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Introduction

Images are all around us! Inexpensive digital cameras, video cameras, computer web-
cams, satellite imagery, and images off the Internet give usaccess to spatial imagery
of all sorts. The vast majority of these images will be of scenes at human scales —
pictures of animals / houses / people / faces and so on — relatively complex images
which are not well described statistically or mathematically. Many algorithms have
been developed to process / denoise / compress / segment suchimages, described
in innumerable textbooks on image processing [36, 54, 143, 174, 210], and briefly
reviewed in Appendix C.

Somewhat less common, but of great research interest, are images which do allow
some sort of mathematical characterization, and to which standard image-processing
algorithms may not apply. In most cases we do not necessarilyhaveimageshere, per
se, but rather spatial datasets, with one or more measurements taken over a two- or
higher-dimensional space.

There are many important problems falling into this latter group of scientific im-
ages, and where this text seeks to make a contribution. Examples abound throughout
remote sensing (satellite data mapping, data assimilation, sea-ice / climate-change
studies, land use), medical imaging (denoising, organ segmentation, anomaly detec-
tion), computer vision (textures, image classification, segmentation), and other 2D /
3D problems (groundwater, biological imaging, porous media, etc.).

Although a great deal of research has been applied to scientific images, in most
cases the resulting methods are not well documented in common textbooks, such
that many experienced researchers will be unfamiliar with the use of the FFT method
(Section 8.3) or of posterior sampling (Chapter 11), for example.

The goal, then, of this text is to address methods for solvingmultidimensional in-
verse problems. In particular, the text seeks to avoid the pitfall of being entirely
mathematical / theoretical at one extreme, or primarily applied / algorithmic on the
other, by deliberately developing the basic theory (Part I), the mathematical mod-
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elling (Part II), and the algorithmic / numerical methods (Part III) of solving a given
problem.

Inverse Problems

So, to begin, why would we want to solve an inverse problem?

There are a great many spatial phenomena that a person might want to study ...

• The salinity of the ocean surface as a function of position;

• The temperature of the atmosphere as a function of position;

• The height of the grass growing in your back yard, as a function of location;

• The proportions of oil and water in an oil reservoir.

In each of these situations, you aren’t just handed a map of the spatial process you
wish to study, rather you have toinfer such a map from given measurements. These
measurements might be a simple function of the spatial process (such as measuring
the height of the grass using a ruler) or might be complicatednonlinear functions
(such as microwave spectra for inferring temperature).

The process by which measurements are generated from the spatial process is nor-
mally relatively straightforward, and is referred to as aforward problem. More diffi-
cult, then, is theinverse problem, discussed in detail in Chapter 2, which represents
the mathematical inverting of theforward problem, allowing you to infer the process
of interest from the measurements. A simple illustration isshown in Figure 1.1.

Large Multidimensional Problems

So why is it that we wish to study large multidimensional problems?

The solution to linear inverse problems (see Chapter 3) is easily formulated analyt-
ically, and even a nonlinear inverse problem can be reformulated as an optimization
problem and solved. The challenge, then, is not the solving of inverse problemsin
principle, but rather actually solving themin practice.

For example, the solution to a linear inverse problem involves a matrix inversion. As
the problem is made larger and larger, eventually the matrixbecomes computation-
ally or numerically impossible to invert. However, this is not just an abstract limit
— even a modest two-dimensional problem at a resolution of1000 × 1000 pixels
contains one million unknowns, which would require the inversion of a one-million
by one-million matrix: completely unfeasible.
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Fig. 1.1. An inverse problem: You want a nice clear photo of a face, however your camera
yields blurry measurements. To solve this inverse problem requires us to mathematically invert
the forward process of blurring.

Therefore even rather modestly sized two- and higher-dimensional problems become
impossible to solve using straightforward techniques, yetthese problems are very
common. Problems having one million or more unknowns are littered throughout the
fields of remote sensing, oceanography, medical imaging, and seismology, to name
a few.

To be clear, a problem is considered to be multidimensional if it is a function of
two or more independent variables. These variables could bespatial (as in a two-
dimensional image or a three-dimensional volume), spatio-temporal (such as a video,
a sequence of two-dimensional images over time), or a function of other variables
under our control.

Multidimensional Methods versus Image Processing

What is it that the great diversity of algorithms in the imageprocessing literature
cannot solve?

The majority of images which are examined and processed in image processing are
“real” images, pictures and scenes at human scales, where the images are not well
described mathematically. Therefore the focus of image processing is on making
relatively few explicit, mathematical assumptions about the image, and instead fo-
cusing on the development of algorithms that perform image-related tasks (such as
compression, segmentation, edge detection, etc.).
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Face Grass Clouds

Fig. 1.2. Which of these might be best characterized mathematically?Many natural phenom-
ena, when viewed at an appropriate scale, have a behaviour which is sufficiently varied or
irregular that it can be modelled via relatively simple equations, as opposed to a human face,
which would need a rather complex model to be represented accurately.

In contrast, of great research interest are images taken at microscopic scales (cells
in a Petri dish, the crystal structure of stone or metal) or atmacroscopic scales (the
temperature distribution of the ocean or of the atmosphere,satellite imagery of the
earth) which do, in general, allow some sort of mathematicalcharacterization, as
explored in Figure 1.2. That is, the focus of this text is on the assumption or inference
of ratherexplicit mathematical models of the unknown process.

Next, in order to be able to say something about a problem, we need measurements
of it. These measurements normally suffer from one of three issues, any one of which
would preclude the use of standard image-processing techniques:

1. For measurements produced by a scientific instrument, acquiring a measurement
normally requires time and/or money, therefore the number of measurements is
constrained. Frequently this implies that the multidimensional problem of interest
is only sparsely sampled, as illustrated in Figure 1.3.

There exist many standard methods to interpolate gaps in a sequence of data, how-
ever standard interpolation knows nothing about the underlying phenomenon be-
ing studied. That is, surely a grass-like texture should be interpolated differently
from a map of ocean-surface temperature.

2. Most measurements are not exact, but suffer from some degree of noise. Ideally
we would like to remove this noise, to infer a more precise version of the under-
lying multidimensional phenomenon.

There exist many algorithms for noise reduction in images, however these are
necessarily heuristic, because they are designed to work onphotographic images,
which might contain images of faces / cars / trees and the like. Given a scientific
dataset, surely we would wish to undertake denoising in a more systematic (ide-
ally optimal) manner, somehow dependent on the behaviour ofthe underlying
phenomenon.
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Fig. 1.3. Multidimensional measurements: Three examples of two- or three-dimensional mea-
surements which could not be processed by conventional means of image processing. The
altimetric measurements are sparse, following the orbitalpath of a satellite; the ship-based
measurements are irregular and highly sparse, based on the paths that a ship followed in tow-
ing an instrument array; the MRI measurements are dense, butat poor resolution and with
substantial noise.

3. In many cases of scientific imaging, the raw measurement produced by an in-
strument isnot a direct measurement of the multidimensional field, but rather
some function of it. For example, in Application 3 we wish to study atmospheric
temperature based on radiometric measurements of microwave intensities: the air
temperature and microwave intensity are indeed related, but are very different
quantities.

Standard methods in image processing normally assume that the measurements
(possibly noisy, possibly blurred) form an image. However,having measurements
being some complicated function of the field of interest (an inverse problem) is
more subtle and requires a careful formulation.
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Statistics and Random Fields

What is it that makes a problem statistical, and why do we choose to focus on statis-
tical methods?

An interest inspatial statisticsgoes considerably beyond the modelling of phenom-
ena which are inherentlyrandom. In particular, multidimensional random fields offer
the following advantages:

1. Even if an underlying process is not random, in most cases measurements of the
process are corrupted by noise, and therefore a statisticalrepresentation may be
appropriate.

2. Many processes exhibit a degree of irregularity or complexity that would be
extremely difficult to model deterministically. Two examples are shown in Fig-
ure 1.4; although there are physics which govern the behaviour of both of these
examples (e.g., the Navier–Stokes differential equation for water flow) the models
are typically highly complex, containing a great number of unknown parameters,
and are computationally difficult to simulate.

A random-fields approach, on the other hand, would implicitly approximate these
complex models on the basis of observed statistics.

A random field1 X is nothing but a large collection of random variables arranged on
some set of points (possibly a two- or three-dimensional grid, perhaps on a sphere,
or perhaps irregularly distributed in a high-dimensional space). The random field is
characterized by the statistical interrelationships between its random variables.

The main problem associated with a statistical formulationis the computational com-
plexity of the resulting solution. However, as we shall see,there exists a compre-
hensive set of methods and algorithms for the manipulation and efficient solving of
problems involving random fields. The development of this theory and of associated
algorithms is the fundamental goal of this text.

Specifically, the key problem explored in this text is representational and computa-
tional efficiency in the solving of large problems. The question of efficiency is easily
motivated: even a very modestly sized256 × 256 image has 65 536 elements, and
the glass beads image in Figure 1.4 contains in excess of 100 million elements! It
comes as no surprise that a great part of the research into random fields involves the
discovery or definition ofimplicit statistical forms which lead to effective or faith-
ful representations of the true statistics, while admitting computationally efficient
algorithms.

Broadly speaking there are four typical problems associated with random fields
[112]:
1 Random variables, random vectors, and random fields are reviewed in Appendix B.1.
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A Porous Medium of Packed Glass Beads

(Microscopic Data from M. Ioannidis, Dept. Chemical Engineering, University of Waterloo)
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Fig. 1.4. Two examples of phenomena which may be modelled via random fields: packed
glass beads (top), and the ocean surface temperature (bottom). Alternatives to random fields
do exist to model these phenomena, such as ballistics methods for the glass beads, and coupled
differential equations for the ocean, however such approaches would be greatly more complex
than approximating the observed phenomena on the basis of inferred spatial statistics.

1. Representation: how is the random field represented and parametrized?

2. Synthesis: how can we generate “typical” realizations ofthe random field?

3. Parameter estimation: given a parametrized statisticalmodel and sample image,
how can we estimate the unknown parameters in the model?
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4. Random fields estimation: given noisy observations of therandom field, how can
the unknown random field be estimated?

All four of these issues are of interest to us, and are developed throughout the text.

For each of these there are separate questions of formulation,
How do I write down the equations that need to be solved?

as opposed to those of solution,
How do I actually find a solution to these equations?

Part I of this text focuses mostly on the former question, establishing the mathemat-
ical fundamentals that are needed to express a solution,in principle. This gives us a
solution which we might call

1. Brute Force: The direct implementation of the solution equations, irrespective
of computational storage, complexity, and numerical robustness issues.

Parts II and III then examine the latter question, seeking practical, elegant, or indirect
solutions to the problems of interest. However,practicalshould not be interpreted to
mean that the material is only of dry interest to the specialist sitting at a computer,
about to develop a computer program. Many of the most fundamental ideas expressed
in this text are particularly in Part II, where deep insightsinto the nature of spatial
random fields are explored.

A few kinds of efficient solutions, alternatives to the direct implementations from
Part I, are summarized as follows:

2. Dimensionality Reduction: Transforming a problem into one or more lower-
dimensional problems.

3. Change of Basis: A mathematical transformation of the problem which simpli-
fies its computational or numerical complexity.

4. Approximate Solution: An approximation to the exact analytical solution.

5. Approximated Problem: Rather than solving the given problem, identifying a
similar problem which can be solved exactly.

6. Special Cases: Circumstances in which the statistics or symmetry of the problem
gives rise to special, efficient solutions.

These six points give a broad sense of what this text is about.
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Interpolation as a Multidimensional Statistical Problem

We conclude the Introduction by developing a simple canonical example, to which
we frequently refer throughout the text. We have chosen thisproblem because it
is intuitive and simple to understand, yet possesses most ofthe features of a large,
challenging, estimation problem.

Suppose you had sparse, three-dimensional measurements ofsome scalar quantity,
such as the temperature throughout some part of an ocean. Youwish to produce a
dense map (really, a volume) of the temperature, based on theobserved measure-
ments.

Essentially this is an interpolation problem, in that we wish to take sparse mea-
surements of temperature, and infer from them a dense grid oftemperature values.
However byinterpolationwe do not mean standard deterministic approaches such
as linear, bilinear, or B-spline interpolation, in which a given set of points is deter-
ministically projected onto a finer grid. Rather, we mean thestatisticalproblem, in
which we have a three-dimensional random fieldZ with associated measurements
M , where the measurements are subject to noiseV , such that

mi = zji
+ vi, (1.1)

whereji is an index, describing the location of theith measurement. Thus (1.1) gives
the forward model, which we wish to invert (Chapter 2).

Given the definition of the inverse problem, we can formulatethe analytical solution,
depending on whether this is a static problem, a single snapshot in time (Chapter 3),
or a more complicated time-dynamic problem, in which the temperature evolves and
is estimated over time (Chapter 4).

However, so far we haven’t said anything about the mathematics or statistics gov-
erningZ. What distinguishes statistical interpolation from deterministic methods,
such as linear or bilinear interpolation, is the ability to take into account specific
properties ofZ (Chapter 5). Thus isZ smooth, on what length scales does it exhibit
variability, and what happens at its boundaries? Furthermore, are the statistics ofZ
spatially stationary (not varying from one location to another) or not, and are the
statistics best characterized by looking at correlations of Z or at the inverse correla-
tions (Chapter 6)? Finally are there hidden underlying aspects to the problem, such
that the model in one location may be different from that in another (Chapter 7)?

If the problem is particularly large, would it be possible tocollapse it along one
dimension, or possibly to solve the problem in pieces, rather than as a whole? One
could also imagine transforming the problem, for example using a Fourier or wavelet
transform (Chapter 8).

At this point we have determined what sort of problem we have,whether reduced in
dimensionality, whether transformed, whether stationary. We are left with two basic
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approaches for solving the inverse problem: we can convert the inverse problem to
a linear system, and use one of a number of linear systems solvers (mostly iterative)
to find the desired map (Chapter 9), or we could use a domain-decomposition ap-
proach that tackles the problem row-by-row, column-by-column, block-by-block, or
scale-by-scale (Chapter 10). We may also wish to understandthe model better by
generating random samples from it (Chapter 11).

How to Read This Text

The preceding interpolation example has been very short andmany details are omit-
ted, but it is hoped that it gives the reader a sense of the scope of the ideas developed
in this text. The reader wishing to follow up on interpolation in more detail is encour-
aged to move directly to the three interpolation examples developed in Chapter 2 on
pages 20, 32, and 36.

Those readers unfamiliar with the contents of this text may wish to survey the book
by glancing through the worked applications at the end of every chapter, which cover
a variety of topics in remote sensing and scientific imaging.These applications, and
also the various examples throughout the text, are all listed beginning on page XIII.

Any reader who wishes to explore multidimensional random fields and processes
in some depth should focus on the chapters on inverse problems and modelling,
Chapters 2, 5, 6, and 8, which form the core of this text.

Readers who are interested in numerical implementations ofthe methods in this text
should consult the list of MATLAB 2 code samples on page XV. The code samples
are cross-referenced to figures and examples throughout thetext, and all of the listed
samples are available online at

http://ocho.uwaterloo.ca/book

2 MATLAB
R© is a registered trademark of The MarhWorks Inc.
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