithms is the fundamental goal of this text.

Specifically, the key problem explored in this text is reprgational and computa-
tional efficiency in the solving of large problems. The qi@sbf efficiency is easily
motivated: even a very modestly siz266 x 256 image has 65536 elements, and
the glass beads image in Figlitel1.4 contains in excess of 1@nnelements! It
comes as no surprise that a great part of the research indomafields involves the
discovery or definition ofmplicit statistical forms which lead to effective or faith-
ful representations of the true statistics, while admitteomputationally efficient
algorithms.

Broadly speaking there are four typical problems assodiatgh random fields
[112]:

! Random variables, random vectors, and random fields arewed in AppendikB11.
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A Porous Medium of Packed Glass Beads

e i ;
(Microscopic Data from M. loannidis, Dept. Chemical Enganiag, University of Waterloo)
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Fig. 1.4. Two examples of phenomena which may be modelled via randddsfipacked
glass beads (top), and the ocean surface temperaturerf)ofidternatives to random fields
do exist to model these phenomena, such as ballistics netbothe glass beads, and coupled
differential equations for the ocean, however such appresevould be greatly more complex
than approximating the observed phenomena on the basifeofad spatial statistics.

1. Representation: how is the random field represented anadngdrized?
2. Synthesis: how can we generate “typical” realizationthefrandom field?

3. Parameter estimation: given a parametrized statigticalel and sample image,
how can we estimate the unknown parameters in the model?
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4. Random fields estimation: given noisy observations ofdhelom field, how can
the unknown random field be estimated?

All four of these issues are of interest to us, and are deesldiproughout the text.

For each of these there are separate questions of formuyjatio
How do | write down the equations that need to be solved?
as opposed to those of solution,
How do | actually find a solution to these equations?

Part | of this text focuses mostly on the former questiorgldighing the mathemat-
ical fundamentals that are needed to express a solutigminciple. This gives us a
solution which we might call

1. Brute Force: The direct implementation of the solution equations, pexgtive
of computational storage, complexity, and numerical ridess issues.

Parts Il and Il then examine the latter question, seekiagigral, elegant, or indirect
solutions to the problems of interest. Howeya@actical should not be interpreted to
mean that the material is only of dry interest to the spegtiglitting at a computer,
aboutto develop a computer program. Many of the most fundéamhieleas expressed
in this text are particularly in Part Il, where deep insigint® the nature of spatial
random fields are explored.

A few kinds of efficient solutions, alternatives to the dir@éaplementations from
Part I, are summarized as follows:

2. Dimensionality Reduction: Transforming a problem into one or more lower-
dimensional problems.

3. Change of Basis: A mathematical transformation of the problem which simpli-
fies its computational or numerical complexity.

4. Approximate Solution: An approximation to the exact analytical solution.

5. Approximated Problem: Rather than solving the given problem, identifying a
similar problem which can be solved exactly.

6. Special Cases: Circumstances in which the statistics or symmetry of thé|em
gives rise to special, efficient solutions.

These six points give a broad sense of what this text is about.
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Interpolation as a Multidimensional Statistical Problem

We conclude the Introduction by developing a simple carairégzample, to which
we frequently refer throughout the text. We have chosen phidblem because it
is intuitive and simple to understand, yet possesses madkediatures of a large,
challenging, estimation problem.

Suppose you had sparse, three-dimensional measuremesumefscalar quantity,
such as the temperature throughout some part of an ocearwighuto produce a
dense map (really, a volume) of the temperature, based ooliberved measure-
ments.

Essentially this is an interpolation problem, in that we twte take sparse mea-
surements of temperature, and infer from them a dense grienoperature values.
However byinterpolationwe do not mean standard deterministic approaches such
as linear, bilinear, or B-spline interpolation, in which ixen set of points is deter-
ministically projected onto a finer grid. Rather, we meandtaisticalproblem, in
which we have a three-dimensional random figldvith associated measurements
M, where the measurements are subject to nBissuch that

m; = zj, + v, (1.2)

wherej; is an index, describing the location of tith measurement. Thus{lL.1) gives
the forward model, which we wish to invert (Chadiér 2).

Given the definition of the inverse problem, we can formutageanalytical solution,

depending on whether this is a static problem, a single $mdjas time (Chaptdrl3),

or a more complicated time-dynamic problem, in which thegerture evolves and
is estimated over time (Chapfdr 4).

However, so far we haven't said anything about the mathesati statistics gov-
erning Z. What distinguishes statistical interpolation from detaristic methods,
such as linear or bilinear interpolation, is the ability &ke into account specific
properties ofZ (ChapteEb). Thus i€ smooth, on what length scales does it exhibit
variability, and what happens at its boundaries? Furthesirare the statistics of
spatially stationary (not varying from one location to dm) or not, and are the
statistics best characterized by looking at correlatidn® or at the inverse correla-
tions (Chaptefl6)? Finally are there hidden underlying efsp® the problem, such
that the model in one location may be different from that inther (Chaptdrl7)?

If the problem is particularly large, would it be possibledollapse it along one
dimension, or possibly to solve the problem in pieces, rathe@n as a whole? One
could also imagine transforming the problem, for exampiegia Fourier or wavelet
transform (Chaptdi8).

At this point we have determined what sort of problem we hatesther reduced in
dimensionality, whether transformed, whether station@fy are left with two basic
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approaches for solving the inverse problem: we can conkierirtverse problem to
a linear system, and use one of a number of linear systemsrsdiwostly iterative)
to find the desired map (Chapfér 9), or we could use a domainrdposition ap-
proach that tackles the problem row-by-row, column-bydomh, block-by-block, or
scale-by-scale (ChaptEr]10). We may also wish to underdtednodel better by
generating random samples from it (Chajifdr 11).

How to Read This Text

The preceding interpolation example has been very shortreay details are omit-
ted, butitis hoped that it gives the reader a sense of theesafojhe ideas developed
in this text. The reader wishing to follow up on interpolatio more detail is encour-
aged to move directly to the three interpolation example®idged in Chaptdd2 on

page$ 2032, arldB6.

Those readers unfamiliar with the contents of this text mahvwo survey the book
by glancing through the worked applications at the end ofyeglapter, which cover
a variety of topics in remote sensing and scientific imagifgese applications, and
also the various examples throughout the text, are aldibeginning on padeXIil.

Any reader who wishes to explore multidimensional randorugieand processes
in some depth should focus on the chapters on inverse prebderd modelling,
Chapter§114.16, arld 8, which form the core of this text.

Readers who are interested in numerical implementatiotigeaiethods in this text
should consult the list of MrLABH code samples on pafeXV. The code samples
are cross-referenced to figures and examples throughotedthend all of the listed
samples are available online at

http://ocho.uwaterloo.ca/book

2 MarLae®isa registered trademark of The MarhWorks Inc.
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